Tyr: Finding Consensus Failure Bugs in Blockchain
System with Behaviour Divergent Model

Yuanliang Chen*, Fuchen Ma*, Yuanhang Zhou*, Yu Jiang**, Ting Chen', and Jiaguang Sun*
*School of Software, Tsinghua University, KLISS, BNRist, Beijing, China
f University of Electronic Science and Technology of China, Chengdu, China

Abstract—Blockchain is a decentralized distributed system
on which a large number of financial applications have been
deployed. The consensus process in it plays an important role,
which guarantees that legal transactions on the chain can be
executed and recorded fairly and consistently. However, because
of Consensus Failure Bugs (CFBs), many blockchain systems
do not provide even this basic guarantee. The validity and
consistency of blockchain systems rely on the soundness of
complex consensus logic implementation. Any bugs which cause
the blockchain consensus failure can be crucial.

In this work, we introduce 7'yr, an open-source tool for detect-
ing CFBs in blockchain systems with a large number of abnormal
divergent consensus behaviors. First, we design four oracle detec-
tors to monitor the behaviors of nodes and analyze the violation
of consensus properties. To trigger these oracles effectively, T'yr
harnesses a behavior divergent model to constantly generate
consensus messages and make nodes behave as differently as
possible. We implemented and evaluated 7'yr on six widely used
commercial blockchain consensus systems, including IBM Fabric,
WeBank FISCO-BCOS, ConsenSys Quorum, Facebook Diem,
Go-Ethereum, and EOS. Compared with the state-of-the-art tools
Peach, Fluffy, and Twins, 7'yr covers 27.3%, 228.2%, and 297.1%
more branches, respectively. Furthermore, T'yr has detected 20
serious previously unknown vulnerabilities, all of which have
been repaired by the corresponding maintainers.

I. INTRODUCTION

At present, the blockchain has won numerous research
recognition and public attention in the global innovation field
[1]]. As the backbone of the blockchain system, the consensus
process coordinates all the nodes in decentralized network
scenarios to verify and make agreements on transaction re-
sults. Various blockchain systems utilize different consensus
processes. In practice, most consensus processes ensure that
all honest nodes maintain a consistent view of the blockchain.
Two fundamental properties should be guaranteed: validity,
which is that all transactions published by one honest node
will eventually be executed and recorded by all other honest
nodes on their blockchain. Consistency, which is that given
enough time, all ledgers in a decentralized environment will
eventually arrive at the same content.

Unfortunately, due to the complexity of the node consensus
process, it is hard to avoid bugs in the implementation of
the consensus process. Since the consensus process plays a
significant role in blockchain systems, any bugs may result
in severe consequences, leading to the failure of consensus

*Fuchen Ma have contributed equally to this work.
®Yu Jiang and Ting Chen are the corresponding authors.

and endangering the security of the blockchain system. For
example, three consensus vulnerabilities in Go-Ethereum [2]—
[4]] could cause a chain split, where vulnerable versions refuse
to accept the canonical chain. Attackers may use them to
control a part of the network and make double-spending
attacks, violating the validity of the blockchain and causing
severe economic losses. Another bug in Ethereum [5] makes
nodes transition to inconsistent blockchain states and fail to
reach consensus with other nodes. Consequently, Infura [6],
the largest infrastructure service, went down; with it, some
of the most popular Ethereum applications, such as Maker-
DAO [7] and Uniswap [8]], went down. Such bugs that break
key properties of blockchain systems, leading to consensus
failures, are called Consensus Failure Bugs (CFBs).

To exercise blockchain systems’ consensus process, more
abnormal consensus behaviors than those occurring naturally
during regular use need to be triggered. Testing tools such as
Peach [9], Fluffy [[10]], Twins [[11f], etc., are routinely applied
to the blockchain and have successfully detected some bugs.
However, they lack both precise detectors and efficient testcase
generation for CFBs. Most fuzzers like Peach identify bugs
by monitoring whether the target program exits normally.
They can not detect CFBs that violate consensus properties of
blockchain systems, for example, by erroneously processing
blocks without crashing the nodes. Differential testing tools,
such as Fluffy, detect bugs by comparing Geth [12] and
Parity’s [[13]] results (Ethereum client implemented in Go and
Rust, respectively). It is limited that the target under test needs
different implementations to achieve the same consensus pro-
tocol. Most blockchain platforms such as Fabric [14]], FISCO-
BCOS [15] have only one implementation, making it hard to
conduct differential testing. Furthermore, even when all clients
return the same results, it is hard to ensure they correctly work
because they might be affected by the same underlying bug.
The consensus testing tool Twins detects byzantine behaviors
in a mock environment, ignoring the runtime behaviors such
as transaction execution, block verification, and message in-
teraction, resulting in ineffective testing.

To effectively find CFBs in blockchain systems, there are
two main challenges: (1) The first challenge is to come up
with precise oracles that can identify whether a blockchain
system behaves correctly. Blockchain consensus behaviors
are complex and dynamic. Even though vulnerabilities are
executed, it is hard to find them without precise detectors.

(2) The second challenge is that the CFBs tend to be hidden
in the deep logic path, making it hard to trigger those bug
oracles efficiently. The blockchain consensus process usually
comes in multiple phases, with many nodes interacting and
collaborating in different phases. Multiple nodes are required
to execute a series of different behaviors to detect deep path
logic vulnerabilities.

We propose Tyr, a testing tool for detecting CFBs in
blockchain systems, to address these challenges. First, Tyr
models four common bug oracles based on blockchain con-
sensus properties: (1) Liveness — valid transactions should be
executed eventually; (2) Safety — invalid transactions should
not be committed; (3) Integrity — no hard fork happens; (4)
Fairness — chances to be the leader should be fair. Then, four
oracle detectors are proposed for monitoring and analyzing the
nodes’ consensus data in real time. Any nodes that violate the
properties will be identified. To reach the deep consensus logic
and trigger the oracle effectively, T'yr constructs a behavior
divergent model, which contains consensus data and runtime
data to describe the behavior divergence of nodes. Based on
the model, T'yr continuously generates numerous abnormal
divergent consensus messages to diverge the distributed nodes’
behaviors as much as possible and performs effective testing
for CFBs detection.

We implemented T'yr and evaluated its effectiveness on
the consensus networks of 6 commercial blockchain systems:
IBM Fabric, WeBank FISCO-BCOS, ConsenSys Quorum,
Facebook Diem, Go-Ethereum, and EOS. Results show that
Tyr averagely covers 27.3%, 228.2%, and 297.1% more
branches than Peach, Fluffy, and Twins. In addition, T'yr
has found 20 previously unknown vulnerabilities (5 in Fabric,
7 in FISCO-BCOS, 2 in Quorum, 3 in Go-Ethereum, 2 in
EOS, and 1 in Diem). All of them were repaired by the
corresponding maintainers, and 5 CVEs were assigned to US
National Vulnerability Database. In summary, we make three
key contributions:

« We define four bug oracles based on consensus properties
and design four oracle detectors for efficiently detecting
CFBs in blockchain consensus networks.

« We introduce the behavior divergent model to diverge the
behaviors of nodes and trigger the bug oracles.

e We implement and evaluate Tyr on six widely used
blockchain consensus systems. We will open-source Tyﬂ
for practical usage. Compared with state-of-the-art tools,
Tyr increases the branch coverage by 27.3%, 228.2%,
and 297.1% on average. It detects 20 serious previously
unknown bugs, which have been confirmed and repaired.

II. BACKGROUND

A. Blockchain Consensus Process

Different from a centralized distributed system, transactions
in a blockchain network need to be executed by all the replicas.
The consensus protocol is proposed to ensure validity and
consistency among all the replicas. Figure [I] illustrates the

ITyr is available at: https:/github.com/BlockFuzz/Tyr

overall consensus process of a blockchain system. Once a user
sends transactions to blockchain networks, the transactions are
broadcasted between all nodes in the network and stored in
their transaction pools. When a node becomes a leader/miner
node according to the specific consensus protocol used by the
network, it executes the transactions from the transaction pools
and orders them in a block. Then the leader/miner seals the
block with its signature and broadcasts it to the other nodes.
When other nodes receive a block from the network, they
become validators. They check the validity of the block and
its transaction results. If the block is identified as legal, then
it will be linked to their local blockchains. Finally, all the
replicas update their global states on the ledger based on the
transaction results. With the help of this consensus process,
the ledger of all honest nodes will remain the same.

R

User

send transactions
—_—

execute

Miner/

Orderer

Network
seal

Consensus Process] @
< Block
broadcast

g% S T [_[—

Global States Block Chain
Fig. 1. The consensus process of blockchain system.

Consensus processes commonly used in blockchain systems
can be divided into two types. The first type is Nakamoto
consensus [16] — the longest chain mechanism. This includes
protocols like PoW [17] (stands for Proof of Work) and
PoS [18] (stands for Proof of Stake). They prevent malicious
data manipulation by introducing a huge cost of doing evil.
Each participating node competes fairly to become a miner
by their computing power or stake resources proportion. The
second type is the committee-based consensus mechanism.
Typical protocols of this type contain PBFT [19] and Hot-
Stuff [20]]. Each participating node is elected leader via the
‘viewchange’ messages. Both consensus mechanisms satisfy
the CAP theory [21]], and they can tolerate node crash failures
or even byzantine attacks. In addition to the effectiveness
and consistency of the blockchain system, the correctness of
transactions and the participants’ fairness need to be guaran-
teed. As the basic service of financial applications, blockchain
consensus protocols should be safe enough to prevent invalid
transactions such as double-spending attacks [22], [23]. Fair-
ness is essential because for blockchain systems with incentive
mechanisms(e.g., Ethereum), being a leader means making a
profit. Thus fairness is the concern for all participants. For
those without incentive mechanisms, fair election mechanisms
ensure decentralization and reduce the risks of centralized
services, e.g., DDoS attacks. In summary, four key properties
in blockchain systems should be guaranteed:

1) Liveness. The liveness property ensures that the consensus

process eventually produces a result even if there are mali-
cious nodes. In a blockchain system, all valid transactions
should be committed eventually.

Safety. The consensus protocol is safe if all honest nodes
yield the same correct output. In the blockchain system,
it makes sure all invalid transactions should never be
committed.

Integrity. This property ensures that all honest nodes
achieve the same block eventually in the blockchain sys-
tem, and there is no node isolation in this system.
Fairness. In a blockchain consensus system, each node
should have a fair probability of becoming the miner or
being elected as the leader.

