
STCG: State-Aware Test Case Generation for Simulink Models
Zhuo Su∗, Zehong Yu∗, Dongyan Wang†, Yixiao Yang ‡, Rui Wang‡, Wanli Chang§, Aiguo Cui¶ and Yu Jiang �∗

∗KLISS, BNRist, School of Software, Tsinghua University, Beijing 100084, China
†Information Technology Center, Renmin University of China, Beijing 100872, China
‡Information Engineering College, Capital Normal University, Beijing 100089, China

§Department of Computer Science, University of York, York YO10 5DD, United Kingdom
¶HUAWEI Technologies, Co. LTD. Shanghai 200120, China

Abstract—Simulink has been widely used in system design, which sup-
ports the efficient modeling and synthesis of embedded controllers, with
automatic test case generation to simulate and validate the correctness
of the constructed Simulink model. However, the increasing complexity
of the model, especially the internal states, brings extra challenges to
existing model testing techniques such as constraint solving and random
search, which results in difficulties when trying to reach the deeper logic
of the model effectively.

In this paper, we propose STCG, a state-aware test case generation
method for Simulink models. STCG solves only one iteration of the model
each time to get the test input that can cover a target branch, then
executes the model once to obtain and update the novel model state
based on the solved input dynamically. Then, it solves the remaining
branches based on the new model state iteratively until all the coverage
requirements are satisfied. We implemented STCG and evaluated it on
several benchmark Simulink models. Compared to the built-in Simulink
Design Verifier and state-of-the-art academic work SimCoTest, STCG
achieves an average improvement of 58% and 132% on Decision
Coverage, 52% and 70% on Condition Coverage and 239% and 237%
on Modified Condition Decision Coverage, respectively.

Index Terms—Test case generation, Simulink, Constraint solving

I. INTRODUCTION

Simulink [1] is one of the most widely used model-driven design
tools and is increasingly used in embedded scenarios [2], [3], [4].
It supports efficient modeling, fast simulation, and high-quality code
generation for embedded control model [5], [6]. For ensuring the
security and stability of the model, it is necessary to test the model
sufficiently [7]. However, manually constructing test cases not only
consumes a lot of effort but also has a difficulty in comprehensively
testing the model elements. Automatic test case generation can save
significant efforts and cover a lot of logic that is difficult to detect
manually [8].

Currently, there are a lot of works on test case generation for
Simulink models [9], [10], [11], [12], [13]. These works can be
generally classified into two types. One is based on the constraint
solving method, such as the Simulink built-in toolkit Simulink Design
Verifier(SLDV) [14]. The other is based on the random search
method, such as SimCoTest [15]. The former usually transforms the
model into a specific formal representation and then uses a formal
solver to solve the constraints on the various branch logic in the
model. It finally obtains model inputs that satisfy all the constraints.
The latter usually generates the input data randomly for the model and
obtains the feedback coverage information by executing the model to
further optimize the test case generation.

Although the existing works mentioned above have achieved great
progress in the Simulink model testing, they are difficult to generate
high-coverage test cases for models that contain complex internal
states. Since there are many control conditions that require the model
in a specific state to be triggered, traditional constraint solving
methods are faced with solving for more complex model states,
resulting in difficulty to work out feasible solutions in a short time.
As for the random search method, it is also difficult to generate test

* Yu Jiang is the corresponding author.

cases that can reach the specific model states, even harder for the
state-dependent conditions.

Figure 1 shows a real industry example of a control model with
complex internal states, which is an AutoSAR CPU task dispatch
model. This model mainly contains a task queue, and the tasks
in this queue are dynamically maintained through four operations,
that is Add, Delete, Modify and Check, respectively. Task deletion,
modification and checking require finding the item from the task
queue that matches the task ID and the task parameter. Which means
that the corresponding task item must exist in the task queue before
performing these three operations. For constraint solving methods,
it is difficult to obtain an input test case like “add data first and
then modify data” directly. Because it is difficult to solve directly for
two consecutive operations on an array. Solving for arrays is already
very difficult, let alone twice, which makes the problem exponentially
more complex [16]. For random search methods, there is only a small
probability to generate a test input like “the previously added task
ID matches the task ID to be modified later”.

Fig. 1. An example of model with complex internal states. This is an
AutoSAR CPU task dispatch model. It mainly contains the four operations of
adding, deleting, modifying and checking CPU task in the queue..

