DualFuzz: Detecting Vulnerability in Wi-Fi NICs
through Dual-Directional Fuzzing

Yuanliang Chen
KLISS, BNRIist, School of Software
Tsinghua University, China

Yuanyi Li
Shuimu Yulin Technology Co., Ltd
Tsinghua University, China

Abstract—Wi-Fi Network Interface Cards (NICs) are vital for
enabling wireless connectivity across a wide range of devices.
Ensuring their security is critical, as vulnerabilities can expose
entire networks to threats. Fuzzing is a promising technique for
detecting such flaws. However, existing Wi-Fi fuzzers typically
test transmission and reception separately, overlooking their
interactions and resulting in inefficient testing.

In this work, we present DualFuzz, a dual-directional fuzzing
framework designed to simultaneously test both transmission and
reception processes in Wi-Fi NICs. First, DualFuzz automatically
identifies interaction behaviors within Wi-Fi NICs and constructs
a Transmission-Reception Model (TRModel) to characterize Wi-
Fi frames that influence these interactions. Leveraging this model,
DualFuzz utilizes latency guided fuzzing to efficiently coordinate
exploring transmission and reception interaction logics. Finally,
we propose liveness and equivalence detectors that enable real-
time monitoring to identify abnormal states and uncover potential
vulnerabilities in Wi-Fi NICs. We implemented and evaluated
DualFuzz on eight widely used Wi-Fi NICs, incorporating
chipsets from various manufacturers (e.g., Intel and Realtek).
Compared to state-of-the-art Wi-Fi fuzzers like OwFuzz, wpaspy,
and Greyhound, DualFuzz detects 75%, 163%, and 250% more
vulnerabilities, respectively. In total, it uncovered 21 previously
unknown vulnerabilities, 7 of which have been assigned CVEs.

Index Terms—Wi-Fi NIC, vulnerability detection, fuzzing

I. INTRODUCTION

Wi-Fi Network Interface Cards (NICs) have become essen-
tial components in modern wireless communication systems,
significantly influencing mobile connectivity and wireless net-
work performance [53], [20]. By converting data into radio
signals and transmitting over networks, Wi-Fi NICs enable
efficient communication and maintain reliable, high-speed
connectivity for personal and industrial usage. As a result, they
are widely used in various scenarios, including smart homes,
industrial automation, and medical devices [2], [48], [19].

However, as Wi-FI NICs are applied in an increasing num-
ber of scenarios, their security has become a critical concern.
Vulnerabilities within these components can be exploited by
attackers using maliciously crafted packets, potentially lead-
ing to serious consequences such as device crashes, system
outages, and unauthorized access [40], [54]. For example,

*Fuchen Ma and Yu Jiang are the corresponding authors.

Fuchen Ma*
KLISS, BNRist, School of Software
Tsinghua University, China

Yanyang Zhao
KLISS, BNRIist, School of Software
Tsinghua University, China

Yu Jiang*
KLISS, BNRist, School of Software
Tsinghua University, China

the KrOOk vulnerability (CVE-2019-15126) [12], [10] affected
billions of devices using Wi-Fi NICs with chips manufactured
by Broadcom and Cypress, allowing attackers to intercept
and decrypt sensitive data by exploiting flawed encryption
during disconnections. This severe flaw led to significant
economic losses due to data breaches, compromised privacy,
and heightened security risks for businesses and consumers.
Thus, ensuring Wi-Fi NIC security is essential to safeguard
networks and connected devices from potential threats.

WiFi-STA Fuzzing || WiFi-AP Fuzzing Dual-Directional Fuzzing
Various Devices Various Devices ’ Various Devices ‘
i Fuzzer as I
WIiFi-STA e (=
WiFi-STA Transmit Fuzzer -
ﬁ Send Fuzzed Frame o lw)
Ll 5 =
Wi-Fi NIC | wirine ||| wiRine | £ (2
- 2|5
. N
Receive Fuzzed Frame ‘ ‘ Receipt Fuzzer TS
- U]
uzzer as e
’ WiFi-AP ‘ ’ WiFi-AP ‘

Fig. 1. DualFuzz focuses on the interaction logic between frame transmission
and reception by simultaneously exploring the generation of both transmitted
and received Wi-Fi frame testcases. In contrast, existing Wi-Fi fuzzers explore
the transmission and reception logic separately.

Fuzzing has emerged as a powerful automated vulnerability
detection technique for diverse Wi-Fi devices [44]. Many
Wi-Fi fuzzers have proposed various fuzzing strategies [35],
[9], [49], [17], successfully detecting a significant number
of vulnerabilities across different devices. In Wi-Fi network
architectures, there are two device roles: Wi-Fi Access Points
(APs), such as wireless routers, gateways, or hotspots, which
provide wireless connectivity by linking client devices to a
wired network; and Wi-Fi Stations (STAs), such as smart-
phones, tablets, or security cameras, which act as client devices
that connect to APs for network access [39], [42], [51]. Based
on their testing roles, existing Wi-Fi fuzzers can be categorized
into two main types, as shown in Figure 1. The first type treats
the fuzzer as a Wi-Fi STA, generating a large number of Wi-Fi
frames as test inputs to continuously fuzz Wi-Fi AP devices.
The second type positions the fuzzer as a Wi-Fi AP, producing
numerous Wi-Fi frames to continually test Wi-Fi STA devices.

However, existing Wi-Fi fuzzers typically focus on unidirec-
tional fuzzing, targeting either Wi-Fi STA or Wi-Fi AP devices
separately, thereby neglecting the complex interaction logic
between frame transmission and reception within Wi-Fi NICs.
In practice, Wi-Fi NICs involve many intricate interactions
such as acknowledgment sequences, buffer management, and
retransmission protocols, creating interdependent processes
between sending and receiving frames. Effectively exploring
these complex interaction logics requires high-quality test
cases that incorporate both transmission and reception frames
with specific execution dependencies. For instance, trigger-
ing bug #1 in Table II (detailed in Section VI-B1, Case
Study) requires at least four key transmission and reception
interactions with well-fuzzed frames. Due to their limitation
of unidirectional testing, existing Wi-Fi fuzzers struggle to
explore such complex interactions, resulting in lower testing
efficiency and limited vulnerability coverage.

To effectively test Wi-Fi NICs and uncover vulnerabilities
hidden in complex interaction logic, we need dual-directional
fuzzing that collaboratively generates both transmission and
reception test frames, as shown in Figure 1. There are three
main challenges: (1) The first challenge is to identify which
Wi-Fi frame behaviors impact the transmission-reception in-
teraction logic of Wi-Fi NICs. These interactions are complex
and span multiple stages (e.g., flow control, retransmission,
timing synchronization). Thus, precisely determining the crit-
ical frames that influence these interactions is challenging yet
essential. (2) The second challenge is efficiently coordinating
the generation of reception and transmission frames. Dual-
directional fuzzing needs to explore both input dimensions
simultaneously. The vast number of combinations between
two dimensions significantly expands the test space, making it
hard to explore. (3) The third challenge is designing precise
detectors to determine whether the NIC behaves correctly. Wi-
Fi NIC behavior is dynamic and complex, and even if vulner-
abilities are triggered, they are hard to detect — especially in
black-box settings with no visibility into internal states.

To address these challenges, we propose DualFuzz, a
fuzzing framework that effectively coordinates the testing of
frame transmission and reception logic within Wi-Fi NICs.
First, according to the IEEE 802.11 standard [24], DualFuzz
automatically analyzes and extracts the shared data (e.g.,
sequence numbers, retransmission counters, acknowledgment
states, etc.) accessed by both the transmission and recep-
tion frame handling processes. Then, DualFuzz constructs a
Transmission-Reception Model (TRModel), modeling all Wi-
Fi frames that operate (i.e., read or write) on these shared data
items. Second, considering that frame processing latency can
reflect the internal complexity of transmission-reception in-
teractions within NICs, DualFuzz introduces a latency-guided
fuzzing algorithm to efficiently coordinate the exploration of
both transmission and reception frames. Finally, to precisely
detect vulnerabilities, DualFuzz introduces two anomaly detec-
tors to monitor the abnormal status of Wi-FI NICs in real-time.
A liveness detector is designed to check whether the NIC is
online and providing service. An equivalence detector, based

on a content equivalence comparator, is employed to determine
whether the Wi-Fi NIC’s frame processing is correct.

We implemented DualFuzz and evaluated it on eight
widely used Wi-Fi NICs from various manufacturers, each
equipped with different mainstream chipsets(e.g., Intel [28],
Realtek [46], Mediatek [34], Broadcom [8]). Compared with
state-of-the-art Wi-Fi fuzzers, OwFuzz [9], wpaspy [49], and
Greyhound [17], DualFuzz detects 75%, 163%, and 250%
more vulnerabilities, respectively. In total, DualFuzz discov-
ered 21 previously unknown vulnerabilities, 7 of which have
been assigned CVEs.

In summary, we make three key contributions:

o We design a dual-directional fuzzing framework and propose
a latency guided fuzzing strategy to collaboratively generate
test frames for both transmission and reception.

« We propose two bug detectors for precisely identifying
anomalies and vulnerabilities in Wi-FI NICs.

« We implement and evaluate DualFuzz on eight widely used
Wi-Fi NICs. We will open-source DualFuzz'. Currently, it
has detected 21 previously unknown vulnerabilities.

II. BACKGROUND OF WI-F1 NICs

As shown in Figure 2, a typical Wi-Fi NIC is connected
to the host, enabling communication with various wireless
devices through the transmission and reception of Wi-Fi
frames [14]. The architecture of a Wi-Fi NIC is organized
into four main layers [37]: The PHY layer handles wireless
signal transmission and reception, modulating data into radio
waves and demodulating incoming signals into packets [56].
The MAC layer manages medium access, including frame
addressing, collision avoidance, and reliable delivery [41]. The
Firmware layer, typically closed-source and running on the
NIC’s MCU, processes frames for tasks like ACK handling,
authentication, flow control, and queue scheduling [27], [36].
The Driver layer, residing on the host, coordinates transmis-
sion and reception by managing queues and interacting with
the firmware to prioritize packets [23].

