
HCG: Optimizing Embedded Code Generation of Simulink with
SIMD Instruction Synthesis

Zhuo Su†, Zehong Yu†, Dongyan Wang‡, Yixiao Yang� †, Yu Jiang� †, Rui Wang§, Wanli Chang¶,
Jiaguang Sun†

† KLISS, BNRist, School of Software, Tsinghua University, Beijing, China
‡ Information Technology Center, Renmin University of China, Beijing, China
§ Information Engineering College, Capital Normal University, Beijing, China
¶ Department of Computer Science, University of York, York, United Kingdom

ABSTRACT
Simulink is widely used for the model-driven design of embedded
systems. It is able to generate optimized embedded control software
code through expression folding, variable reuse, etc. However, for
some commonly used computing-sensitive models, such as the
models for signal processing applications, the efficiency of the
generated code is still limited.

In this paper, we propose HCG, an optimized code generator for
the Simulink model with SIMD instruction synthesis. It will select
the optimal implementations for intensive computing actors based
on adaptively pre-calculation of the input scales, and synthesize the
appropriate SIMD instructions for batch computing actors based
on the iterative dataflow graph mapping. We implemented and
evaluated its performance on benchmark Simulink models. Com-
pared to the built-in Simulink Coder and the most recent DFSynth,
the code generated by HCG achieves an improvement of 38.9%-
92.9% and 41.2%-76.8% in terms of execution time across different
architectures and compilers, respectively.

KEYWORDS
Code generation, model-driven design, Simulink, SIMD instruction

1 INTRODUCTION
Simulink is one of the most widely used model-driven design tools
and is increasingly used in embedded scenarios such as smart trans-
portation, avionics and vehicles [10, 14, 16]. It supports the behavior
modeling, simulation, and code generation of embedded control
software. The automatic code generation releases the developers
from hard-work coding, but the efficiency of the generated code is
hard to ensure and may affect the performance and the throughput
of the whole system [18].

For optimization, expression folding and variable reuse aremainly
used in Simulink Coder [17] to generate more compact code. Re-
cently, DFSynth [19] optimizes the code generation of Simulink
models with complex branching logic. It transforms the branch logic
to control flow code logic based on semantics analysis. Although
they perform well in many cases, the efficiency is still limited for
models that contain intensive computing actors (e.g. fast Fourier
transform) and batch computing actors (e.g. batch Add).

For the intensive computing actors, which usually take batch
data as input to perform complex calculations, the tools such as
Simulink Coder and DFsynth will generate a generic function for
computation. But in fact, for an intensive computing actor, there are
many different implementations, and their efficiency varies at the

different input scales [3, 7]. Take FFT (Fast Fourier Transform)1 as an
example. As shown in Figure 1, we can see that no one implemen-
tation can always perform better than the others for all input data
lengths. For example, Mix-FFT performs best on large input-scales,
but performs worse on small input-scales. When generating code,
the input and output scales of the actors in different models are
uncertain, and we should dynamically select the more appropriate
implementation codes based on the model information.

4 5 6 7 8 9
1
0

1
2

1
6

2
0

3
2

5
0

6
4

1
0
0

1
2
8

2
0
0

2
5
6

3
0
0

4
0
0

5
1
2

6
0
0

8
0
0

1
0
0
0

1
0
2
4

2
0
0
0

3
0
0
0

4
0
9
6

8
0
0
0

8
1
9
2

1
6
3
8
4

6
5
5
3
6

Input Data Length (Array Size)

2.5

5

10

20

40

80

160

T
im

e
 C

o
s
t 

(n
s
)

Mix FFT

Rad-2 FFT

Galois FFT

Figure 1: The time cost of different implementations of FFT
intensive computing actor on different input data lengths.

For the batch computing actors, which take an array as input
and output, and each element of the output array is calculated from
its corresponding input element with the same array index, existing
tools will generate repeated code segments or function loops to
accomplish the task. For example, Simulink Coder uses the method
shown in Figure 2 to generate code. But if the SIMD (Single Instruc-
tion Multiple Data) instructions are used, only two operations are
required, which are 𝑣𝑚𝑙𝑎𝑞_𝑓 32 (vector multiplication and addition)
and 𝑣𝑟𝑒𝑐𝑝𝑠𝑞_𝑓 32 (vector reciprocal) [5, 6]. Making full use of the
compound SIMD instructions of the processor can effectively im-
prove the running speed of the generated code [15]. For example,
the vhadd instruction in ARM architecture adds two vector integers
and right shifts the addition result by one bit. When the composi-
tion of batch actors is complex, we should select the appropriate
compositions of SIMD instructions for vector acceleration.

