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ABSTRACT
Escape analysis is widely used to determine the scope of variables,
and is an effective way to optimize memory usage. However, the
escape analysis algorithm can hardly reach 100% accurate, mistakes
of which can lead to a waste of heap memory. It is challenging to
ensure the correctness of programs for memory optimization.

In this paper, we propose an escape analysis optimization ap-
proach for Go programming language (Golang), aiming to save
heap memory usage of programs. First, we compile the source code
to capture information of escaped variables. Then, we change the
code so that some of these variables can bypass Golang’s escape
analysis mechanism, thereby saving heap memory usage and reduc-
ing the pressure of memory garbage collection. Next, we present a
verification method to validate the correctness of programs, and
evaluate the effect of memory optimization. We implement the
approach to an automatic tool and make it open-source1. For eval-
uation, we apply our approach to 10 open-source projects. For the
optimized Golang code, the heap allocation is reduced by 8.88% in
average, and the heap usage is reduced by 8.78% in average. Time
consumption is reduced by 9.48% in average, while the cumulative
time of GC pause is reduced by 5.64% in average. We also apply
our approach to 16 industrial projects in Bytedance Technology.
Our approach successfully finds 452 optimized cases which are
confirmed by developers.

CCS CONCEPTS
• Software and its engineering→General programming lan-
guages; Compilers.
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1 INTRODUCTION
Memory management is very important for software engineering.
According to the statistics of Bytedance Technology 2, there were
114 memory-related online accidents in 2018. For example, cloud
services are running in containers which have limits of memory
usage. Some of these accidents occur when thememory cost exceeds
the limit. Today, more and more internet companies are concerned
about memory management and optimization issues.

Escape analysis [7, 11, 15, 22] is an algorithm to determine the
scope of pointers, and is an effective way to optimize memory us-
age. The escape analysis mechanism determines whether to save a
variable in heap. At any time, a value is reassigned on the heap if it
is shared outside the scope of the function stack. Escape analysis
discovers these conditions in the compile phase. Although escape
analysis is very helpful for memory optimization [4, 24], its algo-
rithm could hardly be completely correct [7]. If a large object is
moved to heap memory but is not being accessed externally, it leads
to a waste of heap memory. For example, Listing. 1 shows a Golang
(short for Go programming language) program. In this program, a
pointer (addrObj) of variable “obj” is used as a function parameter
(Line 19). Then the escape analysis algorithm determines that “obj”
should be moved to the heap. However, in this program, “obj” is
no longer shared by other functions. This could be a waste of heap
memory, especially when “obj” is a large object. And the situation
will trigger unnecessary garbage collection (GC) [6, 17, 25] and sub-
sequently affect program performance. From the above situation,
we hope to optimize programs for such cases and bypass the escape
analysis to avoid wasting memory.

1 // file: escape.go
2 package main
3 import "fmt"

2Bytedance is a outstanding Chinese software company which develops mobile appli-
cations, such as Tik Tok, TopBuzz, News Republic, etc.
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4 type BO struct {
5 field1 []int
6 }
7 func causeEscape(i interface {}) {
8 switch i.(type) {
9 case *BO:
10 println(i)
11 default:
12 fmt.Println(i)
13 }
14 }
15 func main() {
16 obj := BO{}
17 obj.field1 = make ([]int , 5000)
18 addrObj := &obj
19 causeEscape(addrObj)
20 }

Listing 1: A Golang Program: Variable “obj” is moved to
heap by escape analysis mechanism.

There has been an amount of work on escape analysis in the
context of Java [4, 5, 7, 8, 24]. Meanwhile, escape analysis techniques
have also been applied in functional languages [3, 9, 13, 14, 19],
and multi-threaded programs [16, 21]. Compared to traditional and
mature programming languages, in Golang, the code grammatical
structure has changed a lot (such as channel, interface, etc). The
escape analysis algorithm is also different. As written in Golang’s
official documents [12], there are many compromises in Golang’s
escape analysis algorithm, and there could be a number of variables
stored in heap which leads to a waste of memory in real practice.

Memory optimization on escape analysis is helpful to reduce
the excessive use of heap memory, to reduce the frequency of
garbage collection, and to improve the efficiency of code execution.
In this paper, we will focus on the memory optimization of escape
analysis for Golang. However, this task is challenging from two
major perspectives.

• Optimization. Our approach should be able to optimize Golang
programs to bypass Golang’s escape analysis mechanism and
reduce memory usage.

• Memory Integrity. The optimization task requires that the
optimized program does not have problems with memory
readings and writings [1]. Execution of optimized Golang
programs should not crash or change.

In this paper, we propose an escape analysis optimization ap-
proach for Golang, aiming to save heap memory usage of programs.
First, we compile the source code to capture information of es-
caped variables. Then, we optimize the code so that these variables
can bypass Golang’s escape analysis mechanism, thereby saving
heap memory usage and reducing the pressure of memory garbage
collection. Next, we present a verification method to validate the
correctness of programs, and evaluate the effect of memory opti-
mization. For evaluation, we apply our approach to 10 open-source
projects. For the optimized Golang code, the heap allocation is re-
duced by 8.88% in average, and the heap usage is reduced by 8.78%
in average. Time consumption is reduced by 9.48% in average, while
the cumulative time of GC pause is reduced by 5.64% in average.
We also apply our approach to 16 industrial projects in Bytedance
Technology. Our approach successfully finds 452 optimized cases
which are confirmed by developers. The experimental results prove
the correctness and effectiveness. The main contributions are:

• We propose an escape analysis optimization approach for
Golang. Based on the approach, we can save heap memory
usage of programs.

