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RNN-Test: Towards Adversarial Testing for
Recurrent Neural Network Systems

Jianmin Guo, Quan Zhang, Yue Zhao, Heyuan Shi, Yu Jiang and Jiaguang Sun

Abstract—While massive efforts have been investigated in adversarial testing of convolutional neural networks (CNN), testing for
recurrent neural networks (RNN) is still limited and leaves threats for vast sequential application domains. In this paper, we propose
an adversarial testing framework RNN-Test for RNN systems, focusing on sequence-to-sequence (seq2seq) tasks of widespread
deployments, not only classification domains. First, we design a novel search methodology customized for RNN models by maximizing
the inconsistency of RNN states against their inner dependencies to produce adversarial inputs. Next, we introduce two state-based
coverage metrics according to the distinctive structure of RNNs to exercise more system behaviors. Finally, RNN-Test solves the joint
optimization problem to maximize state inconsistency and state coverage, and crafts adversarial inputs for various tasks of different
kinds of inputs.

For evaluations, we apply RNN-Test on four RNN models of common structures. On the tested models, the RNN-Test approach is
demonstrated to be competitive in generating adversarial inputs, outperforming FGSM-based and DLFuzz-based methods to reduce
the model performance more sharply with 2.78% to 37.94% higher success (or generation) rate. RNN-Test could also achieve 52.65%
to 66.45% higher adversary rate than testRNN on MNIST LSTM model, as well as 53.76% to 58.02% more perplexity with 16% higher
generation rate than DeepStellar on PTB language model. Compared with the traditional neuron coverage, the proposed state coverage
metrics as guidance excel with 4.17% to 97.22% higher success (or generation) rate.

Index Terms—Adversarial testing, Recurrent neural networks, Coverage metrics
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1 INTRODUCTION

A S the core part of the current artificial intelligence
applications, deep learning has made great break-

throughs in computer vision [1], natural language process-
ing (NLP) [2], and automatic speech recognition (ASR) [3].
With the increasing deployments of deep neural net-
work (DNN) systems in the safety- and security-critical
domains, such as autonomous driving [4] and medical di-
agnose [5], ensuring the robustness of DNNs becomes an
essential concern in both academic research and security
communities.

However, it is demonstrated that state-of-the-art DNN
systems [6] are easy to suffer attacks and produce com-
pletely wrong predictions, when fed with adversarial in-
puts which are nearly indistinguishable from original test
inputs. This inspired numerous adversarial testing works
devoted to generating adversarial inputs for DNNs, aiming
to provide rich sources to train the DNNs to be more robust.
The majority of these works [7], [8], [9] try to fool popular
image classifiers by applying minute perturbations to the
inputs. They exhibit high efficiency but achieve low testing
completeness [10]. Recently, researchers [10], [11], [12] try to
apply traditional software testing techniques over DNNs,
with various neuron-based coverage criteria proposed to
measure the testing completeness of DNN logics. These
works could reach high testing coverage and produce num-
bers of adversarial inputs.
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In spite of the efficiency of these works, they are
largely limited to CNNs and image classification tasks.
Overall, there are two main types of DNN, the convolu-
tional neural networks (CNN) [13] and recurrent neural
networks (RNN) [14]. They are of distinct structures and
preferred for different kinds of tasks. CNN exhibits excellent
competence in dealing with image processing tasks [15],
[16], with thousands of neurons good at extracting image
features. RNN is known for the iterative structure over cells
and specific components dealing with context semantics,
hence expert in handling tasks with sequential data, like
natural language processing [17] and speech recognition
[18]. Owing to the huge gap, the testing techniques and
coverage metrics for the two types of DNNs are hard to
fit the other.

So far, adversarial testing for RNN systems has re-
ceived limited attention, especially those of sequence-to-
sequence (seq2seq) tasks. Existing works [19], [20], [21], [22]
concentrate more on sequence-to-one (seq2one) domains,
performing well over classification tasks such as sentiment
analysis [19], [20], [22], image classification [21], [22], and
lipophilicity prediction [22], etc. But the large portion of
seq2seq tasks leaves tested insufficiently, threatening their
large-scale applications. Researchers [23], [24], [25] attack
these models to perform abnormally in various manners,
such as sampling words from blacklist [23] or producing
attacker-targeted phrases [24]. Since without explicit class
labels, there is no standard yet to recognize a generated
sequence as the adversarial input avoiding false positives.

Moreover, existing coverage criteria [10], [11], [12] are
mostly designed for CNNs and neurons, with a large gap to
fit for RNNs. If taking the similar way of treating an RNN
cell to be equivalent as a CNN neuron [26], an RNN model
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is likely to compose a few neurons and reach full coverage
in the early testing stage, resulting in few adversarial inputs
discovered and lower testing capability, as presented in the
later experiment section. Finally, recent works [21], [22] also
proposed coverage guided testing methods with specific
coverage criteria for RNN systems. They could generate
lots of adversarial inputs for tested models (mainly of clas-
sification tasks), by mutating inputs directly (e.g. random
noise) and employing coverage values as constraints to
terminate testing. Despite their considerable efficiency, the
specific inner behaviors of RNNs (e.g. state dependency) are
not utilized in searching for perturbations and adversarial
inputs.

Therefore, challenges for RNN testing are mainly sum-
marized as threefold. First, adversarial testing methods for
RNNs with seq2seq domains are rather inadequate, leaving
threats for massive application scenarios. Second, neuron-
based coverage metrics fail to consider characteristics of
RNN structures and could not be adopted directly. Third,
existing testing methods are limited in making use of dis-
tinct logics of RNN models.

Approach: In this paper, we propose an adversarial testing
framework RNN-Test for RNN systems, especially those
with sequential outputs. RNN-Test concentrates on the RNN
structures and rids of remain parts for particular applica-
tions. According to the unique features of RNNs, we put
forward a specific search methodology, which maximizes
the inconsistency of RNN state dependencies to obtain
adversarial inputs. Meanwhile, we also design two state-
based coverage metrics for different RNN models to exercise
more internal behaviors and guide to discover adversarial
inputs in irregular space. They are then combined as a
joint optimization problem, which is to maximize the state
inconsistency and state coverage. Finally, it will be solved
to acquire perturbations in a gradient-based way. When ob-
tained the perturbations, adversarial inputs will be crafted
by applying perturbations to original test inputs in different
ways for various kinds of inputs. In the end, we adopt
model performance metrics to identify the adversarial in-
puts and assess their qualities, which are generally available
for RNN variants. In this way, RNN-Test provides a scalable
and extensible solution for RNN testing.

Evaluation: We evaluate the RNN-Test approach over four
RNN systems dealing with different tasks, including three
seq2seq models [27], [28], [29] and one seq2one model [30].
The RNN-Test approach could efficiently acquire adversar-
ial inputs of high quality, which reduce the model perfor-
mance sharply while nearly imperceptible to original in-
puts. Compared with baselines which are two popular tech-
niques (FGSM [7] and DLFuzz [31]) adapted here for RNN
testing, our approach achieves more performance reduction
with higher success (or generation) rate. Taking DeepSpeech
ASR model as an example, RNN-Test could decline the
model performance by 17.29% higher WER, 3.61% lower
BLEU with 10% higher success rate, in contrast with the
FGSM-based method. With respect to most relevant RNN
testing works, RNN-Test could achieve 52.65% to 66.45%
higher adversary rate than testRNN [22] on MNIST LSTM
model [32], and magnify 53.76% to 58.02% more perplexity

with 16% higher generation rate than DeepStellar [21] on
PTB language model [27].

