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ABSTRACT

Adversarial attacks have been a threat to Deep Learning (DL) sys-

tems to be reckoned with. By adding human-imperceptible pertur-

bation to benign inputs, adversarial attacks can cause the incorrect

behavior of DL systems. Considering the popularity of DL systems

in the industry, it is critical and urgent for developers to enhance

the robustness of DL systems against adversarial attacks.

In this study, we propose a novel enhancement technique for DL

systems, namely CoopHance. CoopHance leverages two specif-

ically customized components, Regulator and Inspector, to coop-

eratively enhance the DL systems’ robustness against adversarial

examples with different distortions. Regulator can purify adver-

sarial examples with low or moderate distortions, while Inspector

is responsible for detecting these adversarial examples with high

distortion by capturing the abnormal status of DL systems. Our eval-

uation using various attacks shows that, on average, CoopHance

can successfully resist 90.62% and 96.56% of the adversarial exam-

ples that are generated for the unprotected systems on CIFAR-10

and SVHN datasets separately, which is 188.14% more effective

than five state-of-the-art enhancement techniques, including Fea-

ture Squeeze, LID, SOAP, Adversarial Training, and MagNet. Mean-

while, when attackers generate new adversarial examples on the

enhanced systems, CoopHance can reject 78.06% of attacks, which

outperforms the best of five enhancement techniques by 82.71% on

average.

CCS CONCEPTS

• Security and privacy → Domain-specific security and pri-

vacy architectures; • Computing methodologies → Neural

networks.
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1 INTRODUCTION

Deep learning (DL) systems have demonstrated their superior per-

formance after being deployed into various domains, including

many security-sensitive domains, such as medical image processing,

self-driving, and face recognition [5, 23, 34]. However, DL systems

are prone to vulnerabilities, as their key component, deep neural

networks (DNN), can be easily misled by attackers with adversarial

examples. By adding imperceptible adversarial perturbations to in-

puts [10, 14, 19, 27, 39, 40], attackers can cause abnormal behavior

of DL systems and produce serious damage. Therefore, during the

development and maintenance of DL systems, developers urgently

need an effective and efficient method to enhance their robustness.

The researchers have explored various methods to improve the

robustness of DL systems. Among them, adversarial training (Ad-

vTrain) is known as the most effective technique [10, 25], but it

causes degradation of accuracy and requires extensive computation

resources and a bag of training tricks during training [30]. However,

in some situations, such accuracy degradation and development

efforts are unaffordable for developers, such as maintaining a fre-

quently upgraded DL system [30, 47]. Thus, we aim to find a DL

system enhancement technique that owns competitive effectiveness

with AdvTrain and is more convenient to develop and deploy.

In addition to AdvTrain, there are two categories of techniques

that are intended to enhance DL systems with lightweight or in-

dependent modules. Techniques of the first category are designed

to enhance DL systems with detection-based modules, which are

usually lightweight and easy to build and deploy [24, 26, 43]. These

detection modules rely on some specific properties of adversar-

ial examples to distinguish them. Nevertheless, they are prone to

adaptive adversarial attacks, in which attackers craft special ad-

versarial examples to hide corresponding properties and bypass
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detection [7, 8]. Techniques of the second category purify the ad-

versarial examples with preprocessing-based modules [12, 36, 44],

which are usually built as independent modules and can be deployed

to different DL systems with the same training data. However, they

are demonstrated as gradient obfuscation that cannot truly fix the

vulnerabilities of DNN models but can only complex the attack

process [3]. When facing adversarial perturbations with higher

distortion, they may lose their effectiveness.

Recently, researchers start to propose enhancements by combin-

ing different existing techniques [1, 26]. However, just as He et al.

demonstrated, simple ensembles of weak methods are not robust-

ness [17]. These enhancement techniques are soon found to be

fragile in some situations [8], as they combine several existing tech-

niques that own similar weaknesses and cannot cooperate effec-

tively. Therefore, the cooperation of different techniques is crucial

to a valid enhancement, which is a challenging problem. The first

challenge is to find a proper cooperation mechanism to combine

different techniques effectively. Moreover, since existing techniques

are designed without considering interaction with others, they are

not capable of effective cooperation.

In this paper, we propose CoopHance, a novel cooperative

enhancement framework. To address the first challenge, in Coo-

pHance, we design a cooperation mechanism based on the dis-

tortion of adversarial examples. It is found that for one type of

adversarial attack, the effectiveness and stability of adversarial ex-

amples are proportional to their distortions. For example, as shown

in Figure 1, by adding adversarial perturbation, attackers can con-

fuse the DNN model to misclassify an input of class “dog” to “cat”.

When added to low-distortion perturbation, the crafted adversarial

examples are weak and easy to purify, as they are very close to

the decision boundary of two classes and are unstable. As the dis-

tortion of adversarial improves, they can go deeper in the “Cat”’s

classification region, so they become stronger and are harder to

purify. However, with high distortion, adversarial examples are

very different from benign ones, resulting in anomalies in DNN

models. Thus, CoopHance contains two modules: a preprocessing

module called Regulator and a detection module called Inspector ,
which can cover the weaknesses of each other. Regulator should

purify adversarial examples but may fail to handle very strong ones.

In contrast, Inspector is responsible for detecting strong adversarial

examples with high distortion, but it is insensitive to weak ones.

Then, to guarantee effective cooperation, we specially designed

two modules, Regulator and Inspector . Specifically, Regulator is a

UNet Neural Network with residual connections and confusion lay-

ers, which is trained in a simulated situation of adversarial attack

and can purify very strong adversarial examples. As for Inspector ,
constructed as a per-category logistic regression model, it can ac-

curately capture the inconsistency between the predicted category

and internal activations to alert the developers. Moreover, to meet

the demand for efficient deployment, the Regulator is designed to

be independent of DL systems and can be deployed to the different

DNNs trained from the same dataset, and Inspector can be built

conveniently. With the above two components, CoopHance can

effectively improve the robustness of DL systems against various

adversarial attacks with low deployment costs.

To show the effectiveness of CoopHance, we evaluate it with

six diverse attack methods [9, 10, 13, 25, 28, 32], including the

low distortion

Dog

Cat

Benign
Input

Adversarial
Perturbation

Adversarial
Example

high distortion

Classification

Boundary

Figure 1: Adversarial perturbations can guide a normal in-

put from the “Dog” to cross the classification boundary and

go into the classification region of the “Cat”. Adversarial ex-

amples with higher distortion usually go deeper into the

classification region of the “Cat”.

AutoAttack [10], which is widely used for DL system robustness

testing. For a comprehensive evaluation, we include two datasets,

i.e., SVHN [29] and CIFAR-10 [22], and three DNN architectures,

i.e., VGGNet [37], ResNet [16], and DenseNet [18]. We compare

CoopHance with five state-of-the-art enhancement methods [24–

26, 36, 43]. CoopHance achieves competitive performance in both

two following scenarios. First, for adversarial examples that can

confuse DL systems without enhancement, on CIFAR-10 and SVHN,

82.80∼98.25% and 92.85∼99.75% of such adversarial examples are

disabled by CoopHance correspondingly. Compared with existing

methods, CoopHance averagely outperforms them by 142.29% and

233.99% on two datasets. Second, enhanced with CoopHance, DL

systems should have high robustness to incoming adversarial at-

tacks. In this situation, CoopHance averagely improves 78.17% on

resistance rate and 12.08% on AUC score compared with the best of

existing methods, blocking 72.78% and 78.10% of adversarial exam-

ples with 91.30% and 94.78% of AUC on CIFAR-10 and SVHN, To

investigate the cooperation of Regulator and Inspector , we analyze

how they contribute to the overall enhancement performance sepa-

rately and demonstrate that these two components can cooperate

closely. Even in the adaptive attack, attackers cannot break two

modules in CoopHance at the same time. It is worth mentioning

that though CoopHance does not improve the robustness of DNNs

directly, evaluation results show that it can enhance the robustness

of whole DL systems as a systematic method.