Various Devices

0 Q @ & @
= @ receive

send =
Physical Layer (PHY)

Media Access Control(MAC) layer

Flow Queue Interrupt
Control Management Handler

Firmware Layer
S Driver Layer
Host

ACK
Confirmation

Fig. 2. The architecture of a Wi-Fi NIC consists of four layers: the Physical,
MAC, Firmware, and Driver Layer.

The complexity of Wi-Fi NICs primarily arises from intri-
cate dependencies between frame transmission and reception,
often involving shared data such as ACK timers, sequence

'DualFuzz at: https://anonymous.4open.science/r/DualFuzz- A6F0

numbers, retransmission counters, and acknowledgment sta-
tuses. Acknowledgment Mechanism: After sending a frame,
the sender expects an ACK from the receiver. If none is
received within a set timeout, retransmission occurs. While
ensuring reliable delivery, this dependency complicates timing
coordination and impacts performance [30]. Flow Control
and Buffer Management: These regulate data flow based on
buffer availability. When the receiver’s buffer nears capacity,
it signals the sender to slow down, preventing overflow and
maintaining stable communication [7]. Queue Management:
Frames are organized into TX and RX queues [25]. Prioritiza-
tion ensures timely handling of critical frames, but managing
latency and overflow under load increases complexity. Retrans-
mission Logic: Relies on shared data like sequence numbers
and retry counters, requiring tight synchronization between
sender and receiver [60].

III. MOTIVATION EXAMPLE

Threat Model: Throughout this paper, we define a Wi-Fi
communication system as a tuple ¥ {STA, AP, WN},
where STA represents the station device; AP denotes the
access point device interacting with the STA; WN is the Wi-
Fi NIC under test. We assume that the attacker compromises
either STA or AP, but not both simultaneously. From one
compromised side, the attacker can inject arbitrary Wi-Fi
frames at any time, targeting any stage of the communication
process (e.g., association, transmission, teardown). The goal
of the attacker is to exploit logic flaws in the dual-directional
processing of Wi-Fi frames within the NIC, particularly
those involving shared internal states (e.g., ACK tracks, retry
counters, buffer queues), and induce system crashes, memory
corruptions, or undefined behavior in Wi-Fi NICs.

Although some bugs hidden in deep interaction logic can
be triggered and exploited from a single side, as shared states
can be gradually and predictably influenced using carefully
crafted frame sequences, this often requires precise timing or
complex multi-step manipulation, making such bugs difficult
to uncover through automated testing. To efficiently explore
transmission-reception interactions and systematically uncover
vulnerabilities, performing fuzzing on both ends during testing
is a practical and effective approach.

One such example is CVE-2022-21745 [13], found in Medi-
atek Wi-Fi NICs, where incorrect buffer deallocation leads to
a dangling pointer. Subsequent improper access to this pointer
triggers a use-after-free vulnerability, posing a serious threat to
network security. An attacker could exploit this flaw to launch
remote DDoS attacks or even data leakage. Figure 3 illustrates
the seven key steps to trigger this bug, and Figure 4 presents
the core code snippet of this vulnerability.

In a Wi-Fi NIC, QoS Data frames carry prioritized traffic,
ACK frames confirm successful reception, SEQ numbers track
frame order, the Retry bit indicates retransmissions, and the
‘tx_buffer’ temporarily holds frames waiting to be sent. As
shown in Figure 3, when a QoS Data frame is transmitted,
the Wi-Fi NIC stores it in the ‘tx_buffer’ based on its SEQ
number. Upon receiving a corresponding ACK, the NIC frees

Transmit Action Wi-Fi NIC Receipt Action

QoS Data
SEQ=1, Retry=0

® free tx_buffer[1] ACK
= last_ack seq=1 SEQ=1

QoS Data
" [SEQ=100, Retry=1|

store in tx_buffer
[101~110]
retry_queue.push()

store in b buffer[1]

5 QoS Data
SEQ=100, Retry=1

® QoS Data store in tx_buffer
o/ _ _ [111]
£Q=111, Retry=1 retry. queue push()
incorrect free tx_buffer]

[last_ack_seq~200]
last_ack_seq=200

) ACK
@ free tx_buffer[100] ACK @ SEQ=200
& last_ack_seq=100 SEQ=100

use-after-free when retry frame's SEQ in [last_ack seq, 111]]

Fig. 3. CVE-2022-21745, an Use-After-Free in Mediatek Wi-Fi Firmware
that could lead to NIC crash, data leakage, or remote privilege escalation.

store in b buffer[100]
retry_queue.push()

void retry_frame () {

uintl6é_t retry_index
retransmission_queue->pop () ;
retransmission_counter[retry_index]++;
transmit (tx_buffer[retry_index]);
if (tx_buffer|[retry_index])
transmit (tx_buffer[retry_index]);

++

}
void handle_ack (uintl6_t ack_seq) {

for (uintl6_t idx=last_ack_seqg+ 1; idx <=
ack_seq; idx+=1) {
if (tx_buffer[idx]) {
free (tx_buffer[idx]);
tx_buffer[idx] = NULL;
retransmission_counter [idx]
last_ack_seq ack_seq;

++

0; } 1}

}

Fig. 4. The core code snippet of CVE-2022-21745. Use dangling pointer
tx_buffer(idx) in ‘retry_frame()’ after it was freed in ‘handle_ack()’.

the associated entry from the buffer. If a QoS frame is
sent with the Retry bit set, the NIC also places it into the
‘retry_queue’ for subsequent retransmission. However, when a
large number of QoS Data frames are awaiting retransmission
and accumulate in the ‘retry_queue’, receiving an ACK with
a large SEQ number (e.g., 200) can cause the Wi-Fi NIC to
mistakenly free ‘tx_buffer’ from last_ack_seq up to the large
SEQ. This results in dangling pointers. If the ‘retry_frame’
function later accesses these freed pointers, it triggers the use-
after-free vulnerability, leading to a Wi-Fi NIC crash (if the
memory is invalid) or potential data leakage (if the memory
has been reallocated to other users). This vulnerability has
been fixed by setting the pointer to NULL after it is freed and
adding a validation check before reuse (Lines 6 and 13).
Wi-Fi NICs are widely used in laptops, smartphones, IoT,
and industrial systems, and their vulnerabilities can compro-
mise entire networks through crashes, unauthorized access,
or data leaks. We can draw three important lessons from
this case: (1) Some vulnerabilities are hidden in complex
interactions between transmitted and received frames, and can
only be triggered by mutating both directions, such as the
transmitted QoS Data frame and the received ACK frame in
this case. To address this, DualFuzz adopts a dual-directional
fuzzing approach that simultaneously tests both transmission
and reception logic. (2) Not all Wi-Fi frames or fields impact
transmission-reception interaction. Only specific fields oper-
ating on shared data (e.g., sequence numbers, ACK status in
this case) are relevant. Blindly mutating all fields reduces ef-
ficiency. To solve this problem, DualFuzz first performs static

analysis on the Wi-Fi NIC design specification (i.e., the 802.11
standard) to identify shared data, and then extracts relevant
frames and key fields to construct a TRModel that guides
targeted mutations. (3) Some vulnerabilities require specific
execution dependencies between both frame transmission and
reception (the seven key steps in Figure 3) to trigger, which
greatly expand the input space. To handle this issue, DualFuzz
employs latency guided fuzzing, dynamically selecting high-
quality transmission-reception frame combinations to explore
as much interaction logic as possible.

IV. DESIGN

Design goal: A practical Dual-Directional Wi-Fi fuzzing
framework should have the following properties.

e General: DualFuzz is designed to find vulnerabilities in
most practical Wi-Fi NICs and supports mainstream Wi-
Fi chipset vendors such as Intel, Realtek, MediaTek, and
Broadcom. The tool can be quickly deployed to test different
types of Wi-Fi NICs with only minor adjustments.

o Non-intrusive: Most Wi-Fi NICs are closed-source, neither
can DualFuzz directly access their source code nor modify
their firmwares or drivers. Therefore, DualFuzz is designed
as a black-box fuzzer that relies solely on runtime external
status (e.g., online/offline, handling time, frame content).

o Efficient: DualFuzz is able to frequently exercise the
transmission-reception interactions and effectively detect
vulnerabilities in real-world Wi-Fi NICs within 24 hours.

o Accurate: DualFuzz is designed to have satisfying precision
and recall to avoid reporting false positives.

A. DualFuzz Workflow

Construct Process

802.11 Standard

Testing Process

Transmit Fuzze Wi-Fi

2.send| NIC L

under IAccess Point(AP)

Test Mutator
T 6. monitor 2 E

Receipt Fuzzer
S.receive

Frame Frame

Injector

H00U'E

identify Anomaly Monitor
Key Wi-Fi Generator Repeater
frame fields Correctness
construct @8 collaborate l 7update @8 collaborate
TRModel | TRModel |+ | Latency Guided Strate
| :H i 9y Various Devices

Fig. 5. The workflow of DualFuzz. It includes three key components:
(1) TRModel for describing Transmission-Reception Model; (2) Latency
Guided Fuzzer for coordinated generation of TX/RX test frames; (3) Anomaly
Monitor for identifying bugs in Wi-Fi NICs.