To address the above problem, we propose a state-aware test
case generation method. The key idea is to maintain a state tree to
represent the execution paths, and solve the state-dependent condition
based on the specific model state iteratively to avoid solving for the
whole complex model states. First, it tries to solve one iteration of the
model to obtain the input data that can trigger a target branch. Then,
the input data is fed into the model for dynamic execution to obtain
the new state of the model. The input data and the state are recorded
as a new node in the state tree. After that, we continue to solve one
iteration for the remaining branches based on the new state node.
The loop will repeat until all coverage requirements are satisfied.
In addition, a random trace is executed dynamically to explore the
new state space when all the tree nodes are unable to solve for a
new coverage out. Based on this method, the difficulty of constraint
solving will be significantly reduced. Because we bring the model
state as a constant into the solving process, the logic that depends on
the model state will be explored easily.

Simulink
Model

Test Case

Target State
and Solved Input

State
Tree

Branch Depth
Sorting

State-Aware Solving

Branch Constraint
Solving

Uncovered
Branches

Unsolved
Nodes

Solved Input Library

Random Sequence
Generation

Input Data
Execution

State Tree
Update

Dynamic Execution

New
Coverage

Fig. 2. Overview of STCG. Two parts are executed cyclically to obtain test cases. The State-Aware Solving part focuses on obtaining the one-step input data
by constraint solving on one iteration of the model. The Dynamic Execution part focuses on obtaining the specific state of the model by executing the solved
input data and outputting test cases.

We implemented and evaluated STCG on several benchmark
Simulink models. Compared to the built-in Simulink Design Verifier
and the academic work SimCoTest, STCG achieves an average
improvement of 58% and 132% on Decision Coverage, 52% and 70%
on Condition Coverage and 239% and 237% on Modified Condition
Decision Coverage(MCDC), respectively.

II. RELATED WORK

Constraint solving based test case generation. It usually uses
formal techniques to obtain input cases that satisfy the property
requirements. Simulink Design Verifier(SLDV) [14], the built-in
validation toolkit of Simulink, leverages symbolic execution to auto-
matically generate test cases for model coverage criteria, including
Decision Coverage, Condition Coverage, Modified Condition Deci-
sion Coverage, and derive customize test objectives. The work in
[9] adopts the model-checking approach to explore the structure of
the target model and obtain the subset of nodes that maximizes the
observation of mutants. Then, it will generate a small set of test cases
to achieve high coverage based on this information. AutoMOTGen
[10] describes the Simulink model by a formal language named
SAL [17], encodes the coverage specifications in the formal model,
and utilizes the built-in model checking tools to perform test case
generation.

Due to the lack of perception of internal states, they have difficulty
in deriving test cases for models that use internal states as conditions.
Unlike these works, STCG records internal states obtained by the
dynamic execution and solves the state-aware branch conditions
iteratively. Consequently, STCG can explore more state space and
achieve higher coverage at a faster speed.

Random search based test case generation. Random search is
widely used for testing large models [11], [12], [15], [13]. This ap-
proach typically utilizes dynamic simulation to obtain test feedback.
Reactis [12] uses Monte Carlo methods to generate test cases for
random simulation. It also adopts the guided simulation technique to
evaluate output values for selecting test cases for exploring uncovered
blocks. REDIRECT [11] focuses on analyzing the feedback from the
simulation of the generated test cases and uses a set of heuristics
for non-linear blocks. SimCoTest [15] generates test cases for both
continuous-time and discrete-time Simulink models.

For deep blocks and internal states inside models, the random
search approaches are hard to generate test cases to trigger them
and unable to satisfy high-standard coverage criteria like MCDC.
Different from them, STCG uses the constraint solving method with
internal states to derive precise requirements for satisfying coverage
criteria and generate corresponding test cases.