2)

3)

4)

III. MOTIVATION
A.

CFBs in Blockchain Consensus Systems

Threat Model: Throughout this paper, we use the following
threat model. First, we formally define a blockchain network
as ¢ = {h,k, T}. Specifically, h means the number of honest
nodes which perform correctly in the network. k presents
the malicious nodes, which are totally under the attacker’s
control. T' presents the type of consensus protocols used in
the blockchain network. We assume that each malicious node
can connect to arbitrary nodes (including h honest nodes
and k£ — 1 malicious nodes). Attackers can send any number
of message packets of any type to any connected nodes at
any time. However, the proportion of attackers should satisfy
the fault tolerance mechanisms corresponding to the different
types of consensus protocols. If 7" is the Nakamoto consensus
type, then k/(k + h) should be smaller than 50%. If T is the
committee-based consensus type. then k/(k + h) should be
smaller than 1/3.

CFBs in blockchain consensus systems will lead to severe
consequences. For example, the implementation of the PBFT
protocol in FISCO-BCOS (version 3.0.0) has a liveness bug
in the leader election process. The PBFT algorithm’s view
change mechanism is designed for leader election, which is
rotated by each participant node. The ‘viewchange’ message
proposes a request for a new leader in the next round. The
number ‘view’ marks the current election round. And the value
‘toView’ tells nodes what round the next view should be. The
code in figure [2| describes the process of view changing. In
line 3, the node first iterates all the received ‘viewChange’
packets in its cache. Then, the node counts how many nodes
have sent the ‘viewChange’ packets as shown in lines 6 - 15.
The variable *greater ViewWeight’ stores the voting weights of
all viewchange messages. In lines 16 - 19, if more than ‘f+1’
(represented as maxFaultyQuorum() + 1 in the code) votes are
collected, and if the ‘viewToReach’ is bigger than the current
one, then the node will catch up with the view.

However, this vulnerable code forgets to clear the weight
in its cache after counting. If a malicious node constantly
sends ‘viewChange’ packets with a large view, the honest
nodes will store all the malicious packets in the cache first.
After storing enough ‘viewChange’ packets from the malicious
nodes in the cache, the ‘greaterViewWeight’ becomes larger

uint64_t greaterViewWeight
ViewType viewToReach = O0;
for (auto consts& it : m_viewChangeCache) ({

0;

// check the viewchange weight

auto viewChangeCache it.second;

for (auto consté& cache : viewChangeCache) {
auto fromIdx cache.first;
auto nodelInfo m_config->

getConsensusNodeByIndex (fromIdx) ;

if (!'nodeInfo) { continue;

BUG: weight be to O.
greaterViewWeight += nodeInfo->weight () ;

in cache should clear

}

if (greaterViewWeight <
(m_config->maxFaultyQuorum() +1)) return 0;

if (m_config->toView()>=viewToReach) return 0;

if (viewToReach > 0)

{ m_config->setToView(viewToReach - 1)};

Fig. 2. A CFB that breaks the liveness oracle in the implementation of PBFT
protocol in FISCO-BCOS.

than ‘f+1°, and the honest nodes set the large view from
the malicious node as the target and start the view change
process. Consequently, all nodes in the system begin the
view change process uninterruptedly and stop processing other
packets, such as transactions, blocks, etc. Attackers can use
this bug to easily perform a DoS attack by preventing valid
transactions from being processed. This previously unknown
bug is detected by 7T'yr and has been assigned a CVE identifier:
CVE-2022-26534 [24].

B. Challenges to Detect Such Bugs

Two main challenges need to be addressed to detect such
CFBs: 1) These bugs are hard to trigger effectively. 2) It
requires precise oracles for blockchain CFBs.

Tyr proposes a precise oracle detector and an efficient trig-
ger mechanism for detecting such bugs. First, T'yr leverages
a behavior divergent model to record the real-time behaviors
of target nodes. Based on the model, Tyr effectively sends
divergent consensus messages to various nodes and triggers
this bug. In addition, Tyr designs an oracle based on the
liveness property which identifies whether valid transactions
are committed eventually.

Figure [3| shows how T'yr detects this bug. At first, T'yr
randomly sends some target nodes (e.g., node A and node
B) ‘viewChange’ packets with mutated ‘toView’ values (e.g.,
7821, 7872). Then nodes A and B execute the above vulnerable
code while others will not. By monitoring all nodes’ behavior

view: 120

Fig. 3. The workflow of T'yr in detecting this bug. A, B, and C represent
three honest nodes. T'yr constantly sends malicious packets to them.

|

v

suide| Node Behavior
Divergent Model

collect]

runtime diff

Messages Broadcast

Transactions Execution

Message R
Fuzzer select | Routing brdadcast \,,
Transaction Strategies o
Genelrator

consensus diff

Oracle Detector

Bug Analyzer
u
reportM

CFB

compare

consensus data expected data

Behavior Divergent Engine 1-@“

Blockchain System

Oracle Automation élé

Fig. 4.

An overview of T'yr. (1) Behavior divergent engine first constructs transactions and messages. (2) Then, the messages are sent to the target nodes,

and the transactions are executed under the blockchain consensus network. (3) Oracle automation collects and analyzes the consensus data of distributed nodes
in real time. (4) The difference between these consensus data is calculated. Then T'yr delivers it to the behavior divergent model for guiding the message
fuzzer. (5) In the meanwhile, the execution runtime information of nodes will be collected and the difference between them will be calculated. (6) Oracle
detector compares the consensus data with expected data and identifies if the nodes violate the oracle by checking the consensus difference. (7) T'yr proceeds
to the next iteration (from step 1 to step 6) of the testing process until termination.

and calculating their difference in real time, Tyr senses the
different behaviors and sends ‘viewchange’ packets again with
new mutated values (e.g., 8822, 8821). As the figure shows,
Tyr tries to persuade nodes A and B to change their views
to 8821 and 8822. Due to this CFB, nodes A and B agree
on the view change request and start changing their views.
Tyr further senses these divergent behaviors and keeps re-
sending ‘viewChange’ packets to more target nodes with large
values (e.g., 9999, etc.). As a result, all the honest nodes trigger
this bug, keep changing their views and stop other processing,
including transaction handling. Furthermore, with the help of
a well-design oracle, the liveness automation of T'yr found
that transactions got stuck and reported this CFB.

IV. TYR DESIGN

Tyr is designed to find consensus failure bugs (CFBs)
for most blockchain systems, from public blockchains, e.g.,
Ethereum [25[] and EOS [26], to consortium blockchains, e.g.,
Fabric [14], Diem [27]], FISCO-BCOS [15] and, Quorum [28]].
Based on a node behavior divergent model(BDM), Tyr con-
stantly generates consensus messages and transactions as test
inputs to make nodes in the network behave as differently as
possible. In the meanwhile, T'yr employs four oracle detectors
to monitor and analyze the consensus data of target nodes in
real time. If any nodes violate the oracle automation, Tyr
records the contexts and reports the CFBs.

Figure 4] illustrates an overview of T'yr. There are two key
components: Behavior Divergent Engine for constantly calcu-
lating the behavior difference of nodes and constructing plenty
of messages and transactions based on it; Oracle Automation
for analyzing nodes’ consensus data and identifying consensus
failure bugs in real-time. (1) Behavior divergent engine first
constructs a set of messages by message fuzzer based on the
node behavior divergent model. In the first testing iteration,
this construction is random. Behavior Divergent Engine also
generates a set of transactions as well as the expected data
for validity check. (2) Then, the messages are broadcasted
to the target nodes, and the transactions are executed under

the consensus protocol of the blockchain system. (3) Ora-
cle automation monitors and collects the consensus data of
distributed nodes in real time. (4) The difference between
these consensus data is calculated. Then it is delivered to the
behavior divergent model for guiding the message fuzzer. (5)
In the meanwhile, the execution runtime information of nodes
will be collected by the behavior divergent model, and the
difference between them will be recorded. (6) Finally, oracle
automation compares the consensus data with the expected
data and identifies if the nodes violate the oracle according to
their consensus difference. The CFBs are reported once they
are detected. (7) Tyr proceeds to the next iteration (from step
1 to step 6) of the testing process until termination.

A. Behavior Divergent Engine

Most consensus processes of blockchain systems in practice
are aimed at guaranteeing eventual consistency. Transient
inconsistencies in node behavior during the process are normal
and allowed. However, a heuristic insight is that the ultimate
consensus failure is the cumulative result of many transient
inconsistencies in the consensus process. Hence, to help reach
the deep consensus logic and trigger the consensus failure
bugs efficiently, T'yr proposes a Behavior Divergent Engine
to guide the message generation and make the nodes in the
system behave as differently as possible.

Node Behavior Divergent Model. Figure |5| describes the
behavior divergence model of nodes in blockchain systems.
The node’s behavior properties can be divided into two main
types. Consensus data indicates the core consensus states
of each node, including leader information, transaction data,
block states, etc. Runtime data presents the key real-time
states of each node as it provides services on the network.
The coverage information C'over; indicates the code execution
behavior of node;. Rmsg; and Smsg; represent the received
and sent message sets of node;, respectively. Note that the
transaction data T'z; and block data B; on the blockchain
will become larger and larger over time. It is inefficient to
calculate the difference between them directly. Hence, we only

Consensus Data
Numyeqger,;: the number of times being leader/miner
TX; : the transaction set in local pool
TXityr : the transaction constructed and marked by Tyr
B; : the block chain data locally
Heightpocr - the height of the chain

State; : the global state of ledger, is consistent with B;
Stateityr : the state marked and monitored by Tyr

Runtime Data
Cover; : the coverage information
Rmsg; : the received message set
Smsg; : the sent message set

Divergence
Divergence;; = diff (N UMyeader; » NuMieager ,-) +
diff (Txi tyr? ijtyr) +diff (S tate;, , ,S tatejtyr) +
diff(Cover; , Cover;) +diff (Heightbzocki, Heightblock;)

Fig. 5. Abstract description of the Node behavior Divergent Model.
BDM mainly includes three parts: Consensus Data, Runtime Data, and their
Divergence.

focus on T'X;, = and State;,,, to speed up the testing process.
TX;,, means the transaction marked by Tyr, State;,,,
represents and the state monitored by T'yr. Different nodes
can select and execute different transactions from the pool.
dif f(Tx;,,, ,Tx;,,) is the number of different transactions
executed by node; and node;. dif f(State;,,, , State;,,)
is the number of different marked global states between
node; and node;. dif f(Numicader,, NuMicader;) is the dif-
ference in the number of elected leaders between node; and
node;. dif f(Heightyiock,, Heightyocr,) is the difference
in the height of local chains between node; and node;.
dif f(Txigyy, Txjiyr) is the number of different marked
transactions between node; and node;. The Cover; is the
branch coverage of node;, which is stored in a bitmap.The
dif f(Cover;, Cover;) is the result of the XOR operation of
the two bitmaps.

Behavior Guided Message Fuzzer. All the nodes’ behav-
iors are driven by the messages in the blockchain system.
To diverge the behaviors of nodes as much as possible,
Tyr employs a behavior guided message fuzzer to constantly
generate messages as test inputs to the target nodes in the
blockchain system.