Figure 5 illustrates the workflow of DualFuzz, consisting of
two main phases. The first phase is the TRModel construction
process. In this phase, DualFuzz first analyzes the IEEE 802.11
standard to automatically extract the shared data involved in
the transmission and reception processing (e.g., SEQ, ack,
buffer queue). It then identifies the fields in Wi-Fi frames
that operate on this shared data, and models them into a
TRModel. The second phase is the testing process, which
involves the following 8 steps: (1) DualFuzz first generates a
transmit Wi-Fi frame based on the TRModel. (2) The Frame
Injector sends this test frame (Fix) to the device through the
Wi-Fi NIC under test. (3) Subsequently, the response from the

device return through the Wi-Fi AP, where a Wi-Fi repeater
hooks this frame and forwards it to the Recept Fuzzer. (4)
The Frame Mutator is employed to mutate the hooked frame
based on the TRModel. (5) The Receipt Fuzzer sends the
mutated frames (Fix) back to the Wi-Fi NIC under test for
processing. (6) Anomaly Monitor observes and records the
runtime status (e.g., connection status, etc.) of the Wi-Fi NIC.
(7) Meanwhile, DualFuzz measures the processing latency
of both Fix and Fi, and updates the results to the fuzzer
for guidance. (8) If a new anomaly is detected or longer
processing latency is observed, the current test frame pair (Fi,
Fi) is considered an interesting seed and is prioritized in the
seed pool to help collaborate and guide subsequent TX/RX
generation. DualFuzz then proceeds to the next iteration (from
step 1 to step 8) until the testing process terminates.

B. TRModel Construction

Definition of transmission-reception interaction: In a
Wi-Fi NIC, let Fix denote a transmitted Wi-Fi frame, Fi
denote a received Wi-Fi frame. Let S = {s1,82,...,8,}
represents the set of shared data structures (e.g., sequence
number, retry counter, buffer, ACK state) within the Wi-Fi
NIC. Let Access(F,s) denote the access relation indicating
whether frame F' reads or writes shared data item s € S. A
transmission-reception interaction is defined as:
Interact(Fik, Fix) <= ds € S, Access(Fix, s)AAccess(Fiy, s)
That is, a transmitted frame Fi; and a received frame F are
interacting if they both access at least one shared data item s.

TRModel Construction: Considering that all Wi-Fi NICs
are implemented in compliance with the IEEE 802.11 stan-
dard, DualFuzz performs static analysis of the specification to
automatically analyze transmission-reception interaction logic
and construct TRModel, involving the following four steps:

Step 1. Filtering Sections Describing Key Operational Be-
haviors in the IEEE 802.11 Standard: DualFuzz first scans
the entire specification using a PDF layout parser to ex-
tract structured section headings, tables, and paragraphs. We
identify sections covering critical NIC behaviors such as re-
transmission, acknowledgment, buffer management, and frame
sequencing(as introduced in Section II). Each subsection is
then classified as either transmission or reception logic based
on heuristic keyword matching(e.g., “transmit”, “send”, “en-
queue”, etc. for T X; “receive”, “process”, “handle” for RX)
and verb-level dependency parsing.

Step 2. Extracting Shared Data and Analyzing Wi-Fi Frame
Types: From transmission (7'X) subsections, we extract a
data set DSy representing internal state variables updated
or accessed during transmission. Similarly, D.S, is extracted
from RX logic. Their intersection S = DS N DS forms the
set of shared state variables (e.g., seq_num, retry_flag,
ack_state). We then parse all frame formats in Section 9.4,
extracting field names, bit offsets, lengths, and associated
frame types, forming the set Setype.

Step 3. Performing Static Semantics Analysis for Each
Field: For each field f € F, we retrieve its description
and apply dependency parsing (via the tool spaCy [55]) to

determine whether it interacts with any shared variable s € S.
We mark it as Read (R) if it queries NIC state, or Write
(W) if it modifies NIC state. For example, it detects that the
Sequence Control (SC) field in QoS Data frames updates the
transmission buffer index and influences retry logic; the Retry
flag affects retransmission counters; the Frame Control (FC)
field governs acknowledgment behavior and protection set-
tings; and the Data Size field impacts buffer management. By
automatically analyzing these field-to-shared-data interactions,
DualFuzz constructs the TRModel, as illustrated in Figure 6.

Wi-Fi Frames Key Fields Shared Data
QOS Data - { sSC \ ACK State
ACK . Retry Flag TX/RX Buffer
FC
RTS Data Size
ACK number
Duration/ID
Qos Control #{__Channel State
- CSA Para .
Channel Switch BAR
C_—— 3 - r— -]

Fig. 6. TRModel for describing key interactions of frame transmission and
reception within Wi-Fi NICs.

Step 4. Mapping and Refining the TRModel: Existing Wi-
Fi fuzzers use Scapy [6] for packet generation and muta-
tion. We align the constructed TRModel with Scapy’s Wi-
Fi model, which follows the IEEE 802.11 specification. We
perform field-level mapping between the TRModel and Scapy
definitions (which retain standard-compliant field names). If
inconsistencies or unmapped fields are encountered, they are
pruned from the TRModel to ensure correctness and compat-
ibility with fuzzing execution.

Initial Test Frames Generation: Before starting the test-
ing phase, DualFuzz creates initial test frames to drive the
fuzzing process. Since not all frame fields affect transmission-
reception interaction logic, DualFuzz focuses only on gener-
ating and mutating the key fields modeled in the TRModel.
It first randomly selects combinations of transmission and
reception frame types to generate frame pairs (Fi., Fi..).
For each test frame, DualFuzz applies customized mutation
strategies based on the shared data it operates on and initializes
key fields accordingly. For example:

e ACK State: DualFuzz maintains a list list,.xs to track all
ACK frames. For each ACK, it introduces a random delay
from O to maz;+1 seconds, where maz; is the NIC’s config-
ured ACK timeout. Additionally, if ACK aggregation [22] is
enabled, DualFuzz randomly mutates the number of ACKs
aggregated in a single frame from 0 to maz,gy, the NIC’s
maximum supported value.

o TX/RX Buffer: To test buffer interaction logic effectively,
DualFuzz creates boundary scenarios for data size. For
802.11a/b/g/n [1], with a typical MTU of 1500 bytes, it
generates frame sizes between 1499 and 1501 bytes. When
AMSDU [52] is used, supporting up to 7935 bytes, it gen-
erates sizes near this limit. DualFuzz also crafts concurrent
frames near the NIC’s maximum parallel capacity max,.

o Connection Queue: DualFuzz uses a map, mapcon, to
track all Wi-Fi connections. To test boundary conditions,
it maintains the number of connections near the NIC’s limit
mazeon. Bach connection’s priority, channel, and duration
are randomly assigned, and DualFuzz randomly disconnects
and establishes new connections during testing.

o Counters: For counter-type shared data such as the Sequence
Counter and Retry Counter, DualFuzz performs targeted and
random mutations on related frame fields to simulate edge-
case behaviors. For the Sequence Control field, it mutates
sequence numbers with rapid increments, large jumps, or
wraparounds. For the Retry flag, it randomly toggles the
bit and resends frames with the same sequence number to
emulate retry scenarios.

Moreover, more detailed mutation designs and implemen-
tations are available in our git'. Based on this approach, we
design tailored mutation strategies for different frame fields
in the TRModel according to their semantic meanings. Since
these semantics are derived from the IEEE 802.11 standard,
which all Wi-Fi NICs follow, the mutation strategies proposed
by DualFuzz are generalizable across different Wi-Fi devices.

C. Processing-Latency Guided Fuzzing

Due to its black-box design, DualFuzz cannot access inter-
nal runtime data of some Wi-Fi NICs (e.g., code coverage,
which is commonly used by fuzzers). Meanwhile, randomly
generating transmission-reception frame combinations leads
to low testing efficiency. To efficiently coordinate exploration
across the two input dimensions (i.e. transmission and recep-
tion), DualFuzz adopts a key heuristic: the longer a frame’s
processing latency, the more likely it has exercised deeper
interaction logic within the Wi-Fi NIC, and thus, the higher
the chance of triggering hidden bugs. Therefore, for each test
frame pair (Fi,, F,;), DualFuzz measures and records the
processing latency of both Fj, and Fj, on the target NIC,
using this feedback to help guide and prioritize subsequent
fuzzing. We use latencyy, to denote the processing time
of a frame f;, Avgr to represent the average processing
time of all transmission frames, and Avgr for the average
processing time of all reception frames. We define a test frame
pair (Fy;, F..) € seedPool as a ‘complex interaction’ if
(latencyy,, + latencyy,,) > (Avgr + Avgr); otherwise, it is
considered a ‘simple interaction’.

Algorithm 1 illustrates the processing-latency guided
fuzzing process. In the initial phase, as shown in lines 1-
4, a bug detector is initialized to monitor the runtime status
of the Wi-Fi NIC in real time, and a timer is set up to
measure the processing latency of each test frame. The Wi-
Fi NIC under test begins by processing the initial test frame
pairs from the seed pool seedPool, during which the timer
records the latency for each frame and calculates the aver-
age processing times for transmission and reception frames,
respectively. In each fuzzing iteration, DualFuzz dequeues
a frame pair (Fy,, F}.;) from the seedPool and mutates it
into a new pair (F/ , F/) based on the mutation strategy

tx

described in Section IV-B. The Wi-Fi NIC then processes this

mutated transmission-reception pair, and the timer dynamically
measures the processing latency of both F/, and F) . If
the processing latency of both F}, and F)_ is greater than
or equal to the average latency, then the test frame pair
(F[.,F!.) is regarded as an interesting input and is stored
back into the seed pool to guide subsequent fuzzing, as shown
in lines 10-11. Meanwhile, the bug detector monitors the
runtime status of the Wi-Fi NIC and checks for abnormal
behaviors, as outlined in lines 13—17. If any new anomalies are
detected, DualFuzz logs the corresponding test case and adds
(F}., F!.) into the seed pool for further exploration. Through
this process, DualFuzz continuously generates high-quality,
collaborative transmission-reception test inputs and effectively
explores deep interaction logic in Wi-Fi NICs.

Algorithm 1: Latency Priority Fuzzing Process.