III. STCG DESIGN

Figure 2 shows an overview of STCG. STCG takes the Simulink
model as input and generates high-coverage test cases as output. The
two main parts of the framework are executed iteratively to generate
test cases. Part one is state-aware solving, which is mainly used to
obtain the one-step input by state-aware branch constraint solving.
It first initializes a state tree containing only one root node which
represents the default state of the model and sorts the model branches
by their depth. Then, it traverses the model branches and state tree
nodes to perform state-aware solving. If input data is solved on a state
for a branch, it will be taken to part two for execution. At the same
time, the solved input will be stored in a library. Part two is dynamic
execution, which is mainly used to obtain and update the model’s
internal state and synthesize test cases. The solved input data from
part one will be brought into the target model state for execution. In
case there is no result from part one, a random input sequence will be
generated from the solved input library for multi-step execution on
a random state. After execution, the new model states will be added
as a child node to the target state node. Once a new model branch
is covered during the execution, all the input data on the current
state tree path will be synthesized as a test case. The iteration of the
state-aware solving and dynamic execution will continue until all the
coverage requirements of the model branch are satisfied.

A. State-aware Solving
Before we introduce the detailed steps of state-aware solving of

branch constraints, some important concepts need to be clarified first.
Definition 1 (model branch): The model branch B is defined as a

tuple ⟨C,F,D⟩ which represents a decision for a block of Simulink
model that has conditional judgment logic. Among them, C is the
condition to enter this branch, F is the parent branch of this branch,
and D represents the branch depth which is also the number of its all
ancestor branches. For example, a Switch block in Simulink contains
two branches, one is the decision when the value of its control port is
true, and the other is the decision when it is false. In fact, constraint
solving for a model branch is to find a model input that satisfies the
constraints of the model branch and all its ancestor branches.

Definition 2 (model state): The model state S is defined as a tuple
⟨G,GV,M,ML, I, IV ⟩ which represents the precise state of the
model after each iteration. Among them, G and GV are the global
variables and their values, respectively. M and ML are the state
machines and their current locations, respectively. I and IV are the
internal states of all actors and their state values, respectively. For
example, the storage data of the Delay block and the last output
value of the Ramp block in Simulink are recorded as model states.

In our state-aware method, the model state values will be fixed as
constants before each constraint solving.

Definition 3 (state tree node): A state tree node N is defined as a
tuple ⟨P, S, IN, SB,CV ⟩ which represents one of the possible states
of the model. Among them, P is the parent node, S is the model state,
IN is the input data that can cause the model to turn to state S based
on the parent state P . SB is a set of the model branch, it records
all the model branches solved in this state. And CV represents the
model branches covered by this state and all ancestor states confirmed
by dynamic execution.

Definition 4 (state tree): The state tree T is a structure of a tree
consisting of a set of state tree nodes {N0, N1, N2, ..., Nn}. It repre-
sents all the model states that have been explored by STCG. The state
tree contains a root node N0 by default. This root node represents
the initial state of the model. Other nodes will be added through
the dynamic execution process. Each path in the tree represents an
execution trace of the model and also represents one test case.

Algorithm 1: State-aware solving
Input: Model: The Simulink model for test case generation

BranchList: The model branches after sorting by depth
StateTree: The state tree during test case generation

Output: TargetState: The selected state node in StateTree
TargetBranch: The selected branch in BranchList
SolvedInput: The solved input of target state and branch

1 SolvedInput = NULL
2 for Branch in BranchList do
3 if isBranchCovered(Branch) then
4 continue
5 for Node in StateTree do
6 if Node.isSolved(Branch) then
7 continue
8 curStateData = Node.getState()
9 Model.setState(curStateData) // Switch model state

10 SolvedInput = solve(Model, Branch) // Constraint
solving for a branch on the current model state

11 Node.setSolved(Branch)
12 if SolvedInput != NULL then
13 // The current state is solvable for target branch
14 TargetState = Node
15 TargetBranch = Branch
16 break

17 if SolvedInput != NULL then
18 break

19 if SolvedInput == NULL then
20 TargetState = NULL
21 TargetBranch = NULL

22 return TargetState, TargetBranch, SolvedInput

When the state-aware solving part is first performed, the state tree
needs to be initialized with a root node that contains the default state
of the model. Meanwhile, the model branches need to be sorted by
depth to accelerate the test case generation process. We select shallow
model branches in preference to performing constraint solving. It is
usually easier to perform solving for the shallow branches because
the constraint solver will formalize for less computing logic so that
the solution can be obtained in less time. Not only that, the solved
inputs that can cover shallow branches will sometimes cover deeper
branches in the same execution. In this way, it can avoid solving for
those deeper branches, which further reduces the solution time. Then,
we traverse all model states in the state tree and all branches of the
model to perform state-aware constraint solving.