Furthermore, coverage guidance as pure optimization
is first demonstrated with diverse searching capability for
adversarial inputs compared with other methods. The pro-
posed state coverage guidance achieved 4.17% to 97.22%
higher success (or generation) rate than neuron coverage
guidance, and even best performance on the spell checker
model. Adversarial inputs obtained by RNN-Test are of high
quality. Besides reducing the model performance sharply
with minute perturbations and high time efficiency, they
could also improve the model by retraining, such as 12.58%
improvement of test perplexity on PTB language model.
Contribution: Our work has the following contributions:
• We design a novel search methodology based on the in-

ner logics of RNNs, which maximizes the inconsistency
of RNN state dependencies to produce adversarial in-
puts efficiently.

• We propose two state-based coverage metrics cus-
tomized for RNNs, mainly as guidance for adversarial
testing. We demonstrate that coverage guidance has
a diverse searching capability for adversarial inputs
compared with other methods.

• We design and implement the adversarial testing
framework RNN-Test. To our best knowledge, this
is the first step towards systematically testing the
seq2seq domains for RNN systems. It is effective and
scalable for variants of RNNs, outperforming FGSM-
and DLFuzz-based methods as well as testRNN (on
MNIST LSTM model) and DeepStellar (on PTB lan-
guage model).

2 BACKGROUND

2.1 Deep Neural Network
In the following, we will describe the two main kinds
of DNN, convolutional neural networks (CNN) [13] and
recurrent neural networks (RNN) [14].

Convolutional neural network and neuron. Fig. 1a
shows the simplified structure of a typical CNN. CNN keeps
the fundamental feed-forward structure, where each neu-
ron is connected with neurons of adjacent layers while no
connections with those of the same layer. They are broadly
used in image processing tasks [15], [16], with specific con-
volution layers good at extracting image features. Besides,
CNN adopts classical DNN neurons, as shown in Fig. 1b.
The neuron output is a single value transformed by a non-
linear activation function, which is usually ReLU (Rectified
Linear Unit).

(a) Typical CNN structure (b) Classical neuron

Fig. 1: CNN structure and neuron

Recurrent neural network and cell. Fig. 2 illustrates
the basic structure of RNN, where an elementary RNN
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cell (noted as the square) iteratively makes predictions ŷ
based on inputs x and intermediate outputs h, which are
referred to as hidden states. When it is unfolded, the input
sequence x is fed to the RNN cell as a series of time
steps, where x could be a sentence and xt is the t-th word.
Moreover, each prediction ŷt could be the predicted word
right after xt based upon the received sequence.
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Fig. 2: RNN structure

In contrast to CNN neuron, the hidden state output hlt of
the cell at time step t of layer l is decided by current input
hl−1t from the previous layer as well as hlt−1 from the prior
step in the same layer, and then passed forward to compute
the softmax predictions. Due to this key design, RNN ex-
cels in making use of the interior contextual semantics of
sequential inputs.

Nevertheless, the basic RNN is unable to learn the se-
mantic dependency within longer time steps. LSTM (Long
short-term memory) [33], [34] and GRU (Gated recurrent
unit) [35] networks are generally deployed solutions, bring-
ing gate mechanisms to RNN cell. Fig. 3 provides the
general RNN cell and LSTM cell as the example, in which
f, i, n, o stand for various gates1, and σ for sigmoid function.
Unlike the plain RNN cell using a single tanh function to
transfer the data, LSTM cell relies on cell states c (special
of LSTM networks) to maintain the context, to which mul-
tiple gates could remove or add information, and finally to
produce the hidden state outputs.
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(b) LSTM cell

Fig. 3: RNN cell

2.2 Limitations of existing coverage metrics
While numerous coverage metrics [10], [11], [12] are pro-
posed for DNN testing, they are mostly based on CNN
neurons and hard to satisfy RNN testing. First, an RNN

1. Gates of GRU are different but similar in design, not listed here.

usually comprises one or two layers each with several
cells when unfolded, much fewer than a CNN usually of
ten more layers each with hundreds of neurons. Second,
sigmoid and tanh are conventionally used for an RNN cell
whereas ReLU is the most choice for a CNN neuron. This
is critical because that the value range of ReLU is [0,∞)
while [0, 1] for sigmoid and [−1, 1] for tanh, leading to much
narrowed value ranges of RNN states (hidden state value
not exceeding ±1) compared to those of CNN neurons (e.g.
neuron values of a large model like VGG-16 [15] could be
greater than 1000).

Unfortunately, neuron-based coverage metrics fail to
consider these critical characteristics. We evaluate neuron
coverage [10] on our tested models, which treats the hidden
states of each RNN cell as the equivalent output of a CNN
neuron. As for the PTB language model comprising two
layers each with 10 time steps, there will be only 20 neurons
in total. The neuron coverage reaches 100% with at most 4
inputs even taking a higher threshold 0.5. When for adver-
sarial testing on this model, it fails to find any adversarial
inputs, shown in Table 4 of § 5. Besides, the narrow value
ranges of RNN states largely limit the application of popular
coverage criteria [12], [36] in RNN testing. Since they
measure over multi-section (e.g. 1000) neuron value ranges
discriminated by training and testing inputs, but RNN states
of training and testing sets are with similar thin ranges and
hard to differentiate.

Recently, DeepStellar [21] abstracts RNN models as
Discrete-Time Markov Chain (DTMC) models and then
adapts coverage metrics of [12] for testing. Another work
testRNN [22] designs novel coverage metrics for LSTM
models to quantify temporal relations in RNNs. As to these
coverage criteria, they primarily characterize abnormal val-
ues in testing, which are recognized by thresholds set ac-
cording to training data. In this paper, we define coverage
metrics trying to capture key features of RNN states with
no aid of training data, where state statistics are extracted
immediately during inference phase.

3 STATE COVERAGE METRICS

In this section, we propose two state coverage metrics
based on unique features of RNNs. Hidden state cover-
age (HS C) is designed to capture RNN prediction logics,
which could be universally applied to RNN models. Due to
the widespread deployments of LSTM networks and their
peculiar design of cell states, cell state coverage (CS C) is
specially designed for LSTM models.

3.1 Hidden State Coverage
As discussed in § 2.2, RNN states cannot be regarded to
be identical to CNN neurons. Fig. 4 provides a simple
illustration of the inner logics of hidden states and cell
states. In Fig. 4a, a hidden state hlt represents the output
of each RNN cell, which is a vector containing hundreds
or thousands of units. Here each rectangle represents each
unit e, where a darker color means a higher value. When to
predict the next word following “a”, these hidden state units
will be mapped to a list of candidates. If a hidden state unit
is the maximum, its mapped candidate will probably be the
prediction result.
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Fig. 4: Illustrations of RNN states.

Therefore, hidden state units of each vector h lead to
varied prediction results for each step. During the testing
phase, it is meaningful for each hidden state unit to be
the maximum in the vector and perform predictions, espe-
cially those of the last layer fed to the softmax layer. To
summarize, we define hidden state coverage as the ratio of
such hidden state units of all the hidden state units during
testing. Note that RNN networks usually compose one RNN
layer or sometimes two layers, out of which a state unit of
higher value in the first layer is more likely to correspond
to higher values in the last layer. Based on the few layers
and thorough state information needed, we leverage all the
hidden state units to benefit the coverage guided testing.
Formally, the definition is given in formula (1).

HS C =
|{e0 | ∀h ∈ H, e0 ∈ h,∀e ∈ h, e0 >= e}|

T × L×B × E
(1)

Assume H denotes all the hidden state units of an RNN
model of given test inputs, which is a four-dimensional
matrix of shape (T, L,B,E), where T, L,B are the number
of the time steps2, layers and batch, respectively. E is
the number of units of a hidden state. Though H varies
among RNN models, T, L,B,E are always the necessary
components, where batch is to accelerate computations by
feeding multiple inputs simultaneously. Thus, T×L×B×E
will be the total number of hidden state units in matrix
H. Here, a specific hidden state h ∈ H contains E units
and is denoted as its index of H , which is [t, l, b], where
t ∈ {1, 2, . . . , T}, l ∈ {1, 2, . . . , L}, b ∈ {1, 2, . . . , B}. That
means, h is the output of the RNN cell of the t-th step in
the l-th layer for the b-th input. For a state unit e0 ∈ h, e0 is
covered if its value is the maximum out of any e ∈ h.