Algorithm [I] illustrates the process of the behavior guided
message fuzzer. Before fuzzing, we set up a connection to each
node in the blockchain network and monitor their consensus
behaviors in real time. Tyr collects the messages in the net-
work as the initial seeds and puts them into the msgPool, as
shown in lines 1-5. In each fuzzing iteration, T'yr selects some
target nodes from the network and mutates messages from the
message pool. Then the mutated messages are sent to target
nodes, and their behavior divergent models are updated and

Algorithm 1: Behavior Guided Message Fuzzing pro-
cess.

Input : p2p : P2P Network under Fuzz

Output: B,,: Consensus Failure Bugs
1 for node in p2p.getNodes() do
setupConnection(node);
monitorbehavior(node);
collectMessage(msgpool)

BDMs = {} ;
while true do
N' = randomSelect(neighbours) ;

2
3
4
5 end
6
7
8
9 for node in N do

10 msg = msgPool.dequeue() ;

u msg = mutate(msg) ;

12 async:

13 feedback = p2p.send(msg/);

14 BDM = updateBDM(feedback) ;
15 BDMs.append (BDM) ;

16 end async

17 end

18 dif f = Divergence(BDMs, N/);

19 newBugs = checkOracle(BDMs);

20 B,,.append(newBugs);

21 if (dif f >0) or (newBugs != NULL) then

22 ‘ msgPool.updatePool(msg',msgPool);
23 end

24 end

analyzed in real time (Lines 11-15). The behavior divergence
of nodes is calculated. In the meanwhile, four oracle detectors
analyze their BDMs and identify whether they violate the
liveness, safety, integrity, and fairness properties, as shown
in lines 18-19. The detailed CFB detecting process will be
introduced in Section If the divergence exists or any
new CFBs are found, then the messages will be regarded as
interesting seeds and stored in the message pool to guide the
subsequent fuzzing process, as presented in figure [0]

G Behavior *’m Finds new bugs
Difference Oracle or diff exists

Automation Seed|Pool

Difference: (Numicader;}
TX;, Block;, code overage)

5

Target Nodes

dequeue
Message
Mutator

Fig. 6. Seed selection process of behavior guided fuzzing. If new mutated
messages detect new oracle bugs or vary behaviors, then they will be stored
in the seed pool.

p2p.send

mutate operation

The message packets in the blockchain are highly struc-
tured. As a mutation-based fuzzer, it is important to maintain

the structure of the message while mutating its content. To
achieve this and generate high-quality inputs, Tyr mutates each
message structurally. Since each blockchain implementation
has its own message parser, T'yr first analyses the grammar
structure of each message based on the inherent parsers. For
example, Fabric uses protobuf [29] formation to serialize and
deserialize the messages, so T'yr directly uses the Marshal
and Unmarshal packages to parse messages. Then, based on
the parsed content, T'yr generates new values of each field
by mutating the old fields. Tyr uses different mutators for
different types of fields. A numerical mutator will randomly
convert the numeric type to another number. A string mutator
will mutate it to a new string for the string type. For the
struct type, Tyr mutates each field recursively. Finally, the
well-mutated messages are generated and sent to the nodes
in the blockchain network.

Take the bug in section [[TI] as an example. Once T'yr sends a
‘viewChange’ to the target node, then the behavior of this node
will be different from other nodes. This difference will be cap-
tured and recorded by storing the ‘viewChange’ message in the
message pool. Then in the following fuzzing iterations, Tyr
has a higher probability of continuously sending ‘viewChange’
messages to the target node, which eventually triggers this
liveness bug. With the help of the structural mutation process,
the content (e.g., value toView) of ‘viewChange’ message
is constantly mutated while its structure remains valid. In
this way, the behavior divergent engine continuously generates
high-quality messages to diverge the behaviors of distributed
nodes and test the blockchain consensus network.

B. Oracle Automation

Oracle Definition: to help identify CFBs precisely, we
model four oracles according to the four key properties of
the blockchain consensus systems. Formally, we consider a
blockchain system with m nodes taken from a finite set
IT = {ny,na,ns,...nm}. The consensus data of each node
n; € II can be represented as a triple (Numicader;, T Xi, Bi).
More specifically, Numjcqqder, means the number of times
node n; was elected as a leader/miner node. The finite
set TX; = {tw;1,tx;s,ta;s, ..., tx;, + means the transaction
pool of node n;. A finite set B; = {bj1,bi2,biz,...,bip}
represents the local blockchain of node n;, and each block
bi; € B, contains a set of confirmed transactions, and all
transactions in B; is part of T'X;. We also define the symbol
Heightpiock, as the height of the chain. We use a finite
set T Xinvatia = {t®1,tza,txs, ..., tx,} to represent all the
invalid transactions constructed by T'yr’s fuzz engine. The four
oracles are formally defined as follows:

« Liveness. For each node n; € II, Viz € TX; and tx ¢
T Xinvatid, there always 3b;; € B; that tz € b;;. The
liveness oracle guarantees that all valid transactions must
be executed, committed and stored in a specific block
eventually.

o Safety. For each node n; € 1I, Vix € TX; and tx €
T Xinvaiid» ¥bi; € B; that tx ¢ b;;. The safety oracle

guarantees that any invalid transactions are not allowed
to be executed, committed, or stored in any blocks.

« Integrity. For each node n; € II, Vn;,n; € I, Vk : 1 <
k < Min(Heightyiock, , Heightyiock,), b is equivalent
to bjx; and abs(Heightyiock, - Heig'htblockj) can not be
too large. The integrity oracle ensures: (1) any block with
the same block height should be equivalent to each other
in all nodes; (2) block syncing mechanism should work
normally. There is no node isolation in this network.

e Fairness. Vn;,n; € I, P < NuMieader, !
Numyeader; < P/, where P and P’ are determined by
specific consensus protocols. Fairness oracle means that
all nodes should have a fair possibility to be elected as the
leader node or miner node. In committee-based protocols,
the possibility should be the same. In Nakamoto consen-
sus protocols, the possibility should be consistent with the
proportion of corresponding resources (e.g., computing
power in pow).

Oracle Detector: Tyr utilizes four oracle detectors to
analyze the consensus data of nodes in real time and check
whether they violate the oracle definition. The process of the
Liveness detector and Safety detector is illustrated in figure
Tyr first randomly selects some unlocked states from the
global states and locks them, e.g., the balance of account A is
., the balance of account B is xj, etc. Then the transaction
constructor generates two sets of transactions according to the
values of states. The first transactions set includes all valid
transactions, e.g., transaction A.send(B,xa) means account
A sends x, to account B. The second transactions set contains
all invalid transactions, e.g., transaction C.send(D,y)y > x.
indicates that the balance of account D is not sufficient to
pay account C. Specifically, transaction (D and transaction)
together are a double-spending attack (the balance of E . can
only be spent once), which means that only one of them is a
valid transaction and the other is an illegal transaction. In the
meanwhile, the expected states are inferred and recorded by
Tyr. For those valid transactions, Tyr executes them locally,
and the execution results are the Liveness expected states. For
the invalid double-spending transactions, Tyr executes all the
combinations of them and outputs the Safety expected states.
As shown in Figure the expected states of F and G are
either F=x¢+x.,, G=0)or (F=0, G =24 + z.).

After the expected states are constructed, all the transactions
are sent to the blockchain system and executed under the
consensus process. 1yr monitors all the marked global states
of target nodes and checks whether the marked states have
changed or not. Finally, after a period of decision time,
Liveness automation identifies whether all valid transitions
are executed and committed successfully by checking if the
corresponding states have changed to the expected states. e.g.,
if the balance of A has not changed to O or the balance of
B has not changed to z; + z,, then the valid transaction
A.send(B, x,) execution fails. A liveness CFB is detected.
Safety Automation identifies whether all invalid transitions
are not committed by checking if the marked states remain

valid transactions
A.send (B, x,)

A.balance: x,
B.balance: x
C.balance: x,
D. balance: x4
E.balance: x,
F.balance: xy
G.balance: xg

select
states

Transaction
Constructor

invalid transactions
C.send(D,y) y>xq
E.send(F,x,) @
E.send(G,xe) @

generate

St

Global States

Expected states

compare

monitor Safety
Automation

after Decision Time

Consensus
Failure Bug

after Decision Time

C.balance: x,
D.balance: x4
E.balance: 0
F.balance: x;+x,|0
G.balance: 0|x,+x,

compare A.balance: 0
B.balance: x,+x,

Fig. 7. The CFBs detection of Liveness automation and Safety automation.
Liveness checks whether marked states changes as expected; Safety identifies
whether marked state remains unchanged.

monitor Liveness

Automation

unchanged. e.g., if the balance of C and D have changed, then
the invalid transaction C.send(D,y) : y > x. is executed
erroneously, and a safety CFB is detected. For the double-
spending transactions, if the balances of both F and G change,
then a safety CFB is detected. If no CFB is detected, then
remove the lock of the marked global states.

In a distributed environment, it’s difficult to accurately
identify whether all nodes are in finality state where all
data are fixed and irreversible. Hence, the decision time
mechanism is proposed in T'yr. It is critical to the precision
of bug detection. Too short a decision time leads to many
false positives because, in distributed scenarios, transaction
execution has a certain delay, which depends on the network
environment. However, too long a decision time affects the
efficiency of the testing process since most of the global states
remain locked. How to find a balanced decision time will be
discussed in detail in Section [V] and Section VI-Cl

Block related messages

Send(newblock, Ny)
Send(blockheader, N,)

Leader related message

Send(newView, N,)
Send(Viewchange, N,)

® ®

m.mm

select
target nodes

Message
Constructor

Blockchain network

Integrity block l
—8
Automation | numbers ™) (N)
Consensus .@
Failure Bug | Decision Time 0, O
Fairness leader

Automation Blockchain network

Fig. 8. The CFBs detection of Integrity automation and Fairness automation.
Integrity checks all target nodes’ block numbers; Fairness analyzes all target
nodes’ leader numbers.

Figure [8| represents the process of the Integrity detector and
Fairness detector. T'yr first selects a part of the nodes in the
blockchain network as target nodes. Then it generates a series
of consensus messages based on the BDM and sends them to
the target nodes. For example, message send(newblock, Ny)
means that T'yr sends a newblock message to node Np, and
message send(viewchange, No) indicates that Tyr sends a

viewchange message to No. Then, the number of times a node
is elected as leader/miner and the height of the blockchain
will be monitored and recorded in real time. The difference
between nodes will be calculated. Integrity Automation checks
the block data consistency and the blockchain’s height of
each node. If there is an inconsistency in the data of their
local blocks with the same block number, a Integrity CFB
is found. In addition, too large a difference in Heightpock
indicates that the consensus network is separated. If the differ-
ence (dif fi; = |Heightyock, — Heightyock; |/ Heightyiock,)
of node; and node; is greater than 10% over a decision
time, then a Integrity CFB is detected. Fairness Automation
compares the number of leaders/miners for each node. If
the difference (diffi; = |[Numicader, * Pj — Numicader; *
P;|/Numicader, * P;) of node; and node; is greater than 10%
over a decision time, then a Fairness CFB is detected. More
specifically, P; indicates the probability of node; being elected
leader theoretically. In committee-based protocol, every node
has the same P, which is 1/n when there are n nodes in the
network. In the Nakamoto protocol, P of each node is the
same as the proportion of resources they have, e.g., in pow,
if the computing resource of node; accounts for 20% of the
entire network, then P, = 0.2.