The detailed state-aware solving process is shown in Algorithm
1. For the model branches, we only focus on those that have not

been covered yet. The branches that have been covered by dynamic
execution do not need to be solved, in lines 2-4. For the states in the
state tree, we also avoid duplicate solving by determining whether
the branch has already been solved on that state or not, in lines 5-7.
Then, we try to solve for the state nodes and model branches that
satisfy the above requirements. In line 8 and line 9, the model state
value will be taken from the state node and the model state need to
be switched. We just bring the model state value as constants rather
than variables into the model for solving. In line 10, we use the
constraint solver to solve for the current branch of the model on the
current state to obtain a one-step input. Then, the current branch is
marked as solved on the current state node. If there is a solution, the
current state node, the current branch, and the solved input will be
output directly, lines 12-18. As for no solution is obtained, it may be
due to a timeout for solving or a solver failure. For this reason, we
continue to traverse the state tree nodes and model branches to find a
valid solution. If there is no state in the state tree that can be solved
for new branch coverage, the algorithm will return NULL. And then,
the dynamic execution part will use the previously solved inputs to
construct a random sequence to expand the state space.

B. Dynamic execution

The dynamic execution part can perform one-step execution for
the solved input data of state-aware solving or multi-step execution
using a random sequence of existing solved inputs in the library in
case of no solutions. Once a set of input data triggers a new branch,
it outputs all the input data on the current state tree path as a test
case. After execution, it attaches new model states as child nodes to
update the state tree for further iteration.

Algorithm 2: Dynamic execution
Input: Model: The Simulink model for test case generation

StateTree: The state tree during test case generation
TargetState: The selected state node of Algorithm 1
SolvedInput: The solved input of Algorithm 1
InputLibrary: All solved inputs from the solver

Output: TestCase: The test case that result in new coverage
1 TestCase = ∅
2 inputSequence = ∅ // Used for dynamic execution
3 curState = NULL
4 newCover = false
5 if SolvedInput != NULL then
6 // When state-aware solving has a solution
7 curState = TargetState
8 inputSequence.append(SolvedInput)

9 else
10 // When state-aware solving has no solution
11 curState = StateTree.getRandomNode()
12 for N times do
13 curInput = InputLibrary.getRandomInput()
14 inputSequence.append(SolvedInput)

15 for input in inputSequence do
16 curStateData = curState.getState()
17 Model.setState(curStateData) // Switch model state
18 newCover, newState = Model.run(SolvedInput)
19 curState.addChild(newState) // Update state tree
20 curState = newState

21 if newCover then
22 // Get the complete input sequence
23 while curState != StateTree.root do
24 TestCase.addData(curState.getInput())
25 curState = curState.getParentNode()

26 return TestCase

The detailed dynamic execution process is described in Algorithm
2. If the SolvedInput from Algorithm 1 is not NULL, it will be used
for one-step execution along with the selected state (TargetState).
As shown in lines 5-8, this single input will be regarded as an input
sequence. When state-aware solving has no solution, we construct
a random sequence using the input data that has been previously
solved, in lines 9-14. After that, the solved input from Algorithm 1 or
randomly constructed input sequence will be brought into the model
for dynamic execution. It is worth noting that when SolvedInput
is valid, we use the target state from Algorithm 1 as the current
state for dynamic execution, in line 7. And when SolvedInput is
invalid, we randomly select a state in the state tree, in line 11. The
dynamic execution of the input sequence is shown in lines 15-20. It
first switches the state data of the model to the current state. Then, it
brings one input from the input sequence to execute the model once.
A new model state and whether a new coverage can be triggered
will be returned. The new state will be added as a child node of
the current state so that the state tree is updated. The current state
will be replaced with the new state to continue executing the input
sequence. After execution, if a new coverage is found, the input data
of the current node and all its parents will be output as a test case,
as shown in lines 21-25.

C. An running example of STCG workflow
In order to illustrate the working process of STCG more clearly,

we use the CPU Task model in Figure 1 as an example for analysis.
Figure 3.(a) shows the branch structure of the model after simpli-
fication. Since the model is based on opcodes to accomplish the
corresponding functions, there are five branches at the first level,
including the add, delete, modify, check operation of CPU tasks and
the invalid operation. For each of the four operations, there are also
two sub-branches, that is, operation success and operation failure.
Note that the add operation will only fail when the CPU task queue
is full, and the success of the delete, modify and check operation
requires that there is matched task in the queue. For this model, a
possible state tree constructed by STCG is shown in Figure 3.(b). The
corresponding construction process is shown in Table I.