Note that hidden state coverage is designed of general-
purpose for RNN models. As for various RNN variants
including LSTM, Bi-LSTM (Bidirectional LSTM networks)
and GRU models, hidden states work in the same way
once obtained from RNN cells of distinct designs. Taking
a Bi-LSTM model as an example, its forward and backward
hidden states of one layer are concatenated together to feed
to the next layer, and similarly to compute predictions.

3.2 Cell State Coverage

As in Fig. 3b, the cell states and gates are activated by
functions sigmoid and tanh. The sigmoid function of three

2. For models could be fed with inputs of non-equal steps, T will be
adjusted according to the length of each input.

gates outputs values between 0 and 1, determining how
much of each cell state to keep. The tanh function pushes
the states between -1 and 1, for gate n to add information to
cell states, and for cell states c to compute the hidden states.
Thus, each cell state value protects the contexts. Fig. 4b
illustrates the cell states, where clt is the output of each
LSTM cell which is also a vector of cell state units. Similarly,
a rectangle is also a cell state unit e and a darker color for
a higher value. When to predict the predicate after “they”,
clt will receive contexts from clt−1 to keep key semantics and
remove those invalid, and then to compute predictions.

In this paper, we design cell state coverage over different
value ranges standing for degrees to keep contexts. In the
experiments, cell state values mostly fall into the central
range while few be the boundary value. We suppose that
covering more of each section (5 sections in this paper),
especially boundary sections, could explore more context
space. The formal definition is given in formula (2).

CS Cseci =
|{e | ∀c ∈ C, ∀e ∈ c, tanh(e) ∈ seci}|

T × L×B × E
(2)

Here, all the cell state units of an RNN model fed with
given test inputs are denoted as C , which is also a matrix of
shape (T, L,B,E). The value range of function tanh is split
to Sec sections and each section is seci = [vi−1, vi], where
−1 ≤ vi ≤ 1. For a specific cell state c ∈ C , it is also denoted
by the index of C as [t, l, b]. If a cell state unit e ∈ c and its
activation value tanh(e) ∈ seci, i ∈ {1, 2, ..., Sec}, then e is
covered in seci.

Furthermore, these two coverage criteria only require the
test set to extract coverage information without the training
process. Thereby, we could measure how extensively the test
inputs exercise RNN logics and benefit adversarial testing
with state coverage metrics as guidance, without additional
resources extracted from training data.

4 RNN-TEST DESIGN

In this section, we present a technical description of RNN-
Test in detail. Fig. 5 depicts the overall workflow. Given the
tested model, RNN-Test will focus on the RNN structures
without other components for particular tasks. For original
test input x, we first extract the hidden states and cell states
of each RNN cell by state wrapping, without affecting its
inherent process. These states are crucial for the subsequent
state inconsistency guided search, maximizing state incon-
sistency and state coverage to generate adversarial inputs.
Unlike the usual idea of increasing the model cost [7], [37]
or the probabilities of targeted classes [9], [31], RNN-Test
tries to increase the inconsistency of RNN states against
their inner dependencies (shown in Fig. 5, the part of obj
rounded with blue dashed frame violates data dependencies
marked with blue lines in the model). In this way, RNN-
Test could search for adversarial inputs in a lightweight and
scalable means. Meanwhile, RNN-Test also tries to cover
more states and exercise more system behaviors during
testing, guided with specific state coverage information for
different models. Then, the joint optimization problem will
be solved in a gradient-based manner and acquire minute
perturbations.
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Fig. 5: Architecture of RNN-Test

Once obtained the perturbations, adversarial inputs are
easy to acquire for models with continuous inputs like
speech, by applying perturbations directly to original in-
puts. For models with discrete inputs like NLP tasks, the
perturbation applied to the test input probably will not lead
to a legal input. Here, we adopt the nearest one as the
adversarial input after iteratively scaling the perturbation,
thus avoiding the invalid input. Finally, these adversarial
inputs will be assessed concerning the tested model for the
performance and coverage, to improve subsequent testing
efficiency. The detailed descriptions for the above steps are
given below.

4.1 State wrapping
In the inherent implementation of an RNN model, there are
two data structures accessible in the inference: all the hidden
states of the last layer, and all the hidden states and cell
states (if LSTM underlying) of the last time step. For RNN
testing, exploiting all the states should be a better choice for
thoroughly searching for adversarial inputs. Therefore, we
wrap the RNN cell implementation and keep all the hidden
states and cell states of RNN cells in every layer and time
step. With straightforward configurations, state wrapping
will not interfere inner computation of the tested models.
Note that this step is not expensive and will not affect
the time efficiency, with an open-source library (20 lines
of Python code). It is based on fundamental “RNNCell”,
the parent class of various cell implementation, making it
possible to be generalized to most RNN models.

4.2 State inconsistency guided search
The state inconsistency guided search is the core portion of
RNN-Test, an optimization problem composed of two parts.
It is formulated in equation (3), where the first part (obj1) is
referred to as adversary search, and the second part (obj2)
is as coverage guidance. Here, we treat the two parts as
a single optimization problem jointly, intending to search
for appropriate adversarial inputs with lower computation
overhead. In addition, the two parts are free to be united
together or alone, or even substituted with those of other
methodologies, thus offering multiple possibilities of dis-
covering adversarial inputs.

obj = obj1 + obj2
obj1 =

∑
l∈L h

l
t−1 + clt − hlt

obj2 =
∑m

k=0 ek, ek ∈ H(C)

(3)

Adversary search. As illustrated in Fig. 3 and Fig. 5, an
RNN or LSTM cell receives concatenated previous outputs
hlt−1 and hl−1t , and then applies gate functions (sigmoid or
tanh) which are monotonically increasing, to finally obtain
its output hlt. Note that GRU cell is of the similar case.
Consequently, hidden state vector hlt probably has a positive
correlation with the inputs hlt−1, hl−1t and intermediate
outputs clt (if c implemented), which is demonstrated to
be a basic rule (though not universal in few cases) in our
validations.

Inspired by the state dependency, a novel methodol-
ogy is designed to craft adversarial inputs specially for
RNN models. Here, RNN-Test tries to increase hlt−1 and clt
while decrease hlt simultaneously, which intentionally vio-
lates their inner dependencies to lead the model to exhibit
unusual behaviors. Then the violated dependencies will
spread across the whole model. In this manner, RNN-Test
is able to search for adversarial inputs distributed outside
of the regular inference space. As for the time step t in
the objective, one step selected randomly out of each input
will be adequate to achieve considerable performance. For
the model with inputs always of hundreds of time steps,
several more steps can be employed to increase the state
inconsistency. Moreover, states of multiple layers l ∈ L (L
for all the layers) with respect to the same time step t will
be leveraged to accelerate the search efficiency.

Coverage guidance. This part aims to cover the un-
covered states, exercising more decision logics to produce
adversarial inputs. RNN-Test leverages the proposedHS C
and CS C metrics to guide adversarial testing, where
CS C guidance for LSTM models and HS C for general
RNN models. To boost the specific coverage, RNN-Test se-
lects m hidden states or cell states to compose the optimiza-
tion objective, as in formula (3). Rather than merely selecting
uncovered states randomly, RNN-Test mainly chooses the
states with values near to be covered so as to reach a higher
coverage value at an earlier stage. Since CS C is defined
over a series of sections and the boundary sections are
hardly covered, the states with values near the boundary
section endpoints will be the targets to cover, thus leading
RNN-Test to search in more sensitive space.