In this paper, we propose HCG to optimize the code generation
of the Simulink models with SIMD instruction synthesis. First,
the intensive computing actors and batch computing actors will
be identified according to their type and input scale information.
Then, for the intensive computing actors, HCG will choose the
1Mix FFT is obtained from the website: http://www.corix.dk/Mix-FFT/mix-fft.html,
Rad-2 FFT is a Radix-2 division FFT implementation, and Galois FFT is obtained from
the website: https://hackage.haskell.org/package/galois-fft-0.1.0

http://www.corix.dk/Mix-FFT/mix-fft.html
https://hackage.haskell.org/package/galois-fft-0.1.0


Conference’17, July 2017, Washington, DC, USA Zhuo Su† , Zehong Yu† , Dongyan Wang‡ , Yixiao Yang� † , Yu Jiang� † , Rui Wang§ , Wanli Chang¶ , Jiaguang Sun†

Figure 2: A sample model with batch computing actors and
the corresponding code generated by Simulink Coder. It con-
tains fourmultiplications, four additions and four reciprocal.

optimal implementation based on the pre-calculation according to
the actor type and its input scale. For batch computing actors, HCG
will convert them into a directed dataflow graph and iteratively
generate the optimal SIMD instructions with graph mapping. It will
start with some subgraphs that already match some initial SIMD
instructions, and then iteratively select the topmost and leftmost
node of the dataflow graph to extend those subgraphs. When the
graph is completely mapped, more appropriate SIMD instructions
will be selected to replace the original initial instruction sets and
generate a more efficient and compact code.

We implemented and evaluated HCG on benchmark Simulink
models, which also contain intensive computing actors and batch
computing actors. The results show that HCG demonstrates excel-
lent performance. Compared with the built-in Simulink Coder and
the most recent DFsynth [19], the code generated by HCG achieves
an improvement of 38.9%-92.9% and 41.2%-76.8% in terms of execu-
tion time across different architectures and compilers, respectively.

2 RELATEDWORK
Model-driven design is awidely used software developmentmethod,
especially in safety-critical embedded scenarios. It mainly consists
of three components: behavior modeling, simulation and code gen-
eration [1, 9, 11, 14, 16]. There are many supporting tools, such
as Ptolemy-II, Tsmart, Polychrony in academic [4, 12, 13], and
Simulink, SCADE, DaVinci Developer in industry [2, 8, 17]. Among
them, Simulink developed by MathWorks is the most popular for
its powerful model simulation and code generation capabilities.

Code generation plays an important role because it will convert
the constructed model into code deployed in real embedded de-
vices [4, 17]. Most code generators perform the following steps to
generate code: 1 Model parse transforms model file into structured
actor information; 2 Schedule analysis obtains the scheduling re-
lationship among model actors; 3 Code synthesis generates fire
code for each actor; 4 Code composition integrates the fire code
of each actor into the output code according to the schedule. For
Simulink, the built-in Simulink Coder [17] works very well and it
supports efficient code generation for different architectures and
compilers with optimizations such as expression folding and out-
put variable reuse. DFSynth [19] is the most-recent research work
for code generation of Simulink models. Based on schedule anal-
ysis and well-designed patterns, it supports well-structured code
generation for complex dataflow logic.

The main difference between HCG and those existing genera-
tors is that HCG is able to generate more optimal implementation
with SIMD instruction synthesis. For those intensive computing
actors, it will determine the choice of implementation based on the
pre-calculation of the input scales adaptively; and for those batch
computing actors, it will determine the proper SIMD instructions
set according to the iterative dataflow graph mapping.

3 HCG DESIGN
HCG takes the Simulink model as input and generates efficient and
deployable code for embedded devices as output. It mainly consists
of two components: Actor Dispatch and SIMD Instruction Synthesis,
as demonstrated in Figure 3. First, the Simulink model file needs
to be analyzed by the model parser, and the intensive computing
actors, batch computing actors and remainder basic actors will
be classified and dispatched for instruction synthesis. Next, those
actors are synthesized in different ways accordingly. For intensive
computing actors, HCG considers the actor type and the input
scale to select the suitable and optimal implementation code. For
example, the 𝐹𝐹𝑇 (Fast Fourier Transform) actor in Figure 1 with
1024 floating point data as input will be translated into the Radix-4
butterfly FFT implementation code to adapt the input data scale. For
batch computing actors, HCG converts them into a dataflow graph
and iteratively generates the optimal SIMD instructions with graph
mapping. For instance, the composition of a 4-batch Add actor and
a 4-batch Multiply actor in Figure 2 will be translated into a 𝑣𝑚𝑎𝑑𝑑

instruction (batch multiply and add instruction) instead of four 𝑎𝑑𝑑
instructions and four𝑚𝑢𝑙 instructions. For remainder basic actors
and the code snippets composition, the conventional translation
method of the built-in Simulink Coder will be used.

3.1 Actor Dispatch
For a given Simulink model, the first step is to parse the model into
structured actors, ports and other model elements in memory. Then,
each actor will be translated into a snippet of code representing
the execution logic of the actor semantic. In the conventional code
generation method of Simulink Coder or DFSynth, actors are trans-
lated using actor templates that contain the fire code of each actor.
In our work, the intensive computing actors and batch computing
actors are separated by HCG to synthesize more efficient code with
SIM instructions. The above two types of actors are identified and
dispatched with the actor type and the input scale.

The intensive computing actor is the actor that takes an array
as input, and the output of the actor is calculated from at least
one pair of array elements. The input and output elements do not
correspond one-to-one. For example, an actor whose type is 𝐹𝐹𝑇
will be identified as an intensive computing actor, and Fast Fourier
Transform is a complex calculation process with large-scale input.
The batch computing actor is the actor that also takes an array as
input and output, but different from the intensive computing actor,
each element of the output array is calculated from its correspond-
ing input element with the same array index. For example, if the
type of an actor is 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 and at least one of its input ports is
an array, the actor will be identified as a batch computing actor.
Table 1 demonstrates the most frequently used intensive computing
actors and batch computing actors in Simulink model libraries [17].