Inputs

Success

Failure

Success

Failure

Success

Failure

Success

Failure

Add Delete Modify Check

Invalid

ErrorB1 B2 B3 B4 B5

B6 B7 B8 B9 B10 B11 B12 B13

Operation
Dispatch

(a) Simplified Simulink model branches
root

Add
(Success)

S2

Delete
(Failure)

S3

Modify
(Failure)

S4

Check
(Failure)

S5

Error

S6 S7

Modify
(Success)

S8

Check
(Success)

Sk

Add
(Success)

Sn

Add
(Failure)

S0

S1

Delete
(Success)

(b) State tree constructed by STCG

Fig. 3. An example of STCG corresponding to the model in Figure 1. (a)
shows the simplified model branches, which contain a total of 13 branches.
(b) illustrates the state tree with the full coverage explored.

The execution conditions of B1-B5 are simple and only require the
opcodes of the input data to be the target values. Therefore, based
on the root state S0, it is easy to obtain the corresponding input data
from the constraint solver. Besides, some branches can be covered
by the dynamic execution, like B6, B9, B11 and B13, as shown in
steps 1-5 in Table I. Next, we try to solve B7, but we cannot get
a valid solution from state S0 to S5 because the CPU task queue
needs to be added more tasks to fill it up. Then, B8 fails to obtain
a valid solution from state S0 in step 7, but obtains a valid solution
from state S1 in step 8 because the state S1 has a CPU task in the
queue, so that a task can be successfully deleted. Similarly, B10 and
B12 can also obtain valid solutions on state S1. When only B7 is left
unsolvable in all state nodes, a random input sequence is constructed
to execute dynamically using the previously solved inputs. Assuming
that state S8 is chosen as the start state for random execution and
the constructed sequence contains enough operations of adding CPU
tasks, then we are able to cover B7 on the state Sn node eventually,
as shown in step 17. During the execution process of STCG, steps
1-5, 8, 11, 14 and 17 will output the test cases.

TABLE I
THE MAIN PROCESS OF CONSTRUCTING THE STATE TREE

Step Target
Branch

Target
State

Achieved
Branch

New
State

Total Achieved
Branch

1 B1 S0 B1, B6 S1 I....I.......

2 B2 S0 B2, B9 S2 II...I..I....

3 B3 S0 B3, B11 S3 III..I..I.I..

4 B4 S0 B4, B13 S4 IIII.I..I.I.I

5 B5 S0 B5 S5 IIIIII..I.I.I

6 Try to solve B7 on state S0-S5, but failed. IIIIII..I.I.I

7 Try to solve B8 on state S0, but failed. IIIIII..I.I.I

8 B8 S1 B8 S6 IIIIII.II.I.I

9 Try to solve B7 on state S6, but failed. IIIIII.II.I.I

10 Try to solve B10 on state S0, but failed. IIIIII.II.I.I

11 B10 S1 B10 S7 IIIIII.IIII.I

12 Try to solve B7 on state S7, but failed. IIIIII.IIII.I

13 Try to solve B12 on state S0, but failed. IIIIII.IIII.I

14 B12 S1 B12 S8 IIIIII.IIIIII

15 Try to solve B7 on state S8, but failed. IIIIII.IIIIII

16 Failed to solve B7 on all state tree nodes. IIIIII.IIIIII

17 Random execution on S8. B7 S9 - Sn IIIIIIIIIIIII

* The “I” in last column represents the corresponding branch is covered,
and the “.” represents uncovered.

IV. EVALUATION

Tool Implementation. STCG1 is implemented in C++, with 28,288
lines of code. We defined a C++ struct to represent the state tree
node. In this struct, we use a “vector” structure to store the child
nodes and dynamically allocated memory to store the state and input
value of each iteration of the model. All state elements, such as global
variables and state machine locations of the model, are stored in a
“map” structure in the form of “key-value”. The “key” represents the
name of the state element (usually described using the full path of
the element in the model). And the “value” represents the attributes
of the state element, such as data type, array length, etc. Only the
values of the model states are stored in each state tree node, and
they are linearly arranged in memory. When we need to switch the
model state, we just need to read the state values in memory in
order and set them to the corresponding elements of the model by

1The implementation and the benchmark models are uploaded on the
anonymous website: https://anonymous.4open.science/r/STCG-9BB3.

mapping the “key-value” structure. Similarly, the inputs for each
iteration of the model are stored in the state tree nodes by linear
memory. When dynamic execution is performed, the input data are
sequentially parsed to the corresponding ports of the model. If a test
case needs to be output for a state tree node, we can find a path to the
root node directly through the node’s parent pointer, and then merge
all the input data stored at the nodes on the path and write it to a file.
Test case files in text format can also be exported by STCG, so that
a fair coverage comparison can be performed by using the Simulink
test block named “Signal Builder”.