V. IMPLEMENTATION

We implement Tyr on six commercial blockchain plat-
forms, including four consortium blockchains, Fabric, FISCO-
BCOS, Quorum, and Diem; and two public blockchains, Go-
Ethereum and EOS; We chose them for two main reasons:

BlockChain Popularity: Hyperledger Fabric is one of the
most popular enterprise-grade blockchains. It has been widely
used in many industrial environments, such as A.P. Moller-
Maersk, Allianz, Ant Group, Tencent, etc. FISCO-BCOS is
another popular financial-grade consortium blockchain that
has already been applied in many financial areas, e.g., loans.
Quorum is a permissioned blockchain protocol forked from
the well-known Ethereum blockchain protocol [30]. Diem is
a blockchain system started by Facebook that drew regulatory
blowback worldwide. Ethereum is one of the most widely used
public blockchains in the world with the highest market cap
$540.55B [31]. EOS is another fast, flexible, forward-driven
public blockchain with higher scalability and throughput [26].

Blockchain Diversity: All six blockchain systems come
from different organizations with various consensus protocols
and languages. Fabric uses SmartBFT consensus protocol,
developed by IBM in Go language. FISCO-BCOS uses PBFT
consensus protocol, developed by WeBank in C++. Quorum
uses QBFT consensus protocol, developed by ConsenSys
in Go language. Diem uses DiemBFT consensus protocol,
developed by Facebook in Rust language. Go-Ethereum uses
POW consensus protocol, developed by Ethereum Org in
Go language. EOS uses aBFT-DPOS consensus protocol,
developed by block.one in C++ language. Implementation and
evaluation of these blockchain systems can demonstrate that
Tyr is a cross-platform and language-free testing framework
with high scalability.

Tyr components

Behaviour Divergent Engine | | Oracle Automation

| Behavior Monitor |

CFB Detector |

| Transaction Constructor |

| Divergence Model | |

| Message Fuzzer | | Bug Analyzer |
Adaption Interface
Data Extractor | | Message Sender |
Target Platforms

4 HYPERLEDGER
4 FOUNDATION

;:smsms@ouorum < Ethereum Zdiem { eosio

Fig. 9. Components of T'yr implementation are divided into three parts —
Adaption Interface for uncoupling the target blockchain and T'yr; behavior
Divergent Engine for calculating divergence and generating test inputs and
Oracle Automation for detecting CFBs.

Figure 0] presents the components of T'yr, which can be
divided into three main parts. The first part is the adaption part
which is designed to standardize and encapsulate interfaces
for testing. It is strongly associated with the target blockchain
system. The second part is the behavior divergent engine
which is implemented for generating high-quality transactions
and messages to the target nodes based on their behavior
divergence. The third part is the oracle automation for an-
alyzing nodes’ behaviors in real time and detecting CFBs.
These two parts are independent and free from the target
blockchain systems. The rest of the section describes notable
implementation details.

Blockchain Adaption: The effort of adapting Tyr to other
blockchain systems could be negligible. Modules in Tyr are
well-encapsulated and loosely coupled. Hence, when adapting
Tyr to a new blockchain, developers only need to implement
two interfaces related to a specific chain. The first interface
is ‘BlockExtract()’, which is responsible for extracting key
consensus data from struct ‘Block’. The second interface is
‘p2p-send()’, to send messages and transactions generated by
Tyr to the target nodes in the blockchain system. Since
each blockchain has its own ‘DataExractor’ and ‘p2pSender’
implementation, as inherent functions, 7'yr reuses these com-
ponents directly. The detailed adaption process is introduced
in Appendix

Coverage Instrumentation: Coverage Instrumentation:
Language-specific instrumentation is required to collect
runtime code coverage information of target nodes. For
C/C++ programs, we use gcov [32]; for Rust programs, we
use grcov [33[]; for Go programs, we use gtest [34].

Transaction Construction: Before the testing process begins,
Tyr will deploy some smart contracts in the blockchain
system. These smart contracts contain a set of well-designed
interfaces, including query() and transfer(). Based on them,
Tyr can easily search the global states and construct transac-
tions to change them.

Initial Message Seeds: Initial seeds are critical to the
performance of the message fuzzer. In our implementation,
Tyr collects the messages in the network as the initial seeds.

Once T'yr connects to the blockchain network, all messages
from the normal nodes will be collected. Any messages which
contribute to new code coverage or new behavior will be stored
in the seed pool as the initial seeds.

Decision Time Setup: Decision time is critical to the
precision of CFB detection. Too short a decision time may
cause false positives, while too long affects the efficiency of
the testing process. We did an empirical study on how Tyr
performs on various decision time setups and found that the
six-block confirmation time is a balanced value to help avoid
most of the false positives while achieving efficient testing
performance. In the field of blockchain, block confirmation
time is a commonly used time unit [35]], [36].

Bug Analyzer: T'yr collects all received messages of each
node as runtime data, sorts them by the timestamp, and stores
them in the behavior divergent model. When oracle detectors
report a CFB in some target nodes, 7yr records the timestamp
and marks it as bug time. When nodes join the consensus
network and start receiving well-constructed messages from
Tyr, Tyr records the timestamp and marks it as begin time.
When a CFB occurs, Tyr replays these messages between
begin time and bug time to reproduce the CFB and help
analyze the root cause.

VI. EVALUATION

To evaluate the effectiveness of T'yr, we compared it with
three state-of-the-art tools: Peach [9]], Twins [11f], [37] and
Fluffy [10] on six widely used blockchain networks. We ran
each blockchain network with a 10-nodes setup. The entire
network is isolated and set up locally. All nodes under test
are honest nodes and are assumed to perform correctly. All
the experiments are conducted several times, and the average
values are used in this paper. The experiment environment is
a 64-bit machine with 128 CPU cores (AMD EPYC 7742 64-
Core Processor). The OS of this machine is Ubuntu 20.04.2
LTS, and the main memory is 512 GB. We design experiments
to address the following research questions:

e RQ1: Is T'yr effective in finding CFBs of real-world
blockchain systems?

« RQ2: Can Tyr cover more code of blockchain systems
compared with state-of-the-art tools?

« RQ3: How does the decision time influence the efficiency
and false positives of T'yr?

e RQ4: Does the behavior divergent model effectively
improve testing performance?

A. CFBs in Blockchain Systems

We applied Tyr on all 6 target blockchain networks for
CFBs detection. For comparison, we ran Peach on the same
blockchain networks. Since Fluffy only supports EVM, we
ran it on Ethereum and Quorum; Twins is implemented for
DiemBFT, so we only ran it on Diem. Each experiment is
conducted for 24 hours. In total, Tyr found 20 CFBs on six
different target blockchain networks with 5 in Fabric, 7 in
FISCO-BCOS, 2 in Quorum, 1 in Diem, 3 in Go-Ethereum,

TABLE I
CFBS WERE FOUND BY T'yr ON SIX BLOCKCHAIN SYSTEMS WITHIN 24 HOURS. 7'yr FOUND FIVE BUGS IN FABRIC, SEVEN BUGS IN FISCO-BCOS, Two
BUGS IN QUORUM, ONE BUG IN DIEM, THREE BUGS IN GO-ETHEREUM, AND TWO BUGS IN EOS. EVEN ENHANCED BY THE PROPOSED FOUR ORACLE
AUTOMATION, TWINS, FLUFFY, AND PEACH ONLY FOUND ZERO, ZERO, AND SIX BUGS, RESPECTIVELY.

Platform Bug Type Bug Description Identifier

1 Fabric Integrity Missing Deletion of in-flight when syncing past the in-flight sequence. CVE-2022-26297
2 Fabric Safety Asynchronous sync procedures cause some proposals to be double processed. CVE-2022-26298
3 Fabric Integrity Repeat malicious consensus messages makes some honest nodes to be disconnected. Bug#18167

4 Fabric Fairness Various viewchange message sequences make some nodes always skip leader. Bug#17950

5 Fabric Liveness Random newView causes abnormal high-frequent viewchange and chaos in the network. Bug#17875

6 FISCO-BCOS Liveness The nodes change view frequently and stop generating blocks. CVE-2022-26534
7 FISCO-BCOS Liveness Transaction handling process is stuck after confusing nodes with different transaction headers. Bug#2206

8 FISCO-BCOS Liveness Multi-thread bugs cause some transactions cannot to be executed anymore. Bug#2204

9 FISCO-BCOS Liveness Some transactions cannot be processed correctly due to a deadlock. Bug#2133

10 FISCO-BCOS Liveness Lack of the verification of the packet header and the view-change is continuously triggered. Bug#2448

11 FISCO-BCOS Safety A malicious leader may fake a proposal’s header and transactions cannot be processed . Bug#2307

12 FISCO-BCOS Fairness A malicious node can always be the leader, thus stop producing new blocks.. CVE-2022-28937
13 Quorum Liveness Transactions get stuck in a pending state after receiving incorrect gas from a malicious node. Bug#1371

14 Quorum Integrity ~ Serial of malicious sync messages cause repeated “Full sync failed ”, isolate normal node. Bug#1107

15 Diem Fairness Malicious nodes affect the QC commit and the leader’s reputation and cause unfair leader selection. Bug#10362

16 Go-Ethereum Integrity —Geth nodes no longer sync with Parity nodes after keep receiving malicious sync messages. Bug#25243

17 Go-Ethereum Integrity Keep rejecting blocks and stopping the block syncing procedure, leading to node isolation. Bug#24448

18 Go-Ethereum Liveness The client stopped transaction processing after receiving plenty of re-connection requests. Bug#24832

19 EOS Liveness The producer node crashes when generating a test account through the txn_test_gen_plugin. CVE-2022-26300
20 EOS Integrity Isolation occurs when multiple nodes produce blocks with the same index at the same time. Bug#11063

and 2 in EOS. The detailed information on these previously
unknown bugs is presented in Table

For the CFBs found by Tyr, all of them have been
confirmed by the corresponding vendors, and 5 have been
assigned as CVEs in U.S. National Vulnerability Database,
the rest is in the CVE review process. 9 of the detected bugs
(#5, #6, #7, #8, #9, #10, #13, #18, #19) violate the liveness
properties of blockchain consensus protocol which miss or
even stop executing valid transactions. Bugs #2 and #12 trigger
the safety automation which results in executing some invalid
transactions that may lead to potential economic losses. Six
bugs #1, #3, #14, #16, #17, and #20 are detected by Integrity
oracle, which leads to node isolation and network partition
eventually. Bug #4, #12, and #15 make target nodes have more
probability to be elected as leaders, violating the fairness of
the leader election process.