HCG: Optimizing Embedded Code Generation of Simulink with SIMD Instruction Synthesis Conference’17, July 2017, Washington, DC, USA

Simulink 
Model

Model
Parse

Actor
Classification

History Based
Search

Intensive 
Computing Actors

Actor Dispatch SIMD Instruction Synthesis

Pre-calculation

Batch
Computing Actors

Synthesis for Intensive Computing Actors Synthesis for Batch Computing Actors 

Basic
Actors

Synthesis
History

Code
Library

Dataflow Graph 
Construction

Instruction
Selection

CodeConventional 
Composition

Instruction
Set

Figure 3: Overview of HCG. The intensive computing actors and batch computing actors in the model are classified for code
synthesis after parsing the model. Then each intensive computing actor is translated into an optimal implementation which is
suitable for the actor. Batch computing actors are integrated into a dataflow graph and synthesised into SIMD instructions.

Table 1: Most frequently used intensive computing actors
and batch computing actors in Simulink model libraries.

(a) Intensive computing actors
Type Description
MatMul 2x2, 3x3, 4x4 Matrix multiplication
MatInv 2x2, 3x3, 4x4 Matrix inversion
MatDet 2x2, 3x3, 4x4 Matrix determinant calculation
FFT/IFFT 1, 2-D (Inverse) Fast Fourier transform
DCT/IDCT 1, 2-D (Inverse) Discrete cosine transform
Conv 1, 2-D Convolution

(b) Batch computing actors
Type Description
Add/Sub/Mul/Div Add, Subtract, Multiply, Divide
Shr/Shl Right shift, Left shift
BitNot/And/Or/Xor Bit-wise Not/And/Or/Xor
Min/Max Minimum, Maximum
Abs/Abd Absolute, Absolute difference
Recp/Sqrt Reciprocal, Square Root

3.2 SIMD Instruction Synthesis
The identified intensive computing actors and batch computing
actors are passed to the SIMD Instruction Synthesis module for
optimal implementation generation.

3.2.1 Code synthesis for intensive computing actors. There are
many efficient implementations with built-in SIMD instructions for
an intensive computing actor, for example, the three implementa-
tions of FFT actor presented in Figure 1. But the performance of
different implementations varies at different input scales. Hence,
to generate more efficient code for deployment, it is necessary to
consider the input scale of the actor adaptively. HCG will perform
pre-calculation to decide which implementation is the best for the
corresponding input scale. For acceleration, it will also store the
history implementation information for a quick search. The overall
procedure is presented in Algorithm 1.

Before the pre-calculation, we will perform a preliminary and
lightweight search based on the synthesis history information.
It will traverse the implementation synthesis history and decide
whether there is an existing index that matches the type and input
size of the intensive computing actor, as presented in Lines 3-6. If
there is a matched index, the corresponding implementation will

Algorithm 1: Synthesis for intensive computing actors
Input:𝐴𝑐𝑡𝑜𝑟𝑇 𝑦𝑝𝑒 : Type of the intensive computing actor
Input: 𝐷𝑎𝑡𝑎𝑇 𝑦𝑝𝑒 : Data type of the actor’s input
Input: 𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒 : Data size of the input port
Output: 𝐼𝑚𝑝𝑙𝐵𝑒𝑠𝑡 : The selected optimal implementation for the actor

1 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐻𝑖𝑠𝑡𝑜𝑟𝑦 = loadSelectionHistory(𝐴𝑐𝑡𝑜𝑟𝑇 𝑦𝑝𝑒)
2 𝐼𝑚𝑝𝑙𝐵𝑒𝑠𝑡 = NULL
3 for 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 in 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐻𝑖𝑠𝑡𝑜𝑟𝑦 do
4 if 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛.𝐷𝑎𝑡𝑎𝑇 𝑦𝑝𝑒 == 𝐷𝑎𝑡𝑎𝑇 𝑦𝑝𝑒 and

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛.𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒 == 𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒 then
5 𝐼𝑚𝑝𝑙𝐵𝑒𝑠𝑡 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛.𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
6 return 𝐼𝑚𝑝𝑙𝐵𝑒𝑠𝑡

7 𝐼𝑚𝑝𝑙𝐿𝑖𝑠𝑡 = loadCodeLibrary(𝐴𝑐𝑡𝑜𝑟𝑇 𝑦𝑝𝑒)
8 𝐼𝑚𝑝𝑙𝐵𝑒𝑠𝑡 = 𝐼𝑚𝑝𝑙𝐿𝑖𝑠𝑡 .getGeneralImplementation()
9 𝑀𝑖𝑛𝐶𝑜𝑠𝑡 = MAX

10 𝑇𝑒𝑠𝑡𝐼𝑛𝑝𝑢𝑡 = generateTestInput(𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒)
11 for 𝐼𝑚𝑝𝑙𝑇𝑒𝑠𝑡 in 𝐼𝑚𝑝𝑙𝐿𝑖𝑠𝑡 do
12 if not 𝐼𝑚𝑝𝑙𝑇𝑒𝑠𝑡 .canHandleDataType(𝐷𝑎𝑡𝑎𝑇 𝑦𝑝𝑒) or

not 𝐼𝑚𝑝𝑙𝑇𝑒𝑠𝑡 .canHandleDataSize(𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒) then
13 continue