Subsequently, the joint optimization objective will be
maximized by mutating the test inputs, unlike the training
course minimizing the prediction error by tuning the param-
eters. Given the predefined objective, its derivative for the
input x will be the perturbation, which is the gradient direc-
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TABLE 1: Summary of RNN models to evaluate RNN-Test. The first four models are for the major evaluation. The last
model MNIST LSTM is constructed for comparison to testRNN.

Model Description Architecture Performance
Metric Reported Ours

PTB language
model

General language
model

Two-layer LSTM in its
small configuration(i.e. fewer steps)

Train perplexity1

Test perplexity
37.99
115.91

43.316
117.122

Spell checker
model

Simple seq2seq
model

Two-layer bi-direction
LSTM for the encoder Sequence loss 15% 10%

DeepSpeech
ASR model

State-of-the-art
ASR model

One-layer bi-direction
LSTM with CNN layers around WER2 16% 16%

MNIST GRU
model

Handwritten digit
recognition of GRU network One-layer dynamic GRU Test accuracy - 96.5%

MNIST LSTM
model

Handwritten digit
recognition of LSTM network One-layer LSTM Test accuracy 98.3% 96.88%

1 Perplexity, the universal metric for language models, where lower perplexity corresponds to a better model.
2 Word error rate, a common performance metric for seq2seq and ASR models, where higher WER means worse predictions.

tion along which it increases or decreases most. Afterwards,
the perturbations will be exploited to generate adversaries.

4.3 Adversarial input synthesis
For continuous inputs like speech, the perturbations could
be applied directly to acquire the adversarial input. For NLP
tasks whose inputs are words or characters scattered in dis-
crete embedding space, procedure GEN ADV is presented
in Algorithm 1. In the procedure, we iteratively scale the
gradient to be applied as the perturbation and then search
for the nearest word/character in the embedding space to
mutate the input step (lines 8 to 14 in Algorithm 1). This
is a straightforward way to obtain valid adversarial inputs,
ridding of embeddings which are not equivalent to legal
words/characters. Besides, the embedding representations
of words or characters in each NLP task are acquired
after enough training, which could unveil their semantic
properties. Therefore, searching along the gradient for the
nearest embedding could get desired adversarial inputs
with existing semantic information.

Algorithm 1 Adversarial input synthesis for discrete inputs

Input: x← original test input
t← one time step selected to modify
grad← perturbations obtained
embs← embeddings of the vocabulary
MAX SCALE←maximum degree of scaling the gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: /*generate adversarial inputs for NLP tasks.*/
2: procedure GEN ADV(x, t, grad, embs)
3: x′ ← x
4: dist vec← ∅
5: for scale ∈ [1, MAX SCALE] do //search along the gradient
6: pert = gradt × scale //perturbation for the time step
7: t emb = xt + pert //get invalid embedding by gradient ascent
8: for emb ∈ embs do
9: dist = norm(t emb - emb) //distance of t emb to emb

10: dist vec = dist vec ∪ {dist}
11: nearest emb = argmin(dist vec) //the nearest embedding
12: if nearest emb != xt then
13: x′

t = nearest emb //modify the time step
14: break
15: return x′ //acquire the adversarial input

In the literature, the adversarial input is identified for the
imperceptibility from the original input but with the distinct
class label. In seq2seq domains with no classifications, it
is hard to recognize a generated sequence as the adver-
sarial input avoiding false positives, which has no stan-

dards yet [23], [24], [38]. Fortunately, model performance
metrics are a good choice to exhibit qualities of adversarial
inputs, which are supposed to be accessible in all the tasks.
Consequently, adversarial inputs obtained will be fed into
the model assessing whether to decay the performance and
updating the coverage, where coverage information will be
exploited to guide subsequent testing.

5 EXPERIMENT

5.1 Experiment Setup
Implementation. We developed the framework RNN-Test
on the widely deployed framework Tensorflow 1.3.0, and
evaluated RNN-Test on a computer having Ubuntu 16.04 as
the host OS, with an Intel i7-7700HQ@3.6GHz processor of
8 cores, 16GB of memory and an NVIDIA GTX 1070 GPU.

As for hyperparameters in RNN-Test algorithms, such as
m and MAX SCALE, they are tuned for each tested model
and not listed here for simplicity. We will release our code
and datasets upon publication for further discussions.
Tested models. A summary of tested models is presented
in Table 1. We mainly evaluated RNN-Test on the first four
RNN models dealing with different tasks, three of which are
seq2seq and one is seq2one. The last model MNIST LSTM is
particularly constructed for comparison to testRNN. These
models of common structures and various tasks provide
more confidence for the generalization of RNN-Test to other
RNN models.

PTB language model [27] is a well-known RNN model,
basically to generate subsequent texts taking previous texts
as input. It is the implementation of the fundamental
LSTM [34] without particular adaptations for specific ap-
plications. The training and testing data are provided by the
Penn Tree Bank dataset [39], and we extracted the first 25
sentences of the testing data for evaluation. We trained this
model to achieve comparable performance to that reported
using the same training course.

Spell checker model [28] is one of the widespread seq2seq
models in NLP tasks, which receives a sentence with
spelling mistakes as input and outputs the sentence with
mistakes corrected. The training data are twenty popular
books from project Gutenberg [40]. For testing, we con-
structed 160 sentences with spelling mistakes like examples
of developers, thanks to rich sources from Tatoeba [41].
Since their pre-trained model is unavailable, we trained this
model in the same way.
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TABLE 2: Effectiveness of RNN-Test and other methods in their default settings, measured over adversarial inputs obtained
by each method. Note that worse performance values (e.g. WER) indicate stronger test capability of methods (The best
result across each row is denoted bold). The coverage guidance used by RNN-Test is given following w. (with), HS C is
hidden state coverage and CS C is cell state coverage. The same symbols are used in below tables.

Methodology

Model Performance Original Random testing FGSM-based DLFuzz-based
RNN-Test
(w. HS C)

RNN-Test
(w. CS C)

PTB language
model

Perplexity 150.46 229.97 240.07 233.35 285.13 277.44
Generation Rate1 - 100.00% 95.78% 93.59% 100.00% 100.00%

Spell checker
model

WER 5.63 7.10 7.19 7.07 7.40 7.49
BLEU2 0.870 0.830 0.829 0.826 0.827 0.822

Success Rate3 - 64.58% 73.61% 73.61% 73.61% 76.39%

DeepSpeech
ASR model

WER 5.50 5.35 6.65 6.18 8.10 7.80
BLEU 0.796 0.800 0.747 0.786 0.703 0.720

Success Rate - 40.67% 90.00% 67.50% 100.00% 100.00%
MNIST

GRU model
Accuracy 96.5% 42.22% 56.67% 46.67% 20.00% -

Success Rate - 56.32% 41.37% 58.62% 79.31% -
1 Generation rate. Ratio of the test set the methodology has managed to produce the adversarial input.
2 BLEU (Bilingual evaluation understudy). Correspondence of prediction and the ground truth, where higher BLEU means better predictions.
3 Success Rate. Ratio of the generated adversarial inputs to successfully reduce the model performance, not used for the first model as its

performance is recorded over all inputs.

DeepSpeech ASR model [29] is a state-of-the-art speech-
to-text RNN model employed in lots of security-critical
scenarios. Its pre-trained model DeepSpeech-0.1.1 (Mozilla’s
implementation) could be deployed conveniently, and our
testing data are the first 20 samples extracted from the
Common Voice corpus [42].