Input : NIC: Wi-Fi NIC under Test
Output: B: Bugs

1 B={}, seedPool = initialSeed() ;

2 Detector = setupDetector();

3 timer = setupTimer();

4 Avgr, Avgr = NIC.process(timer, seedPool);

5 while true do

6 (Fiz, Fry) = seqPool.dequeue();

7 (F},,Fl,) = mutate((Fiz, Frz))s

8 latency,, latency, =
NIC.process(timer, (F/,, F!.));

9 if (latencyy,, + latencyy,,) > (Avgr + Avgr)
then

10 seedPool.enqueue((F/,, F/.)) ;

11 Avgr, Avgg.update(latencyy,, , latencyy,.,);

12 end

13 async:

14 newBug = Detector.checkBug());

15 B.add(newBug);

16 seedPool.enqueue((F/,, F/.)) ;

17 end async;

18 end

D. Anomaly Monitor

To ensure generality, DualFuzz is designed as a black-box
tool. Therefore, the Anomaly Monitor is implemented to track
the runtime behavior of the Wi-Fi NIC under test without
requiring intrusive access to internal data such as source
code or proprietary interfaces. Figure 7 shows the process. It
includes two main types of bug detectors: The first is a liveness
detector, which checks whether the Wi-Fi NIC has gone offline
or is no longer functioning correctly due to issues such as
crashes or connection failures. The second is an equivalence
detector, which identifies inconsistencies between the injected
and emitted Wi-Fi frames, revealing potential frame processing
errors within the NIC.

Liveness Detector: The liveness detector continuously
monitors the operational status of the Wi-Fi NIC to ensure
it remains responsive throughout testing. It periodically sends

heartbeat packets and expects timely responses. If a valid
response is not received for a long time, the detector retries up
to three times, following common practice adopted by prior
tools. If all retries fail, the NIC is considered offline. At this
point, the liveness detector reports a liveness anomaly and logs
the relevant transmitted and received packets to help diagnose
potential vulnerabilities associated with the abnormal state.

Anomaly Monitor
-Transm\t
Fuzzer
=
Finjeee™TT FM"LDJM o

Wi-Fi NIC
Under Test

Receive
Wi-Fi Frames

Equivalence
Checker
Wi-Fi Frame
Parser
Fields
Comparer
¥

Anomaly

)))

check status

Liveness Equivalency
Monitor Monitor

response

=
Fomi Finjec] |
e
Wi-Fi Frames Fuzzer

Fig. 7. Anomaly Monitor in DualFuzz for monitoring the runtime status and
identifying anomalies in real time.

Anomaly

Equivalence Detector: The equivalence detector functions
by intercepting and comparing Wi-Fi frame contents before
and after they are processed by the Wi-Fi NIC’s transmission
and reception logic. Specifically, for frame transmission, the
detector first records the frame content before it is injected
into the Wi-Fi NIC, denoted as Fj;,jccc. After transmission, it
intercepts and records the frame again by monitoring the NIC
in its monitor mode, now denoted as Fi,,;;, and compares
these two frames to determine whether their contents are
consistent. Similarly, for frame reception, the detector records
the frame content before injection (Fjnject) and again after
it has been processed by the NIC and emitted as a response
(Femit), checking for inconsistencies.

Please note that even if the Wi-Fi NIC functions correctly
without any bugs, the contents of Wi-Fi frames before and
after NIC processing, namely Fj,j..; and F,,;, are typically
not entirely identical. Certain fields may change during trans-
mission and reception, especially due to lower-layer protocol
handling. For example, the Frame Check Sequence (FCS) [4],
which ensures data integrity, is typically computed and ap-
pended by hardware during transmission, so it is absent from
the original frame content Fj, cc;. Similarly, timestamps in
some management frames (such as Beacon frames) are dynam-
ically updated based on the actual transmission time, resulting
in discrepancies between the injected and emitted versions.
To address these inconsistencies, reduce false positives, and
improve the accuracy of equivalence detection, we propose
a key-content equivalence comparator. This comparator
focuses solely on critical fields such as payload, source and
destination MAC addresses, frame type, control flags, and
sequence numbers when comparing frames. Specifically, the
comparator first parses both Fj,;..; and Fe,,; to extract all
fields, then performs a field-by-field comparison on this subset,
ignoring dynamic or hardware-modified fields. If all key fields
match, the frames are considered equivalent; otherwise, an
equivalence anomaly is reported.

Bug Reproducer: DualFuzz collects all transmitted and
received frames throughout the entire testing process, sorts
them by timestamp, and stores them for further analysis. It
identifies the first state in which the bug detector reports
a anomaly while processing test frames, referred to as the
triggering state. The state when the target Wi-Fi NIC is
initialized is recorded as the starting state. When an anomaly
is detected, DualFuzz replays the sequence of frames between
the starting state and the triggering state multiple times to
confirm consistent triggering and help analyze its root cause.

Bug De-duplicates: DualFuzz performs bug deduplication
inspired by AFL’s testcase minimization process [32]. It iter-
atively removes or merges (F},, F,.,.) pairs while checking if
the bug persists. The minimization prioritizes frame pairs that
operate on shared data in TRModel, ensuring the reproducing
sequence is minimal and effective. Bugs are then deduplicated
by comparing minimized sequences and anomaly types. Two
bugs are considered duplicates if their minimized sequences
share the same structural pattern (same frame types with
identical mutated fields) and trigger the same anomaly type.

V. IMPLEMENTATION

Figure 8 illustrates the implementation of DualFuzz, which
consists of two fuzzers: TransmitFuzzer, responsible for gen-
erating transmission test frames, and ReceiptFuzzer, which
mutates received frames to test the reception logic of the Wi-
Fi NIC. A TRModel is implemented for coordinating these
two fuzzers to explore transmission-reception interactions. We
ran DualFuzz on a host machine, with the Wi-Fi NIC under
test connected via USB, mPCle, SDIO, or other interfaces.
All devices were connected to a locally isolated test network,
which was set up through a dedicated Wi-Fi AP. Additionally,
we used a separate Wi-Fi NIC as a repeater to capture and
hook received Wi-Fi frames, which were then forwarded to
the receipt fuzzer for mutation.

~ DUALFUZZ

Wi-Fi AP form

DualFuzz ran the test network

Wi-Fi Repeater to hook

Wi-Fi NICs under test for ReceiptFuzzer

Fig. 8. Implementation of DualFuzz for fuzzing various Wi-Fi NICs.

Figure 9 presents the core components of DualFuzz, which
are divided into three key parts. The first is the Coordi-
nation Controller, responsible for controlling, coordinating,
and scheduling the transmit and receipt fuzzers to effectively
explore the transmission-reception interaction logic of the Wi-
Fi NIC. The second is the Wi-Fi Frame Generator, which
parses, mutates, and generates concrete Wi-Fi frames as test
inputs. The third is the Bug Detector, designed to monitor the

DualFuzz Components

Coordination Controller
TRModel |

Wi-Fi Frame Generator
| Data Model | |

| State Model | |

Hooker and Repeater |

| Radiotap Constructor | |Processing Latency Guider|

Bug Detector

| Wi-Fi Connector " Equivalence Decider || Bug Reproducer |

1 [USB, mPCle, SDIO interface

Target Wi-Fi NICs
€ BROADCOM'

&2 REALTEK

Fig. 9. Core components of DualFuzz implementation, contain three key parts:
Coordination Controller, Wi-Fi Frame generator, and Interaction Adaptor.

behavior of the NIC in real time and detect abnormal states.
All three components are independent of the target Wi-Fi NIC,
making them reusable across different NICs. The rest of the
section describes notable implementation details.

Wi-Fi Frame Generator: In network fuzzing, a data model
defines the structure and format of individual messages, while
a state model captures the sequence and dependencies of
message exchanges within valid protocol flows. DualFuzz
leverages the data and state models provided by Scapy [6],
a widely used packet-generation tool in network testing and
security research. Specifically, DualFuzz uses Scapy’s data
model to parse and format Wi-Fi frames, and its state model
to generate frame sequences and drive the Wi-Fi processing
workflow, including probing, association, authentication, hand-
shake, and data exchange. For all frame pairs in the sequence
involving transmission-reception interactions modeled in the
TRModel, DualFuzz performs latency-guided dual-directional
fuzzing. To enable fine-grained control and monitoring of
Wi-Fi transmission and reception, DualFuzz leverages the
Radiotap interface [5]. It handles combined packets, Radiotap
headers plus 802.11 frames, using raw sockets.

Hooker and Repeater: The repeater device is configured
in monitor mode to capture raw 802.11 frames with radiotap
headers. Using a packet sniffer built on Scapy, the repeater
continuously hooks incoming frames and filters those that
match predefined criteria based on frame type, MAC ad-
dresses, and protocol fields. Once a frame is identified as
relevant, it is passed to the ReceiptFuzzer, which performs
mutation operations and sends the modified frame back into
the Wi-Fi NIC under test.

Adaptation to New WiFi NICs: Thanks to the black-
box design of DualFuzz, which offers high generality, the
framework can be easily and quickly adapted to test a new
Wi-Fi NIC by following three steps: (1) Connect the target
NIC to the host machine using a standard interface such as
USB, mPCle, or SDIO. (2) Join the isolated test network by
connecting the NIC to the same Wi-Fi access point used during
testing. (3) Configure the Wi-Fi repeater to forward received
frames to the target NIC using the ‘sendp’ function in Scapy.

VI. EVALUATION

In this section, we evaluate DualFuzz to answer the follow-

ing four research questions:

e RQ1: Is DualFuzz effective in detecting vulnerabilities of
real-world Wi-Fi NICs?

¢ RQ2: Do the TRModel and latency guided fuzzing effec-
tively improve testing performance?

o RQ3: What is the accuracy of DualFuzz’s Detector?

e RQ4: Can DualFuzz cover more code of Wi-Fi NICs
compared with state-of-the-art methods?