• We present a prototype implementation on our approach,
which can optimize memory usage in practice.

• We evaluate the performance on open-source and industrial
programs. The experimental results show that our approach
is effective in memory optimization.

The rest of this paper is organized as follows. Section.2 describes
the related work and main differences. Section.3 elaborates on
the approach of escape analysis optimization, includes the escape
capture, code optimization, and correctness verification. Section.4
presents experimental results. Section.5 presents the lessons learned
from the practice and we conclude in Section.6.

2 RELATEDWORK
Escape Analysis. There has been an amount of work on escape

analysis [10, 16, 18, 20, 21, 23]. Choi et al. [7] propose a framework
of escape analysis and demonstrate an application on Java programs.
They present an interprocedural algorithm to efficiently compute
the connection graph and identify the non-escaping objects for
methods and threads. Meanwhile, escape analysis techniques have
been applied in functional languages [3, 9, 19]. Deutsch [9] presents
a static method for determining aliasing and lifetime of dynamically
allocated data in functional specifications. His approach is based
on an operational model of higher-order functional programs from
which we construct statically computable abstractions using the
abstract interpretation framework. Compared to traditional and
mature programming languages, in Golang, the escape analysis
algorithm is much simpler. For example, expressions assigned to
any kind of indirection (*p=...) are considered escaped. This issue
happens because Golang’s compiler would rather waste memory
thanmake code crash. As written in Golang’s official document [12],
there are many compromises in Golang’s escape analysis algorithm,
which means that in practice there could be a number of variables
stored in heap memory when they are not shared. Other things that
can inhibit analysis are function calls, package boundaries, slice
literals, subslicing and indexing, etc.

Multi-threaded Escape Analysis. Escape analysis is also used in
multi-threaded programs [16, 21]. Yulei et al. [21] propose the sparse
flow-sensitive pointer analysis for unstructured multi-threaded pro-
grams (C with Pthread). Their method is significantly faster than
non-sparse algorithms. Jeff Huang [16] presents two algorithms (a
static algorithm and a dynamic one) for identifying program state-
ments that access thread-shared data in concurrent programs. His
results suggest that the two algorithms are promising for practical
use in analyzing real-world large-scale multi-threaded programs.

Our Differences. We do optimization for an escape analysis situ-
ation, in which a pointer variable is used as a function argument.
When this situation happens, the Golang compiler decides to move
the pointed object to heap memory. Sometimes this choice leads to
a waste of memory. Notes that this situation has been addressed in
some other programming languages, such as Java. Our work is not
to design an escape analysis algorithm, but to present an optimiza-
tion practice on Golang’s existing escape analysis mechanism. We
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Figure 1: Overall Framework: escape capture phase, optimization phase and correctness verification phase.

hope to perform optimization in order to bypass escape analysis
and avoid wasting heap memory. This optimization meets some
challenges, including memory integrity problems, optimization
effectiveness, and scalability with multi-threaded programming.
Therefore, we try to achieve the optimization in code level and
implement the approach as an automatic tool. When optimizing
memory for escape analysis, we guarantee the memory integrity via
a verification method. More importantly, our approach successfully
reduces the waste of heap memory and releases the pressure of
garbage collection.

3 APPROACH
Firstly we introduce the overall framework in Section.3.1. We use
an example to illustrate the approach overview. Then details of
modules are described in the following sub-sections.

3.1 Overview
As shown in Figure. 1, our approach consists of three main phases:
escape capture phase, optimization phase and correctness verifica-
tion phase. First, the approach requires Golang programs as input.
In “Escape Capture” phase, we compile the source code and ana-
lyze log records of garbage collection (GC). Then in “Optimization”
phase, we optimize the source code. We print the changed code
snippets and save the optimized code into files. Finally, in “Cor-
rectness Verification” phase, we verify the correctness of memory
integrity by AST-based and llvm IR-based verification methods.

We use Listing. 1 as an example to illustrate the approach. First
we get garbage collection (GC) logs by compiling source code. Ac-
cording to GC logs, escape variables are show in Table. 1. Column
“Variable” lists four variables which are moved to heap memory
during compilation. Column “Traces” explains the reasons why a
variable escapes. For example, the first variable “addrObj” escapes
because it is used as a function argument at ./main.go (Line.19,
Offset.13). In this example, variable “obj” is relatively large, which
contains a field as an integer array (field1). Then, we will change the
code, print the snippet in terminal and save it to file. In this case, the
strategy of optimization is to make a smaller variable escape instead.
In Golang, “uintptr” is an integer type that is large enough to hold
the bit pattern of any pointer in Golang. Type conversion between

Variable Traces
addrObj from addrObj, passed to call, at ./main.go:19:13

&obj
from addrObj, assigned, at ./main.go:19:13
from addrObj, interface-converted, at ./main.go:19:13
from addrObj, passed to call, at ./main.go:19:13

make

from obj, dot-equals, at ./main.go:17:13
from &obj, address-of, at ./main.go:18:13
from addrObj, assigned, at ./main.go:18:10
from addrObj, interface-converted, at ./main.go:19:13
from addrObj, passed to call, at ./main.go:19:13

obj &obj escapes to heap
Table 1: Escape Variables in Listing. 1

pointer and uintptr could bypass compiler’s escape analysis algo-
rithm. The optimized code of Listing. 1 is shown in Listing. 2. The
Golang compiler does not find a connection between obj (Line.17)
and i (Line.8). Therefore, compared to the original code in Listing.1,
only “(*BO)(unsafe.Pointer(addr))” escape to heap memory. That
takes up only the size of a pointer in heap memory.