MNIST GRU model [30] is a seq2one classification model
implemented with GRU network built for MNIST [43]
dataset, a famous handwritten digit dataset. We followed
[30] and constructed a one-layer GRU model with 96.5%
accuracy, which is evaluated based on the first 30 images of
MNIST test set.

Baselines. For comparison, we first customize adversarial
testing methodologies FGSM [7] and DLFuzz [31] to work
for RNN models. They both generate adversarial inputs by
solving optimization problems in a gradient-based manner
and achieve considerable efficiency. We implement their op-
timization objectives and coverage metrics on RNNs, while
other procedures are the same as RNN-Test. For FGSM-
based method, its optimization objective only contains the
adversary search part without coverage guidance, whereas
DLFuzz-based methodology also makes use of coverage
guidance to obtain adversarial inputs, where neuron cover-
age (NC) is the underlying metric. Here, the NC definition
of RNN models is the same as DeepTest [26]. Note that the
customization will not degrade their performance since our
optimized searching procedures are also used for them.

For relevant works on RNN testing, there is a significant
gap to conduct comparisons due to framework incompat-
ibility and open-source issues. Besides later release than
our preliminary work, tested models of testRNN [22] and
DeepStellar [21] are built on Keras and corresponding mod-
els on TensorFlow are mostly unavailable. Ultimately, we
developed RNN-Test on an LSTM network [32] of MNIST
dataset, which is an image classifier both evaluated in the
two works. This MNIST LSTM network is constructed on
TensorFlow and achieves comparable test accuracy over the
default MNIST dataset. Furthermore, we also built Deep-
Stellar to test and evaluate the PTB language model.

Research questions: We constructed experiments to answer
the following research questions.
• RQ1. How is the effectiveness of the RNN-Test? (§ 5.2)
• RQ2. How is the effectiveness of coverage guidance for

adversarial testing? (§ 5.3)
• RQ3. How is the quality of adversarial inputs obtained

by RNN-Test? (§ 5.4)

5.2 Effectiveness of RNN-Test (RQ1)

To conduct a thorough evaluation, we compare our RNN-
Test approach with other methodologies over the tested
models, measuring the model performance fed with adver-
sarial inputs obtained by each methodology. Besides, we
also provide results of original test inputs, and those of
random testing that randomly replaces a word/character
of text input or applies Gaussian noise to speech and image
input. We run them on each tested model over the same
original test set three times, to alleviate the uncertainty each
time. The same settings are adopted for below evaluations
of other methods.
Overall results. Table 2 summarizes the overall results, from
which we could derive the following inferences. Firstly,
adversarial inputs can decline the model performance, since
tested models all achieve worse performance over adversar-
ial input sets than the original test sets.

Secondly, random testing methods can also obtain adver-
sarial inputs, but they are far from satisfactory. For the 100%
generation rate on PTB language model, random replace-
ment could always get mutated inputs while FGSM- and
DLFuzz-based methods may fail to find adversarial inputs
for some inputs.

Thirdly, the RNN-Test approach outperforms FGSM-
based and DLFuzz-based approaches, with more perfor-
mance reduction and higher success (or generation) rate. For
instance, in comparison with FGSM-based method, RNN-
Test (w. HS C) achieves 18.77% higher perplexity and
4.22% higher generation rate on PTB language model, 2.92%
higher WER, 0.24% lower BLEU on spell checker model,
21.80% higher WER, 4.40% lower BLEU and 10% higher
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success rate on DeepSpeech ASR model, and 36.67% lower
accuracy and 37.94% higher success rate on MNIST GRU
model. As for the slight improvement on the spell checker
model, the sparse embedding space may be the primary
cause, since it largely limits the searching capability.

How to choose the appropriate coverage guidance. As
shown in Table 2, RNN-Test guided with HS C and CS C
both gain better effectiveness than other methodologies,
with no one always superior to the other. When applied
for realistic RNN tasks, it is straightforward to choose the
appropriate coverage guidance. For LSTM models, both are
good alternatives. For common RNN and GRU models,
HS C is the choice, since hidden states are universal across
these structures while cell states are special of LSTM models.

Comparison to relevant RNN testing works. As described
in § 5.1, we conduct comparisons to other RNN testing
methods over an MNIST LSTM model due to framework in-
compatibility. Table 3 presents the comparison of RNN-Test
to testRNN on MNIST LSTM model, both over 500 original
inputs as the evaluation setting of testRNN. TestRNN em-
ployed random mutation (RM) and targeted mutation (TM)
to generate 2000 test cases for evaluation, respectively. In
RNN-Test, once one adversarial input is obtained for the
corresponding test input, the testing procedure starts for an-
other test input, and thus acquired 500 test cases. In Table 3,
RNN-Test could generate much more adversarial inputs
out of fewer test cases, obtaining 52.65% to 66.45% higher
adversary rate than TM algorithm of testRNN, a refined
means of RM. Although testRNN (RM) obtains smallest
perturbations, testRNN (TM) with largest perturbations still
reached limited adversary rate.

TABLE 3: Effectiveness of RNN-Test compared to testRNN
on MNIST LSTM model over 500 original inputs. The results
are listed in a similar way of testRNN [22], where those for
testRNN are exactly that they reported.

Methodology
MNIST LSTM

model
testRNN

(RM)
testRNN

(TM)
RNN-Test
(w. HS C)

RNN-Test
(w. CS C)

Test Cases
Generated 2000 2000 500 500

# Adv. Inputs 26 63 348 279
Avg. Perturb.

(L2 norm) 1.051 4.028 1.74 1.69

Adversary Rate 1.3% 3.15% 69.6% 55.8%

As to the state-of-the-art work DeepStellar, it reported
that thousands of adversarial images were obtained for 100
test inputs after 6 hours on a high-performance server. Since
DeepStellar adopts multiple random mutation strategies for
each input seed with high iteration times, there are many
adversarial inputs with huge distortion which are hard for
humans to identify. Due to our design, it takes RNN-Test
16s to 24s to craft adversarial images for 100 inputs. Despite
that, RNN-Test is also able to test each input continuously
and generate much more adversarial inputs. If with a same
high-performance server (with 28-core CPU, 196 GB RAM,
and 4 NVIDIA Tesla V100 16G GPUs), RNN-Test is sup-
posed to achieve comparable results.

Moreover, we adapted DeepStellar on PTB language
model with their testing procedures and coverage criteria. In
a similar way, we also mutate the text inputs by randomly

replacing one word out of a sentence, with high mutation
times for one input. As a result, DeepStellar generated more
than 10000 adversarial inputs, obtaining 180.44 test per-
plexity with 84% generation rate. Due to numbers of input
seeds, some inputs are hardly selected to mutate, with lower
generation rate and guided coverage criteria (state-level
criteria) of 50.43%. To conclude, RNN-Test acquires 53.76%
to 58.02% more perplexity with 16% higher generation rate
on PTB language model, compared with DeepStellar.

The answer to RQ1: The RNN-Test approach is effective
in generating adversarial inputs, with the ability to reduce
the model performance sharply with high success (or
generation) rate.

5.3 State coverage guidance contributes to adversarial
testing (RQ2)
Divergent perturbations of coverage guidance. The previ-
ous work [44] suggests that perturbations obtained by neu-
ron coverage guidance are similar to adversary-based search
methods (e.g. FGSM) and so the coverage guidance does
not add too much, which is concluded based upon analyses
over popular coverage guided testing methodologies [10],
[12], [36]. But the conclusion may not work for the proposed
state coverage metrics, since those criteria assessed are all
over CNN neurons.
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Fig. 6: TSNE transformations of perturbations of the above
approaches with different optimization objectives for one
same test input. Search is adversary search, coverage is
coverage guidance, joint is joint objective, same in below
figures. The divergent distribution represents various per-
turbations and thus adversarial inputs.