False Negatives Evaluation: In our 24-hour experiments,
Twins, Fluffy, and Peach did not find any bugs due to the lack
of oracle detectors. To help analyze false negatives of T'yr, we
have done further experiments and enhanced Peach with our
4 well-designed CFB detectors. Peach successfully detected 6
CFBs (#3, #5, #8, #9, #11, and #20), which demonstrates that
our oracle is effective. However, the rest of the 14 bugs were
not found by Peach because these CFBs are hidden in the deep
path. To trigger them, many nodes with different interactions
in multiple phases should be processed. With the help of
the behavior divergent model, Tyr successfully detected all
20 logic vulnerabilities, proving the effectiveness of T'yr in
detecting CFBs in real-world blockchain systems. Compared
with other tools, T'yr found all the bugs that other tools found.

To better evaluate false negatives of Tyr, we also did an
experiment by detecting known bugs. We first collected the

latest 20 known CFBs from GitHub, and then used Tyr to
detect them. The detailed bug information can be found in
Section Appendix Results show 90% of bugs can be
detected by T'yr. Bug#ll and Bug#17 are not detected by
Tyr because their root causes are data race, which is hard to
reproduce within the 24-hour experiment.

1) Case Study: Now we use two cases to illustrate how the
CFBs detected by T'yr affect the whole blockchain network.
The first case is the bug #1 listed in Table [I, This bug is
an integrity CFB that causes some nodes to be isolated from
others in the blockchain network. It is found in version 1.4
of Fabric and has been assigned with a CVE ID: CVE-2022-
26297. The code snippet in figure [T0] describes the detailed
information of this integrity vulnerability.

Struct ‘inFlight’ stores all in-flight ‘viewChange’ messages
which are waiting to be processed. If a node receives a
‘viewChange’ message with a larger ‘viewld’, then the func-
tion ‘sync()’ will be called to update the current ‘view’ from
other nodes. However, if a malicious node syncs a smaller
‘viewld’” which is less than the current ‘viewld’, then this
function ends immediately, as shown in line 10. As a result, the
current node fails to sync the view and will call this function
again. As long as the malicious node keeps synchronizing
the smaller view, the current node will never be able to
complete the synchronization and will gradually be isolated
from the blockchain network. In this way, attackers can utilize
this integrity bug to make a network split, causing potential
economic losses. This CFB has already been fixed by adding
the function ‘maybePrunelnFlight()’ which is implemented to
delete the in-flight proposal whose ‘viewld’ is smaller, as
shown in lines 15-19.

In our experiments, this integrity CFB was only found by

1 func (c xController) sync() (viewNum uinté64,
seq uint64, decisions uint64) {
// Block any concurrent sync attempt.

c.grabSyncToken ()
defer c.relinquishSyncToken ()
syncResponse := c.Synchronizer.Sync()
6 decision := syncResponse.Latest
+ c.maybePruneInFlight (xmd)
8 // check proposal and current
9 if syncResponse.ViewId < c.currViewNumber {
10 return 0, 0, O

11 }

view

13 return view, md.LatestSequence + 1,
md.DecisionsInView + 1

1 + func (¢ xController) maybePruneInFlight (

6+ Zn%light := c.InFlight.InFlightProposal ()

7+ 000

L + c.InFlight.clear()

19 +}

Fig. 10. An integrity bug which can isolate target nodes in the fabric

SmartBFT consensus process.

Tyr. To trigger it, a ‘viewChange’ message with a larger
‘viewld’ should be sent to the target node first. Then the
function ‘sync()’ is called by the target node, and this unusual
behavior needs to be captured in real-time. After observing
this unique behavior, T'yr constantly syncs the ‘viewChange’
message with a smaller ‘viewld’. Eventually, Tyr triggers this
bug via the integrity oracle automation.

The second case is the bug # 2 listed in Table[I} This is a
safety CFB that causes some proposals to be processed more
than once. It is found in version 1.4 of Fabric and has been
assigned with a CVE ID: CVE-2022-26298. The code snippet
in figure |1 1| describes the details of this vulnerability.

func (c *Controller)

uinté64 {

getCurrentViewNumber ()

+ c.currViewLock.RLock ()

+ defer c.currViewLock.RUnlock ()
6 }
7 funec (c *xController)

8 // we

sync() (...) {
were syncing.

9 defer c.relingquishSyncToken ()
c.syncLock.Lock ()

defer c.syncLock.Unlock ()

12 syncResponse := c.Synchronizer.Sync ()

4}

15 func (med *MutuallyExclusiveDeliver) Deliver (

) |

med.C.syncLock.Lock ()
defer med.C.syncLock.Unlock ()

17 +
18 +

20 }

Fig. 11. A safety bug which can double processing block proposal in fabric
SmartBFT consensus system.

Function ‘getCurrentViewNumber()’ is responsible for get-
ting the current ‘viewld’. Function ‘sync()’ is designed to

synchronize ‘viewld’ from other nodes in the blockchain. The
function ‘deliver()’ is implemented to deliver block proposals.
If a node is unaware of the block proposal committed by
the rest of the nodes, attempts a view change that fails, and
triggers a view change timeout, then the function ‘sync()’
will be called. However, the sync procedure may then commit
that proposal, and the proposal will be then attempted to be
committed again once the view change resumes its operation,
these two procedures are parallel. This CFB has already been
fixed by the developer. Locks are added to ensure that the
view change procedure hangs out until the sync procedure has
ended, as shown in lines 17-18.

This safety vulnerability is hard to be detected because in
most cases, the block delivery procedure and view change
procedure are totally independent and can be executed con-
currently. Due to network delay or malicious block messages,
the target node is missing other nodes’ block proposals and
starts the delivery process. At the same time, an abnormal
‘viewChange’ message should be sent to the target node so
that the sync procedure can be called. Tyr can easily trigger
such concurrent conflict because the unique block delivery
behavior and view sync behavior will be captured and analyzed
in time. Based on the behavior divergence guided model, T'yr
dynamically adjusts the message selection process and has a
high probability to send both ‘viewChange’ and ‘blockDeliver’
messages simultaneously. Eventually, Tyr triggers this bug and
detects it via the safety oracle automation.

Lessons from the cases. From the above two cases, we find
that CFBs in blockchain tend to cause severe consequences.
Either network split or proposal double processing may cause
unrecoverable loss. From the first case, we can learn that
the view sync procedure should take abnormal ‘viewChange’
messages from malicious nodes into account and implement
corresponding defense mechanisms. The second case shows
that a developer should always be aware of concurrent pro-
cesses and validate them for conflict.

B. Effectiveness on Code Coverage

To evaluate the capacity of Tyr in code coverage of
blockchain systems, we set up a 10-node network for each
target blockchain and compared T'yr with other state-of-
art tools in the same experimental setup. According to the
empirical study of absfuzz [38]], code, block, and branch
coverage are highly correlated. Therefore, we collected the
branch coverage for each tool in 24 hours as the evaluation
metric. The statistics are shown in Table In conclusion,
Tyr covers 43.6% and 228.2% more branches than Peach and
Fluffy on Go-Ethereum and Quorum. T'yr covers 27.5% and
297.1% more branches than Peach and Twins on Diem. On
Fabric, FISCO-BCOS, and EOS, Tyr covers 43.5%, 22.7%,
and 13.5% more branches than Peach respectively.

Since Fluffy only supports Ethereum, we just compared it
with Tyr on Go-Ethereum and Quorum. T'yr covers twice as
many branches as Fluffy. This is because Fluffy is designed
to test the transaction execution logic of EVM. Most of the
consensus processes such as leader election, block verification,

(a) Fabric

(b) FISCO-BCOS

(¢) Quorum

-10* -10* -10*
” 14 [T T T T ” 32 ” 1 2 [T T T T |
[} [} [} °
S 1.2 * < < L |
g Y 12 24 RN oo
Sl 1 S 08} s
m 08} e 2 46l | Mm
3 06) . ERR | —]
L 04} — Tyr H L 08| — Tyr |}) 0.4 I ----Peach H
3 O.?) I | | | ----Peach [3 . | | | ----Peach 3 0-3 I | | - Fluffy [|

0 120 240 360 480 600 720 0 120 240 360 480 600 720 0 120 240 360 480 600 720

Time [min] Time [min] Time [min]
d) Deim e) Go-Ethereum EOS

10t (d) 10t ©)] 10t ®
" 3.5 /\’__\—’__k—_l_t__ . 1ol T T T T 5 w 2TE— \ =
2 3 . 2 '1 7/_/-/'% 2 995 lemmm
O ol) 3] 3]
g 2.5 - = = =
: B fpem—— 18} -
[an} [N [an} [an}
'8 1.5} — Tyr H vg 0.6 - - TyI' ,8 1.35 | |
§ T, ----Peach | § 0.4 e --=--Peach H § 0.9 —_— Tyr
3 O.g - | | L Twins [3 0-3 B | | L Fluffy [3 0.42 = | | | ----Peach ||

0 120 240 360 480 600 720 0 120 240 360 480 600 720 0 120 240 360 480 600 720

Time [min]

Time [min]

Time [min]

Fig. 12. Coverage trends evaluated for T'yr, Peach, Twins and Fluffy on Fabric, FISCO-BCOS, Quorum, Diem, Go-Ethereum and EOS in 12 hours. Fluffy
only supports Quorum and Go-Ethereum. Twins only supports DiemBFT. Compared with these state-of-the-art tools, T'yr shows better branch coverage all

the time on all the target blockchain networks.

TABLE 11
BRANCH COVERAGE ON SIX BLOCKCHAIN NETWORKS IN 24 HOURS.
FLUFFY ONLY SUPPORTS ETHEREUM AND QUORUM, TWINS ONLY
SUPPORTS DIEM. T'yr COVERS 27.3%, 228.2%, AND 297.1% MORE
BRANCHES COMPARED WITH PEACH, FLUFFY, AND TWINS.

Peach Fluffy Twins Tyr
Fabric 9731 - - 13964
FISCO BCOS 25992 - - 31902
Quorum 8766 3756 - 12662
Diem 26366 - 8463 33606
Go-Ethereum 8315 3712 - 11851
EOS 23305 - - 26453

etc. cannot be tested by Fluffy. Twins only supports DiemBFT,
so we ran it on Diem. Tyr covers almost three times as many
branches as Twins. The reason is that Twins just tests BFT
protocols in a mock environment, missing the actual transac-
tion execution and block verification. Compared with Peach,
Tyr covers over 27.3% more branches on all 6 blockchain
networks because Tyr can analyze nodes’ behaviors data
in real time and send message inputs accordingly. While
Peach only generates static messages based on predefined state
models without utilizing runtime information of target nodes.