1 // file: non -escape.go
2 package main
3 import "fmt"
4 import "unsafe"
5 type BO struct {
6 field1 []int
7 }
8 func causeEscape(i interface {}) {
9 switch i.(type) {
10 case *BO:
11 println(i)
12 default:
13 fmt.Println(i)
14 }
15 }
16 func main() {
17 obj := BO{}
18 obj.field1 = make ([]int , 5000)
19 addrObj := &obj
20 addr := uintptr(unsafe.Pointer(addrObj ))
21 causeEscape ((*BO)( unsafe.Pointer(addr )))
22 }

Listing 2: Opimized Code.
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As shown in Figure. 2, we make a comparison of memory usage
for these two code snippets. The two programs take up some heap
memory. In this figure, “HeapAlloc” is bytes of allocated heap ob-
jects. “HeapInUse” is bytes in in-use spans. From the comparison
of data, we can draw a preliminary conclusion that the use of heap
memory is reduced through this optimization algorithm. This is
only a tiny example to demonstrate. We will present the optimiza-
tion performance of our approach in Section.4. Then, we need to
verify the correctness to ensure the memory integrity. We design
a static verification method. The verification method analyze the
control flow and data flow to ensure the correctness and consistence
of the optimized programs.

Figure 2: Comparison on Heap Memory Usage

3.2 Escape Capture Phase
In this paper, we do optimization for an escape analysis situation, in
which a pointer variable is used as a function argument. When this
situation happens, the Golang compiler decides to move the pointed
object to heap memory. Sometimes this choice leads to a waste of
memory. “Escape Capture” phase aims to compile a Golang project
and capture information of escaped variables of the above situation.
Here, we denote a model Context to record run-time information.
Context contains attributes as follows:

• ArgMain is a user-provided argument which specifies the
main Golang package.

• ArgPkg is a user-provided argument which specifies the
Golang project. We will deal with some of the code, which
are related to the main package.

• PathToLog is a hash map (a.k.a “dictionary” in some pro-
gramming languages). Keys are file paths, while values are
compilation logs. Context.PathToLog records the compliation
logs for each file.

• EscapeCases is also a hash map. Keys are file paths. Values are
lists of escaped variables, including pointer variable name
(PtrName), line number (LineNo) and the verification result
(IsCorrect).

Details of the escape capture are presented in Algorithm. 1. Usu-
ally, an executable Golang project contains a main package. Pathm
denotes the path of this main package. Pathp is the path of the

Algorithm 1 Escape Capture
Input:

Path of the main package, Pathm
Path of the project, Pathp

Output:
Context to record run-time information, ctx

1: ctx ⇐ a new Context structure
2: ctx .ArдMain, ctx .ArдPkд = Pathm , Pathp
3: ctx .PathToLoд[ctx .ArдMain] = дetGcLoд(ctx .ArдMain)
4: for each pkд ∈ дetDeps(ctx .ArдMain, ctx .ArдPkд) do
5: ctx .PathToLoд[pkд] = дetGcLoд(pkд)
6: end for
7: rM ⇐ a regular expression for object moved to heap
8: rI ⇐ a regular expression for interface conversion
9: rP ⇐ a regular expression for pass to function call
10: for each pkд ∈ ctx .PathToLoд do
11: if rM, rI , rP match variable v in ctx .PathToLoд[pkд] then
12: ec ⇐ fetch v’s messages as (PtrName,LineNo)
13: ctx .EscapeCases[pkд] ⇐ ctx .EscapeCases[pkд] ∪ ec
14: end if
15: end for
16: return ctx

Golang project and determines the scope of the optimization pro-
cedure. The output of the escape capture algorithm is a Context
object. In Line.1, ctx is assigned as a new Context object. In Line.2,
ctx records the user-provided arguments. Then in Line.3, We record
terminal logs of compilation. Here, the method “getGcLog” is to
execute a command3, and fetch the terminal output. This terminal
output contains logs of escaped variables, including the reasons
why they are moved to heap. Then we will use this information to
pick some escaped variables which is caused by function arguments.
In Line.4-6, we record terminal logs of compilation for each related
Golang packages. Till this step, raw logs are ready. Line.7-9 initiate
three regular expression handlers: rM, rI and rP. When scanning the
logs, we use the three regular expressions to find matched escape
cases. In Line.10-15, we repeat this operation for each Golang pack-
age. When regular expression check passes, we fetch the messages
of escaped variable and record them in ctx .EscapeCases . Finally
ctx is returned back.