Here, we recorded perturbation vectors obtained by ap-
proaches we evaluated over the same inputs of each RNN
model. Besides their default settings, we run each approach
with either pure adversary search or coverage guidance, as
well as the joint way. To visualize, we leverage the state-of-
the-art high-dimensional reduction technique TSNE [45] to
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TABLE 4: Effectiveness of state coverage guidance, com-
pared to neuron coverage guidance.

Methodology
Model Performance NC HS C CS C

PTB language
model

Perplexity 150.46 238.07 236.96
Generation Rate 0% 94.66% 97.22%

Spell checker
model

WER 7.03 7.48 8.00
BLEU 0.830 0.827 0.823

Success Rate 73.61% 75.00% 77.78%

DeepSpeech
ASR model

WER 5.45 5.65 5.35
BLEU 0.801 0.791 0.794

Success Rate 10.00% 40.00% 55.00%
MNIST

GRU model
Accuracy 95.56% 56.67% -

Success Rate 1.15% 44.83% -

transform multi-dimensional perturbation vectors into two
dimensions. As Fig. 6 shows, there is no evident similarity
of perturbations of the adversary search, coverage guidance
or joint objectives. In contrast, the divergent distribution
implies that coverage guidance is capable to offer alternative
perturbations, whether utilized independently or jointly,
thus providing varied adversarial inputs. Therefore, the
coverage guidance is worthy to be applied to adversarial
testing.

Effectiveness of pure coverage guidance for adversarial
testing. State coverage guidance can also be adopted to dis-
cover adversarial inputs independently, due to the unique
perturbations of coverage guidance. Table 4 presents the
results of HS C , CS C , and NC as guidance to be the only
optimization respectively. As shown, state coverage metrics
as guidance can acquire adversarial inputs on the tested
models, while NC guidance fails to obtain any on PTB
language model. Overall, both CS C and HS C outper-
form NC as guidance, especially on PTB language model,
DeepSpeech ASR model and MNIST GRU model. Therefore,
neuron-based coverage metrics will not be appropriate for
RNN models, as discussed in § 2.2. Surprisingly, when cross-
referenced with Table 2 for the spell checker model, CS C
guidance exhibits the best performance with the highest
WER and success rate.

Enhancement of coverage guidance to other methods.
We also demonstrate that both FGSM-based and DLFuzz-
based approaches with state coverage guidance could gain
higher effectiveness than themselves and those jointed with
NC guidance. For instance, Table 5 provides results of
DLFuzz-based methodology jointed with HS C and CS C
guidance, as well as its NC guidance. Compared with NC
guidance, HS C and CS C guidance improve DLFuzz-
based technique over the tested models in varying degrees.
Additionally, similar results are attained for FGSM-based
approach, where state coverage guidance improves more
than NC guidance, as presented in Table 6. Thus, state
coverage guidance is proven to be able to enhance other
adversarial testing methodologies. Though these two meth-
ods could be improved with state coverage guidance, the
most powerful means for most models is still the RNN-Test,
as cross-referenced with Table 2.

In terms of MNIST GRU model, HS C guidance could
enhance the two methods to a large extent, even with higher
effectiveness than RNN-Test. To be frank, RNN-Test with
only state inconsistency optimization exhibits best perfor-
mance over MNIST GRU model with 93.10% success rate

and 6.67% accuracy. Despite that RNN-Test (w. HS C or
CS C) is not always the best for all the models in this
paper, our proposed methods including state inconsistency
optimization as well as state coverage guidance are both
worthwhile for further studies in RNN testing.

TABLE 5: Effectiveness of DLFuzz-based methodology with
state coverage guidance, compared to its NC guidance.

Methodology
(DLFuzz-based)

Model Performance w. NC w. HS C w. CS C
PTB language

model
Perplexity 233.35 243.19 238.71

Generation Rate 95.42% 97.44% 99.15%

Spell checker
model

WER 7.07 7.44 7.10
BLEU 0.826 0.825 0.825

Success Rate 73.61% 75.00% 76.39%

DeepSpeech
ASR model

WER 6.18 6.15 6.10
BLEU 0.786 0.785 0.778

Success Rate 67.50% 75.00% 70.00%
MNIST

GRU model
Accuracy 46.67% 16.67% -

Success Rate 58.62% 82.76% -

TABLE 6: Effectiveness of FGSM-based methodology jointed
with the coverage metrics, compared to its default setting
with no coverage guidance.

Methodology
(FGSM-based)

Model Performance w. - w. NC w. HS C w. CS C
PTB language

model
Perplexity 240.07 241.23 256.91 256.91

Generation Rate 95.78% 98.69% 97.65% 100.00%

Spell checker
model

WER 7.19 6.99 7.46 7.14
BLEU 0.829 0.832 0.828 0.831

Success Rate 73.61% 73.61% 73.61% 70.83%

DeepSpeech
ASR model

WER 6.65 6.70 6.75 6.80
BLEU 0.747 0.747 0.748 0.746

Success Rate 90.00% 90.00% 90.00% 90.00%
MNIST

GRU model
Accuracy 56.67% 53.33% 20.00% -

Success Rate 41.37% 44.83% 79.31% -

Coverage value may not be a strong indicator of
methodology effectiveness. Numerous works [10], [12],
[22], [36] adopt the coverage value as an indicator of effec-
tiveness for adversarial testing. Meanwhile, researchers [44],
[46], [47], [48] raised doubts that there may be limited
correlations between coverage and robustness of DNNs.

Here, we have analyzed correlations between the model
performance and values of coverage metrics on the first four
models, but found out weak positive or negative correla-
tions. As listed in Fig. 8, correlation values in four subfigures
are 0.2314, -0.0667, -0.5362 and -0.3974, respectively (those
not listed here are of analogous correlations. Therefore,
we could not draw the conclusion that obtaining higher
coverage definitely results in higher effectiveness in RNN
testing. On the one hand, a higher coverage value does not
ensure the method achieving a higher success rate or WER.
On the other hand, adversarial input sets which highly
decline the model performance (e.g. result in low perplexity)
may not lead to higher coverages. This finding is consistent
with similar studies in DNN testing [47], [48]. Though
testRNN proved that their adversarial input set is with
higher coverage rate than the normal input set, whether
a higher coverage rate leads to a higher adversary rate
also remains unsettled. Hence, we suggest that more efforts
are demanded for adversarial testing with the coverage
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(d) HS C on MNIST GRU model

Fig. 7: Value ranges of coverage metrics among different approaches (w.- denotes no coverage guidance) over the same
amount of adversarial inputs. The blue dashed lines denote the corresponding coverage value of original test input sets.
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Fig. 8: The model performance metrics of adversarial in-
put sets w.r.t. value of coverage metrics, where random
is random testing. Subfigure (a), (b), (c) and (d) are for
PTB language model, Spell checker model, DeepSpeech ASR
model and MNIST GRU model, respectively.

guidance, but not just to improve the coverage value. Model
performance indicators value more attention to evaluate an
RNN testing means.

Simple illustration of value ranges of coverage metrics.
Fig. 7 presents the value ranges of HS C , CS C and
NC achieved by different methods on each tested model
respectively. We also provide results of each methodology
with and without the corresponding coverage guidance,
since the coverage guidance still tends to improve the value.
For each box, it represents a set of coverage values of the
methodology at different times, marked with bounds and
the median. Note that most boxes in Fig. 7c and Fig. 7d
resemble lines because of the limited stochasticity and equal
coverage values obtained on these models.