Our contributions are summarized as follows:

• We proposed CoopHance that systematically combines Reg-
ulator and Inspector to enhance the robustness of DL systems.

• According to the cooperation mechanism, we implemented

CoopHance with a well-designed Regulator and Inspector .
• We conducted extensive experiments on six attacks to demon-

strate that CoopHance outperforms the other five baselines

in terms of effectiveness.
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Figure 2: Overview of CoopHance. Regulator regulates the input image to purify adversarial examples and confuses the

feedback gradient to hinder adversarial example generation. Inspector can identify whether the input image is malicious

based on the neuron activations of the target system. With them, CoopHance can either help the target system give the

benign output or alert developers to potential attacks., leaving attackers two attack objectives in contradictory directions.

2 PRELIMINARIES

2.1 Adversarial Attack

Recently, many attack and testing methods are proposed to gener-

ate adversarial examples to cause incorrect behaviors of DL sys-

tems [9, 13–15, 19, 25, 28, 32]. As shown in Figure 1, by adding

human-imperceptible adversarial perturbations, attackers craft

adversarial examples that can cross the classification of bound-

ary and go into the classification region of another class [9, 13, 46].

Normally, attackers tend to find the perturbation with minimal dis-

traction to craft adversarial examples, since such perturbations are

imperceptible to humans. With low distortion, weak adversarial

examples can just cross the classification boundary but cannot go

deeper, so some interrupts on them can make them go back to their

original classification regions and defeat attacks. To improve at-

tacks’ stability, attackers improve the distortion to build the strong

adversarial examples that can go deeper into other classification

regions. However, high distortion leads to obvious differences be-

tween adversarial examples and benign inputs, causing anomalies

in DNNs’ internal activation. Considering that the distortion of

adversarial examples is controlled by attackers depending on their

demands, developers must keep DL systems robust in all situations.

In this paper, we mainly concentrated on white-box adversarial

attacks, which utilize DNN models’ gradients as feedback to guide

the generation of adversarial examples. Specifically, FGSM [13]

modifies the image with a large fixed step length of 𝜖 in the direction

of the gradient, and it usually induces large distortion. PGD [25]

iteratively executes the process of FGSM attack until attack suc-

cesses. In each iteration, it uses a smaller step length. Therefore,

PGD has relatively moderate distortion with high effectiveness.

AutoAttack [10] is an adaptive attack. With the automatic attack

parameters selection, it is widely used for DL system robustness

evaluation. JSMA [32] is a targeted attack, and it edits several pixels

that have the highest probability to achieve the attack. Although

the number of modified pixels is limited, large changes on several

pixels still cause high distortion. Deepfool [28] calculates the mini-

mal distance between input and its classification decision boundary.

Then, it modifies the input with that distance to generate the ad-

versarial examples with minimal distortion. C&W also aims to get

the minimum distortion. It designs a special loss function and uses

the optimizer to optimize the adversarial perturbation directly.

2.2 Robustness Enhancement

To address the threat of adversarial attacks, researchers make great

efforts to enhance the robustness of DL systems.Adversarial train-

ing (AT) [25] is thought to be the best technique, as it improves

the robustness of DNN models directly. It generates the adversarial

examples continuously and uses them as the training data to train

the DNN. However, training on adversarial examples requires ex-

tensive computation resources and causes significant performance

drops, which is unacceptable for developers in some situations. In

this paper, we aim to design an enhancement technique that is

competitive with AT but is more convenient to develop and deploy.

For efficient deployment, researchers are exploring preprocessing-

based and detection-based enhancements. Normally, these two

types of enhancements are either lightweight or independent of

DL systems, so they can be easily built and deployed to multi-

ple DL systems correspondingly. For example, Feature Squeeze

(FS) [43] and LID [24] are two detection-based modules. FS uti-

lizes a variety of squeezers to compress the input and then observe

the distance of the prediction confidence between the original and

squeezed inputs. The ones that change a lot are identified as ad-

versarial examples. LID catches the adversarial examples with the

Local Intrinsic Dimensionality as the metric. They both detect by

monitoring certain metrics without altering or retraining original

DNNs. SOAP [36] purifies adversarial examples to benign inputs to

guarantee the normal execution of DL systems. During purification,

it leverages the label-independent nature of self-supervised signals

to remove adversarial perturbation. MagNet (MN) [26] first uses

several autoencoders to purify the inputs. Meanwhile, it utilizes

the reconstruction error as a metric to detect adversarial examples.

Though combining two enhancement modules, it has low robust-

ness against strong adversarial examples, as its two modules both

rely on the reconstruction of autoencoders.
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2.3 Enhancement Scenario

Normally, attackers may implement the attack in the following two

scenarios. For clear illustration, DL systems without any enhance-

ment modules are called target systems, and the enhanced DL

systems are referred to as enhanced systems.

Scenario A: Resist Existing Adversarial Examples. It is pos-

sible that a DL system was deployed without enhancement, and

attackers implemented the attack and gained a set of dangerous ad-

versarial examples. Then, developers enhance and re-deploy the DL

system, but attackers are not aware of the enhancement modules

and attack the DL system with previously generated adversarial ex-

amples. Thus, enhanced system should own high robustness against

these existing adversarial examples so that they cannot cause illegal

behaviors of DL systems anymore.

Scenario B: Resist New Adversarial Examples. The malicious

users directly leverage diverse attack techniques to attack the en-

hanced DL systems to find new adversarial examples ranter than

using examples collected from the unprotected target system. En-

hanced systems should resist these adversarial attacks, so attackers

will fail to generate effective adversarial examples.

3 METHODOLOGY

Figure 2 shows the overview of CoopHance. Specifically, Coo-

pHance consists of two components, Regulator and Inspector . Regu-
lator is a special-designed Unet-like Neural Network with Residual

Connection and Confusion Layer. It purifies the inputs (e.g., ad-

versarial examples) and interrupts the feedback gradients, so if

attackers do not enlarge the distortion of adversarial examples,

they cannot influence the enhanced system. However, once attack-

ers attack the enhanced system with strong adversarial examples,

these strong adversarial examples will cause abnormal activations

in DNNs, which can be caught by the Inspector . Therefore, requiring

attackers to adjust their adversarial examples to two opposite attack

objectives, CoopHance can effectively enhance the robustness of

DL systems.

CoopHance is designed based on the close cooperation of two

components, whose responsibilities in different enhancement sce-

narios are different. In Scenario A, when CoopHance needs to

resist an existing adversarial example, Regulator first processes this

example with the objective to purify the adversarial perturbation,

which is the responsibility of the residual connections and confu-

sion layers in Regulator (see Section 3.1). Then, the processed input

is fed into the target DL system for inference. Since the perturbation

on the input has been removed, the target system executes normally.

