DeepFuzzer: Accelerated Deep Greybox
Fuzzing

Jie Liang, Yu Jiang, Mingzhe Wang, Xun Jiao,
Yuanliang Chen, Houbing Song, and Kim-Kwang Raymond Choo

Abstract—Fuzzing is one of the most effective vulnerability detection techniques, widely used in practice. However, the performance of
fuzzers may be limited by their inability to pass complicated checks, inappropriate mutation frequency, arbitrary mutation strategy, or

the variability of the environment.

In this paper, we present DeepFuzzer, an enhanced greybox fuzzer with qualified seed generation, balanced seed selection, and hybrid
seed mutation. First, we use symbolic execution in a lightweight approach to generate qualified initial seeds which then guide the
fuzzer through complex checks. Second, we apply a statistical seed selection algorithm to balance the mutation frequency between
different seeds. Further, we develop a hybrid mutation strategy. The random and restricted mutation strategies are combined to
maintain a dynamic balance between global exploration and deep search.

We evaluate DeepFuzzer on the widely used benchmark Google fuzzer-test-suite which consists of real-world programs. Compared
with AFL, AFLFast, FairFuzz, QSYM, and MOPT in the 24-hour experiment, DeepFuzzer discovers 30%, 240%, 102%, 147%, and
257% more unique crashes, executes 40%, 36%, 36%, 98%, and 15% more paths, and covers 37%, 34%, 34%, 101%, and 11% more
branches, respectively. Furthermore, we present the practice of fuzzing a message middleware from Huawei with DeepFuzzer, and 9

new vulnerabilities are reported.

Index Terms—Software Testing, Greybox Fuzzing

1 INTRODUCTION

FUZZING is a software testing technique that feeds the
computer program with invalid, unexpected or random
input seeds with the goal of monitoring exceptions. The
first (or at least best-known) fuzzing project aimed to test
the reliability of UNIX utilities [1], [2]. Since then, fuzzing
has identified a large number of software bugs and security
vulnerabilities. At present, fuzzing is widely deployed by
many companies such as Google [3], [4], Microsoft [5], [6],
and Adobe [7].

To generate input seeds, mutation and generation are
two popular methods [1]. Mutation-based fuzzers mutate
existing seeds randomly so as to construct new seeds [8],
[3]. Aimless random mutation produces a lot of worthless
seeds, especially for complex programs. Because of this,
they teeter in shallow areas and difficult to reach deep
places in programs. However, many serious vulnerabilities
usually remain undiscovered. Generation-based fuzzers, on
the other hand, normally test programs accepting highly-

e Jie Liang, Yu Jiang, Mingzhe Wang, and Yuanliang Chen are with
the School of Software, Tsinghua University, China, also with Beijing
National Research Center for Information Science and Technology, China,
and also with Key Laboratory for Information System Security, Ministry
of Education, China.

e Xun Jiao is with the Department of Electrical and Computer Engineering,
Villanova University, USA.

e Houbing Song is with the Department of Electrical, Computer, Software,
and Systems Engineering, Embry-Riddle Aeronautical University, USA.

o Kim-Kwang Raymond Choo is with the Department of Information
Systems and Cyber Security, University of Texas at San Antonio, USA.

Manuscript received Jul. 23, 2019; revised Nov. 11, 2019; accepted Dec.
6, 2019. This research is sponsored in part by the NSFC Program
(No. 61527812), the National Science and Technology Major Project of
China (No. 20162X01038101). Corresponding author: Yu Jiang (e-mail:
jy1989@mail.tsinghua.edu.cn).

structured inputs (such as SQL and JavaScript) [9], [10].
While a significant amount of up-front work is required
to study specifications and construct rules, semantic checks
like parsing are still difficult to pass. The limited generation
rules also restrict the vitality of inputs to explore the state
space of the program.