3.3 Optimization Phase
In the escape capture phase, we compile the Golang source code
and capture the terminal output. Notes that in this paper, we focus
on the situation, in which a pointer variable is used as a function
argument. In other words, the escape capture algorithm successfully
saves the information of escaped variables for the situation. These
messages are saved in ctx .EscapeCases . In the optimization phase,
we will optimize code to bypass Golang’s escape analysis algorithm,
and to optimize the heap memory usage.

Figure. 3 shows the basic principle of optimization. As shown in
Figure. 3.(A), the original code pass the normal pointer to function
call. This situation is considered to be an escape. Ourmethod is to do
transformation between normal pointer, unsafe.Pointer and uintptr,

3The command is: cd DIR && go build -gcflags=“-m -m” *.go
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Figure 3: Code Optimization Preview

as shown in Figure. 3.(B). Uintptr is an integer type that is large
enough to hold the bit pattern of any pointer. Unsafe.Pointer is a
pointer type defined in Golang. Then we rewrite the optimized code
into source files. Golang compiler no longer considers the normal
pointer to have a referral relationship with the function parameter,
thus bypassing the inner escape analysis algorithm. Listing. 3 shows
an example of optimization procedure. The procedure is simple
and effective. The old function call is removed as shown in Line.5.
Then the optimization procedure adds two new code statements
in Line.6-7. Line.6 declares a new “uintptr” variable, which is used
to by-pass Golang’s escape analysis mechanism. Line.7 calls the
original function by using “uintptr” instead of the original pointer
variable “addrObj”.

1 func main() {
2 obj := BO{}
3 obj.field1 = make ([]int , 5000)
4 addrObj := &obj
5 -- causeEscape(addrObj)
6 ++ addr := uintptr(unsafe.Pointer(addrObj ))
7 ++ causeEscape ((*BO)( unsafe.Pointer(addr )))
8 }

Listing 3: Optimization Procedure

3.4 Correctness Verification Phase
When the pointed object is released before it is still needed in
another thread, this situation could be a bad optimization. Thus, we
use verification methods to decide its correctness. The verification
method adopts an effective and secure strategy to make decisions
on verification. In this module, we present a static verification
method to ensure the memory integrity of the optimized code.
The validation of memory integrity is challenging from two major
perspectives:

• Sensitive to bad cases. We do need to apply strict verification
to ensure the correctness of optimized code.

• Compatible with multi-threaded code. Golang is widely used
for multi-threaded execution. Verification need to be com-
patible with multi-threaded situations.

Details of the verification methods are shown in Algorithm. 2.
The algorithm takes a Context object “ctx” as input, and its goal is to

Algorithm 2 Memory Integrity Verification
Input:

Context to record run-time information, ctx
Output:

Save verification results in ctx
1: for each f ilePath ∈ do
2: for each ec ∈ ctx .EscapeCases[f ilePath] do
3: ast ⇐ parseAST (f ilePath)
4: node ⇐ f indFuncCall(ast , ec .LineNo)
5: if node is a synchronous call then
6: ec .IsCorrect ⇐ TRUE
7: else
8: llvmIR ⇐ Run Gollvm to generate
9: rF ⇐ a regular expression for file ID
10: rV ⇐ a regular expression for variable ID
11: rFun ⇐ a regular expression for function body
12: f ileID ⇐ r f .Find(f ilePath)
13: varID ⇐ rV .Find(f ileID, ec .PtrName)
14: f uncBodies ⇐ rFun.FindAll()
15: f uncBodyMain ⇐ filter the function containing the

escaped variable from f uncBodies
16: f uncBodyGoroutine ⇐ filter the function using the

escaped variable as argument from f uncBodies
17: if f uncBodyGoroutine uses varID then
18: ec .IsCorrect ⇐ FALSE
19: else
20: ec .IsCorrect ⇐ TRUE
21: end if
22: end if
23: end for
24: end for
25: return ctx

finish verification tasks. The algorithm adopts two strategies to ver-
ify the memory integrity: AST-based and llvm IR-based verification.
AST (short for abstract syntax tree) is a simple and common data
structure for program analysis. The AST-based method (Line.3-6)
is to check whether the function call is a synchronous one. The
pointers, which are passed to synchronous function call as argu-
ments, will not be released before the call returns back. It is because
the function call will not create a new thread. The optimization
in this case is correct. Therefore, by scanning the abstract syntax
tree, we can make decisions if the function call does not reach a
multi-threaded condition. In Line.5, we do this check.

However, when the function call is an asynchronous one, things
will change. AST-based verification can not make decisions. Then
we use llvm IR-based verification (Line.8-21). First we parse the
source file to llvm IR, which is an intermediate format of code. Then
we scan IRs by using regular expressions in Line.9-14. Dealing with
asynchronous cases, we adopted a simple but secure strategy: if
the pointer variable is used in the asynchronous function call, no
matter reading or writing, the optimization is determined to be a
bad case (Line.17-18). Otherwise, the optimization is still considered
as a good case (Line.19-20).
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4 EVALUATION
For evaluation, we validate the proposed approach in two aspects.

• How is the optimization effect of memory usage? In
the industrial area, projects are usually running under a cer-
tain memory size limit. A project’s running process could be
aborted when the memory usage exceeds the limit. There-
fore, optimizing the total memory usage is significant in
practice. Through comparing metrics of memory between
the optimized and the original code, we can evaluate how is
the optimization effect of memory usage.