14 𝐶𝑜𝑠𝑡 = runImplementation(𝐼𝑚𝑝𝑙𝑇𝑒𝑠𝑡 ,𝑇𝑒𝑠𝑡𝐼𝑛𝑝𝑢𝑡 )
15 if 𝐶𝑜𝑠𝑡 <𝑀𝑖𝑛𝐶𝑜𝑠𝑡 then
16 𝐼𝑚𝑝𝑙𝐵𝑒𝑠𝑡 = 𝐼𝑚𝑝𝑙𝑇𝑒𝑠𝑡

17 𝑀𝑖𝑛𝐶𝑜𝑠𝑡 =𝐶𝑜𝑠𝑡

18 storeSelection(𝐴𝑐𝑡𝑜𝑟𝑇 𝑦𝑝𝑒 , 𝐷𝑎𝑡𝑎𝑇 𝑦𝑝𝑒 , 𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒 , 𝐼𝑚𝑝𝑙𝐵𝑒𝑠𝑡 )
19 return 𝐼𝑚𝑝𝑙𝐵𝑒𝑠𝑡

be returned as the synthesized code for the current actor. If not, the
code library will be loaded according to the computing actor type.
The code library is a one-to-many implementation list and contains
all different implementations for each specific actor.

Then, we will perform pre-calculation on these implementations
contained in the library and compare their efficiency on the cor-
responding input scales. In line 9, a variable is defined to record
the minimum cost of the best implementation. To measure the cost
of each implementation, a piece of test input data is generated
randomly according to the input size of the computing actor, as
shown in line 10. In lines 11-14, each implementation in the list
needs to be filtered by the input data type and size, because some
special implementations only serve special data types and sizes.
For example, the Radix-2 FFT implementation aims to speed up
the FFT with the input size of 2𝑛 . In line 14, the implementations
that passed the filtering run with the piece of test data and return
a cost value. If the cost is lower than the recorded cost, the best
implementation will be replaced by the current one with minimum



Conference’17, July 2017, Washington, DC, USA Zhuo Su† , Zehong Yu† , Dongyan Wang‡ , Yixiao Yang� † , Yu Jiang� † , Rui Wang§ , Wanli Chang¶ , Jiaguang Sun†

cost also being refreshed, as shown in lines 15-17. Finally, the best
implementation for the specific actor with the current input type
and size will be stored and returned.

3.2.2 Code synthesis for batch computing actors. The code synthe-
sis for batch computing actors is based on the iterative dataflow
graph mapping and mainly consists of two steps. The first step
of dataflow graph construction is to collect the interconnected ac-
tors which have the same I/O scales and bit-width of data element,
according to the connections among the identified batch comput-
ing actors. The second step of instruction selection is to generate
the optimal SIMD instructions based on the iterative mapping on
dataflow graphs. Figure 4.(a) and Figure 4.(b) illustrate a sample
Simulink model and the corresponding directed dataflow graph.
Some examples of SIMD instructions shown in Figure 4.(c) will be
selected to map to the directed dataflow graph based on their own
computing graph. To obtain higher efficiency, HCG tries to give
preference to map more complex SIMD instructions. The algorithm
of SIMD instruction selection is shown in Algorithm 2.

×

+

+

-a d

b

>>

c

1

-

+

×

>>

×

+

+

>>

1

vsubq_s32

vaddq_s32

vmulq_s32

vshlq_s32

vmlaq_s32

vhaddq_s32

(b) Data flow graph (c) SIMD instructions(a) Sample model

Figure 4: SIMD instruction selection. (a) is a Simulink model
with batch computing actors. (b) is a directed dataflow graph
constructed from the Simulink model on the left. (c) shows
some candidate SIMD instructions and their corresponding
computing graphs. The SIMD instructions named 𝑣𝑠𝑢𝑏𝑞_𝑠32,
𝑣𝑚𝑙𝑎𝑞_𝑠32 and 𝑣ℎ𝑎𝑑𝑑𝑞_𝑠32 are selected for potential imple-
mentations of subgraphs in (b) with different color.

The following describes the details of SIMD instruction selec-
tion. To find the largest instructions to map the largest subgraphs
of the directed dataflow graph from top to down. The larger the
instruction graph mapped, the higher the computational efficiency.
First, we need to calculate the batch size and the batch count ac-
cording to the size of the input data and the bit-width of the vector
register. The batch size indicates how much data can be stored
by the vector register and the batch count indicates how many
batches of input data there are. If the batch count is less than 1,
it means that the input data is not enough to completely fill the
vector register and the conventional synthesis method of Simulink
will be called to translate the dataflow graph instead of the SIMD
instruction selection, as shown in lines 1-4. A snippet of loop code
is generated to perform batch calculation cyclically when the batch
count is greater than or equal to 2, as shown in lines 5-8. Note that
the loop starts with an index of offset, indicating that the length
of the remaining data cannot fill the entire vector register. In line
9, the data preparation variable with SIMD data type is generated
according to the external input of the dataflow graph. For example,