To observe the trends of coverage growth over time, we
record the branch coverage every minute over 12 hours, as
shown in figure The shadow represents the range of values
in multiple times of experiments. The results varied within +/-
5%. The line represents the average value. According to the
figure, T'yr’s branch coverage grows significantly in the first
4 hours on all six target blockchain networks. After around 12
hours, the coverage of T'yr gradually converges (only less than
1% coverage improvement is observed). But after 12 hours,

Tyr can still generate some boundary values to trigger more
CFBs. As for Peach and Fluffy, the coverage grows rapidly in
the first 60-120 minutes. After that, the message inputs they
generated can hardly cover more branches as it does at the
beginning of the fuzzing process. As a unit test generator, the
coverage of Twins does not change over time because Twins
can not collect the feedback information of target nodes and
generate new test inputs accordingly.

Compared to other tools Peach, Fluffy and Twins, we can
see from figures (a) - (f) that T'yr always achieves more branch
coverage and its coverage grows much faster. The main reason
is that T'yr can collect their behavior information in real time.
Benefiting from this, T'yr utilizes the behavior guided fuzzing
algorithm to constantly select and mutate a significant number
of high-quality message seeds. In this way, the well-generated
message inputs can reach deeper code logic, achieving better
fuzzing performance.

C. Efficiency and False Positives Analysis

To evaluate the influence of the decision time on fuzz
efficiency and false positives, we also conduct the experiment
that runs Tyr on different decision time values, from 1 bct
(block confirmation time) to 15 bct. First, we recorded the
number of transactions generated by Tyr per second and
calculated the average TPS (transaction per second). Then, we
collected all the consensus failure bugs reported by Tyr in 24
hours on all six target blockchain systems. Then we manually
analyzed the false positives of those bugs.

As shown in table as the decision time increases, the
transaction generation rate of T'yr declines slightly, from 377.8
TPS to 274.6 TPS. However, the number of false positives
reported by T'yr decreases rapidly, from 67 to 0. These

TABLE III
THE AVERAGE TPS, FALSE POSITIVES AND TRUE POSITIVES OF T'yr ON
VARIOUS DECISION TIME SETUPS.

Decision Time | Average TPS | False Positives | True Positives
1 bet 377.8 67 20
2 bet 362.5 16 20
4 bet 345.2 7 20
6 bet 3247 0 20
8 bt 301.1 0 20
10 bet 274.6 0 20

statistics demonstrate that although a long decision time affects
the efficiency of transaction generation, it effectively reduces
false positives, which adequately answers RQ3. According
to the experimental results, a six-block confirmation time is
sufficient to remove all the false positives for all 6 target
blockchain systems. The main reason is that after a six-block
confirmation time, nearly all blocks are in an irreversible state,
where all data are fixed and can be calculated. The number of
real CFBs has not changed over different decision time values,
which demonstrates that the decision time has no effect on the
true positives.

D. Effectiveness of Behavior Guided Fuzzing

To evaluate the effectiveness of the behavior divergent
model, we also conducted the experiment that compares T'yr
with Tyr~, the version of Tyr which disables the behavior
divergent model and generates messages randomly. We col-
lected the branch coverage as well as the number of bugs in
24 hours on all six target blockchain networks.

TABLE IV
COMPARISON OF T'yr~ AND T'yr ON 6 TARGET BLOCKCHAIN NETWORKS
IN 24 HOURS. T'yr WITH BEHAVIOR DIVERGENT MODEL DETECTS 12
MORE BUGS AND COVERS 18.5% MORE BRANCHES.

Number of Bugs | Branch Coverage

Tyr Tyr Tyr— Tyr
Fabric 2 5 10725 13964
FISCO BCOS | 4 8 29426 31902
Quorum 1 2 9228 12662
Diem 0 1 27523 33606
Go-Ehteruem 0 2 8632 11851
EOS 1 2 24513 26453
Total 8 20 110047 130438
Improvement - +150% | - +18.5%

As shown in table with the help of the behavior
divergent model, Tyr can detect all 20 bugs in 24 hours,
while T'yr~ only detects 8 of them. Besides that, compared
with Tyr~, Tyr always achieves more branch coverage in
all 6 target blockchain systems. In total, T'yr covers 20,391
more branches, achieving an improvement of 18.5% branch
coverage. The main reason is that most CFBs are hidden
in the deep code path. To cover them, many nodes with
different behaviors should be executed first. Benefiting from
the behavior divergent model, Tyr successfully explores more
deep logic paths in all target blockchain systems. Thus, we
can conclude that the behavior divergent testing strategy

achieves better performance on both code coverage and bug
detection. It significantly improves the testing performance,
which adequately answers RQ4.

VII. DISCUSSION

In this section, we will discuss some advantages and limi-
tations of T'yr and our future work.

Generability of Tyr. Currently, Tyr has supported 4 CFB
oracles based on blockchain consensus properties, including
Liveness, Safety, Integrity, and Fairness. Tyr has already been
adapted to six widely used blockchain systems and has found
20 previously unknown bugs with 5 CVEs assigned. However,
in practice, there are still some other types of bugs, such as
memory-related vulnerabilities, privacy issues, etc. hidden in
the implementation of the blockchain systems. It will also pose
a threat to the ecology of blockchain systems.

Tyr is designed to be generalizable to other scenarios. Tyr
can find other types of bugs if equipped with corresponding
oracles. For example, if enhanced with ASAN (Address San-
itizer [39]), Tyr can find memory-related bugs. Take CVE-
2021-35041 for example, it’s a memory unfree bug and can
be easily detected by Tyr. If extended with privacy oracle,
by trying to access private data and checking its visibility,
Tyr can also find privacy issues in blockchain networks. Take
the code snippet in figure as an example. This is a
privacy vulnerability in Quorum. When an unauthorized node
makes a call to a private contract, the return value should
be an empty string. But in practice, the function returns an
error code via JSON RPC rather than an empty string, which
leaks information about the contract’s behavior. By keeping
calling private contracts and checking whether the result of
the unauthorized call is an empty string, Tyr can easily detect
this privacy vulnerability.

However, the privacy perspective in blockchain varies for
personal and organizational data. Although privacy rules are
applicable to personal data, more stringent privacy rules ap-
ply to sensitive and organizational data. The flexibility of
blockchain privacy makes it hard to design a general privacy
oracle for various blockchain systems. More works need to be
explored to address this challenge. Privacy and other types of
bugs deserve our attention in the future.

Finer-grained Runtime Information. At present, Tyr
utilizes a behavior divergent model to make distributed nodes
behave as differently as possible. Through analyzing nodes’
leader election times, transaction execution, and code coverage
in real-time, T'yr triggers the oracle automation more effi-
ciently and covers 20,391 more branches, and detects 12 more
CFBs compared with Tyr~. However, some finer-grained
runtime information of target nodes can also be collected as
better guidance for the testing process.

For example, the timestamp of messages can be collected
and analyzed in each target node. The timestamp determines
the exact moment in which the messages have been sent and
received by the blockchain network. As a temporal parameter,
each node’s sending and receiving message sequence can
be constructed from it. Based on that, T'yr may construct

more efficient message sequences as inputs and may achieve
better testing performance. However, finer-grained information
analysis brings higher overhead. How to find a balance point
needs to be explored in the future.

VIII. RELATED WORK

Blockchain Consensus Network Testing. Fluffy [10] and
Twins [37] are representative tools for blockchain consensus
network testing and are also the work most relevant to this
paper. The core idea of Fluffy [10] is differential testing.
It generates multi-transactions and uses different Ethereum
virtual machines as cross-referencing factors to observe ab-
normal behaviors. Although the execution of the transaction
sequence involves consensus logic, what Fluffy can expose is
only the vulnerabilities in the virtual machine implementation.
Twins [37]] is an automated unit test generator of Byzantine
attacks. It replicates node information, systematically gener-
ates three kinds of Byzantine attack scenarios, and executes
them in a controlled manner. However, Twins’ attack scenarios
are limited and miss the runtime information in the consensus
process. There are also some tools designed for consensus
protocols in general distributed systems, such as DEMi [40].
Its core idea is to minimize faulty executions in Raft [41]] and
Spark [42] by filtering out key events. But it does not focus
on detecting vulnerabilities in the consensus network.

Blockchain Smart Contract Testing. Some work also fo-
cuses on detecting smart contracts vulnerabilities that may also
influence the security of blockchain systems [43]. For example,
Oyente [44] is a symbolic execution tool for bug detection
in solidity contracts by exploring a contract CFG. However,
Oyente does not support detection in cross-contract scenarios.
To handle this problem, Pluto [45] supports inter-contract call
modeling. In this way, Pluto found some previously-unknown
inter-contract vulnerabilities. SCStudio [40] integrates several
commonly-used detection tools such as Securify [47] and Pied-
Piper [48]] to provide more accurate analysis results.

Logic Bug Detection. Logic bugs usually refer to semantic
vulnerabilities in the implementation of the code, and the
detection target is often the improper behavior or execution
results of the program rather than crashes. Elle [49] is a
novel checker which infers a dependency graph among client-
observed transactions. By identifying cycles in the graph, Elle
can expose a particular set of transactions which implies an
anomaly has occurred that violates the consistency properties.
Symbolic QED [50]] aims to find critical design flaws in inte-
grated circuits. Its core idea is combining redundant execution
and control flow checking with bounded model checking-based
formal analysis. For file systems, Hydra [51] designs an in-
house crash consistency checker, the SibylFS oracle, and the
existing file system-specific assertions to find three common
types of semantic bugs. Modulo [52] checks consistency for
distributed databases by generating test inputs and injecting
them into tested systems. Differential fuzzing is also an effec-
tive way to find logic bugs in different fields. DPIFuzz [53]]

generates and mutates QUIC streams to compare the server-
side interpretations of different QUIC implementations.
Network Protocol Fuzzing. Fuzzing is an effective method
to detect bugs in network protocol implementations. For tra-
ditional network protocols, fuzzers are generally divided into
two types: generation-based and mutation-based. The former
reads the user-provided data models to obtain the format
specification of each element, then utilizes it to complete test
seeds. Representative tools are Peach 9], Sulley [54] and their
extensions [55], [56]. However, these fuzzers rely on manual
efforts in the acquisition of the protocol model, which leads
to low testing effectiveness. The latter uses valid inputs and
modifies them via mutation operations. Due to the lack of
targeted oracle definitions and strategy guidance, most of them
are inefficient in triggering deep logic vulnerabilities.

Main Difference. Different from the traditional fuzzers
which focus on coverage-guided and state-guided algorithms,
to the best of our knowledge, T'yr is the first behavior-guided
fuzzer for diverging blockchain’s behavior and detecting CFB
in blockchain systems. T'yr designs 4 CFB oracle detectors
and collects nodes’ behaviors information in real time for test-
ing guidance. With well-defined oracles and efficient behavior
divergent models, T'yr can effectively trigger and monitor
the abnormal behavior of nodes in the blockchain network
in addition to crashes. According to the behavior information
feedback, T'yr will preferentially select the message that
triggers the abnormal behavior of the node for more mutation
operations, thus enabling T'yr to reach deeper consensus code
paths more easily. Furthermore, based on the scalability of the
testing framework, Tyr can be quickly adapted to different
blockchain systems.