However, it is possible that the input regulated by Regulator is still

an effective adversarial example, because the original adversarial ex-

ample goes deeper into other categories’ classification regions and

is hard to purify. In this case, Inspector leverages the model’s inter-

nal status, i.e., neuron activations, to catch the abnormal behaviors

of the target system and further alert the developers.

Moreover, as illustrated in Scenario B, attackers also generate

new adversarial examples on enhanced system directly. Normally,

with the guidance of DL system’s gradient, an attacker can find

the direction where they can lead a benign input to cross the clas-

sification boundary with minimal perturbation. Thus, to complex

the generation of the adversarial example, utilizing the confusion

layers, Regulator adds noise on the feedback gradient to confuse

attackers. Misled by the Regulator , attackers will add the perturba-

tions in the wrong direction. As a result, they may fail to craft the

adversarial example, or they need to make more efforts and craft

an adversarial example with higher distortion. However, similar

to the situation in Scenario A, although that stronger adversarial

example can cause the misclassification on the target system, they

also cause more internal abnormal activations. These anomalies

will trigger the Inspector , so they still cannot damage the enhanced

system. Please note that CoopHance does not require the Regula-
tor to completely prevent the generation of adversarial examples,

which is a non-trivial task [3]. Instead, even if Regulator fails to do

so, it can still enlarge the distortion of adversarial examples, so that

the Inspector can effectively catch the abnormal status of DNNs.

3.1 Regulator

According to the cooperation mechanism, the Regulator is responsi-

ble for purifying the adversarial examples and hindering the gener-

ation of adversarial examples. To meet the responsibility, Regulator
should accomplish the following three goals: First, Regulator must

remove the malicious perturbation without influencing the benign

inputs. For this goal, we adopt a UNet-like structure with resid-

ual connections, which helps Regulator concentrate on detailed

features of inputs to distinguish benign features and malicious

perturbations and remove malicious ones. Second, Regulator must

complex the generation process of adversarial examples. It is a hard

problem since we find attackers can utilize vulnerabilities of prepro-

cessing modules to enlarge adversarial perturbations during prepro-

cessing, so crafting adversarial examples becomes easier for them.

To avoid facilitating attackers, Regulator utilizes the confusion

layers and adaptive noising training to improve its robustness

and confuse attackers with interrupted feedback. Last, Regulator
should be easy to deploy. To meet this end, Regulator is designed

to be independent of DL systems, and thus it can be deployed to

different systems trained on the same dataset without complex

adaptation. With the above design, Regulator is capable of meeting

its responsibility and enhancing the DL system via purification.

3.1.1 Structure of Regulator. Figure 3 shows the structure of Regu-
lator . Intuitively, Regulator is an UNet Neural Network [33]. As a

variant of autoencoder, it aims to compress the input image with

random noise into a hidden vector and generally reconstruct the vec-

tor back to the original clean image. During this process, Regulator
must learn to avoid encoding noise and adversarial perturbations

and only encode the feature of the original input into the hidden

vector. Then, based on such a hidden vector, only benign features

can be reconstructed, and therefore the input is purified. As a re-

sult, the DL system enhanced with Regulator can work on inputs

without adversarial perturbation and make correct inferences.

To better purify adversarial examples, inspired by ResNet [16],

we add residual connections on the autoencoder to help it better

handle the detailed features of inputs. Without residual connec-

tions, the encoder of a simple autoencoder needs to encode the

principal features first, followed by the detailed features, leading to

insufficient learning of benign feature encoding. As a consequence,

the autoencoder cannot precisely identify the benign features and

adversarial perturbations, so part of adversarial perturbations is
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Unet Neural Network. Arrows in the inverted U-shape are

Residual Connections. Blue rectangles are Confusion Lay-

ers.

also encoded by mistake. To mitigate this problem, inspired by ex-

isting works [16, 33], we add residual connections as a shortcut to

pass some principal features directly to the decoder. In this way, the

autoencoder only needs to learn the residual information, which

represents the detailed features of the inputs. In the end, it can

effectively encode details of benign inputs and reconstruct them

without adversarial perturbations.

Moreover, as we mentioned before, attackers can craft new ad-

versarial examples on enhanced system, during which they may

Algorithm 1: Adaptive Noising Training Strategy

Input: 𝑋 : Training data set

Input: 𝑋𝑒 : Adversarial examples

Input: 𝑙𝑎𝑦𝑒𝑟𝑠: layers that need to measure fluctuations

Output: 𝐺 : Well-trained Regulator
1 𝑖 := 0 // loop for training sample model

2 while 𝑖++ ≤ 𝑒 do

3 𝐺 ′
:= 𝑢𝑝𝑑𝑎𝑡𝑒 (𝐺 ′, 𝑋 )

4 if 𝑖-1 = 𝑒 × 0.6 then

// save middle weights

5 𝑤 := 𝑑𝑢𝑚𝑝 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝐺 ′)
// calculate 𝜇𝑖 . 𝑗 and 𝜎𝑖,𝑗 .

6 foreach 𝑖 in 𝑙𝑎𝑦𝑒𝑟𝑠 do
7 foreach 𝑗 in 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 do
8 foreach 𝑥𝑘 , 𝑥𝑘𝑒 in 𝑋,𝑋𝑒 do

9 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [𝑘] := 𝐺 ′
𝑖, 𝑗
(𝑥𝑘 ) −𝐺 ′

𝑖, 𝑗
(𝑥𝑘𝑒 )

10 𝜇𝑖, 𝑗 = 𝑐𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
11 𝜎𝑖, 𝑗 = 𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

// load middle weights to untrained Regulator

12 𝐺 = 𝑙𝑜𝑎𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 (𝐺,𝑤)
13 𝐺 := 𝑖𝑛𝑖𝑡 𝑐𝑜𝑛𝑓 𝑢𝑠𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 (𝐺, 𝜇, 𝜎)
14 𝑖 = 0

15 while 𝑖++≤ 𝑒 × 0.4 do

16 𝐺 := 𝑢𝑝𝑑𝑎𝑡𝑒 (𝐺,𝑑)

confuse the preprocessing modules to avoid purification or even en-

large perturbation, so the confusion layer is proposed to improve

Regulator . In detail, since each input is first processed by Regulator
and then fed to the target system, Regulator needs to take part in

backpropagation when calculating the gradients. In this case, the

feedback gradients contain the information of Regulator , which

may tell attackers how to confuse Regulator . To address this issue,

the confusion layers are attached to some layers of the Regulator
and add adaptive noise on activations of attached layers. As the

blue rectangles in Figure 3 show, a confusion layer is attached after

each down-sample layer and before each up-sample layer.

The confusion layers can improve the Regulator in the following

two aspects: First, confusion layers can simulate the fluctuation

caused by adversarial examples to improve Regulator’s ability dur-

ing the training. As adversarial examples are different from benign

inputs, they usually cause some fluctuations in DNNs’ internal

activations, finally leading to incorrect behaviors of DNNs. By sim-

ulating such fluctuations during the training of Regulator , confusion

layers improve Regulator’s resistance to adversarial examples. Thus,

when inferring on an adversarial example, Regulator can avoid

being utilized by attackers. To better simulate the fluctuations, con-

fusion layers add the Gaussian noises to DNNs’ internal activations,

as these activations are usually assumed to be the Gaussian distri-

bution [20]. Second, these noises take part in the computation of

feedback gradients and can confuse the feedback gradients. With-

out the guidance of precise gradients, attackers cannot achieve their

attack objective with minimal perturbations, so they may fail to find

adversarial examples, or they have to craft adversarial examples

with larger distortion.