Algorithm 2: Synthesis for batch computing actors
Input:𝐺𝑟𝑎𝑝ℎ: The directed dataflow graph of batch computing actors with

same I/O scales and data bit width
Input: 𝐼𝑛𝑠𝑆𝑒𝑡 : All candidate SIMD instructions
Input:𝑉𝑒𝑐𝑡𝑜𝑟𝑊 𝑖𝑑𝑡ℎ: The bit width of each vector register
Output: 𝑅𝑒𝑡𝐶𝑜𝑑𝑒 : The output code with SIMD instruction

1 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 =𝑉𝑒𝑐𝑡𝑜𝑟𝑊 𝑖𝑑𝑡ℎ /𝐺𝑟𝑎𝑝ℎ.𝐷𝑎𝑡𝑎𝐵𝑖𝑡𝑊 𝑖𝑑𝑡ℎ

2 𝐵𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡 =𝐺𝑟𝑎𝑝ℎ.𝐷𝑎𝑡𝑎𝐿𝑒𝑛𝑔𝑡ℎ / 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒
3 if 𝐵𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡 < 1 then
4 return conventionalTranslate(𝐺𝑟𝑎𝑝ℎ)
5 𝐿𝑜𝑜𝑝𝐶𝑜𝑑𝑒 =∅ // Main loop code for SIMD calculation
6 𝑂𝑓 𝑓 𝑠𝑒𝑡 =𝐺𝑟𝑎𝑝ℎ.𝐷𝑎𝑡𝑎𝐿𝑒𝑛𝑔𝑡ℎ % 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒

7 if 𝐵𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡 ≥ 2 then
8 𝐿𝑜𝑜𝑝𝐶𝑜𝑑𝑒 .addBatchLoop(𝑂𝑓 𝑓 𝑠𝑒𝑡 ,𝐺𝑟𝑎𝑝ℎ.𝐷𝑎𝑡𝑎𝐿𝑒𝑛𝑔𝑡ℎ, 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒)

// e.g. for (i = offset; i < dataLength; i += batchSize) {...}
9 𝐿𝑜𝑜𝑝𝐶𝑜𝑑𝑒 .addDataLoadSIMDCodeAndVar(𝐺𝑟𝑎𝑝ℎ)

// e.g. int32x4_t a_batch = vld1q_s32(&a[i])
10 𝐿𝑎𝑠𝑡𝐺𝑟𝑎𝑝ℎ =𝐺𝑟𝑎𝑝ℎ

11 while 𝐿𝑎𝑠𝑡𝐺𝑟𝑎𝑝ℎ ≠∅ do
12 𝑁𝑜𝑑𝑒 = 𝐿𝑎𝑠𝑡𝐺𝑟𝑎𝑝ℎ.getTopLeftNode()
13 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑆𝑒𝑡 = 𝑁𝑜𝑑𝑒 .extendGraphs() //Sort by the cost of subgaph
14 for 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ in 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝐿𝑖𝑠𝑡 do
15 if isNotConvexGraph(𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ) or

isNotIndependent(𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ) then
16 continue

17 𝐼𝑛𝑠 = 𝐼𝑛𝑠𝑆𝑒𝑡 .getMatchInstruction(𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ)
18 if 𝐼𝑛𝑠 == NULL then
19 continue

20 𝐿𝑜𝑜𝑝𝐶𝑜𝑑𝑒 .addCalculationSIMDCode(𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ, 𝐼𝑛𝑠)
// e.g. int32x4_t c_batch = vsubq_s32(a_batch, b_batch)

21 𝐿𝑎𝑠𝑡𝐺𝑟𝑎𝑝ℎ.removeNodes(𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ)
22 break

23 𝐿𝑜𝑜𝑝𝐶𝑜𝑑𝑒 .addDataStoreSIMDCode(𝐺𝑟𝑎𝑝ℎ) // e.g. vst1q_s32(&a[i], a_batch)
24 𝑅𝑒𝑚𝑎𝑖𝑛𝐶𝑜𝑑𝑒 =∅ // Process the remaining data
25 if 𝑂𝑓 𝑓 𝑠𝑒𝑡 ≠ 0 then
26 𝑅𝑒𝑚𝑎𝑖𝑛𝐶𝑜𝑑𝑒 = getRemainCalulationCode(𝐿𝑜𝑜𝑝𝐶𝑜𝑑𝑒)
27 return 𝑅𝑒𝑚𝑎𝑖𝑛𝐶𝑜𝑑𝑒 + 𝐿𝑜𝑜𝑝𝐶𝑜𝑑𝑒

one of the data preparation variable code of the dataflow graph in
Figure 4.(b) is 𝑖𝑛𝑡32𝑥4_𝑡 𝑎_𝑏𝑎𝑡𝑐ℎ = 𝑣𝑙𝑑1𝑞_𝑠32(𝑎).