Experiment Setup. To evaluate the effectiveness of STCG, we
conduct comparison experiments with the Simulink built-in validation
toolkit SLDV and academic tool SimCoTest in terms of coverage
results. Since other academic and commercial tools are not pub-
licly available, we can not compare STCG with them. Besides, we
conducted an in-depth investigation of the practical effects of our
state-aware method. All experiments are performed on the same
environment (Windows 10, Intel i7-8550U CPU, 16GB RAM) with
the same duration (1 hour). Since both SimCoTest and STCG include
random strategies, we repeat the experiment 10 times to obtain the
average coverage result for a fair comparison. All benchmark models
are derived from the industry and deployed in embedded scenarios.
Table II shows the detailed description of these models, including
model functionality, number of branches, and number of blocks.

TABLE II
THE DESCRIPTION OF BENCHMARK MODELS

Model Functionality #Branch #Block
CPUTask AutoSAR CPU task dispatch system 107 275
AFC Engine air-fuel control system 35 125
TWC Train wheel speed controller 80 214
NICProtocol Vehicle NIC communication protocol 46 294
UTPC Underwater thruster power control 92 214
LANSwitch LAN Switch controller 131 570
LEDLC LED matrix load control 94 270
TCP TCP three-way handshake protocol 146 330

Detailed Results. We used the most widely used Decision Cover-
age, Condition Coverage, and Modified Condition Decision Coverage
(MCDC) to measure the effectiveness of test case generation for dif-
ferent tools. Decision Coverage is concerned with whether different
branches of a block with branching logic can be executed. Condition
Coverage is concerned with whether conditions affecting boolean
logic and branch changes are triggered. MCDC is concerned with
the effect of a single condition change on the entire determination.

Table III shows the coverage of the test cases generated by
the different tools for benchmark models. Compared to SLDV and
SimCoTest, STCG improves the Decision Coverage for 12%-127%
(avg. 58%) and 15%-513% (avg. 132%), Conditional Coverage for
18%-144% (avg. 52%) and 16%-144% (avg. 70%), and MCDC for
100%-900% (avg. 239%) and 100%-400% (avg. 237%), respectively.
It can be seen that our method achieves good results on these control
models with complex internal states. For example, STCG achieves
100% Decision Coverage and 100% Condition Coverage on the
CPUTask model. As mentioned earlier, it is easy to obtain a solution
like “add data first and then modify data” using a state-aware method,
which is difficult to obtain by other methods. On several Simulink
models, such as TWC and NICProtocol, STCG obtained coverage of
90%-98%, which is close to 100%. By dynamically debugging the
models using test cases, we found that most of them were missed
due to dead logic. For example, there is an unreachable branch in the

TABLE III
COMPARISON OF THE TEST COVERAGE OF DIFFERENT TOOLS

Model Tool Decision
Coverage

Condition
Coverage MCDC

SLDV 89% 72% 42%
CPUTask SimCoTest 72% 56% 21%

STCG 100% 100% 100%
SLDV 67% 64% 11%

AFC SimCoTest 72% 68% 11%
STCG 83% 79% 22%
SLDV 46% 68% 40%

TWC SimCoTest 15% 57% 20%
STCG 92% 97% 100%
SLDV 75% 83% 10%

NICProtocal SimCoTest 30% 43% 33%
STCG 95% 98% 100%
SLDV 44% 59% 44%

UTPC SimCoTest 40% 58% 44%
STCG 100% 100% 100%
SLDV 72% 76% 15%

LANSwitch SimCoTest 78% 81% 15%
STCG 100% 98% 55%
SLDV 55% 41% 43%

LEDLC SimCoTest 55% 41% 43%
STCG 98% 100% 100%
SLDV 63% 64% 33%

TCP SimCoTest 82% 74% 17%
STCG 99% 100% 67%

Average
Improvement

vs SLDV ↑ 58% ↑ 52% ↑ 239%
vs SimCoTest ↑ 132% ↑ 70% ↑ 237%

model named LEDLC. This is mainly because there are only four
LED states, and the Switch-Case block, which performs different
control logic based on the LED states, has an additional default port
beside the corresponding four ports.