It must be claimed that coverage values strongly depend
on the number of test inputs, and the same amount of
inputs are supposed to be with similar value ranges. As
presented, the value ranges of these coverage metrics among
methodologies vary not much (within 5%), especially NC
ranges are almost the same. It is the same case for figures
not given here. Furthermore, HS C values are always very

low since it is inherently hard to boost HS C with a few
inputs, similar to boundary sections of CS C over larger
models. Meanwhile, it also supplies evidence that method-
ology effectiveness may be affected little by coverage values.
However, coverage guidance is still worthy of more research
investment. In summary, we could get the following answer.

The answer to RQ2: State coverage metrics as guidance
are able to acquire adversarial inputs, superior to neuron
coverage guidance whether independently or jointed with
adversary search. The coverage guidance has the potential
to be more effective, since the divergent perturbations and
best performance on the spell checker model.

5.4 Quality of adversarial inputs of RNN-Test (RQ3)

Samples of adversarial inputs. Table 7 lists samples of ad-
versarial inputs on the two NLP models, with each approach
to modify the same word. Due to only one word or character
out of the sentence is modified for each test input to be the
adversarial input, the generated adversarial sets will still
remain natural and keep the semantics. Since the word to
replace with is the nearest one along gradients across the
embedding space, it is unlikely for abnormal words like
“not” to be the target and substantially change the meaning.

For both models, RNN-Test tends to generate different
words with other methods, offering diverse adversarial in-
puts. For PTB language model, our adversarial inputs could
result in the model sampling words farther from semantics
and generating higher perplexity texts, where prediction
results of RNN-Test are with totally wrong semantics. Mean-
while, adversarial inputs for the spell checker model could
result in the corrected mistakes in original inputs appearing
again in the predictions of adversarial inputs.

For DeepSpeech ASR model, they could result in the
model making wrong predictions, as depicted in Fig. 9.
Such adversarial inputs of misleading semantics may harm
the security requirements of tested models. Fig. 10 shows
adversarial images on MNIST GRU model as an example, in
which adversarial inputs fool the classifier while preserving
the correctness for humans.

Imperceptible perturbations. Table 8 lists the averaged
size of perturbations of each method on the tested models,
namely the distortion introduced by perturbations applied.
Note that l2 norm measures over the initial perturbations
before applied according to various domain-specific con-
straints. For the first two models, we aim to modify the
original input with one word or character replaced, which is
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TABLE 7: Samples of adversarial inputs on the two NLP models, the targeted words to modify are in red and underlined.
The affected results for the spell checker model are also underlined.

Methodology PTB language model spell checker model

Original

Input: no it was n’t black Monday ...
Perplexity: 259.67
Generate: economy goes forward

on behalf of ...

Input: I would swim through theoocean just to see your smile again.
Predict: I would swim through the ocean just to see your smile again.
Input: The sound of yur voice islike siren’s songto me.
Predict: The sound of yur voice is like siren’ song to me.

FGSM-based

Input: no it was n’t black co. ...
Perplexity: 376.46
Generate: economy goes forward

on behalf of ...

Input: I would swim through theootean just to see your smile again.
Predict: I would swim through the otean just to see your smile again.
Input: The sound of yur voice isliee siren’s songto me.
Predict: The sound of yur voice is liee siren’ song to me.

DLFuzz-based

Input: no it was n’t black due ...
Perplexity: 357.38
Generate: soviets appear reluctant

between france ’s ...

Input: I would swim through theootean just to see your smile again.
Predict: I would swim through the otean just to see your smile again.
Input: The sound of yur voice islske siren’s songto me.
Predict: The sound of yur voice issle siren’ song to me.

RNN-Test

Input: no it was n’t black $ ...
Perplexity: 513.91
Generate: soviets appear reluctant

toward nov. a.m. ...

Input: I would swim through theoKcean just to see your smile again.
Predict: I would swim through the cocean just to see your smile again.
Input: The sound of yur voice isltke siren’s songto me.
Predict: The sound of yur voice istle siren’ song to me.

Original
RNN-Test

Fig. 9: An example adversarial input of RNN-Test for Deep-
Speech ASR model. The waveform of a test input (blue, thick
line) is overlapped with the waveform of the adversarial
input (yellow, thin line). Each waveform is 500 samples long
and was chosen randomly from the corresponding inputs.
The original prediction is “the shop as closed on mondays”
while the prediction for adversarial input is “the shop as
close tan monas”.

(a) Original (b) FGSM-based (c) DLFuzz-based (d) RNN-Test

Fig. 10: Samples of adversarial inputs for the same original
one on MNIST GRU model. The original image is classified
correctly as 9, whereas three adversarial images are classi-
fied as 4.

the nearest target found using the perturbations. Hence, all
these methods will introduce the same distortion (one word
or character) for the test input. Overall, FGSM-based ap-
proach achieves the smallest distortion over all the models,
demonstrating its generality over DNN models. In addition,
both DLFuzz-based and RNN-Test methods also induce
minute distortions to achieve considerable effectiveness,
ensuring the qualities of adversarial inputs.

During our evaluations, we found that our state incon-
sistency combined with state coverage guidance could gen-
erate large perturbations, implying the significance of states
in RNN systems. For the first two models of discrete text in-
puts, scaling the gradient results in enormous perturbations.
Since the modification is limited to one word or character,

large perturbations will not lead to more distortion. For the
last two models of continuous inputs, it is straightforward
to utilize a relatively small learning rate before applying
perturbations and obtain desired adversarial inputs.

TABLE 8: Distortion of adversarial inputs with respect to
original inputs on four models (1 w for one word and 1 c
for one character).

Methodolgy

Model Distortion Random
testing

FGSM
-based

DLFuzz
-based

RNN-Test
(w. HS C)

RNN-Test
(w. CS C)

PTB language
model

MED1

l2 norm2
1 w

–
1 w
5.75

1 w
5.75

1 w
1322.92

1 w
1294.65

Spell checker
model

MED
l2 norm

1 c
–

1 c
0.0003

1 c
0.26

1 c
25.68

1 c
55.17

DeepSpeech
ASR model l2 norm 0.08 0.0003 0.03 0.04 0.02

MNIST
GRU model l2 norm 0.34 0.24 0.30 0.41 -

1 Minimum edit distance. Minimum number of single edits (substitu-
tions here) required to change original input to the adversarial input.

2 l2 norm. Relative size of initial perturbations to original inputs.

Concerning large perturbations on the two NLP mod-
els, we have attempted to restrict perturbations of all the
methods by dividing with their absolute values, making all
the perturbations less than 4.04. For PTB language model,
after restriction, only RNN-Test w. CS C still gets 1.7%
higher perplexity than random testing except for all others.
Furthermore, the results for spell checker model vary little
after restriction. As a consequence, the RNN-Test approach
is a good choice to craft adversarial inputs in high efficiency.

Time efficiency, and reality concerns. RNN-Test also
has high time efficiency, producing each adversarial input
costs 3s, 11s, 24s, and 1s on average on PTB language
model, spell checker model, DeepSpeech ASR model, and
MNIST GRU model, respectively. That means RNN-Test has
the potential to be applied in industrial practice. As for
realistic concerns about adversarial images of tasks like au-
tonomous driving or image classification, adversarial cases
will probably not encounter in real-world circumstances and
weaken the security significance. In RNN testing, users are
likely to mistype text inputs and fail NLP models in reality.
Nevertheless, this is an urgent issue for ASR models at
present, since adversarial audios [24] always become invalid
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when played over-the-air, which we will be devoted to in
future works.

Improve the model by retraining. Last but not the least,
adversarial inputs obtained by RNN-Test are also capable
to improve the model performance by retraining. We tried
on PTB language model and incorporated adversarial in-
puts (82.5 KB) to the training set (5.1 MB).