IX. CONCLUSION

In this paper, we propose T'yr, an automatic testing tool for
detecting CFBs in blockchain systems based on the behavior
divergent model. T'yr first designs 4 CFB oracle detectors for
monitoring the behaviors of nodes and analyzing the violation
of consensus properties. Tyr employs a behavior divergent
model to collect real-time behaviors states and divergent
distributed nodes’ behaviors in the system as much as possible.
We implement and evaluate T'yr on 6 commercial blockchain
systems: Fabric, FISCO-BCOS, Quorum, Diem, Go-Ethereum,
and EOS. The results show that T'yr covers 27.3%, 228.2%,
and 297.1% more branches on average compared with state-
of-the-art tools. T'yr successfully detected 20 previously un-
known CFBs with 5 CVE IDs assigned. Our future work
will consider enhancing T'yr with finer feedback guidance in
finding more CFBs.

X. ACKNOWLEDGEMENTS

This research is sponsored in part by the National Key
Research and Development Project (No. 2022YFB3104000),
NSFC Program (No. 62022046, 92167101, U1911401), and
Webank Scholar Project (20212001829).

[9]

(10]

(11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]
[28]
[29]

[30]

REFERENCES

Y. Lu, “The blockchain: State-of-the-art and research challenges,” Jour-
nal of Industrial Information Integration, vol. 15, pp. 80-90, 2019.
CVE-2021-39137, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-39137, 2021.

CVE-2020-26265, https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2020-26265, 2020.

CVE-2020-26241, https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2020-26241, 2021.

C. Harper, “Ethereum’s ‘unannounced hard fork’ was trying to pre-
vent the very disruption it caused,” https://finance.yahoo.com/news/
ethereum-unannounced- hard- fork-trying-230144206.html, 2022.
INFURA, “The infura platform,” https://infura.io/product/overview,
2022.

makerdao, “The maker protocol: Makerdao’s multi-collateral dai (mcd)
system,” https://makerdao.com/en/whitepaper/, 2022.

e. a. Hayden Adams, “Uniswap v3 core,” https://uniswap.org/
whitepaper-v3.pdf, 2022.

M. Eddington, “protocol-fuzzer-ce,” https://gitlab.com/gitlab-org/
security-products/protocol-fuzzer-ce, 2021, accessed at April 6, 2022.
Y. Yang, T. Kim, and B.-G. Chun, “Finding consensus bugs in ethereum
via multi-transaction differential fuzzing,” in 15th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 21),
2021, pp. 349-365.

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and
D. Malkhi, “Twins: Bft systems made robust,” in 25th International Con-
ference on Principles of Distributed Systems (OPODIS 2021). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2022.

Go-Ethereum, “Official go implementation of the ethereum protocol,”
https://geth.ethereum.org/, 2022.

openethereum, “Parity ethereum. the fastest and most advanced ethereum
client,” https://github.com/openethereum/parity-ethereum, 2022.
Hyperledger, “Hyperledger fabric,” https://www.hyperledger.org/use/
fabric, 2021, accessed at April 6, 2022.

FISCO, “Fisco bcos,” |https://github.com/FISCO-BCOS/FISCO-BCOS,
2021, accessed at April 6, 2022.

L. Ren, “Analysis of nakamoto consensus,” Cryptology ePrint Archive,
2019.

J. FRANKENFIELD, “Proof of work,” https://www.investopedia.com/|
terms/p/proof-work.asp, 2021, accessed at April 6, 2022.

“Proof of stake,” |https://www.investopedia.com/terms/p/
proof-stake-pos.asp, 2021, accessed at April 6, 2022.

M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173-186.

M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuft: Bft consensus in the lens of blockchain,” arXiv preprint
arXiv:1803.05069, 2018.

E. A. Brewer, “Towards robust distributed systems,” in PODC, vol. 7,
no. 10.1145. Portland, OR, 2000, pp. 343 477-343 502.

S. Zhang and J.-H. Lee, “Double-spending with a sybil attack in
the bitcoin decentralized network,” IEEE transactions on Industrial
Informatics, vol. 15, no. 10, pp. 5715-5722, 2019.

A. Begum, A. Tareq, M. Sultana, M. Sohel, T. Rahman, and A. Sarwar,
“Blockchain attacks analysis and a model to solve double spending
attack,” International Journal of Machine Learning and Computing,
vol. 10, no. 2, pp. 352-357, 2020.

CVE-2022-26534, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2022-26534, 2022.

Ethereum, “Welcome to ethereum,” https://ethereum.org/en/, 2021, ac-
cessed at April 6, 2022.

B. Xu, D. Luthra, Z. Cole, and N. Blakely, “Eos: An architectural,
performance, and economic analysis,” Retrieved June, vol. 11, p. 2019,
2018.

Diem, “Welcome to the diem project,” https://www.diem.com/en-us/,
2021, accessed at April 6, 2022.

J. M. Chase, “Quorum white paper,” Accessed: Jan, vol. 17, p. 2019,
2016.

Google, “Protocol buffer structure encoding,” https://developers.google.
com/protocol-buffers/docs/encoding, 2021, accessed at April 6, 2022.
J. Polge, J. Robert, and Y. Le Traon, “Permissioned blockchain frame-
works in the industry: A comparison,” Ict Express, vol. 7, no. 2, pp.
229-233, 2021.

(371

[38]

(39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

CoinMarketCap, “Coinmarketcap,” https://coinmarketcap.com, 2022, ac-
cessed at April 6, 2022.

G. documentation, “A test coverage program,” https://gcc.gnu.org/
onlinedocs/gcc/Geov.html, 2022.

——, “Codecov and grcov,” https://about.codecov.io/tool/grcov/, 2022.

——, “Googletest coverage,” |https://github.com/google/googletest,
2022.

J. Stauffer, “What is a block confirmation
on ethereum,” https://jaredstauffer.medium.com/

what-1s-a-block-confirmation-on-ethereum-e¢27d29ca8c01, 2022.

N. REIFF, “How does a block chain prevent double-spending
of bitcoins,” https://www.investopedia.com/ask/answers/061915/
how-does-block-chain-prevent-doublespending-bitcoins.asp, 2022.

S. Bano, A. Sonnino, A. Chursin, D. Perelman, and D. Malkhi, “Twins:
White-glove approach for bft testing,” arXiv preprint arXiv:2004.10617,
2020.

C. Salls, A. Machiry, A. Doupe, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna, “Exploring abstraction functions in fuzzing,” in 2020 IEEE
Conference on Communications and Network Security (CNS). 1EEE,
2020, pp. 1-9.

C. . documentation, “Address sanitizer,” https://clang.llvm.org/docs/
AddressSanitizer.html, 2021.

C. Scott, V. Brajkovic, G. Necula, A. Krishnamurthy, and S. Shenker,
“Minimizing faulty executions of distributed systems,” in /3th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16), 2016, pp. 291-309.

D. Ongaro and J. Ousterhout, “The raft consensus algorithm,” 2015.
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in 2nd USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 10), 2010.

M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li, and Y. Cai,
“Empirical evaluation of smart contract testing: what is the best choice?”
in Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 566-579.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254-269.

F. Ma, Z. Xu, M. Ren, Z. Yin, Y. Chen, L. Qiao, B. Gu, H. Li, Y. Jiang,
and J. Sun, “Pluto: Exposing vulnerabilities in inter-contract scenarios,”
IEEE Transactions on Software Engineering, 2021.

M. Ren, F. Ma, Z. Yin, Y. Fu, H. Li, W. Chang, and Y. Jiang, “Making
smart contract development more secure and easier,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 1360-1370.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67-82.

F. Ma, M. Ren, L. Ouyang, Y. Chen, J. Zhu, T. Chen, Y. Zheng,
X. Dai, Y. Jiang, and J. Sun, “Pied-piper: Revealing the backdoor
threats in ethereum erc token contracts,” ACM Transactions on Software
Engineering and Methodology, 2022.

K. Kingsbury and P. Alvaro, “Elle: Inferring isolation anomalies from
experimental observations,” arXiv preprint arXiv:2003.10554, 2020.

E. Singh, D. Lin, C. Barrett, and S. Mitra, “Logic bug detection and
localization using symbolic quick error detection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2018.
S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding
semantic bugs in file systems with an extensible fuzzing framework,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles, 2019, pp. 147-161.

B. H. Kim, T. Kim, and D. Lie, “Modulo: Finding convergence failure
bugs in distributed systems with divergence resync models.”

G. S. Reen and C. Rossow, “Dpifuzz: A differential fuzzing framework
to detect dpi elusion strategies for quic,” in Annual Computer Security
Applications Conference, 2020, pp. 332-344.

P. Amini and A. Portnoy, “Sulley,” https://github.com/OpenRCE/sulley,
2012.

Z. Luo, F. Zuo, Y. Shen, X. Jiao, W. Chang, and Y. Jiang, “Ics protocol
fuzzing: coverage guided packet crack and generation,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC). 1EEE, 2020, pp.
1-6.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39137
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39137
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26265
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26265
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26241
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26241
https://finance.yahoo.com/news/ethereum-unannounced-hard-fork-trying-230144206.html
https://finance.yahoo.com/news/ethereum-unannounced-hard-fork-trying-230144206.html
https://infura.io/product/overview
https://makerdao.com/en/whitepaper/
https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://geth.ethereum.org/
https://github.com/openethereum/parity-ethereum
https://www.hyperledger.org/use/fabric
https://www.hyperledger.org/use/fabric
https://github.com/FISCO-BCOS/FISCO-BCOS
https://www.investopedia.com/terms/p/proof-work.asp
https://www.investopedia.com/terms/p/proof-work.asp
https://www.investopedia.com/terms/p/proof-stake-pos.asp
https://www.investopedia.com/terms/p/proof-stake-pos.asp
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26534
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26534
https://ethereum.org/en/
https://www.diem.com/en-us/
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding
https://coinmarketcap.com
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://about.codecov.io/tool/grcov/
https://github.com/google/googletest
https://jaredstauffer.medium.com/what-is-a-block-confirmation-on-ethereum-e27d29ca8c01
https://jaredstauffer.medium.com/what-is-a-block-confirmation-on-ethereum-e27d29ca8c01
https://www.investopedia.com/ask/answers/061915/how-does-block-chain-prevent-doublespending-bitcoins.asp
https://www.investopedia.com/ask/answers/061915/how-does-block-chain-prevent-doublespending-bitcoins.asp
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/OpenRCE/sulley

[56] F. Zuo, Z. Luo, J. Yu, Z. Liu, and Y. Jiang, “Pavfuzz: State-sensitive
fuzz testing of protocols in autonomous vehicles.”