3.1.2 Adaptive Noising Training. Since confusion layers need to

simulate the fluctuations caused by adversarial examples, for which

a proper degree of simulated fluctuations is extremely important,

we further design a novel adaptive noising training for Regulator .
Specifically, when adding the Gaussian noise, each confusion layer

has two hyper-parameters 𝜇 and 𝜎 , which should be set adaptively.

To determine these hyper-parameters, a Sample Model, which owns

the same structure of Regulator but does not have confusion layers,

is trained to measure the fluctuation of activations and calculate

these two hyper-parameters. By evaluating the reference model on

a set of adversarial examples, we could get the precise 𝜇 and 𝜎 for

each confusion layer. Then, during the training of Regulator , we

add the fluctuation according to these two hyper-parameters, so

Regulator can be robust to the fluctuation of activations. Only huge

fluctuations caused by adversarial examples with large enough

distortion can break Regulator to attack the target system.

The detail of the training strategy is shown in Algorithm 1. With

four inputs, the benign inputs 𝑋 , adversarial examples 𝑋𝑒 , and the

layers in Regulator that need to measure the fluctuation 𝑙𝑎𝑦𝑒𝑟𝑠 , the

algorithm outputs a well-trained Regulator 𝐺 . To train an effective

Regulator , a well-trained Sample Model 𝐺 ′
is first required to mea-

sure fluctuations (Line 2∼5). With a well-trained 𝐺 ′
, we observe

how each layer reacts to adversarial examples. Specifically, after

feeding adversarial example 𝑥𝑘𝑒 ∈ 𝑋𝑒 and corresponding benign

input 𝑥𝑘 ∈ 𝑋 into 𝐺 ′
separately, we measure the distance between

activations of two inputs on each channel of a layer as the fluctua-

tion, just as shown in Line 6∼9.𝐺 ′
𝑖, 𝑗

in Line 9 returns the activation
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of channel 𝑗 in layer 𝑖 . Then, in Line 10∼11, the algorithm calculates

the 𝜇 and 𝜎 of distance for each channel. In addition, the 𝜇 and 𝜎 are

measured based on various kinds of adversarial examples to reflect

the universal fluctuation, so Regulator owns great generalization

and is not specific for any one type of attack. In the end, confusion

layers of 𝐺 can be set with adaptive hyper-parameters.

With proper hyper-parameters, we could start to train Regula-
tor . However, due to the random initialization, two models of the

same structure are usually different. Hence, the statistic collected

from one model may not fit another one. To address this issue, as

presented in Line 12, the 𝐺 is not trained from scratch but from the

weights 𝑤 that are dumped during the training of 𝐺 ′
(Line 4∼5).

Weights 𝑤 is dumped when 𝐺 ′
is trained for 60% of total epochs,

because, at this time, 𝐺 ′
has converged to a relatively stable state

and is going to converge to the final𝐺 ′
. Now, fluctuations collected

on well-trained𝐺 ′
can represent the fluctuations on𝐺 with weights

𝑤 . Finally, the algorithm loads the weights 𝑤 , initializes confusion

layers with proper 𝜇 and 𝜎 , and trains the Regulator (Line 12∼16).

Activation

Dog
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Cat
...
...

Target
Model

Category
...

...

Alert

Inspector

Logistic
Regression

of 'Cat'
Adversarial
Exemples

Figure 4: Structure of Inspector. It leverages per-category lo-

gistic regression models to catch adversarial examples.

3.2 Inspector

Another crucial component of CoopHance is Inspector , which is

responsible to monitor the DNNs’ internal activations and catch

the adversarial examples that cause anomalies. Intuitively, each

neuron in a DNN is activated when seeing specific features [35, 45].

Ideally, the DNN should classify based on both fragile features, in-

cluding texture and color, and robust features like the border of an

object. However, current DNNs rely more on fragile features, which

can be easily interrupted by attackers to implement adversarial

attacks [21]. In the contrast, it is hard to interrupt robust features,

which keep activating corresponding neurons even though the

DNN has been confused. Therefore, when DNN processes adversar-

ial examples, only the neurons that reflect the fragile features are

confused, leading to an inconsistency in DNN’s activations. This

inconsistency serves as the foundation for the detection capabil-

ities of Inspector . More specifically, Inspector constructs a binary

classifier, utilizing a logistic regression model, for each category

within the classification task. As shown in Figure 4, given an input

that is classified as “Cat” by target system, Inspector leverages the

logistic regression model trained for category “Cat” to determine

whether this input is adversarial or not. These logistic regression

models are fed with DNN’s internal activations and check if the

abnormal inconsistency exists. If attackers utilize stronger adver-

sarial examples, such anomalies will be more obvious and easier

caught. Thus, Regulator can meet its responsibility to enhance DL

systems against strong adversarial examples.

Besides the design of Inspector , using activations from which

layer of DNN is also critical to the enhancement performance. It

is found that activations of shallow layers that are near the inputs

usually reflect more realistic features, like corners, borders, and

colors, and activations of deep layers that are near the output layer

contain more abstract features that are highly related to the final

prediction [45]. Therefore, activations from deep layers are not

suitable for our Inspector , as they are highly influenced by the ad-

versarial examples and lead to misclassification. In contrast, shallow

layers’ activations contain the robust features of the original class,

which is better for Inspector’s detection. Hence, we select the layers

that are down-sampled only one time, which exists in most of the

widely used DNN models. Moreover, the linear regression model

is simple and very easy to train, so Regulator can be deployed to

various DL systems with few adaption costs.

4 EVALUATION

We evaluate CoopHance from the following perspectives:

RQ1 What is the effectiveness of CoopHance in Scenario A, i.e.,

resisting the existing adversarial examples?

RQ2 What is the effectiveness of CoopHance in Scenario B, i.e.,

resisting new adversarial examples?

RQ3 What is the contribution of two components, Regulator and

Inspector , towards the enhancement effectiveness?

RQ4 Can CoopHance resist specially designed adaptive attacks?

4.1 Experiment Setup

4.1.1 Metrics. We use two metrics to compare CoopHance with

baselines. The first one is the resistance rate that measures the

ratio of successfully resisted attacks with respect to the number of

total attacks. As some enhancements have false positive examples,

we need to set a specific False Positive Rate (FPR) as the threshold

to calculate the resistance rate, which is set as 0.05 by following

the FS [43]. The second metric is Area Under Curve (AUC) value,

which evaluates the overall performance with different FPR. Thus,

the enhancement methods that have no FPR cannot calculate the

AUC, including AdvTrain [25] and SOAP [36]. These two metrics

are widely used in other methods’ evaluation [24, 26, 43].