Then the dataflow graph will be mapped part by part until it
is completed mapped, as shown in lines 10-22. For a non-empty
graph, the topmost and leftmost node will be extended to some
subgraphs within the limits of the max graph depth and the max
graph node count of the candidate SIMD instructions’ computing
graph, as shown in lines 12-13. For example, three subgraphs will
be extended from the 𝑆𝑢𝑏 node (subgraph) in Figure 4.(b), which
are 𝑆𝑢𝑏 −𝑀𝑢𝑙 , 𝑆𝑢𝑏 −𝐴𝑑𝑑 and 𝑆𝑢𝑏, respectively. To obtain higher
efficiency, subgraphs with more computational cost will be tried to
be matched first. For a subgraph, it must be a convex graph (The
nodes of the graph do not indirectly depend on the results of its own
nodes.) and its independencemust be ensured (It does not depend on
any variables that have not been generated), or the subgraph will be
discarded, as shown in lines 15-16. In lines 17-19, thematching SIMD
instruction will be searched among all candidate SIMD instructions
according to the subgraph. If the search fails, the subgraph will
be discarded too. Once the matching SIMD instruction is found,
in line 20, the calculation code with SIMD will be added into the
loop code. For example, the calculation code of the 𝑆𝑢𝑏 subgraph
is 𝑖𝑛𝑡32𝑥4_𝑡 𝑆𝑢𝑏_𝑏𝑎𝑡𝑐ℎ = 𝑣𝑠𝑢𝑏𝑞_𝑠32(𝑏_𝑏𝑎𝑡𝑐ℎ, 𝑐_𝑏𝑎𝑡𝑐ℎ). And when
the data source type does not match the input data type of the
subgraph, a type conversion code with SIMD will be generated.



HCG: Optimizing Embedded Code Generation of Simulink with SIMD Instruction Synthesis Conference’17, July 2017, Washington, DC, USA

Then the subgraph will be removed from the total dataflow graph
to continue the algorithm. Finally, the remaining computation code
has the same computation logic as the code inside the loop, and it
will be added to the front of the loop code as needed. Listing 1 shows
the SIMD instructions of the sample model in Figure 4 generated
according to Algorithm 2.

1 int32x4_t a_batch = vld1q_s32(a) ; // Load data to vector register
2 int32x4_t b_batch = vld1q_s32(b) ;
3 int32x4_t c_batch = vld1q_s32(c) ;
4 int32x4_t d_batch = vld1q_s32(d) ;
5 int32x4_t Sub_batch = vsubq_s32(b_batch, c_batch) ; //Batch Sub
6 int32x4_t Shr_batch = vhaddq_s32(a_batch, Sub_batch) ;
7 int32x4_t Add_batch = vmlaq_s32(Sub_batch, Sub_batch, d_batch) ;
8 vst1q_s32(Shr_out, Shr_batch) ; // Store data to memory
9 vst1q_s32(Add_out, Add_batch);

Listing 1: The SIMD instructions of the sample model in
Figure 4 generated according to Algorithm 2

3.3 Implementation
HCG 2 is implemented in C++, with 26,315 lines of code. Unzip
and Tinyxml libraries are used to parse the Simulink model. The
synthesis engine is implemented to translate intensive computing
actors and batch computing actors to optimal implementations,
respectively. And conventional composition codes are implemented
to synthesize the final deployable code.

For the support of cross-architecture, the code library for in-
tensive computing actors and the instruction set information for
batch computing actors are extracted as external files. Especially for
the instruction set information, the calculation graph and the code
format of each SIMD instruction is defined as the following form:
𝐺𝑟𝑎𝑝ℎ : 𝐴𝑑𝑑, 𝑖32, 4, 𝐼1, 𝐼2, 𝑂1 ;𝐶𝑜𝑑𝑒 : 𝑂1 = 𝑣𝑎𝑑𝑑𝑞_𝑠32(𝐼1, 𝐼2);. In
this way, the SIMD instruction synthesizer just needs to replace
the I/O variable for code generation on different architectures.

4 EVALUATION
We evaluate the effectiveness of code generated by HCG in terms
of execution time against DFSynth and Simulink Coder. Besides,
we also evaluate the effectiveness of HCG on different processor
architectures with the twomost widely used C-Compilers, GCC and
Clang. We conducted comparative experiments on the benchmark
models of Simulink and DFSynth. FFT, DCT and Conv are models
containing intensive computing actors, which are used for fast
Fourier transform, discrete cosine transform and convolution for
one-dimensional signal, respectively. HighPass, LowPass and FIR
are models containing batch computing actors such as batch Add,
batch Sub and batch Mul, which are used for high pass filtering, low
pass filtering and finite impulse response filtering, respectively.

4.1 Effectiveness on Benchmark Models
The generated code of HCG, Simulink andDFSynth are all presented
in the GitHub repository. For the time used to accomplish the code
generation, these three tools performed almost the same, that 2
seconds for Simulink Coder, and 1 second for both DFSynth and
2The implementation and the benchmark Simulink model is uploaded on the anony-
mous website to facilitate the review: https://github.com/CodeGenHCG/HCG.

HCG. For the time efficiency of the generated code, they executed
with the same number of 10,000 times in the same environment
(Debian 10 x64, ARM Cortex A72, GCC).

Table 2: Comparison on execution time

Model Simulink DFSynth HCG HCG Improvement
Simulink DFSynth

FFT 0.459s 0.503s 0.183s 60.2% 63.7%
DCT 0.430s 0.451s 0.121s 71.9% 73.2%
Conv 0.591s 0.722s 0.178s 69.9% 75.4%
HighPass 0.447s 0.446s 0.262s 41.3% 41.2%
LowPass 0.369s 0.305s 0.164s 55.5% 46.1%
FIR 0.415s 0.551s 0.205s 50.6% 62.8%

Table 2 shows the average result of the execution time. In general,
compared with the code generated by Simulink Coder and DFSynth,
the code generated by HCG decreases the execution time by 41.3%-
71.9% and 41.2%-75.4% respectively. Furthermore, we found that
the memory usage of the code generated by HCG is almost the
same compared to Simulink Coder and DFSynth, with only ± 1%
difference, and their computation results of each execution are
consistent. This is because the computing resources of the codes
generated by these tools are almost the same. These statistics above
illustrate that HCG can generate correct code that achieves higher
performance while using almost the same amount of memory.