[57] A. P. Joshi, M. Han, and Y. Wang, “A survey on security and privacy
issues of blockchain technology,” Mathematical foundations of comput-
ing, vol. 1, no. 2, p. 121, 2018.

XI. APPENDIX
A. An Example of Tyr Adaption

When adapting Tyr to a new blockchain system, two
key interfaces are needed to implement. The first interface
is ‘BlockExtract()’ which is responsible for extracting key
consensus data from struct ‘Block’. The second interface is
‘p2p.send()’, to send messages and transactions generated by
Tyr to the target nodes in blockchain system. Here we take
Tyr adaption in Go-Ethereum for example.

Figure [13] illustrates how T'yr interacts with Go-Ethereum
network through these two interfaces. Tyr first extracts the
Heightpym, TX and State from blocks through BlockEx-
tract(). Then Tyr calculates the divergences based on the
extracted consensus data and converts them to the BDMs.
Then, Tyr utilizes Oracle Detector to identify whether they
violate the oracle definition and reports CFBs if violations are
found. Based on the BDMs, T'yr mutates consensus messages
by Algorithm 1. Finally, T'yr gossips the mutated messages
to the Ethereum network via p2p.send().

Tyr

Behavior
Guided Fuzzer

Oracle Detector

I
lliﬁiiiI
Ethereum
0 -
BlockExtract() HC—-_—@% _:E
e 00

Fig. 13. Workflow of Tyr implementation in Go-Ethereum. Tyr first analyses
consensus data through the interface ‘BlockExtract’ and calculates behavior
divergences. Based on them, Tyr mutates messages and sends them to the
network through the interface ‘P2P.send()’.

o)

f

generate

Mutated
messages

send

P2P.send()

calculate

Consensus

Data

extract

As the code in Figure[T4]shows, the ‘BlockExtract’ interface
will check whether the target chain (provide_url + chain)
exists. Then it extracts block data in the target chain from the
start_block to the end_block. To speed up this process, we
use a multi-threaded parallel calculation with the number of
threads determined by the value of max,orkers. The state-
ment job.run() will call the concrete block parser provided
by Go-Ethereum official implementation. Finally, the interface
‘BlockExtract’ outputs the consensus data which contains two
main parts — the block data part and the transaction data part.

1

The block data includes block number, miner identification,
hash value, timestamps, etc. The transaction data includes all
transaction execution values. All these data are sent to Tyr
for calculating node behavior divergence and updating BDMs.

def extract_blocks(start_block, end_block,
batch_size, provider_uri, max_workers,
blocks_output, transactions_output,
chain=’ethereum’) :

"""Exports blocks and tr
provider_uri

check_classic_provider_uri (chain,
provider_uri)
if blocks_output is None and
transactions_output is None:
raise ValueError ('Either --blocks-output
or --transactions-output options must
be provided’)

ExportBlocksJob (
start_block=start_block,
end_block=end_block,
batch_size=batch_size,
batch_web3_provider=ThreadLocalProxy (
lambda:

get_provider_from_uri (provider_uri,
batch=True)),
max_workers=max_workers,
item_exporter=
blocks_item_exporter (blocks_output,
txs_output),
export_blocks=blocks_output is not None,
export_transactions=txs_output is not None)
job.run ()

ansactions."""

job

Fig. 14. An example of the BlockExtract interface for Go-Ethereum. Tyr uses
this interface to extract consensus data from blocks.

As the code in Figure shows, the ‘P2P.send()’ interface
will first check whether the target nodes targets are in the
connected neighborhood nodes. Then it constructs Ethereum-
style messages based on msg.ode and data and encodes them
with concrete message formatter provided by Go-Ethereum of-
ficial implementation. Finally, interface ‘P2P.send()’ sends all
mutated messages to target nodes in the blockchain network.
B. Bug Reproduce Evaluation

To better understand the false negatives of T'yr, we also did
an experiment by detecting known bugs. We first collected the
latest 20 known CFBs from GitHub (4 bugs from fabric, 3 bugs
from FISCO-BCOS, 2 bugs from Quorum, 3 bugs from Diem,
5 bugs from Go-ethereum and 3 bugs from EOS). Then we ran
Tyr in each blockchain platform for 24 hours to try to detect
them. The detailed bug information can be listed in Table [V]
Results show 90% bugs (18 bugs) can be detected by T'yr.
Only Bug#l1 and Bug#17 are not detected by Tyr because
their root causes are data race, which is hard to reproduce
within the 24-hour experiment.

C. Finding Bugs in Other Scenarios

In addition to consensus failure bugs, memory-related bugs
in blockchain implementations are also important. Thanks to
the generability of T'yr, Tyr can find memory-related bugs if
enhanced with ASAN (Address Sanitizer [39]). Take CVE-
2021-35041 for example, it’s a memory unfree bug. The code

def P2P_send(self,

"""sends messages.

if len(self.nodes_connected) < len(targets):
self.debug_print ("Peers limit reached.")

targets, data) :

nun

msg_code,

for target in targets:
if not self.check_ ip_to_connect (target) :
self.debug_print ("connect_to: Cannot
connect!!")
targets.remove (target)

try:
data convert_ethereum_msg (msg_code,data)
self.sock.sendall (targets,
data.encode_ethereum())

except Exception as e:
self.main_node.debug_print (
"NodeConnection.send: Unexpected

ercontent/ror:"
+ str(sys.exc_info () [0]))
self.main_node.debug_print ("Exception: "
str(e))
self.terminate_flag.set ()

+

Fig. 15. An example of the P2P.send() interface for Go-Ethereum. Tyr uses
this interface to send mutated messages to the blockchain network.

TABLE V
THE LATEST 20 KNOWN CFBS FROM GITHUB. WE RUN T'yr FOR 24
HOURS IN EACH BLOCKCHAIN PLATFORMS AND RECORD WHETHER T'yr
CAN DETECT THEM.

Platform Link

1 Fabric https://jira.hyperledger.org/projects/FAB/issues/FAB-18535
2 Fabric https://jira.hyperledger.org/projects/FAB/issues/FAB-18526
3 Fabric https://jira.hyperledger.org/projects/FAB/issues/FAB-14470
4 Fabric https://jira.hyperledger.org/projects/FAB/issues/FAB-18239
5 FISCO-BCOS | https://github.com/FISCO-BCOS/FISCO-BCOS/issues/2254
6 FISCO-BCOS | https://github.com/FISCO-BCOS/FISCO-BCOS/issues/2206
7 FISCO-BCOS | https://github.com/FISCO-BCOS/FISCO-BCOS/issues/2101
8 Quorum https://github.com/ConsenSys/quorum/issues/1081

9 Quorum https://github.com/ConsenSys/quorum/issues/1379

10 | Diem https://github.com/diem/diem/issues/8704

11 | Diem https://github.com/diem/diem/issues/8423

12 | Diem https://github.com/diem/diem/issues/7643

13 | Go-Ethereum | https:/github.com/ethereum/go-ethereum/issues/26022

14 | Go-Ethereum | https:/github.com/ethereum/go-ethereum/issues/26020

15 | Go-Ethereum | https://github.com/ethereum/go-ethereum/issues/25953

16 | Go-Ethereum | https://github.com/ethereum/go-ethereum/issues/25787

17 | Go-Ethereum | https://github.com/ethereum/go-ethereum/issues/25870

18 | EOS https://github.com/EOSIO/eos/issues/7600 Safety

19 | EOS https://github.com/EOSIO/eos/issues/3835 Safety

20 | EOS https://github.com/EOSIO/eos/issues/10104 Safety

snippet in Figure [T6] describes the detailed information of the
vulnerability.

The function ‘P2PMessageRC2::decode’ is used to decode
the received packets. The code at line 2 reads the first 4 bytes
of data as the length of the received packet. If the current size
of the packet is less than the target length, the node believes
that the current packet has not been completely received and
returns a signal: ‘PACKET_INCOMPLETE’ whose value is
0. This signal will be handled by the code at line 12, which
will read more data from the session. The function ‘doRead()’
will allocate memory with size m_length for the incoming
packet. By constantly sending packets with large m_length

ssize_t P2PMessageRC2::decode(...) {
m_length
ntohl (x ((uint32_t«*) &buffer[offset]));
if (size < m_length) {
// the value of PACKET_INCOMPLETE is 0
return dev::network::PACKET_INCOMPLETE;
}

}

// code for handling the decoding result

ssize_t result
message—->decode (s—>m_data.data (),
s—->m_data.size());

else if (result == 0) {

// m_length size of memory is
s—>doRead () ;
break;

allocated

Fig. 16. Code snippet that constantly allocate new memory. An attacker can
sustain sending maliciously constructed packets to consume all the memory
of the honest node’s host and break it down.

size, the node will consume the memory sustainably until out
of memory. With the help of ASAN, this memory bug can be
detected by T'yr.

Furthermore, privacy issue is important in blockchain sys-
tems. The goal of privacy protection is to make it extremely
difficult for users to access other users’ private data [|57[]. Cur-
rently, the techniques for blockchain privacy protection can be
divided into two main types: access control and cryptographic
methods. Both of them can prevent invalid private data access.
If extended with privacy oracle, for example, by constantly
trying to query private data and checking its visibility, T'yr
can also find privacy issues in blockchain networks. Take
the code snippet in figure [I7] as an example. This is a
privacy vulnerability in Quorum. When an unauthorized node
makes a call to a private contract, the return value should
be an empty string. But in practice, the function returns an
error code via JSON RPC rather than an empty string, which
leaks information about the contract’s behavior. By keeping
calling private contracts and checking whether the result of
the unauthorized call is an empty string, Tyr can easily detect
this privacy vulnerability.

i func (s xPublicBlockChainAPI) doCall(...)
(string, *big.Int, error) {
gp := new(core.GasPool) .AddGas (common.MaxBig)
4 res, gas, err := core.ApplyMessage (vmenv,
msg, gp)
5 if err := vmError(); err != nil {
6 // BUG: the first parameter should be

instead of "Ox"

err

common.ToHex (nil),
7 return "Ox", common.Big0,
8 }
9 return common.ToHex (res),

gas, err

Fig. 17. A privacy vulnerability occurs in Quorum.

	Introduction
	Background
	 Blockchain Consensus Process

	Motivation
	CFBs in Blockchain Consensus Systems
	Challenges to Detect Such Bugs

	Tyr Design
	Behavior Divergent Engine
	Oracle Automation

	Implementation
	Evaluation
	CFBs in Blockchain Systems
	Case Study

	Effectiveness on Code Coverage
	Efficiency and False Positives Analysis
	Effectiveness of Behavior Guided Fuzzing

	Discussion
	Related Work
	Conclusion
	ACKNOWLEDGEMENTS
	References
	Appendix
	An Example of Tyr Adaption
	Bug Reproduce Evaluation
	Finding Bugs in Other Scenarios