Effectiveness of State-Aware Solving. We also recorded the
timestamp of each generated test case of three tools, STCG, SLDV
and SimCoTest. Figure 4 shows the folded line of the Decision
Coverage versus time for each Simulink model. To demonstrate the
effectiveness of the state-aware method, we marked those test cases
that were obtained by constraint solving based on internal model
states (marked with “△”) and those obtained from random sequence
execution (marked with “⋄”).

In Figure 4, we can see that in most cases, STCG is able to
achieve higher coverage at a faster speed, and obtain new test cases
continuously. In contrast, SLDV outputs test cases only once on most
models. Although SLDV outputs test cases more consistently on
the NICProtocol model, it is harder and harder to output new test
cases due to the complexity of the deeper state of the model. Since
SimCoTest does not require time-consuming constraint solving, it
will obtain relatively high coverage at the beginning of the test, while
it will be difficult to achieve coverage of state-dependent branches
subsequently. More importantly, as seen from our mark of the test
cases generated by STCG, the higher coverage fraction is almost
always obtained by our state-aware branch solving. For example, on
the TCP model, STCG can obtain the various handshake states of the
client IP. Therefore, it is easy to solve the relevant branches of the
second or the third handshake based on the existing handshake states.

Discussion. In our experiments, we found that some branches
of the model, such as the TWC and LEDLC model, could not be
triggered even after a long solving time and random execution. After
analyzing the models manually, we found that this situation is caused
by the branch conditions being perpetually false. Due to the fact that

0%

20%

40%

60%

80%

100%

0 12 24 36 48 60
STCG SLDV SimCoTest

1h

(a) CPUTask

0%

20%

40%

60%

80%

100%

0 4 8 12 16 20
STCG SLDV SimCoTest

1h

(b) AFC

0%

20%

40%

60%

80%

100%

0 40 80 120 160 200
STCG SLDV SimCoTest

1h

(c) TWC

0%

20%

40%

60%

80%

100%

0 600 1200 1800 2400 3000 3600
STCG SLDV SimCoTest

1h

(d) NICProtocol

0%

20%

40%

60%

80%

100%

0 60 120 180 240 300
STCG SLDV SimCoTest

1h

(e) UTPC

0%

20%

40%

60%

80%

100%

0 30 60 90 120 150
STCG SLDV SimCoTest

1h

(f) LANSwitch

0%

20%

40%

60%

80%

100%

0 160 320 480 640 800
STCG SLDV SimCoTest

1h

(g) LEDLC

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50
STCG SLDV SimCoTest

1h

(h) TCP

Fig. 4. The folded line plot of the Decision Coverage versus time. The X-
axis is time (s) and the Y-axis is Decision Coverage (%). “△” indicates test
cases generated by constraint solving based on internal model states, and “⋄”
indicates test cases generated by executing the random input sequence.

these branches will be solved in every known state in the state tree,
STCG performs multiple solving for this type of branch, resulting in
a lot of wasted time. For this reason, we should probably verify the
unreachable branches using the formal method to improve efficiency.

By comparing with SimCoTest, we found that the random search
method is usually able to explore some coverage earlier than STCG,
as shown in Figure 4. This is due to the random generation of
test cases is faster than constraint solving. If the random method
can be introduced into STCG to perform the random generation
process first and then use the constraint solving method to solve the
remaining uncovered branches, the efficiency of STCG can be further
improved. In addition, constructing a random input sequence using
only previously solved inputs may not reach some branches, which
can be compensated by attaching random methods.

V. CONCLUSION

In this paper, STCG is proposed to optimize the test case generation
of Simulink models with state-aware solving, especially for the
control models which have complex internal states. More specifically,
solving for only one iteration of a model state can simplify the
solving difficulty and complexity. We can obtain model inputs for
new coverage based on specific model states more easily. Dynamic
execution using random input sequences in the absence of a solved
result can further expand the exploration space. Experiments show

that STCG can perform well on benchmark Simulink models. Com-
pared to SLDV and SimCoTest, the Decision Coverage from STCG
can be improved by 58% and 132%, the Condition Coverage can
be improved by 52% and 70%, and the MCDC can be improved by
239% and 237%, respectively. Our future work includes incorporating
more constraint solvers to facilitate the efficiency of STCG.