4.1.2 Attack Setup. To evaluate the enhancement ability, we use

six different adversarial attacks, including FGSM [13], JSMA [32],

Deepfool [28], C&W [9], PGD [25], and AutoAttack [10]. Among

all attacks, JSMA is a targeted attack and others are untargeted. The

implementations of all attacks follow that of the original authors

except JSMA, which is achieved with Cleverhans library [31]. For

Deepfool and JSMA, we follow their default settings [28, 32]. The

settings of FGSM and PGD follow that of LID [24]. However, on

FGSM, LID sets a too large 𝜖 as 0.05, on which CoopHance achieves

100% resistance rate (shown in Figure 5a), so we set it as 5/255. For

AutoAttack [10], a default setting of ℓ∞ attack with 𝜖 = 8/255 are

utilized. On each dataset and attack method, we generate 2,000 ad-

versarial examples on training data to train enhancement methods

and generate 2,000 on test data for evaluation.
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Table 1: Effectiveness of CoopHance and other baselines in Scenario A. The results in bold are the best results. Rows of “DF”

and “Auto” are the results of resisting Deepfool and AutoAttack correspondingly.

Attack

Resistance Rate (FPR = 0.05) AUC Resistance Rate (FPR = 0.05) AUC

FS LID SOAP MN AT CoopHance FS LID MN CoopHance FS LID SOAP MN AT CoopHance FS LID MN CoopHance

CIFAR-10

Model ResNet VGGNet

PGD 75.00 21.20 3.60 81.00 82.95 89.90 95.95 77.87 90.06 96.50 31.85 28.40 9.20 68.15 75.30 87.90 93.04 82.52 81.24 96.01

FGSM 20.20 15.25 29.65 61.75 82.70 92.35 76.73 67.65 81.81 98.52 25.85 17.40 21.65 41.15 74.50 83.15 74.70 71.89 65.98 96.34

JSMA 73.00 35.25 54.00 83.85 71.15 98.25 96.21 84.11 93.40 99.55 69.85 62.90 43.80 63.90 66.35 94.95 95.81 93.90 85.40 98.86

DF 6.55 26.10 59.40 87.45 82.90 92.35 92.27 81.12 93.20 97.37 9.35 89.25 30.25 82.90 75.65 91.70 90.29 97.56 89.89 97.38

C&W 64.15 17.22 79.45 87.40 82.02 89.05 94.90 75.01 93.06 95.74 2.37 85.24 73.20 86.48 74.82 92.73 89.59 97.77 92.40 97.50

Auto 59.36 69.25 14.00 94.90 78.93 92.30 87.19 91.01 96.93 97.06 77.47 88.75 27.85 91.70 67.00 82.80 92.79 93.78 94.75 93.44

SVHN

Model ResNet DenseNet

PGD 93.80 50.45 21.80 93.80 88.41 97.80 98.58 90.97 98.52 99.54 7.95 54.30 20.60 83.75 87.60 93.15 58.94 91.98 95.64 98.04

FGSM 29.50 28.35 58.60 78.75 86.85 99.75 85.72 81.85 94.81 99.88 23.25 37.80 35.05 64.80 85.40 93.65 69.72 79.65 91.78 98.76

JSMA 25.64 62.35 49.85 94.60 76.36 98.85 83.74 93.49 98.76 99.71 27.60 68.45 44.65 86.50 79.40 93.15 76.36 94.71 97.26 98.04

DF 95.55 48.70 74.80 98.60 88.40 98.75 97.90 90.79 99.29 99.78 5.85 50.40 88.60 96.90 87.15 97.65 57.18 91.63 98.92 99.28

C&W 98.26 18.90 85.85 98.30 88.05 98.41 99.06 76.54 99.32 99.45 6.03 43.69 66.60 94.54 86.86 96.86 55.02 90.30 98.03 98.96

Auto 25.82 88.75 47.40 98.30 84.65 97.85 75.73 97.24 99.13 99.17 33.36 62.50 51.25 96.80 82.80 92.85 75.10 91.51 98.16 98.01

4.1.3 Datasets and Models. We mainly evaluate CoopHance on

two datasets: CIFAR-10 and Street View House Numbers (SVHN).

CIFAR-10 contains 50,000 training images and 10,000 test images

from 10 categories. SVHN consists of 73257 images for training and

26032 images for testing. Both two datasets are widely adopted for

the evaluation of attacks and enhancements [24–26, 42]. On the

CIFAR-10 dataset, VGGNet [37] model with 88.58% accuracy and

a ResNet-18 [16] model with 93.84% accuracy are trained. On the

SVHN dataset, we train a ResNet [16] model and a DenseNet [18]

model, which achieves a 98.25% accuracy and a 96.37% accuracy

separately. All of these models are widely-used [25, 43], and the

accuracy is similar to others’ settings [24, 43]. Empirically, Regulator
is a nine-stage UNet, which once trained can enhance both two

models of a dataset. The accuracy of models with CoopHance drops

5.19% on CIFAR-10 and 0.82% on SVHN. Moreover, we implement

the adversarial training with Pang et al.’s tricks [30], and the trained

models have 8.12% ∼ 19.59% accuracy drop on two datasets.

4.2 Resisting Existing Adversarial Examples

To answer the RQ1, we evaluate whether CoopHance can enhance

the DL systems against these existing adversarial examples. As

illustrated in Section 2.3, attackers may utilize the adversarial ex-

amples generated on previously unenhanced DL systems to attack

the currently enhanced one. In this RQ, CoopHance is compared

with five state-of-the-art enhancement techniques on resistance

rate and AUC. As the AdvTrain and SOAP cannot control the FPR,

there is no AUC score for them.

As shown in TABLE 1, CoopHance is the enhancement tech-

nique with the highest generalization, outperforming existing tech-

niques in terms of resistance rate in 20 of 24 cases. CoopHance

achieves the average resistance rate of 90.62% and 96.56% on CIFAR-

10 and SVHN datasets, respectively. Only on AutoAttack [10], its

performance is slightly worse than that of LID by 0.41%∼9.71%.

When evaluating the overall performance using the AUC, Coo-

pHance achieves excellent performance with an average of 97.02%

Table 2: Resistance rate of Regulator and Inspector in Sce-
nario A and Scenario B on ResNet with SVHN Dataset. The

distortion of generated adversarial examples is quantified

by calculating the 𝐿2 distance between the original input and

its corresponding adversarial example.

Attacks Scenario Regulator Inspector Distortion

PGD

Scenario A 94.80% 55.22% 0.5100±0.24

Scenario B 3.90% 75.40% 0.8186±0.42

FGSM

Scenario A 71.35% 98.15% 1.0838±0.02

Scenario B 58.75% 86.25% 1.0837±0.02

Deepfool

Scenario A 98.25% 40.90% 0.3125±0.21

Scenario B 29.95% 50.55% 0.6454±0.42

C&W

Scenario A 97.49% 21.70% 0.2144±0.13

Scenario B 16.25% 48.45% 0.4435±0.24

JSMA

Scenario A 71.86% 91.75% 3.5789±1.57

Scenario B 11.35% 92.50% 4.0709±1.68

Auto

Scenario A 80.45% 97.25% 1.4225±0.26

Scenario B 0.60% 94.60% 1.5408±0.32

and 99.05% AUC on two datasets. Only 4 out of 24 attacks, LID’s and

MagNet’s AUC are higher than that of CoopHance by 0.15%∼1.30%.

On other results, CoopHance gets 10.19% higher AUC on average.

Among various attacks that have different properties, CoopHance

achieves the best performance on most of the attacks and keeps a

competitive performance on others. In conclusion, facing the DL

system enhanced by CoopHance, these existing adversarial exam-

ples lose their hazards and cannot confuse the enhanced system

anymore.