A. Experiment setup

Subject: We evaluated DualFuzz on eight real-world Wi-
Fi NICs from various manufacturers, each equipped with
different mainstream chipsets. Table I summarizes the detailed
information of these evaluation targets. The selection of NICs
was based on two criteria: (1) They should be widely deployed
in real-world environments to demonstrate DualFuzz’s ability
to identify vulnerabilities that could impact a broad range of
users; and (2) their chipsets are sourced from different main-
stream vendors (e.g., Intel, Realtek, MediaTek, Broadcom),
demonstrating DualFuzz’s generality across diverse hardware
and firmware implementations.

TABLE I
DETAILED INFORMATION OF TARGET WI-F1 NICs.

NIC Model Chipset Model | Driver Version Firmware Version
Inte] AX210NGW Intel AX210 iwlwifi v5.10 ty-a0-gf-a0-84
TP-Link AX1800 BCM6755 v5.10.91 v222.0.144.0
ALFA AWUSO036ACH | RTL8312AU Aircrack-ng v5.6.4.2 v5.6.4.2

ASUS AX56AX RTL8832AU Lwfinger v5.2.2.4 v5.224

EDUP 8774M Intel BE200 iwlwifi v6.5 gl-cO-fm-cO
Netcore NW336 RTL8188EU Ivanovborislav v5.13.3 | v5.13.3

GRiS LW04-3E03 RTL8S12AE Morrownr v5.13.6 v5.13.6

NETGD AX1800M MT7921U V5.12 V5.12

Compared Tools: We compared DualFuzz with three state-
of-the-art Wi-Fi fuzzing tools, OwFuzz [9], wpaspy [49], and
Greyhound [17], which generate Wi-Fi frames as test inputs
and are capable of evaluating the Wi-Fi NIC as a whole,
including its driver, firmware, and hardware layers. In addition,
to assess DualFuzz’s effectiveness across different layers of the
NIC, we also compared it with VIRTFUZZ [26], a state-of-the-
art driver fuzzer that could identify vulnerabilities in the driver
layer of Wi-Fi NICs. Similarly, we included a comparison with
pAFL [31], an efficient firmware fuzzer that could perform
non-intrusive feedback collection to detect vulnerabilities in
the firmware of Wi-Fi NICs.

Metrics and Settings: We employed two metrics for our eval-
vation: the number of unique bugs detected and the average
speed-up to find these bugs. These metrics are commonly
used to measure the effectiveness of fuzzers. We do not use
coverage metrics because most Wi-Fi NICs are closed-source,
making it difficult to instrument them for coverage tracking.
We ran each testing tool under the same environment setup
on a computer equipped with an Intel(R) Core(TM) i9-10900
CPU @ 2.80GHz, 32 GiB of DDR4 memory, and running
x86_64 Ubuntu Linux 20.04. All target Wi-Fi NICs were
tested using their default configuration parameters. The test

wireless network was isolated and configured locally. All
experiments were repeated 10 times under identical conditions,
and the average results are used in this paper.

B. Bug Detection in Real-World Wi-Fi NICs

We applied DualFuzz, OwFuzz, Greyhound, wpaspy, VIRT-
FUZZ, and p/AFL on all 8 target Wi-Fi NICs for vulnerability
detection in 24 hours. Since OwFuzz supports both Wi-Fi AP
and STA fuzzing modes, we evaluated it separately in each
mode for 24 hours, denoted as OwFuzz-AP and OwFuzz-STA.
For VIRTFUZZ, which only supports fuzzing the driver layer,
we loaded the drivers of all eight NICs into its virtual machine
and executed fuzzing for 24 hours per driver. Similarly, we
extracted the MCU firmware from each NIC and tested it with
UAFL for 24 hours. In total, DualFuzz discovered 21 previ-
ously unknown vulnerabilities across the eight Wi-Fi NICs,
significantly outperforming other state-of-the-art fuzzers, none
of which detected more than 11 bugs. Detailed information on
these vulnerabilities is summarized in Table II.

When DualFuzz detects an anomaly (either liveness or
equivalence violation), it automatically records all Wi-Fi
frames transmitted and received by the target NIC, organizing
them by timestamp into a reproduction log. This log is then
provided to developers, and we replay the Wi-Fi frames to
help reproduce the anomalies and facilitate root cause analysis.
Once an anomaly is successfully reproduced and its root cause
is identified, it is confirmed as a vulnerability. As shown
in Table II, the majority of the discovered vulnerabilities (9
out of 21) are buffer overflows, which can lead to severe
consequences such as memory corruption, unexpected crashes,
and even remote code execution. These vulnerabilities could be
exploited by attackers to inject malicious payloads remotely,
posing significant threats to wireless network security. In
addition, DualFuzz uncovered 5 Use-After-Free and 4 NULL
Pointer Dereference vulnerabilities. These issues can cause
system instability, leading to crashes or undefined behavior,
and may allow attackers to exploit dangling pointers or unini-
tialized memory access for further attacks. Two stack overflow
vulnerabilities were also identified, which can corrupt stack
memory and result in denial-of-service conditions due to stack
exhaustion. Finally, an aggregation vulnerability in the MAC
layer was discovered, where improperly validated A-MPDU
frames allowed the injection of malicious subframes, leading
to buffer corruption. It has already been fixed by adding strict
boundary checks on subframe lengths and sequence ordering
during A-MPDU reassembly.

Comparison with existing Fuzzers: In our 24-hour exper-
iments, Greyhound, wpaspy, and OwFuzz identified 6, 8, and
11 vulnerabilities, respectively, which could be triggered via
single-direction fuzzing. However, the remaining 10 vulnera-
bilities were hidden in the complex interaction logic between
transmission and reception, requiring coordinated and interde-
pendent TX-RX test frames. These bugs were only exposed
by DualFuzz’s dual-directional fuzzing strategy, which existing
fuzzers lack. For the driver fuzzer, VIRTFUZZ detected only
6 vulnerabilities and missed 8 others occurs in the driver

TABLE 11

21 NEW VULNERABILITIES DETECTED BY THE TOOLS WITHIN 24 HOURS. DUALFUZZ FOUND ALL 21 BUGS, INCLUDING 2 IN INTEL, 6 IN TP-LINK, 4 IN
ALFA, AND 3 IN ASUS. IN COMPARISON, OWFUZZ FOUND 11 BUGS, WPASPY FOUND 8 BUGS, GREYHOUND FOUND 6 BUGS, VIRTFUZZ FOUND 6
BUGS, AND AFL FOUND 3 BUGS, RESPECTIVELY. WE ANONYMIZE THE BUG IDENTIFIERS FOR THE DOUBLE-BLIND PROCESS.

Wi-Fi NIC Model Root Cause Analysis Location Identifier

1 Intel AX210 A Use-After-Free occurs in function ‘rc80211_wext_compat’ when frequently requesting large data frame with ack timeout. Driver layer Bug-13733

2 Intel AX210 A Buffer Overflow occurs in function ‘rc80211_minstrel_ht" when updating rate adaptation with rapid transmissions. Firmware layer ~ Bug-13731

3 TP-Link AX1800 A Buffer Overflow occurs in function ‘halbb_8852a_2" when transferring large-size frames and switching channel. Driver layer CVE-2024-56852
4 TP-Link AX1800 A NULL Pointer Dereference occurs in function ‘pfx_disconnect_hdl’ caused by unexpected events with state uninitialized. Driver layer Bug-4120

5 TP-Link AX1800 A Buffer Overflow occurs in function ‘pfx_hal_rtw_memcpy’ caused by oversized frame payloads without boundary checks. Firmware layer Bug-4121

6 ALFA AWUSO036ACH A Use-After-Free occurs in function ‘idempotent_init_module’ when reinitializing the module during frame processing. Driver layer CVE-2024-56853
7 ALFA AWUSO036ACH A Buffer Overflow occurs in function ‘rtw_wlan_util” caused by improperly validating length fields of frames management. Driver layer CVE-2024-56854
8 ALFA AWUSO036ACH A Buffer Overflow occurs in function ‘hal_com_phycfg’ when rapid channel-switch during frame aggregation and reception. Firmware layer Bug-1198

9 ASUS AX56AX A Stack Overflow occurs in function ‘phl_connect’” when processing nested connection retries with repeated dis/association. Driver layer CVE-2024-56855
10 ASUS AX56AX A Buffer Overflow occurs in function ‘phl_watchdog” when handling excessive frame status reports without size validation. Driver layer CVE-2024-53456
11 ASUS AX56AX A Buffer Overflow occurs in function ‘phl_btc_fsm’ without boundary checks when handling unexpected control events. Driver layer Bug-2460

12 ASUS AX56AX A NULL Pointer Dereference occurs in function ‘hal_usb’ caused by handling USB transfer callbacks during frame reception. ~ Firmware layer =~ Bug-2461

13 ASUS AX56AX A Use-After-Free occurs in function ‘hal_efuse’ caused by accessing freed memory triggered by dynamic config updates. Firmware layer ~ Bug-2464

14 EDUP 8774M A NULL Pointer Dereference occurs in function ‘mlmeext_disconnect’ when disconnect triggered with incomplete association. Driver layer CVE-2024-53448
15 EDUP 8774M A Use-After-Free occurs in function ‘config_channel_plan’ caused by concurrent scan and channel-switch Wi-Fi frames. Driver layer Bug-140

16 Netcore NW336 An aggregation vulnerability due to improperly validated A-MPDU frames, leading to buffer corruption. MAC layer Bug-1197

17 Netcore NW336 A Use-After-Free occurs in function ‘ioctl_cfg80211" when processing async frame while a previous op is being deleted. Driver layer Bug-1198

18 GRiS LW04-3E03 A Buffer Overflow occurs in function ‘rtw_wlan_util’ caused by constructing management frames with incorrect IE lengths. Driver layer CVE-2024-53449
19 GRiS LW04-3E03 A Stack Overflow occurs in function ‘phydm_phystatus’ caused by recursive processing of malformed PHY status reports. Firmware layer ~ Bug-125

20 NETGD AC1900 A NULL Pointer Dereference occurs in function ‘wireless_sme’ when state transitions triggered by unexpected disassociation. Driver layer Bug-1017

21 NETGD ACI1900 A Buffer Overflow occurs in function ‘driver_common’ caused by copying unvalidated frame payloads with reception events. Driver layer Bug-1018

layer. Similarly, the firmware fuzzer pAFL uncovered just
3 vulnerabilities, leaving 3 additional firmware-level bugs
undetected. This is because they do not consider the runtime
interaction logic between frame transmission and reception,
which is essential for thoroughly testing Wi-Fi NIC behav-
ior. In contrast, DualFuzz performs dual-directional fuzzing
by leveraging the TRModel and a latency-guided algorithm,
enabling the generation of high-quality test inputs that explore
transmission-reception interaction logic. As a result, DualFuzz
successfully uncovered all 21 vulnerabilities, demonstrating its
effectiveness and addressing RQ1. Compared with other state-
of-the-art Wi-Fi Fuzzers, DualFuzz found all the vulnerabili-
ties that other fuzzing tools found.