• What is the impact on speed of code execution? Mem-
ory optimization effects are important. So is the running time
consumption. To evaluate the performance of our approach
on the speed of code execution, we make a comparison on
the time consumption.

4.1 Experiment Setup
Data Sets. We choose real-world projects to construct our data

sets. Some projects are collected from Github. We will present the
optimization performance on these open-source programs. Message
passing is a popular technique concurrency and object-oriented
programming. We select a number of Golang projects in the field of
message passing, to form the open-source data set. Table. 2 shows
the detailed information. We choose 10 Golang projects. Column
“LOC” means the lines of Golang code. Some projects contains
dependent packages (a.k.a vendor). Notes that “LOC” only counts
code outside the dependency packages. These projects have an
average of 1,808 lines of code, excluding kubernetes.

NO PROJECT LOC
0 kubernetes/kubernetes 3,215,777
1 draftcode/sandal 8,741
2 conictus/wfe 2,489
3 armon/relay 2,387
4 gofort/dispatcher 1,370
5 crosbymichael/message 438
6 Zilog8/hgmessage 342
7 mediocregopher/ghost 248
8 FreekingDean/gotWrap 194
9 Shailjakant12/Message 67
Table 2: Open-Source Data Set.

Meanwhile, we also collect some industrial projects, which are
used in companies. Our approach can help to optimize memory
usage in industrial practice. According to the statistics of Bytedance
Inc., there were 114 memory-related online accidents in 2018. Today,
more and more Internet companies are concerned about memory
management and memory optimization issues. To evaluate the op-
timization effect in the industrial data set, we apply our approach
on industrial backend projects of an application in Bytedance Tech-
nology. Table. 3 shows information about our industrial data set.
The size of projects varies from 287,364 to 293 lines of Golang code.

Criterion. To evaluate the performance of our memory optimiza-
tion approach, we apply our approach to the data sets. For each

NO PROJECT LOC NO PROJECT LOC
1 goapi 287,364 9 noops 33,978
2 bookshelf_api 169,330 10 search 27,720
3 decorator 130,408 11 challenge 23,995
4 feed 87,036 12 pusher 17,826
5 trade 67,143 13 coreuser 9,040
6 account 64,838 14 user_achieve 8,729
7 content_v2 61,268 15 goods 7,967
8 content 37,626 16 admin_goapi 293

Table 3: Industrial Data Set.

Golang project, we calculate the metrics in two dimensions: mem-
ory usage, and time consumption. Detailed metrics are shown in
Table. 4. The 1-7 metrics concerns on the memory, which are all in
Bytes. The last two metrics are related to time consumption, which
are in Nanoseconds.

Dimension Metric Description

Memory

1.Alloc bytes of allocated heap objects
2.TotalAlloc cumulative bytes allocated
3.Sys bytes of memory got from OS
4.Mallocs cumulative count of heap object
5.HeapAlloc bytes of allocated heap object
6.HeapInUse bytes in in-use spans
7.HeapObjects number of allocated heap object

Time 8.PauseTotalNs cumulative time of GC pause
9.TC time consumption of execution
Table 4: Metrics in Evaluation

Execution Platform. Most experiments are conducted on a Mac-
Book Pro with a 2.5GHz Intel Core i7 processor and 16 GB memory,
and the Golang version is 1.9.3 darwin/amd64. The experiment on
Golang project "kubernetes" is conducted on a Ubuntu server with
a 3.6GHz Intel Core i7 processor and 64 GB memory.

4.2 Results on Open-Source Data Set
How is the optimization effect of memory usage? Figure. 4 shows

the optimized cases on open-source data set. In each table, column
“Metrics” lists the nine metrics to evaluate the performance in mem-
ory optimization and time consumption. Column “Before” shows
the cost of metrics for the original code. Column “After” shows the
cost of metrics for the optimized code. It should be noted that most
of these open-source projects are continuous execution. For exam-
ple, in Figure. 4c, this code runs as an unstoppable loop to consume
messages in a message broker like RabbitMQ. Therefore, Column
“Before” and “After” are defined as the change of metrics after a
specific function call, in which we do optimizations. These two
columns of data represent the memory consumption and runtime
of the function before and after the call.

Themost important column in Figure. 4 is “Change”. This column
shows the comparison between “Before” and “After”. It represents
the effect of our optimization approach. For example, in Figure. 4e,
Row “HeapObjects” shows the number of allocated heap object. The
number changes from 6,737 to 4,096, reduced by 39.20%. It should
be noted that we have bolded the data with an optimization ratio of
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(a) Proj.1: lang/parsing/parser.go,l

Metrics Before After Change
Alloc 101376 101312 0.06%↓
TotalAlloc 101376 101312 0.06%↓
Sys 1740800 1740800 -
Mallocs 195 194 0.51%↓
HeapAlloc 101376 101312 0.06%↓
HeapInUse 163840 163840 -
HeapObjects 163 162 0.61%↓
PauseTotalNs 0 0 -
TC 370176 360192 2.70%↓