The results of different techniques on different adversarial at-

tacks also show that existing techniques may fail on some specific

attacks. For detailed analysis, we show adversarial examples’ distor-

tions on the SVHN dataset in Table 2, in which we mainly focus on



ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Quan Zhang, Yongqiang Tian, Yifeng Ding, Shanshan Li, Chengnian Sun, Yu Jiang, and Jiaguang Sun

Table 3: Effectiveness of CoopHance and other baselines in Scenario B. The resistance rate and AUC score in bold are the best

results in the corresponding case. “DF” and “Auto” refer to Deepfool and AutoAttack correspondingly.

Attacks

Resistance Rate (FPR = 0.05) AUC Resistance Rate (FPR = 0.05) AUC

FS LID SOAP MN AT CoopHance FS LID MN CoopHance FS LID SOAP MN AT CoopHance FS LID MN CoopHance

CIFAR-10

Model ResNet VGGNet

PGD 5.59 23.25 3.20 15.85 56.60 45.60 49.83 74.91 57.37 84.58 3.36 21.25 16.95 14.35 53.95 47.60 49.39 77.66 53.85 84.76

FGSM 5.62 21.50 35.55 16.55 71.35 69.15 51.62 71.66 58.94 93.94 2.79 15.75 36.25 12.20 63.80 67.45 52.24 72.11 52.30 92.84

JSMA 1.40 34.25 12.40 39.05 0.85 91.50 33.18 78.83 83.62 97.89 1.96 29.00 6.25 19.80 0.50 91.20 46.74 85.25 73.84 97.82

DF 5.30 25.75 37.10 15.85 0.60 54.85 47.06 75.97 57.37 83.43 2.17 19.75 7.85 12.55 1.05 60.70 47.21 77.23 51.84 86.89

C&W 5.88 19.75 3.10 17.05 0.00 92.10 47.86 71.08 59.88 96.76 2.36 19.25 8.70 13.85 0.00 88.80 44.61 72.63 55.56 95.88

Auto 38.03 31.50 3.83 57.80 44.45 71.75 79.11 73.98 80.26 92.25 35.13 33.00 7.50 46.70 34.65 92.70 79.22 79.09 71.79 88.57

SVHN

Model ResNet DenseNet

PGD 0.54 39.75 29.35 15.55 44.70 77.05 63.77 90.78 59.89 94.67 0.97 54.50 16.55 20.45 57.30 69.10 65.16 92.99 70.20 93.81

FGSM 2.64 26.25 73.20 17.80 54.85 95.65 67.23 87.18 63.47 99.04 1.87 46.00 33.40 20.20 68.65 83.50 66.28 86.53 71.27 96.82

JSMA 0.16 71.75 19.50 84.75 1.40 95.20 62.37 96.20 96.46 98.65 0.45 77.00 0.00 51.10 0.15 80.95 64.81 96.79 89.35 96.25

DF 0.23 39.25 22.80 15.90 0.95 66.00 62.36 90.38 58.30 90.66 1.08 47.75 12.22 20.00 0.35 64.15 62.02 91.92 68.80 91.74

C&W 0.49 39.00 6.35 26.50 0.00 60.20 63.01 83.50 73.90 88.83 0.66 45.00 10.13 38.50 0.00 64.10 62.73 91.64 81.86 92.22

Auto 21.87 46.00 28.00 88.35 38.30 95.20 74.45 87.70 93.35 98.27 21.25 42.75 9.00 47.65 45.30 86.10 72.56 84.32 79.65 96.35

the distortion data in rows of “Scenario A”. It is found that existing

enhancement techniques all have weaknesses. For example, FGSM

and JSMA attacks usually produce strong adversarial examples,

on which FS gains limited performance. LID [24] achieves a low

resistance rate on C&W and FGSM attacks, as it cannot handle ad-

versarial examples with too strong or too small distortions. Only on

weak adversarial examples, can the preprocessing-based SOAP [36]

gets promising results. MagNet [26] gains a relatively low perfor-

mance on FGSM attack, which leaves a chance for attackers. As for

the AdvTrain [25], viewed as the best enhancement technique, it

truly keeps a stable performance on all attacks. However, consid-

ering the deployment cost, CoopHance is easier to deploy with

competitive performance. In the end, we can conclude that Coo-

pHance with two well-designed components definitely improves

the robustness of DL systems against different adversarial attacks.

4.3 Resisting New Adversarial Examples

InRQ2, we evaluate the performance of CoopHance in the Scenario
B, where attackers attempt to craft new adversarial examples to

attack the enhanced system. As shown in Table 3, with CoopHance,

enhanced system owns high robustness against adversarial attacks

and blocks the generation of effective adversarial examples. On

average, 72.78% and 78.10% of attacks are resisted by enhanced sys-

tem on CIFAR-10 and SVHN datasets correspondingly. Compared

to the best result in each case, CoopHance outperforms others by

118.81.24% and 37.54% on average. Meanwhile, obtaining 91.30%

and 94.78% average AUC on CIFAR-10 and SVHN, CoopHance

improves 51.03% and 26.28% on AUC on average. With these results,

we can conclude that in Scenario B, CoopHance can better enhance

the robustness of the DL systems to resist potential attacks.

Then, we analyze the performance of each enhancement tech-

nique on different attacks. Observing the resistance rate of each

case, it is found that CoopHance gets the best results in 21 cases.

In 3 cases, AdvTrain outperforms CoopHance, but in other cases,

AdvTrain shows limited performance, since it is a challenging prob-

lem for DNNs trained with one adversarial attack to resist other

different adversarial attacks [4]. Our AdvTrain models are trained

with PGD attacks, so they can effectively resist the attacks of the

PGD method. As for SOAP, it shows limited performance on most

of the attacks when attackers access the gradient information of

purification. Moreover, MagNet also combines two components to

enhance DL systems, and it performs well in Scenario A. However,

in Scenario B, its performance drops heavily. The reason is that the

components in MagNet do not properly cooperate in Scenario B.

Specifically, its components both rely on the autoencoder to miti-

gate adversarial examples, leading to similar weaknesses in these

components. Especially in Scenario B, where the autoencoders and

target system are both under attack, MagNet loses its effectiveness,

leading to low robustness. As a comparison, CoopHance still keeps

the competitive performance, as the Regulator can enforce attackers

to improve the distortion of adversarial examples, which are imme-

diately detected by Inspector . As for FS and LID, we ensemble them

with Regulator in this scenario to see if they can cooperate with

Regulator to enhance DL systems. However, results show that they

fail to do so, because they are not designed for cooperation with

Regulator . In conclusion, with an effective cooperation mechanism

between Regulator and Inspector , CoopHance can resist diverse

attacks with high effectiveness.

4.4 Cooperation Mechanism

As we mentioned previously, CoopHance consists of two compo-

nents, Regulator and Inspector . To better understand the effect of

Regulator and Inspector and demonstrate their responsibilities, in

RQ3, we dive into the results of the experiments on ResNet with

SVHN dataset and measure the resistance rate of Regulator and

Inspector separately. Please note that the sum of two components’

resistance rate in Table 2 and Figure 5 may be higher than the

overall resistance rate in Table 1 and Table 3. The reason is that

an adversarial example may be resisted by both two components.

In detail, Inspector can catch some adversarial examples that have

been mitigated by Regulator .