TABLE III
BUGS FOUND BY EACH TESTING TOOLS. OTHERS DETECT NO MORE THAN
11 BUGS, WHILE DUALFUZZ DETECTS ALL 21 BUGS.

Tool Bug Number Bugs ID#
DualFuzz 21 #1 - #21
OwFuzz-AP 4 #5,11,18,21
OwFuzz-STA 7 #4,7,12,15,16,19,20
wpaspy 8 #4,7,11,12,15,16,19,20
Greyhound 6 #5,7,11,12,18,20
VIRTFUZZ 6 #4,7,11,15,18,20
HAFL 3 #5,12,19

1) Case Study: We present a case study to demonstrate
how vulnerabilities uncovered by DualFuzz in Wi-Fi NICs
can threaten wireless network security, and how DualFuzz
effectively detects these vulnerabilities. This case corresponds
to bug #1 listed in Table II. This Use-After-Free vulnerability
in the Intel AX210 driver layer causes Wi-Fi NIC crashes or
potential data leakage due to incorrect buffer release after an
ACK timeout. It results in access to invalid or reused memory,
allowing attackers to crash the NIC or leak other users’ data.
Figure 10 illustrates the key triggering steps.

To trigger this bug, four key transmission-reception inter-
actions are required: (1) A data frame is sent; the NIC stores
it in the buffer pool under identifier fid and waits for an
ACK. (2) The ACK times out, and the NIC mistakenly frees

the buffer, leaving fid dangling. (3) A large data frame is
sent while the buffer pool happens to be full at this time,
triggering reallocation. (4) The delayed ACK arrives, and the
NIC accesses fid, now pointing to invalid or reused memory,
triggering a Use-After-Free. If fid points to an invalid address,
the NIC crashes; if it points to reused memory, data leakage
may occur. An attacker could exploit this by sending large data
frames to force reallocation and delaying ACKs to trigger the
bug. Developers have fixed this by nullifying fid after freeing
and adding null checks before future accesses.

Transmit Frame Wi-Fi NIC Receipt Frame
send data frame Step 2 send another large data frame Step 4
store data fid in buff_pool .
free data buff_pool reallocate access fid mistakenly
wait for ack
Step 1 ack timeout Step 3 ack with fid arrive

Fig. 10. An Use-After-Free vulnerability that causes NIC crash or privacy
leakage in buff_pool management within the driver layer of Intel AX210.

In our experiments, this Use-After-Free vulnerability was
only detected by DualFuzz. It is challenging to detect due to
the complex sequence of interactions required between trans-
mission and reception: ‘transmit data frame—receipt ACK
timeout—transmit other large data (triggering reallocation
mechanism)—receipt ACK arrives—bug triggered.” Triggering
such a deep vulnerability requires precise execution dependen-
cies. Specifically, the buffer pool happens to be full after the
receipt ACK timeout, causing reallocation, and at this moment,
the delayed receipt ACK happens to arrive. Existing Wi-Fi
fuzzers miss this bug due to their inability to explore intricate
transmission-reception interaction logic. In contrast, DualFuzz
leverages a TRModel capturing key interaction behaviors
(e.g., ACK timeout, flow control, buffer management) and
applies latency-guided fuzzing to mutate both transmission
and reception frames that operate on shared data like ACK
states and buffer pools. This enables DualFuzz to generate
large data frames to trigger buffer reallocation while delaying
ACKSs, increasing the likelihood of exposing the vulnerability.

C. Evaluating TRModel and Latency Guidance

To evaluate the effectiveness of the TRModel and the
latency guided fuzzing algorithm, we conducted an experiment
comparing three variants: (1) DualFuzz, the full version with
both the TRModel and latency guided fuzzing enabled; (2)
DualFuzz,,-, a baseline version that disables the TRModel
and randomly generates all transmit and receive Wi-Fi frames
without considering interaction logic; and (3) DualFuzz;-,
a variant that retains the TRModel but disables the latency
guided fuzzing strategy, instead randomly mutating the Wi-Fi
frames identified by the TRModel as relevant to transmission-
reception interactions. We measured the number of vulnera-
bilities detected by each variant over a 24-hour testing period
on the eight target Wi-Fi NICs. In addition, we recorded the
detection time for each identified bug.

TABLE IV
COMPARISON BETWEEN DUALFUZme N DUALFUZfo , AND DUALFUZZ.
Metric | DualFuzzy | DualFuzzp | DualFuzz
Bugs Found 12 15 21 (175%, 140%)
Avg Bug Detection Time (Min) 436 359 271 (162%, 132%)

As shown in Table IV, with the support of the TRModel
and latency guided fuzzing, DualFuzz successfully detects all
21 vulnerabilities within 24 hours. In contrast, DualFuzz,, -
detects only 12 vulnerabilities, while DualFuzz I detects 15.
The remaining 6 vulnerabilities (e.g., Bug #1 and #3, detailed
in the case study) require specific execution dependencies
between transmission and reception, which are difficult to un-
cover through random testing methods. In addition, as shown
in Figure 11, DualFuzz demonstrates faster bug detection.
On average, its vulnerability discovery speed is 32% faster
than DualFuzz;- and 62% faster than DualFuzz,,-. These
results demonstrate the effectiveness of both components:
compared to DualFuzz,,, -, DualFuzz shows that the TRModel
enhances both vulnerability detection count and detection
speed. Similarly, compared to DualFuzz; -, the latency guided
fuzzing strategy effectively improves these two metrics. These
statistics provide a comprehensive answer to RQ2.

24 | @ bualFuzz @ DualFuzz . _ @ DualFuzz, . A OWFuzz ¢ Wpaspy x Greyhound Il VIRTFUZZ @ jiAFL.
[) [)
20 - ° h
0 [)
..
w16 - o 5
o0 [] [) [)
5 .. ° [)
12 +) ® (o) o
=l °) o) A A
2 ° ° ° A
Q [J [) (o] A
L 8+ e ® o A =
5] [J (] (o) A
fa) ® o o [x x
[3K J (o) A n X
410 @ 6} A x M —
[1] o A X n [) [)
[1] 24 X N [)
@ &8 = I I

! ! ! !
3h 6h %h 12h 15h 18h 21h
Fig. 11. Number of bugs detected by DualFuzz and other SOTA tools over

time. DualFuzz consistently outperforms others with faster detection speed.
Analysis correlation between latency and bug detection:
To evaluate whether higher latency correlates with bugs in
complex interaction logic, we recorded the processing latency
of each TX-RX frame pair and whether it triggered a bug. The

results show that frame pairs triggering bugs had significantly
higher latency (around 150-200ms) compared to non-bug-
triggering pairs (around 10-20ms), suggesting that latency
spikes are more likely to indicate activation of deep interaction
paths where bugs may reside.

D. Accuracy of Anomaly Detector in DualFuzz

To evaluate the accuracy of DualFuzz and assess potential
false negatives and false positives that may be introduced by
the bug deduplication process, we first collected all anomalies
reported by the liveness and equivalence detectors, along
with their corresponding reproduction sequences during the
testing phase. We then manually analyzed them to identify
true positives and false positives.

TABLE V
ACCURACY OF DUALFUZZ’S ANOMALY DETECTOR.
Before Deduplicate After Deduplicate
Liveness Equivalence | Liveness Equivalence
Reported Number | 24 31 9 12
True Positive 9 12 9 12
False Positive 2 0 0 0

Before bug deduplication, DualFuzz reported a total of 55
anomalies, including 25 from the Liveness Detector and 31
from the Equivalence Detector. Among them, two were false
positives, caused by test frames with extended timeouts that
inadvertently triggered the Wi-Fi NIC’s power-saving mode,
leading to temporary unresponsiveness and a misidentifica-
tion as offline. Thanks to DualFuzz’s bug reproduction and
deduplication process, these false positives were eliminated.
After deduplication, the Liveness and Equivalence Detectors
reported 9 and 12 unique bugs, respectively, all of which
were true positives, with no new false negatives introduced.
The false positives is reduced to zero. Thus, the accuracy of
DualFuzz is satisfying, which adequately answers RQ3.

E. Effectiveness in Code Coverage

TABLE VI
BRANCH COVERAGE ON THE NIC DRIVERS IN 24 HOURS. DUALFUZZ
CONSISTENTLY COVERS MORE BRANCHES COMPARED TO SOTA TOOLS.