(b) Proj.2: resultstore.go, buffer

Metrics Before After Change
Alloc 26024 25912 0.43%↓
TotalAlloc 26024 25912 0.43%↓
Sys 3903488 3903488 -
Mallocs 266 265 0.38%↓
HeapAlloc 26024 25912 0.43%↓
HeapInUse 16384 16384 -
HeapObjects 233 232 0.43%↓
PauseTotalNs 0 0 -
TC 2370048 2229760 5.92%↓

(c) Proj.3: consumer.go, msg

Metrics Before After Change
Alloc 6632 4584 30.88%↓
TotalAlloc 6632 4584 30.88%↓
Sys 3346432 3346432 -
Mallocs 66 62 6.06%↓
HeapAlloc 6632 4584 30.88%↓
HeapInUse 16384 16384 -
HeapObjects 50 46 8.00%↓
PauseTotalNs 0 0 -
TC 360192 280064 22.25%↓

(d) Proj.4: worker.go, task

Metrics Before After Change
Alloc 6560 6048 7.80%↓
TotalAlloc 6560 6048 7.80%↓
Sys 3608576 3608576 -
Mallocs 104 86 17.31%↓
HeapAlloc 6560 6048 7.80%↓
HeapInUse 24576 24576 -
HeapObjects 79 63 20.25%↓
PauseTotalNs 0 0 -
TC 290048 189952 34.51%↓

(e) Proj.5: main.go, newFeed

Metrics Before After Change
Alloc 370120 244696 33.89%↓
TotalAlloc 3.039E7 3.038E7 0.02%↓
Sys 6686968 6686968 -
Mallocs 740727 740641 0.01%↓
HeapAlloc 370120 244696 33.89%↓
HeapInUse 851968 729088 14.42%↓
HeapObjects 6737 4096 39.20%↓
PauseTotalNs 433692 304960 29.68%↓
TC 1.334E9 1.312E9 1.65%↓

(f) Proj.6: receiver.go, p

Metrics Before After Change
Alloc 1.07E6 1.06E6 0.366% ↓

TotalAlloc 2.77E8 2.77E8 0.002% ↓

Sys 2.77E8 2.77E8 0.095% ↓

Mallocs 4911 4889 0.448% ↓

HeapAlloc 1.07E6 1.06E6 0.366% ↓

HeapInUse 1.23E6 1.18E6 4.000% ↓

HeapObjects 73 64 12.329% ↓

PauseTotalNs 2.54E6 2.00E6 21.079% ↓

TC 4.12E8 3.94E8 4.171% ↓

(g) Proj.7: listen.go, msgwrap

Metrics Before After Change
Alloc 17960 17896 0.36%↓
TotalAlloc 17960 17896 0.36%↓
Sys 3442936 3442936 -
Mallocs 247 245 0.81%↓
HeapAlloc 17960 17896 0.36%↓
HeapInUse 40960 40960 -
HeapObjects 220 218 0.91%↓
PauseTotalNs 0 0 -
TC 1.005E9 1.004E9 0.14%↓

(h) Proj.8: tls_client.go, config

Metrics Before After Change
Alloc 176936 176392 0.31%↓
TotalAlloc 176936 176392 0.31%↓
Sys 1081344 1081344 -
Mallocs 1662 1659 0.18%↓
HeapAlloc 176936 176392 0.31%↓
HeapInUse 270336 196608 27.27%↓
HeapObjects 1418 1414 0.28%↓
PauseTotalNs 0 0 -
TC 1.07E7 9.66E6 9.72%↓

(i) Proj.9:subscriber.go,actualmsg

Metrics Before After Change
Alloc 28120 26472 5.86%↓
TotalAlloc 28120 26472 5.86%↓
Sys 1.08E6 1.08E6 -
Mallocs 387 322 16.80%↓
HeapAlloc 28120 26472 5.86%↓
HeapInUse 122880 81920 33.33%↓
HeapObjects 323 274 15.17%↓
PauseTotalNs 0 0 -
TC 8.75E6 8.38E6 4.23%↓

Figure 4: Optimized Effect in Open-Source Projects.

more than 5 percent. As shown in the tables, there are some cases,
in which the memory optimization effects are much obvious, such
as Figure. 4i, 4c, 4e, 4d. In other cases, the amount of memory used
is large, so the base figure is larger. Therefore, the optimization
ratios could hardly reach a high level. For example, in Figure. 4f,
“TotalAlloc” exceeds 276 million bytes (about 263 MB), which is too
much larger than other cases. In this case, even if we save 5,000
bytes, the optimization ratio is only 0.002%.

It is indeed necessary to evaluate larger benchmarks. We run our
tool on Kubernetes [2]. Kubernetes has 3,215,777 lines of Golang
code, which consists of 2,127 Golang packages. It takes 82 minutes
and 4 seconds to finish the entire optimization procedure. We find
32 optimized cases 4 in total, proving that our method also works
well with big code.

Through analyzing the memory optimization effects on
open-source data set, we can conclude that our optimization

4Detailed information of optimized cases: https://github.com/wangcong15/escape-
from-escape-analysis-of-golang/blob/master/res/case-kubernetes.txt

methods can achieve optimization effects on the variousmet-
rics used inmemory. Among the groups, the heap allocation
is reduced by 0.06%-33.89%, with 8.88% average. The heap us-
age is reduced by 0%-33.33%, with 8.78% average.