The reason for less execution time compared to DFSynth is that
DFSynth cannot generate batch computation code for intensive and
batch computing actors with SIMD instructions. It is difficult to
obtain better efficiency with DFSynth based on generic intensive
computational functions and cyclic computational codes. As for
Simulink Coder, it supports some SIMD instructions but usually
fails to identify batch computing actors in models. For example, the
model named FIR contains two connected batch computing actors,
batch Mul (i32*1024) and batch Add (i32*1024), but no SIMD instruc-
tion is generated by Simulink Coder to accelerate the computing
speed. And Simulink Coder also generates generic functions for
intensive computing actors.

4.2 Effectiveness On Different Architectures
To verify the ability of cross-architecture support, we repeated the
experiment mentioned in Section 4.1 on Intel architecture (Arch-
Linux 5.14.16 x64, Intel i7-8700). Since the Intel processor and ARM
embedded device we used exist a performance gap, the number of
executions on Intel is 10x than ARM. To eliminate the impact of
different compilers, we also conducted the experiment on the two
most widely used C-Compilers (GCC 11.1.0 and Clang 12.0.1).

Each subfigure in Figure 5 shows the execution time of code gen-
erated by Simulink Coder, DFSynth and HCG running on an ARM
processor and Intel processor compiled with GCC and Clang. We
can see that code generated by HCG always performs better than
that of Simulink Coder and DFSynth. For example, compared with
Simulink Coder and DFSynth on Intel processor with GCC, HCG
decreases execution time by 76.5% and 67.6% on average respec-
tively. The results in Figure 5.(b) are quite different from the others,
especially for the batch computing models. This is because the
code generated by Simulink Coder contains scattered Intel SIMD
instructions (Some actors are not translated into composite SIMD

https://github.com/CodeGenHCG/HCG


Conference’17, July 2017, Washington, DC, USA Zhuo Su† , Zehong Yu† , Dongyan Wang‡ , Yixiao Yang� † , Yu Jiang� † , Rui Wang§ , Wanli Chang¶ , Jiaguang Sun†

instructions.), and GCC cannot organize these SIMD instructions
together, which results in frequent data exchange between memory
and vector registers. At this point, memory latency becomes the
main performance bottleneck. In contrast, the SIMD instructions
generated by HCG are continuous, and the results of SIMD calcula-
tion are directly used by the next SIMD calculation without being
written to the memory, which effectively avoids memory latency.
Note that HCG is not only useful on Intel and ARM, we can simply
expand it to other architectures by replacing the corresponding
SIMD instruction set in Algorithm 2.

0.00

0.08

0.15

0.23

0.30

0.38

0.45

0.53

0.60

0.68

0.75

FFT DCT Conv High

Pass

Low

Pass

FIR

(a) Execution time on ARM (gcc) 

Simulink

DFSynth

HCG

0.00

0.43

0.86

1.29

1.72

2.15

2.58

3.01

3.44

3.87

4.30

FFT DCT Conv High

Pass

Low

Pass

FIR

(b) Execution time on Intel (gcc) 

Simulink

DFSynth

HCG

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

FFT DCT Conv High

Pass

Low

Pass

FIR

(c) Execution time on ARM (clang) 

Simulink

DFSynth

HCG

0.00

0.21

0.42

0.63

0.84

1.05

1.26

1.47

1.68

1.89

2.10

FFT DCT Conv High

Pass

Low

Pass

FIR

(d) Execution time on Intel (clang) 

Simulink

DFSynth

HCG

Figure 5: The execution time of the six benchmark models
on ARM and Intel with two different C-Compilers, GCC and
Clang. X axis is themodels and Y axis is the execution time(s).

4.3 Discussion
Currently, HCG mainly focuses on the Simulink model, but its
optimizations can be customized to other models and actors easily,
because HCG only aims to optimize the implementation part of
actors and does not affect other actions (e.g. composition part) in
code generation. For example, to extend to the model of Ptolemy[4],
only onemore constraint is needed to be satisfied for dataflow graph
construction in Algorithm 2, that is, the batch computing actors
must have the same branch information. So, the actors on each
branch can be ensured to be translated into code in the correct place.
Furthermore, the optimizations of HCG can work together with
other code generators for more complex scenarios. For example,
we can integrate the branch scheduling of [19] into HCG.

Results demonstrate that for the Simulink models with more
intensive and batch computing actors, we can achieve higher im-
provements. Nevertheless, when the model contains one or two
batch computing actors, HCG will still translate them into SIMD
instructions. In these cases, the efficiency of the SIMD instructions
may be less than the code generated by the conventional method
because of the cost of data transmission between memory and vec-
tor registers. We can solve this problem by a preliminary check and
setting a threshold to trigger the SIMD instruction synthesis.