4.4.1 Scanario A. We first analyze how Regulator and Inspector per-

form when facing different attacks in Scenario A. For the “Scenario
A” rows in Table 2, it can be observed that both of them contribute



CoopHance: Cooperative Enhancement for Robustness of Deep Learning Systems ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

0.22 0.43 0.65 0.87 1.08 1.30 1.52
Distortion

20

30

40

50

60

70

80

90

100
Re

sis
ta

nc
e 

Ra
te

 (%
)

Regulator
Inspector
CoopHance

(a) Resistance rate on FGSM

0.20 0.28 0.36 0.44 0.52 0.61 0.72
Distortion

20

30

40

50

60

70

80

90

100

Re
sis

ta
nc

e 
Ra

te
 (%

)

Regulator
Inspector
CoopHance

(b) Resistance rate on C&W

Figure 5: Resistance rate of CoopHance and its two components for the adversarial exampleswith different distortions. Figure

5a and Figure 5b are for FGSM and C&W, respectively.

a significant portion of the effectiveness of CoopHance. How-

ever, their contribution may vary depending on different attacking

methods. Specifically, taking distortion of adversarial examples

into consideration, it can be observed that on strong adversarial

examples (JSMA and FGSM), the resistance rate of Regulator drops

to around 70%, and the Inspector’s resistance rate increases. This

observation is in line with our intuition, i.e., two components are

complementary to each other to resist adversarial examples with

different distortions.

Moreover, to further understand the Regulator and Inspector ,
we investigated how they perform on adversarial examples with

different distortions in Scenario A. We use FGSM and C&W attacks

and control their parameters to adjust the distortions of adversarial

examples. For FGSM [13], it modifies each pixel with a step of 𝜖 , and

we vary the 𝜖 from 1 to 7. For C&W [9], the parameter “confidence

score” indicates the confidence level of misclassification caused by

adversarial examples, and we vary it from 0 to 30. Results are shown

in Figure 5. On both attacks, when the distortion of adversarial

examples generally increases, the resistance rate of Regulator drops,

as shown by the blue curve. It drops from the nearly 100% resistance

rate to around 50%. Meanwhile, the green curve demonstrates that

Inspector’s performance is continually growing, which increases to

100% rapidly. No matter how the distortion of adversarial examples

and the performance of two components vary, the overall resistance

rate of CoopHance keeps higher than 90%, as the orange curve

shows. This result demonstrates that the Regulator and Inspector
can properly collaborate with each other when facing attacks with

different distortions.

4.4.2 Scenario B. In this section, we analyze how Regulator and

Inspector cooperate in Scenario B. In the “Scenario B” rows of Ta-

ble 2, the average resistance rate of Regulator is 24.04%, which is

significantly less than the one of Inspector , i.e., 70.63%. Compared

with that in Scenario A, the resistance rate of Regulator drops obvi-

ously but Inspector’s resistance rate improves 34.42% on average.

In other words, the effect of Inspector in terms of resistance rate

is more obvious than Regulator . The reason is that in Scenario B,

attackers can access the gradient information of Regulator when

attacking. In this case, preprocessing-based techniques, such as

Regulator and SOAP, are hard to totally block attacks [3]. However,

though failing to purify part of adversarial examples, Regulator
can still effectively increase the difficulty of adversarial example

generation, resulting in adversarial examples with larger distortion

(shown in column “Distortion”). Eventually, adversarial examples

with larger distortions are easily caught by the Inspector .

4.5 Adaptive Attacks

In some extreme cases, an attacker may learn about how the en-

hancement technique works, so they design an adaptive attack for a

specific technique. In this situation, many enhancement techniques,

such as FS, LID, and MagNet [7, 8], cannot keep their effective-

ness. For example, our experiment shows that FS and LID cannot

resist C&W [9] attack with a higher confidence value (i.e., 5), whose

resistance rate is 1.10%∼41.25%. This result is consistent with An-

ish’s conclusion [3]. Moreover, under adaptive attack, MagNet only

achieves less than 10% resistance rate [8].

To demonstrate that CoopHance can resist adaptive attack, we

follow the encouraged method to design a powerful adaptive attack

for both Regulator and Inspector [6, 8]. Specifically, we modify the

attack objective of the C&W attack, adding a new objective that

minimizes the 𝐿2 distance between activations of original benign

input and crafted adversarial examples. Moreover, such activations
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Figure 6: Resistance rate and AUC score of CoopHance un-

der adaptive attack. Figure 6a and Figure 6b are evaluated on

CIFAR-10 and SVHN, respectively.
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Table 4: Resistance rate of CoopHance when trained and

tested on different adversarial attacks. For each cell, Coo-

pHance is trained on the attack in the row and tested on

the attack in the column. “DF” refers to Deepfool.

Dataset

Train

Test

PGD FGSM JSMA DF C&W Auto

CIFAR

10

PGD 89.90 80.85 84.35 91.65 90.83 73.00

FGSM 88.45 92.35 90.95 91.80 90.41 87.80

JSMA 88.40 80.55 98.25 92.10 90.83 72.70

DF 89.75 75.05 86.75 92.35 91.46 72.90

C&W 87.95 76.80 83.25 91.20 89.05 75.40

Auto 88.55 88.90 73.60 84.40 85.80 92.30

SVHN

PGD 97.80 97.40 90.15 98.60 98.10 93.90

FGSM 95.45 99.75 92.30 98.40 98.05 97.15

JSMA 95.75 90.95 98.85 98.35 98.15 95.60

DF 97.50 95.10 89.01 98.75 98.15 90.10

C&W 96.25 95.00 90.85 98.95 98.41 91.45

Auto 95.50 98.40 94.40 98.60 98.20 97.85

are the input of Inspector , so Inspector needs to identify the adver-

sarial examples that may own similar activations to benign inputs.

In this way, the adversarial attack is implemented with the objective

of breaking the Regulator to confuse target system and the objective

of causing a few abnormal activations to bypass the Inspector . To

balance two attack objectives, a weight 𝜔 is set to the objective of

reducing anomalies. In evaluation, the weight 𝜔 varies from 1e-5

to 1e5 to find the most powerful attack setting.

Figure 6 shows that even though attackers know the detail of

CoopHance, it still enhances the DL system with an average 81.71%

and 68.12% resistance rate on ResNet with CIFAR-10 and SVHN

respectively. It is an encouraging result since in Scenario B, other

existing techniques can only achieve less than 50% resistance rate

against C&W attack without special adaption. The reason why

CoopHance can keep effective is that, when CoopHance faces

the adaptive attack, the Regulator requires attackers to improve

the distortion of adversarial examples to resist purification, while

Inspector requires attackers to reduce the distortion to reduce the

abnormal activations. Attackers cannot achieve these two goals at

the same time, so Regulator and Inspector can cooperatively enhance

the robustness of DL systems against adaptive attacks.

5 DISCUSSION

5.1 Generalization of CoopHance

To train the Inspector in CoopHance, we need part of adversarial

examples as the training data. Training data definitely influences

the performance of CoopHance. Usually, when the training data is

similar to adversarial examples in a real situation, CoopHance is

more effective and practical. However, more and more adversarial

attacks have been proposed in recent years, so we can never en-

sure our training data can cover all types of adversarial examples.

Luckily, Inspector owns a great generalization, with which it can be

trained on one type of adversarial example and detects other types

of adversarial examples with high probability.