TABLE 9: The perplexity before and after retraining on PTB
language model. Columns 3 and 5 are for the augmented
training set. Columns 4 and 7 are for the improvement of
retraining results w.r.t original results.

epoch train perplexity valid perplexity
original w. adv. increment original w. adv. decrement

0 290.584 288.579 -0.690% 190.004 192.096 -1.101%
2 113.216 113.712 0.439% 140.328 140.339 -0.008%
4 86.290 87.195 1.049% 132.589 132.969 -0.287%
6 56.282 56.961 1.207% 121.410 120.566 0.695%
8 46.549 47.082 1.146% 122.981 121.611 1.114%
10 43.991 44.474 1.096% 123.065 121.385 1.365%
12 43.227 43.695 1.082% 122.440 121.020 1.159%

Table 9 presents the perplexity of PTB language model
before and after retraining, where train perplexity indicates
the performance on the training set while valid perplexity
for the valid set. Here the data are averaged over 5 times of
the same retraining process with 12 epochs, to mitigate af-
fects due to the intrinsic indeterminism of neural networks.
From columns 4 and 7, results show that the train perplexity
of the model after retraining increases by 1.082% whereas
the valid perplexity decreases by 1.159% in end. Moreover,
the test perplexity after retraining is 102.75, which is also
declined by 12.582% compared to the original test perplexity
117.53. Notice that even by incorporating fewer adversarial
inputs (1.6KB), the valid perplexity still declines by 0.058%.
Therefore, adversarial inputs could alleviate the over-fitting
issue in training by reducing little train performance, but
improving the valid and test performance and thus the
robustness of RNN models.

The answer to RQ3: RNN-Test could efficiently produce
adversarial inputs of high quality, declining the model
performance sharply and improving the model by retrain-
ing.

6 DISCUSSIONS

Target models and applications. RNN-Test is devoted to be-
ing general and scalable for variants of RNNs, but we could
not exhaustively evaluate all the variants and applications.
In this paper, we focus on seq2seq tasks based on common
RNN systems such as LSTMs and GRUs. Next, our approach
could work over not only tasks with continuous inputs like
speech and images, but also those of discrete inputs like
texts. Despite the special design for seq2seq tasks, RNN-Test
could also apply to seq2one tasks like image classification.

When applied to other types of tasks in the future,
formidable efforts are still required. Among the widespread
domains of RNN systems, different tasks probably intro-
duce particular challenges for testing. As to one-to-many
tasks like music generation, it may require totally different
ways to mutate the inputs rather than apply perturbations.

Taking another classification task (IMDB sentiment anal-
ysis GRU model [49]) as an example, RNN-Test reduced
the model accuracy from 79.49% to 61.54% and achieved
a success rate of 22.58%. Although RNN-Test can be applied
to evaluate GRU models, specific task-specific constraints
still limit its performance. We suggest that RNN-Test is a
good choice for seq2seq tasks as well as image classification
tasks.

Threats to validity. Though RNN-Test exhibits appre-
ciable effectiveness with the default setting in evaluations,
its performance is inevitably influenced by the parame-
ters, including the number of states selected to boost, the
weights applied to joint objectives and the scaling degree
of perturbations, especially the ways of sections splitting of
CS C . They are worthy to be well explored in future work.
Furthermore, the uncertainty running each time still exists,
owing to stochastic word/character to modify, which could
be diminished by fixing the target. Lastly, the structures of
tested models are general to some extent, but training the
spell checker model still costs hard work, due to its bad
reproducibility of the training results given.

Limitations of RNN-Test. The RNN-Test approach
mainly utilizes RNN states in the design and thus introduces
consequent limitations. We summarize them as threefold.
First, state wrapping aims to avoid interfering with model
logics, but adaptation efforts may be necessary for some
variants with complex structures. Second, hidden state cov-
erage is defined for common RNN models mostly of fewer
layers, which might not be applicable to stacked LSTMs.
Similarly, cell state coverage is particularly designed for
LSTM models. Third, due to large initial perturbations of
our state inconsistency with state coverage guidance, it
is usual though not heavy to finetune a learning rate for
specific tasks.

7 RELATED WORK

Adversarial deep learning. The concept of adversarial at-
tacks was first introduced in [6]. It discovered that state-
of-the-art DNNs would misclassify the input images by
applying imperceptible perturbations, where these mutated
inputs are called adversarial examples/inputs. Their work
FGSM [7] and numerous following works [8], [9], [50] gener-
ate adversarial inputs by maximizing the prediction error in
a gradient-based manner. They provide rich input resources
for CNNs to improve their robustness.

Afterwards, [38] explains adversarial inputs for RNNs,
but presents rough qualitative descriptions for those of
sequential outputs. Recently, the security aspects of RNN-
based tasks have drawn significant attention in the research
communities, such as sentiment analysis [20], [51], [52], [53],
text classification [52] and fake news detection [54]. These
existing works mostly focus on tasks of categorical outputs.
For those of text inputs, some works [19], [20] add, delete or
substitute a word/character to construct adversarial inputs,
leading models to give wrong classifications.

Unfortunately, few works are evaluating the high por-
tion of RNN models processing sequential outputs. Due to
no explicit class labels and no standards for such adversarial
inputs, existing works attack these models to perform in-
correctly in distinct ways. TensorFuzz [23] crafts adversarial
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inputs to lead the language model to sample words from the
blacklist. Several works [24] fool well-known ASR models
to produce targeted phrases given by the attacker. An-
other work [25] evaluates reading comprehension systems
with inserted sentences to build adversaries altering seman-
tics while answers unchanged. Other emerging methods
perform specific attacks towards machine translation [55],
question answering [56] or dependency parsing [57] tasks.
Opposite to them, we aim to craft adversarial inputs that
look nearly the same as original ones but highly decay
the model performance. In this way, we propose RNN-Test
as an effective and scalable methodology for diverse RNN
systems, especially those of seq2seq tasks.
Coverage guided testing. Based upon the exposed threats
of DNNs, traditional software testing techniques are sub-
sequently applied to test DNN systems, where coverage
guided testing is of a popular trend. DeepXplore [10] first
introduces neuron coverage which is defined over CNN
neurons with pre-defined thresholds. Then, DeepGauge [12]
defines a set of coverage metrics with finer-grained granu-
larity, where neuron value ranges are split as thousands of
sections according to training data. DeepCT [36] is even fine-
grained to measure over combinations of neuron outputs.
As stated in § 2.2, these neuron-based coverage metrics can
not be directly applied to RNN states.

As for works also among the first attempts of adversarial
testing for RNN systems, DeepStellar [21] adapts coverage
metrics of DeepGauge to test RNN models, which need to be
abstracted as a Markov Chain first. Despite its effectiveness,
it is inevitable to miss key features and introduce compu-
tation overhead owing to intrinsic properties of abstraction.
Another work testRNN [22] designs novel coverage metrics
according to structures of LSTM models, some of which are
special to quantify temporal relations. Besides of similar
classification tasks, these two works both mutate inputs
directly (e.g. random noise) and use saturated coverage val-
ues to terminate testing. Our RNN-Test approach mutates
inputs based on RNN logics and adopts coverage guidance
to help search for adversarial inputs, which is effective for
both seq2seq and seq2one domains.

8 CONCLUSIONS

We design and implement the adversarial testing frame-
work RNN-Test for recurrent neural networks. RNN-Test
focuses on testing the main RNN structures without limit to
tasks, aggregating advantages of both the proposed search
method and novel state coverage metrics as guidance. It is
superior to existing methodologies for DNN testing and
could effectively produce adversarial inputs over RNN
models of various applications, reducing model perfor-
mance evidently with high success (or generation) rate. We
also first demonstrate that coverage guidance has a diverse
searching capability for adversarial inputs compared with
other methods and our state coverage guidance outperforms
neuron coverage guidance in RNN testing.
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