Tool ‘ Tp-Link AX1800 ‘ ALFA AWUS036ACH ‘ ASUS AX56AX ‘ EDUP 8774M

11958 10243 10466 11061
12634 10782 10948 11821
11516 10121 10423 11271
11865 10487 10299 11062
12853 11093 11490 12074
15722 1 29% 12991 1 23% 13814 1 25% 1429271 25%

OwFuzz-AP
OwFuzz-STA
wpaspy
Greyhound
VIRTFUZZ
DualFuzz

Given that most Wi-Fi NICs are closed-source and only
a subset of NIC drivers are open-source, to evaluate the
effectiveness of DualFuzz in terms of code coverage on
Wi-Fi NICs, we instrumented the open-source drivers using
gcov [18] and collected branch coverage data over a 24-
hour fuzzing period. The statistics are shown in Table VI. In
conclusion, DualFuzz consistently outperforms all other state-
of-the-art tools across the four open-source NIC drivers. Com-
pared to OwFuzz-AP, OwFuzz-STA, wpaspy, Greyhound, and
VIRTFUZZ, DualFuzz achieves an average branch coverage
improvement of 23% - 29%. These results provide a clear and
comprehensive answer to RQ4.

VII. DISCUSSION

Extend DualFuzz to other network middleware. Cur-
rently, DualFuzz proposes a dual-directional fuzzing frame-
work for Wi-Fi NICs to test transmission-reception interac-
tions, successfully uncovering 21 new vulnerabilities. In fact,
this dual-directional fuzzing framework can also be extended
to test other network middlewares, such as the broker in
MQTT [38], the resource handler in CoAP [45], or the mes-
sage broker in AMQP [3], which serve as intermediaries that
manage and route communication between various devices,
involve rich bidirectional interactions.

For example, in the case of the MQTT protocol, DualFuzz
can follow a similar process: (1) It first performs static analysis
on the MQTT protocol’s RFC 6455/ISO standard [16], a
specification that defines the broker-client communication be-
havior, to automatically extract shared data (e.g., session flags,
message identifiers, QoS levels) and build a corresponding
TRModel; (2) Based on the TRModel, it coordinates the mu-
tation of transmission and reception packets (e.g., PUBLISH,
SUBSCRIBE, ACK) to continuously test the broker’s internal
interaction logic and uncover latent vulnerabilities. However,
unlike Wi-Fi NICs, many middlewares are open-source. We
plan to extend DualFuzz’s guidance and detector to support
gray-box or white-box modes in the future.

Enhance TRModel with implicit dependencies and ex-
tend it to proprietary NICs. Currently, TRModel captures
many shared data dependencies between transmission and
reception frames, but may miss implicit or non-obvious de-
pendencies that are difficult to extract automatically from
IEEE 802.11 standard. Besides, some Wi-Fi NICs intro-
duce proprietary logic, such as custom frame types, vendor-
specific retransmission, etc., which fall outside the standard
and are not modeled in TRModel, potentially causing certain
implementation-specific bugs to be missed. We can enhance
the TRModel by incorporating dynamic analysis techniques to
infer implicit dependencies or vendor-specific interaction logic
by monitoring whether certain variables or memory regions
are accessed during both transmission and reception. However,
this requires fine-grained instrumentation and analysis, which
introduces additional overhead. How to find a balance point
needs to be explored in the future.

Longer Frame Sequence Exploration. At present, Dual-
Fuzz generates only one TX-RX frame pair per test input.
Incorporating higher-level function semantics and modeling
longer frame sequences could enhance state awareness and
enable deeper exploration of the state space, as demon-
strated by prior protocol fuzzing studies (e.g., SeqFuzzer [59],
Bleem [33]]). However, modeling long sequences leads to
exponential growth in the state space. Designing an efficient
approach that balances modeling granularity and fuzzing effi-
ciency is a promising direction for future work.

VIII. RELATED WORK

Wi-Fi Fuzzing: Wi-Fi fuzzing has been widely applied
in identifying vulnerabilities across various wireless devices.
Wdev-Fuzzer [35] targets low-level driver code by injecting

malformed packets, exposing critical flaws in proprietary Wi-
Fi drivers. Greyhound [17] is a directed greybox fuzzer for
Wi-Fi STA devices that identifies vulnerabilities by explor-
ing critical protocol paths. Wpaspy [49] fuzzes various Wi-
Fi protocols to detect bugs in firmware and drivers. OW-
Fuzz [9] uses over-the-air fuzzing to mutate and inject 802.11
management/control frames, uncovering flaws in malformed
frame handling. However, existing Wi-Fi fuzzers separately
test the transmission and reception, neglecting their interaction
dependencies, thus missing certain vulnerabilities.

Driver Fuzzing: Several works focus on Linux driver
fuzzing and can detect bugs in the Wi-Fi NIC driver layer.
Syzbot [21] uses Syzkaller with low-level syscall inputs to
uncover memory and concurrency issues. Tools like USB-
Fuzz [43], Nyx [50], and FuzzUSB [29] emulate device
behavior to reveal deep system bugs, while DEVFuzz [57] uses
device models to guide syscall generation. VIRTFUZZ [26]
targets the 802.11 stack via VirtlO. In contrast, DualFuzz op-
erates at the protocol level, crafting high-level Wi-Fi frames to
expose vulnerabilities with broader attack surfaces. Moreover,
these driver fuzzers overlook the interaction logic between
transmission and reception, as well as vulnerabilities hidden
in other layers of Wi-Fi NICs.

Firmware Fuzzing: Some works target firmware
fuzzing [58] and may apply to the firmware layer of
Wi-Fi NICs. Firmadyne [11] emulates embedded Linux
firmware for dynamic analysis. P2IM [15] infers peripheral
models to uncover bugs in embedded systems. Fuzzware [47]
enhances firmware fuzzing by using precise Memory-Mapped
I/0O modeling, allowing effective and accurate exploration of
embedded firmware behavior. pAFL [31] uses ARM’s ETM
for feedback-based MCU fuzzing. However, these methods
focus solely on firmware and overlook vulnerabilities in
complex cross-layer transmission-reception interaction, which
DualFuzz is designed to expose.

IX. CONCLUSION

In this paper, we propose DualFuzz, a dual-directional
fuzzing framework designed to simultaneously test both trans-
mission and reception logic within Wi-Fi NICs. First, we
develop a TRModel to describe transmission-reception inter-
actions. Second, DualFuzz employs a latency-guided fuzzing
strategy to efficiently coordinate and explore the generation of
transmission and reception test frames. Finally, we introduce
two real-time anomaly detectors to accurately identify abnor-
mal behaviors and uncover vulnerabilities. We implemented
DualFuzz and evaluated it on eight widely used Wi-Fi NICs,
successfully discovering 21 new vulnerabilities. Our future
work will enhance DualFuzz by adding dynamic modeling
to the TRModel and adapting DualFuzz to other network
middleware testing scenarios.

X. ACKNOWLEDGEMENTS

This research is sponsored in part by the National Key
Research and Development Project (No. 2022YFB3104000),
and NSFC Program (No. U2441238, 62021002).

[1]

[2]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

Ramia Babiker Mohammed Abdelrahman, Amin Babiker A Mustafa,
and Ashraf A Osman. A comparison between ieee 802.11 a, b, g, n
and ac standards. IOSR Journal of Computer Engineering (IOSR-JEC),
17(5):26-29, 2015.

Muhammad Raisul Alam, Mamun Bin Ibne Reaz, and Mohd Alaud-
din Mohd Ali. A review of smart homes—past, present, and future. [EEE
transactions on systems, man, and cybernetics, part C (applications and
reviews), 42(6):1190-1203, 2012.

AMQP. Advanced message queuing protocol. https://www.amqp.org/,
2025. Accessed at March 29, 2025.

PM Anderson and AA Fouad. Institute of electrical and electronics
engineers. Power system control and stability, 2003.

Johannes Berg. Radiotap: De facto standard for 802.11 frame injection
and reception, 2022.

Philippe Biondi. Scapy documentation (!). vol, 469:155-203, 2010.
Nader Bouacida, Ahmad Showail, and Basem Shihada. Buffer manage-
ment in wireless full-duplex systems. In 2015 IEEE 11th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), pages 557-564. IEEE, 2015.

Broadcom. Bcm6755: Dual 2x2 802.1lax wi-fi 6 quad-
core arm soc. https://www.broadcom.com/products/wireless/
wireless-lan-infrastructure/bcm6755, 2025. Accessed at March
29, 2025.

Hongjian Cao, Lin Huang, Shuwei Hu, Shangcheng Shi, and Yujia Liu.
Owfuzz: Discovering wi-fi flaws in modern devices through over-the-air
fuzzing. In Proceedings of the 16th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, pages 263-273, 2023.

M Cermak, S Svoren&ik, R Lipovsky, and O Kubovi¢. Kr00Ok-serious
vulnerability deep inside your wi-fi encryption. ESET White paper,
2020.

Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. To-
wards automated dynamic analysis for linux-based embedded firmware.
In NDSS, volume 1, pages 1-1, 2016.

National Vulnerability Database. Cve-2019-15126 detail. https://nvd.
nist.gov/vuln/detail/CVE-2019-15126, 2023. Accessed on November
11, 2024.

NATIONAL VULNERABILITY DATABASE. Cve-2022-21745 detail.
https://nvd.nist.gov/vuln/detail/CVE-2022-21745, 2025. Accessed at
March 29, 2025.

Garlisi Domenico, Giovanni Garbo, and Ilenia Tinnirello. Design,
implementation and experimental evaluation of a wireless mac processor
over commercial wifi cards. Relatdrio técnico, 2014.

Bo Feng, Alejandro Mera, and Long Lu. {P2IM}: Scalable and
hardware-independent firmware testing via automatic peripheral inter-
face modeling. In 29th USENIX Security Symposium (USENIX Security
20), pages 1237-1254, 2020.

Ian Fette and Alexey Melnikov. Rfc 6455: The websocket protocol,
2011.

Matheus E Garbelini, Chundong Wang, and Sudipta Chattopadhyay.
Greyhound: Directed greybox wi-fi fuzzing. IEEE Transactions on
Dependable and Secure Computing, 19(2):817-834, 2020.