VI. ACKNOWLEDGMENT

We would like to express our deep gratitude to Hongyu Fan
for his help in formal verification. This research is sponsored
in part by the National Key Research and Development Project
(No. 2022YFB3104000, No2021QY0604) and NSFC Program (No.
62022046, 92167101, U1911401, 62021002).

REFERENCES

[1] Simulink and Matlab, Simulink Documentation. [Online]. Available:
https://www.mathworks.com/help/simulink/index.html

[2] F. Pasic, “Model-driven development of condition monitoring software,”
in Proceedings of the 21st ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Pro-
ceedings. ACM, 2018, pp. 162–167.

[3] D. K. Chaturvedi, Modeling and simulation of systems using MATLAB®
and Simulink®. CRC press, 2017.

[4] S. Staroletov, N. Shilov, V. Zyubin, T. Liakh, A. Rozov, I. Konyukhov,
I. Shilov, T. Baar, and H. Schulte, “Model-driven methods to design of
reliable multiagent cyber-physical systems,” in Proc. of the Conference
on Modeling and Analysis of Complex Systems and Processes, 2019.

[5] J. Krizan, L. Ertl, M. Bradac, M. Jasansky, and A. Andreev, “Automatic
code generation from matlab/simulink for critical applications,” in 2014
IEEE 27th Canadian Conference on Electrical and Computer Engineer-
ing (CCECE). IEEE, 2014, pp. 1–6.

[6] Z. Yu, Z. Su, Y. Yang, J. Liang, Y. Jiang, A. Cui, W. Chang, and
R. Wang, “Mercury: Instruction pipeline aware code generation for
simulink models,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 11, pp. 4504–4515, 2022.

[7] F. Elberzhager, A. Rosbach, and T. Bauer, “Analysis and testing of
matlab simulink models: a systematic mapping study,” in Proceedings
of the 2013 International Workshop on Joining AcadeMiA and Industry
Contributions to Testing Automation, 2013, pp. 29–34.

[8] A. Belinfante, L. Frantzen, and C. Schallhart, “14 tools for test case
generation,” in Model-based testing of reactive systems. Springer, 2005,
pp. 391–438.

[9] N. He, P. Rümmer, and D. Kroening, “Test-case generation for embedded
simulink via formal concept analysis,” in Proceedings of the 48th Design
Automation Conference, 2011, pp. 224–229.

[10] S. Mohalik, A. A. Gadkari, A. Yeolekar, K. Shashidhar, and S. Ramesh,
“Automatic test case generation from simulink/stateflow models using
model checking,” Software Testing, Verification and Reliability, vol. 24,
no. 2, pp. 155–180, 2014.

[11] M. Satpathy, A. Yeolekar, and S. Ramesh, “Randomized directed testing
(redirect) for simulink/stateflow models,” in Proceedings of the 8th ACM
international conference on Embedded software, 2008, pp. 217–226.

[12] R. Cleaveland, S. A. Smolka, and S. T. Sims, “An anstrumentation-
based approach to controller model validation,” in Automotive Software
Workshop. Springer, 2006, pp. 84–97.

[13] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, and L. Etxeberria,
“Search-based test case generation for cyber-physical systems,” in 2017
IEEE Congress on Evolutionary Computation, 2017, pp. 688–697.

[14] G. Hamon, B. Dutertre, L. Erkok, J. Matthews, D. Sheridan, D. Cok,
J. Rushby, P. Bokor, S. Shukla, A. Pataricza et al., “Simulink design
verifier-applying automated formal methods to simulink and stateflow,”
in Third Workshop on Automated Formal Methods, 2008.

[15] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Simcotest:
A test suite generation tool for simulink/stateflow controllers,” in Pro-
ceedings of the 38th International Conference on Software Engineering
Companion, 2016, pp. 585–588.

[16] V. D’silva, D. Kroening, and G. Weissenbacher, “A survey of automated
techniques for formal software verification,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 7, pp. 1165–1178, 2008.

[17] S. International, Symbolic Analysis Laboratory. [Online]. Available:
https://sal.csl.sri.com/