What is the impact on the speed of code execution? On the issue
of memory optimization, we should not only focus on the memory
metrics, but also the impact on the speed of the code. As shown
in Figure. 4, the last 2 rows in each table are related to RQ2. Row
“PauseTotalNs” shows the cumulative time of GC pause. Garbage
collection (GC) causes stop-the-world. Therefore, we try to reduce
the frequency of GC. As shown in the table, “PauseTotalNs” is zero
in some cases, such as Figure. 4i, 4h, etc. This is because the heap
memory used in the execution of the code did not reach the expected
upper limit, so the garbage collection mechanism in Golang was
not triggered. Figure. 4e is an example where “PauseTotalNs” is
reduced. In this case, the time of GC pause is saved by 29.68%. In
addition, we focus on the time consumption of code execution. As
the table shows, in the best set of experimental results, the code
runs down by 34.51% in Figure. 4d.
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Figure 5: Results: Case Study I on Memory Optimization.

Through analyzing the execution speed effects on open-
source data set, we can conclude that the proposed optimiza-
tion method can achieve positive effects. Among the groups
of optimization, time consumption is reduced by 0.14%-34.51%,
with 9.48% average. The cumulative time of GC pause is re-
duced by 0%-29.68%, with 5.64% average.

As for the memory integrity verification, all are returned with
true value. Furthermore, we also apply Go-Fuzz to study the execu-
tion of the optimized code and the original code, and their execution
results are consistent with each other for 24 hours execution.

1 func ReceiveData () {
2 ... // spot.1 - spot.5
3 for { // here is a loop to handle messages
4 ... // spot.6 - spot.7
5 cw_pprof.PrintMemBrief () // spot.8
6 err = json.Unmarshal(m.Body , &actualmsg)
7 cw_pprof.PrintMemBrief () // spot.9
8 ... // spot .10 - spot .13
9 }
10 }

Listing 4: Code Snippet for Case Study I

Case Study. Listing. 4 shows an optimized case in open-source
data set. The code comes from Proj.9 (Shailjakant12/Message). It is
noteworthy that the variable “actualmsg” is moved to heap because
its pointer is passed to function call in Line.6. For convenience,
we call this original code as the group “Before”. By applying our
approach in this paper, we could avoid “actualmsg” being moved to
the heap. We transform the code and call the optimized code as the
group “After”. In order to observe the memory changes in detail,
we insert some spots (memory information printer) to track the

status of memory. For each spot, we print the metrics of memory,
including “Alloc”, “TotalAlloc”, etc.

Optimization effects of these metrics are shown in Figure. 5.
The six figures illustrate the comparison between the original code
and the optimized code. Let us take a look at the comparison in
Figure. 5a, 5b, 5c, 5d, 5f. We try to feed a long string for “actualmsg”.
The large variable is moved to the heap, leading to the rapid rise in
the 9th spot of the group “Before”. On the other hand, the change
of group “After” is smooth. With optimization, variable “actualmsg”
should only stay in the stack.

In addition, Figure.5e shows the comparison on “HeapInUse”.
This metric counts the bytes in in-use spans. In fact, it is not syn-
chronized with heap memory allocations. However, this metric is
very significant. In the industrial area, projects are usually running
under a certain memory size limit. We compare “HeapInUse” to de-
cide which group brings more burden to system memory. Through
analyzing this case in detail, we conclude that the optimization
effect brought by our method is the same as expected.

4.3 Results on Industrial Data Set
Here, we will present the experimental results on the industrial data
set. Figure. 7 shows the optimization results on industrial projects.
For example, we find 123 optimized cases in the repository “goapi”.
By comparison, we find that there are relatively more optimized
cases in the industrial data set. Through scanning the source code,
we find that industrial projects have more complex package con-
structions and more frequent usage of objects and pointers. The
above reasons lead to the larger size of optimized cases. All these
cases are confirmed by Bytedance’s senior developers.
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(a) Alloc

Spot Before After Change
1 0 0 -
2 2320 2000 13.79%↓
3 4400 4080 7.27%↓
4 128696 127384 1.02%↓

(b) TotalAlloc

Spot Before After Change
1 0 0 -
2 2320 2000 13.79%↓
3 4400 4080 7.27%↓
4 128696 127384 1.02%↓

(c) Malloc

Spot Before After Change
1 0 0 -
2 16 11 31.25%↓
3 29 24 17.24%↓
4 2253 2238 0.67%↓

(d) HeapAlloc

Spot Before After Change
1 0 0 -
2 2320 2000 13.79%↓
3 4400 4080 7.27%↓
4 128696 127384 1.02%↓

(e) HeapInUse

Spot Before After Change
1 0 0 -
2 0 0 -
3 0 0 -
4 49152 16384 66.67%↓

(f) HeapObjects

Spot Before After Change
1 0 0 -
2 13 8 38.46%↓
3 22 17 22.73%↓
4 1839 1823 0.87%↓

Figure 6: Results: Case Study II on Memory Optimization.

Figure 7: Number of Optimized Cases in Industrial Projects.

PROJ FILE LOC VAR
account dal/load.go 276 ugl
account dal/load.go 295 ugl
account dal/account.go 597 userContentR
account dal/account.go 597 userCreateE
account dal/agreement.go 78 updateE
account dal/load.go 319 it
account dal/load.go 358 rewards
account rpc/rpc.go 43 req
account rpc/rpc.go 64 req
account rpc/rpc.go 64 num

Table 5: Opimized Cases in Industrial Code (Snaps).