To evaluate the generalization of CoopHance, we train Coo-

pHance on all six adversarial attacks and test them on all other

attacks. The experiments are evaluated on two datasets with ResNet.

As shown in TABLE 4, although trained and tested on different at-

tacks, CoopHance gets 86.13% and 96.03% average resistance rate

on CIFAR-10 and SVHN. Moreover, the resistance rate of 68% and

83% cases are higher than 90% and 85% correspondingly. Even only

trained with FGSM (2014), CoopHance can achieve a resistance

rate of 87.80% against AutoAttack proposed in 2021. Thus, we can

conclude that CoopHance has a broad generalization and has the

potential to resist previously unknown attacks.

Another interesting finding is about the distortion of adversarial

examples. If CoopHance is trained on weak adversarial examples,

it cannot perform well on strong ones, like rows “DF” and “C&W”,

where the resistance rate may drop to below 80%. It is because

Inspector is responsible for strong adversarial examples. Training it

on stronger adversarial examples, such as PGD [32] and FGSM [13],

can better benefit the final results. As for the weak adversarial

examples, they can be well handled by Regulator .

5.2 Overhead

CoopHance is designed for real-time enhancement. Thus, on one

input, it should not significantly delay the inference of DNN. As

Regulator is a simple Unet-like model, it consumes only 4.42ms

on one image. As for Inspector , its main computation overhead is

the process of extracting the activation since it spends 0.18ms on

the inference of the logistic regression and 3.11ms on extracting

activations of DNN. Thus, the whole process needs a less than 10ms

delay, which is reasonable in practice.

Moreover, CoopHance should be convenient for development.

Regulator is independent of the DL systems, so it only needs to be

trained once and can be deployed to different DL systems trained

with the same dataset. As for the Inspector , it needs to train a

logistic regression model on each category, which is convenient.

Specifically, it spends 21.0s training on one category on CIFAR-10

dataset with ResNet-18 model. Thus, even on a large dataset of

1,000 categories, it only costs around 5 hours. As a comparison,

AdvTrain needs more than 10 hours on CIFAR-10 with ResNet and

may require several days on large-scale datasets. Given that the

process of retraining Regulator demands only a minimal amount of

computational resources, developers can effectively enhance the

resilience of DL systems by continuously retraining Regulator using

recently captured adversarial examples.

5.3 Black-Box Adversarial Attack

In this paper, we focus on white-box attacks since they have higher

effectiveness and are harder to resist than black-box attacks. Besides

white-box attacks, we also evaluate CoopHance on OnePixel [38],

a black-box attack that tries to craft adversarial examples with-

out using the gradients of DL models as guidance. Results show

that CoopHance achieves resistance rates of 91.45% on CIFAR-10

and 97.34% on SVHN, indicating that it can enhance DL systems’

robustness against back-box attacks.
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5.4 Threat to Validity

Besides the above discussions, there are some threats to validity.

CoopHance needs to enhance DL systems trained on different

datasets with different model structures, as they may have totally

different properties. To demonstrate the efficacy of CoopHance

in enhancing a variety of models, we assess its performance on

two distinct models for each dataset. Furthermore, we successfully

adapt CoopHance to a transformer model [11], resulting in a resis-

tance rate of 82.85% against PGD attacks. With different settings, the

experiments are sufficient to show that CoopHance keeps high per-

formance on different models and datasets. Moreover, CoopHance

aims to handle diverse adversarial attacks with different distortions.

To investigate that, we use six different attacks, including the most

widely used ones. They can generate adversarial examples with

very different distortions. The experiment results present that Coo-

pHance is able to enhance the robustness of DL systems against

these diverse adversarial attacks.

6 RELATEDWORK

To improve the robustness of DL systems, many enhancement

techniques are proposed, which are categorized into three types [2].

First, adversarial training (AdvTrain) enhances DL systems by

improving their inherent DNNs’ robustness directly [4, 25, 41].

During AdvTrain, developers need to continuously generate adver-

sarial examples, which is extremely time-consuming. However, in

some situations, the deployment cost is extremely crucial, so in this

work, we aim to explore an enhancement technique that is more

convenient to deploy and owns competitive effectiveness.

Second, some preprocessing-based techniques try to purify ad-

versarial examples into benign inputs, on which DNNs can make

correct predictions [12, 36, 44]. Sine transformations may include

rotation, flipping, rescaling, image compression, or reconstruc-

tion [12, 26, 44]. Recently, an advanced purification method called

SOAP iteratively preprocesses the input to remove the adversarial

perturbations that cause the representation shift. However, it is

found that these techniques actually cause obfuscated gradients to

mislead attackers [3]. They can only complex the attack process

rather than really improve DNNs’ robustness, so some advanced

adversarial attacks can break them and hurt DL systems.

Third, some detection-based methods catch adversarial exam-

ples in real-time to enhance the robustness of DL systems[24, 43].

They rely on some specific properties of adversarial examples. For

example, Feature Squeezing (FS) [43] finds that after the squeeze,

adversarial examples will cause different behaviors on DNN, but

benign input will not. Hence, comparing the predictions of the

original and squeezed inputs can indicate adversarial examples. As

for LID, it finds adversarial examples have larger Local Intrinsic

Dimensionality than benign data, as adversarial examples should

be very different from benign data and are far from them in high-

dimension space. These methods achieve encouraging performance,

but they suffer from adaptive attacks. Highly relying on the special

properties of adversarial examples, these methods may be confused

when attackers craft special adversarial examples to hide corre-

sponding properties. For instance, FS cannot handle adversarial

examples with larger distortion, and adversarial examples with tiny

distortion may stay close to the benign data and can bypass LID.

MagNet [26] chooses to combine two techniques to enhance

DL systems. It uses autoencoders to purify adversarial examples

and monitor the reconstruction distance of input to detect adver-

sarial examples, as it assumes adversarial examples tend to cause

larger reconstruction distances. However, such a simple ensemble

of weak techniques cannot build a robustness system [17]. Without

thorough consideration of the cooperation mechanism, MagNet

combines two components that have similar weaknesses, leading

to the failure of resisting strong adversarial examples.

Major Difference. Most existing methods enhance the robust-

ness of DL systems from one perspective, and they may fail on

adversarial examples with very large or tiny distortions. In con-

trast, with the systematic design, CoopHance can combine two

specialized components to cooperatively enhance the robustness of

DL systems and handle diverse adversarial examples with different

distortions. MagNet [26] also integrates two types of enhancement.

However, without systematic design, MagNet does not solve the

challenge of how to effectively combine different components. So

it cannot handle diverse adversarial attacks in different scenarios.

7 CONCLUSION

In this paper, we propose CoopHance to enhance the robustness

of DL systems against diverse adversarial attacks. It combines two

cooperative modules, Regulator and Inspector , which are comple-

mentary to each other. Regulator can purify the adversarial example

with small and moderate distortions to help the DL system give a

correct prediction. The Inspector is responsible for blocking the in-

ference when an adversarial example causes abnormal status in the

DL system. These two components cooperate to resist diverse adver-

sarial examples. Thus, as we show in the evaluation, CoopHance

can keep a steady performance when we evaluate it in two different

scenarios with six different adversarial attacks on two datasets.

Even in the adaptive attack, attackers cannot break the Regulator
and Inspector at the same time. In further studies, we would like to

explore more about the properties of adversarial attacks to find the

enhancement mechanisms with higher effectiveness.
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