GCOV. 11 gcov—a test coverage program. https://gcc.gnu.org/
onlinedocs/gcc/Geov.html, 2025. Accessed at March 29, 2025.

Yao Ge, Ahmad Taha, Syed Aziz Shah, Kia Dashtipour, Shuyuan
Zhu, Jonathan Cooper, Qammer H Abbasi, and Muhammad Ali Imran.
Contactless wifi sensing and monitoring for future healthcare-emerging
trends, challenges, and opportunities. [EEE Reviews in Biomedical
Engineering, 16:171-191, 2022.

Carles Gomez, Stefano Chessa, Anthony Fleury, George Roussos, and
Davy Preuveneers. Internet of things for enabling smart environments:
A technology-centric perspective. Journal of Ambient Intelligence and
Smart Environments, 11(1):23-43, 2019.

Google. syzbot. https://syzkaller.appspot.com/upstream, 2025. Accessed
at March 29, 2025.

Yohei Hasegawa and Kazuya Suzuki. A multi-user ack-aggregation
method for large-scale reliable lorawan service. In ICC 2019-2019 IEEE
International Conference on Communications (ICC), pages 1-7. IEEE,
2019.

Johan Henning. Pentesting on a wifi adapter: Afirmware and driver
security analysis of a wifi adapter, with a subset of wifi pentesting,
2023.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

(34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Guido R Hiertz, Dee Denteneer, Lothar Stibor, Yunpeng Zang,
Xavier Pérez Costa, and Bernhard Walke. The ieee 802.11 universe.
IEEE Communications Magazine, 48(1):62-70, 2010.

Toke Hgiland-Jgrgensen, Per Hurtig, and Anna Brunstrom. The good,
the bad and the wifi: Modern agms in a residential setting. Computer
Networks, 89:90-106, 2015.

Sonke Huster, Matthias Hollick, and Jiska Classen. To boldly go where
no fuzzer has gone before: Finding bugs in linux’wireless stacks through
virtio devices. In 2024 IEEE Symposium on Security and Privacy (SP).
Los Alamitos, CA, USA: IEEE Computer Society, pages 24-24, 2024.
Oliver C Ibe. Fundamentals of data communication networks. John
Wiley & Sons, 2017.

Intel. Intel wi-fi 6e ax210. https://www.intel.com/content/www/us/en/
products/sku/204836/intel- wifi- 6e-ax210- gig/specifications.html, 2025.
Accessed at March 29, 2025.

Kyungtae Kim, Taegyu Kim, Ertza Warraich, Byoungyoung Lee,
Kevin RB Butler, Antonio Bianchi, and Dave Jing Tian. Fuzzusb: Hybrid
stateful fuzzing of usb gadget stacks. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 2212-2229. IEEE, 2022.

Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao Xiong, Keith
Winstein, and Kun Tan. Revisiting acknowledgment mechanism for
transport control: Modeling, analysis, and implementation. /EEE/ACM
Transactions on Networking, 29(6):2678-2692, 2021.

Wengqiang Li, Jiameng Shi, Fengjun Li, Jingqgiang Lin, Wei Wang, and
Le Guan. pafl: non-intrusive feedback-driven fuzzing for microcontroller
firmware. In Proceedings of the 44th International Conference on
Software Engineering, pages 1-12, 2022.

American Fuzzy Lop. Performance tips - afl (american fuzzy lop) - keep
your test cases small. https:/afl-1.readthedocs.io/en/latest/tips.html,
2025. Accessed at March 29, 2025.

Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang, Ting
Chen, Abhik Roychoudhury, and Jiaguang Sun. Bleem: Packet sequence
oriented fuzzing for protocol implementations. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 4481-4498, 2023.

MediaTek. Mt7921au product description. https://www.edaltech.com/
products/mediatek/mt7921au.html, 2025. Accessed at March 29, 2025.
Manuel Mendonga and Nuno Neves. Fuzzing wi-fi drivers to locate se-
curity vulnerabilities. In 2008 Seventh European Dependable Computing
Conference, pages 110-119. IEEE, 2008.

Andreas F Molisch. Wireless communications, volume 34. John Wiley
& Sons, 2012.

Erfan Mozaffariahrar, Fabrice Theoleyre, and Michael Menth. A survey
of wi-fi 6: Technologies, advances, and challenges. Future Internet,
14(10):293, 2022.

MQTT.ORG. Mqtt: The standard for iot messaging. https://mqtt.org/,
2025. Accessed at March 29, 2025.

Rohan Murty, Jitendra Padhye, Ranveer Chandra, Alec Wolman, and
Brian Zill. Designing high performance enterprise wi-fi networks. In
NSDI, volume 8, pages 73-88, 2008.

Haitham Ameen Noman and Osama MF Abu-Sharkh. Code injection
attacks in wireless-based internet of things (iot): A comprehensive
review and practical implementations. Sensors, 23(13):6067, 2023.
Luiz Oliveira, Joel JPC Rodrigues, Sergei A Kozlov, Ricardo AL Rabglo,
and Victor Hugo C de Albuquerque. Mac layer protocols for internet of
things: A survey. Future Internet, 11(1):16, 2019.

Hassan Aboubakr Omar, Khadige Abboud, Nan Cheng, Kamal Rahimi
Malekshan, Amila Tharaperiya Gamage, and Weihua Zhuang. A survey
on high efficiency wireless local area networks: Next generation wifi.
IEEE Communications Surveys & Tutorials, 18(4):2315-2344, 2016.
Hui Peng and Mathias Payer. {USBFuzz}: A framework for fuzzing
{USB} drivers by device emulation. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 2559-2575, 2020.

Norbert Pohlmann, Helmut Reimer, Wolfgang Schneider, Sami
Petidjdsoja, Ari Takanen, Mikko Varpiola, and Heikki Kortti. Case
studies from fuzzing bluetooth, wifi and wimax. In ISSE/SECURE 2007
Securing Electronic Business Processes: Highlights of the Information
Security Solutions Europe/SECURE 2007 Conference, pages 188-195.
Springer, 2007.

The Constrained Application Protocol. Coap, rfc 7252 constrained
application protocol. https://coap.space/, 2025. Accessed at March 29,
2025.

Realtek. RtI8812au 802.11ac/abgn usb wlan network controller. https://
www.realtek.com/Product/Index ?id=579&cate_id=194, 2025. Accessed
at March 29, 2025.

[47

(48]

[49]

[50]

[51]

[52

[53]

[54]

[55

[56]

[57]

[58]

[59]

[60]

Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric Gustafson, Mar-
ius Muench, Giovanni Vigna, Christopher Kruegel, Thorsten Holz, and
Ali Abbasi. Fuzzware: Using precise {MMIO} modeling for effective
firmware fuzzing. In 31st USENIX Security Symposium (USENIX
Security 22), pages 1239-1256, 2022.

G Scheible, J Schutz, and C Apneseth. Novel wireless power supply
system for wireless communication devices in industrial automation
systems. In IEEE 2002 28th Annual Conference of the Industrial
Electronics Society. IECON 02, volume 2, pages 1358-1363. IEEE,
2002.

Domien Schepers, Mathy Vanhoef, and Aanjhan Ranganathan. A
framework to test and fuzz wi-fi devices. In Proceedings of the 14th
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, pages 368-370, 2021.

Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Worner,
and Thorsten Holz. Nyx: Greybox hypervisor fuzzing using fast
snapshots and affine types. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2597-2614, 2021.

Sunil Kr Singh, Ajay Kumar, Siddharth Gupta, and Ratnakar Madan.
Architectural performance of wimax over wifi with reliable qos over
wireless communication. International Journal of Advanced Networking
and Applications, 3(1):1017, 2011.

Dionysios Skordoulis, Qiang Ni, Hsiao-Hwa Chen, Adrian P Stephens,
Changwen Liu, and Abbas Jamalipour. Ieee 802.11 n mac frame
aggregation mechanisms for next-generation high-throughput wlans.
IEEE Wireless Communications, 15(1):40-47, 2008.

Saber Talari, Miadreza Shafie-Khah, Pierluigi Siano, Vincenzo Loia,
Aurelio Tommasetti, and Jodo PS Cataldo. A review of smart cities
based on the internet of things concept. Energies, 10(4):421, 2017.
Manesh Thankappan, Helena Rifa-Pous, and Carles Garrigues. Multi-
channel man-in-the-middle attacks against protected wi-fi networks: A
state of the art review. Expert Systems with Applications, 210:118401,
2022.

Yuli Vasiliev. Natural language processing with Python and spaCy: A
practical introduction. No Starch Press, 2020.

Prasaja Wikanta. Study and design of a new PHY/MAC Cross-Layer
architecture for Wireless Sensor Networks Dedicated to Healthcare. PhD
thesis, Université Polytechnique Hauts-de-France, 2021.

Yilun Wu, Tong Zhang, Changhee Jung, and Dongyoon Lee. Devfuzz:
automatic device model-guided device driver fuzzing. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 3246-3261. IEEE,
2023.

Chi Zhang, Yu Wang, and Linzhang Wang. Firmware fuzzing: The
state of the art. In Proceedings of the 12th Asia-Pacific Symposium on
Internetware, pages 110-115, 2020.

Hui Zhao, Zhihui Li, Hansheng Wei, Jianqi Shi, and Yanhong Huang.
Seqfuzzer: An industrial protocol fuzzing framework from a deep
learning perspective. In 2019 12th IEEE Conference on software testing,
validation and verification (ICST), pages 59—67. IEEE, 2019.

Meng Zheng, Yongheng Zhao, Huaguang Shi, and Wei Liang. A
flexible retransmission scheme for reliable and real-time transmissions in
industrial wireless networks for factory automation. IEEE Transactions
on Vehicular Technology, 72(8):10867-10878, 2023.