Table. 5 shows a snapshot of optimized cases 5. For example,
in the 8th case, we optimize the variable “req”. In backend code,
5Due to the confidentiality requirements of enterprise data, we show only 10 examples
of optimized Golang cases.

“req” contains complex user information, including user city, app
version, request parameters, etc. This variable could be a large one.
However, in this case, the pointer of “req” is passed to a synchronous
function call, making “req” move to heap memory. Our approach
prevents “req” from moving to the heap, in order to reduce the heap
allocation. These optimizations have been confirmed and adopted
by Bytedance’s senior developers.

Case Study. Listing. 5 shows an optimized case in industrial data
set. The code comes from Project.6 (Account). It is noteworthy that
the variable “ugl” is moved to heap because its pointer is passed to
function call in Line.7. For convenience, we call this original code
as the group “Before”. By applying our approach in this paper, we
could avoid “ugl” being moved to the heap. We transform the code
and call the optimized code as the group “After”.

1 func LoadUserGoodsListFromDB (...) (...) {
2 cw_pprof.PrintMemBrief () // spot.1
3 ugl := []* models.UserGoods {}
4 cw_pprof.PrintMemBrief () // spot.2
5 queryOpt := db.QueryOption{/* ... */}
6 cw_pprof.PrintMemBrief () // spot.3
7 err := tradeDB.Load(ctx , &ugl , queryOpt)
8 cw_pprof.PrintMemBrief () // spot.4
9 return ugl , err
10 }

Listing 5: Code Snippet for Case Study II

Figure. 6 shows the results of this case. For the sake of compar-
ison, we set the data of the first spot to zero. Column “Change”
shows the comparison between “Before” and “After”. It represents
the effect of our optimization approach. We can take a look at data
in the last spot. Variable “ugl” is moved to the heap, leading to the
reduction in Spot.4. With optimization, the variable “ugl” should
only stay in the stack. As shown in these six tables, metrics of
memory usage are optimized through our approach.

4.4 Lessons Learned
From the study of optimization on escape analysis, we have learned
three important lessons:

Optimization of Golang’s escape analysis algorithm is a
significant issue. As written in Golang’s official documents, there
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are many compromises in Golang’s escape analysis algorithm. Ac-
tually there could be a number of variables stored in heap which
leads to a waste of memory. If large variables are moved to heap,
the garbage collection will work frequently. This is very computa-
tionally intensive. Moreover, attackers even can make use of this
weakness to explode the heap memory. Therefore, the issue is sig-
nificant in practice. In our experiment, we find 452 optimized cases
in industrial projects, which means that the waste of memory issue
exists commonly, especially in large-scale Golang projects.

Guaranteed memory integrity is a very high priority re-
quirement for Golang’s memory optimization. Golang is a
good and popular programming language, because of its well-
designed concurrent programming grammar and fast execution
speed. Memory management becomes a more complex task in con-
current programs compared to single-threaded ones. Thus, guaran-
teed memory integrity becomes more challenging in this situation.
In order to ensure the correctness of optimization, we validate
the optimized code by a verification method. In the procedure of
verification, we analyze the control flow graph and data flow of
programs, and decide whether the optimization does harm to origi-
nal programs. The optimized code should not go wrong, or even
change the behavior. The verification method proves statically and
theoretically that the escaped variable will not be released before its
read and write operations end. In this way, the verification method
decides that execution of optimized code will not crash or change.
In our experiments, there is not a optimized cases failing for mem-
ory integrity issues. Most programmers would rather waste the
memory than introduce risks into programs. That’s why we work a
lot in memory integrity validation. We optimize the code and prove
that the optimized code is correct.

Changing the code is an effective way for memory opti-
mization. We are seeking an alternative approach to reduce redun-
dant memory waste. Optimization is helpful. Changing program
statements can achieve the goal of optimization. In this paper, we
propose an approach to optimize Golang’s escape analysis. E.g., we
use “uintptr” to transform ordinary pointers into “unsafe.Pointer”,
in order to bypass Golang’s escape analysis. Experimental results
demonstrate that we are able to successfully “escape” from escape
analysis of Golang, and save the resource consumption with opti-
mization.

5 CONCLUSION
In this paper, we have proposed a memory optimization algorithm
on escape analysis for Golang. We have presented a framework that
integrates escape variable positioning, memory optimization, and
memory integrity insurance. The implemented prototype works
well in both open-source and industrial projects. The experimental
results demonstrate the correctness and effectiveness. It is able to
successfully analyze and transform Golang programs to optimize
the original escape analysis mechanism, and eventually reduce the
heap memory usage and speed up code execution.

In the future, we will continue to study the memory optimiza-
tion problem in two directions: to support more escape algorithm
recognition patterns, and to support more programming languages
and projects. For the first direction, we have introduced the pattern
in which a pointer variable is used as a function argument. We will

explore in depth for other patterns. For the second direction, we are
currently optimizing memory for Golang’s escape algorithm and
try to customize the approach to other programming languages.
Furthermore, we will also try to apply the approach to more open
source projects to improve the robustness of the work.
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