5 CONCLUSION
In this paper, HCG is proposed to optimize the code generation
of Simulink models with SIMD instruction synthesis, especially

for the increasingly widely-used computing-sensitive models that
contain intensive computing actors and batch computing actors.
More specifically, adaptive pre-calculation on input scales is used
to mitigate the performance variance of intensive computing actors
on different scenarios, and the largest graph mapping based SIMD
instruction selection is used to generate the optimal implementa-
tions of batch computing actors. Experiments show that HCG can
perform well on benchmark Simulink models. The code generated
by HCG will reduce the execution time by 38.9%-92.9% and 41.2%-
76.8% in terms of different compilers and architectures, compared
to the built-in Simulink Coder and DFSynth, respectively.

REFERENCES
[1] Tansu Zafer Asici, Burak Karaduman, Raheleh Eslampanah, Moharram Chal-

lenger, Joachim Denil, and Hans Vangheluwe. 2019. Applying model driven
engineering techniques to the development of contiki-based IoT systems. In
Proceedings of the 1st International Workshop on Software Engineering Research &
Practices for the Internet of Things. IEEE Press, 25–32.

[2] Gérard Berry. 2007. SCADE: Synchronous design and validation of embedded
control software. In Next Generation Design and Verification Methodologies for
Distributed Embedded Control Systems. Springer, 19–33.

[3] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. 1997. Opti-
mizing matrix multiply using PHiPAC: a portable, high-performance, ANSI C
coding methodology. In ACM International Conference on Supercomputing 25th
Anniversary Volume. 253–260.

[4] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. 2002.
Ptolemy: A Framework for Simulating and Prototyping Heterogeneous Systems.
In Readings in Hardware/Software Co-Design, Giovanni De Micheli, Rolf Ernst,
and Wayne Wolf (Eds.). Morgan Kaufmann, San Francisco, 527–543.

[5] ARM Developer. [n.d.]. Arm Neon technology. https://developer.arm.com/
architectures/instruction-sets/simd-isas/neon

[6] Intel Developer. 2021. Intel® Intrinsics Guide. https://www.intel.com/content/
www/us/en/docs/intrinsics-guide/index.html

[7] Matteo Frigo and Steven G Johnson. 1998. FFTW: An adaptive software archi-
tecture for the FFT. In Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing, Vol. 3. IEEE, 1381–1384.

[8] Vector Informatik GmbH. [n.d.]. DaVinci Developer. https://www.vector.com/
us/en-us/products/solutions/autosar-classic/

[9] Karim Jahed and Juergen Dingel. 2019. Enabling model-driven software devel-
opment tools for the internet of things. In Proceedings of the 11th International
Workshop on Modelling in Software Engineerings. IEEE Press, 93–99.

[10] Y. Jiang, H. Song, H. Kong, R. Wang, and L. Sha. 2017. Safety-Assured Model-
Driven Design of the Multifunction Vehicle Bus Controller. IEEE Transactions on
Intelligent Transportation Systems (2017).

[11] Yu Jiang, Houbing Song, Yixiao Yang, Han Liu, Ming Gu, Yong Guan, Jiaguang
Sun, and Lui Sha. 2018. Dependable model-driven development of cps: From
stateflow simulation to verified implementation. ACM Transactions on Cyber-
Physical Systems 3, 1 (2018), 12.

[12] Yu Jiang, Hehua Zhang, Huafeng Zhang, Xinyan Zhao, Han Liu, Chengnian Sun,
Xiaoyu Song, Ming Gu, and Jiaguang Sun. 2014. Tsmart-galsblock: A toolkit
for modeling, validation, and synthesis of multi-clocked embedded systems. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 711–714.

[13] Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann. 2003. Poly-
chrony for system design. Journal of Circuits, Systems, and Computers 12, 03
(2003), 261–303.

[14] Faruk Pasic. 2018. Model-driven development of condition monitoring software.
In Proceedings of the 21st ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings. ACM, 162–167.

[15] David A. Patterson and John L. Hennessy. 1990. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[16] Florian Rademacher, Jonas Sorgalla, Sabine Sachweh, and Albert Zündorf. 2019. A
model-driven workflow for distributed microservice development. In Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing. ACM, 1260–1262.

[17] Simulink and Matlab. [n.d.]. Simulink Documentation. https://www.mathworks.
com/help/simulink/index.html

[18] Claudia M Sosa-Reyna, Edgar Tello-Leal, and David Lara-Alabazares. 2018.
Methodology for the model-driven development of service oriented IoT applica-
tions. Journal of Systems Architecture 90 (2018), 15–22.

[19] Zhuo Su, Dongyan Wang, Yixiao Yang, Yu Jiang, Wanli Chang, Liming Fang,
Wen Li, and Jiaguang Sun. 2021. Code Synthesis for Dataflow Based Embedded
Software Design. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2021).

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.vector.com/us/en-us/products/solutions/autosar-classic/
https://www.vector.com/us/en-us/products/solutions/autosar-classic/
https://www.mathworks.com/help/simulink/index.html
https://www.mathworks.com/help/simulink/index.html

	Abstract
	1 Introduction
	2 Related work
	3 HCG Design
	3.1 Actor Dispatch
	3.2 SIMD Instruction Synthesis
	3.3 Implementation

	4 Evaluation
	4.1 Effectiveness on Benchmark Models
	4.2 Effectiveness On Different Architectures
	4.3 Discussion

	5 Conclusion
	References