To strike a balance between effectiveness and automa-
tion, many researchers have devoted significant efforts. One
typical solution is guiding fuzzing with coverage infor-
mation. American Fuzzy Lop (or simply AFL) [8] is one
of the representative guided fuzzers. With some manual-
provided initial seeds, it explores the target program by
mutating them and retaining interesting seeds which dis-
cover new coverage. Then it repeatedly mutates interesting
seeds to cover more states of the program. In this way, it has
hunted hundreds of high-impact vulnerabilities. However,
just adding coverage information is insufficient for explor-
ing hard-to-reach regions in programs and thus misses some
deep vulnerabilities. First, AFL does not provide qualified
initial seeds for initial start points even as initial start points
are crucial; extra cycles of mutation on low-quality initial
seeds hardly improves the performance. Klees et al. also
point out the impact of initial seeds to fuzzing [11]. Second,
while worthless seeds can be screened out with coverage
information, the blind mutation strategy does not know
how to mutate the meaningful seeds to reach hard-to-reach
regions. To get through complex checks and discover these
regions, not only is a large number of mutations needed,
but also a bit of luck. In addition, when AFL gets through
complex checks and covers hard-to-reach regions with a
lot of efforts, the byte sequence related to these checks are
fragile in the presence of the blind mutation strategy.

Researchers have extended AFL in various ways. Some
optimize the mutation strategy to acquire better efficiency.
For example, AFLFast [12] assigns more mutation times
to seeds which execute infrequency paths, but this does
not increase the possibility of reaching uncovered regions.
FairFuzz [13] adjusts the mutation strategy to direct fuzzing
to rare regions, but its performance is vulnerable to local
convergence. AFLGo [14] assigns more mutation times to
seeds closer to target regions, so as to direct the fuzzing to
specific locations. However, any enhancement from reach-
ing deep regions is slight. MOPT [15] utilizes a customized
particle swarm optimization algorithm to find the optimal
selection probability distribution of mutation operators to
improve fuzzing.

Others try to incorporate program analysis techniques
such as symbolic execution as a way to extend AFL. For
example, SAFL [16], Driller [17], and QSYM [18] all suc-
cessfully apply symbolic execution to solve complex checks
which trap AFL. But solving complex constraints is still dif-
ficult for state-of-the-art constraint solvers, and AFL is likely
to get stuck again quickly because of the blind mutation
strategy.

Last but not least, those academic extensions perform
well when evaluated in ideal environments, but they do
not work consistently as expected when applied to many
industrial projects. Due to the complexity and variability of
the production environment, there are too many potential
causes that could fail a ”"smart” fuzzer. For instance, two
testing engineers from Huawei tried to fuzz their industrial
message middleware 1ibmsg with Driller, but they gave up
after investing two weeks of valuable time. They discovered
that Driller lacks the support for a set of POSIX APIs and
has rigid requirements on system and library configuration.

Based on the performance of existing fuzzers, we ob-
serve that there are four major obstacles for implementing
effective and adaptable fuzzing.

1) Poor initial seed quality. Initial seeds supply start
points to get through complex checks. Efficient
seeds are hard to manually construct and random
seeds are worthless. Thus, generating guiding initial
seeds automatically is badly needed.

2) Unbalanced seed selection. Unbalanced seed selec-
tion may assign seeds with inappropriate mutation
times. Valuable seeds are seldom selected, which
leads to inadequate mutations. In contrast, some
seeds are selected too much which leads to a waste
of resources.

3) Aimless mutation strategy. Extra efficiency gained
by coverage information enables exploring more
meaningful areas, but aimless mutation strategies
invalidate this benefit. These strategies mutate in-
puts randomly so that the structures required to
pass complex checks are easily damaged. Once the
delicate structures are broken, the exploration can
reach only the shallow regions.

4) Complex industrial environment. Fuzzers cannot
easily manage the complexity and diversity of
real industrial environments. Better adaptability of
fuzzers to industrial software products is much
needed.

2

In this paper, we present DeepFuzzer', a fuzzer that
combines qualified seed generation, balanced seed selection,
hybrid seed mutation, and automatic fuzzing environment
configuration so as to grapple effectively with the four
obstacles of current fuzzing techniques, and explore deep
paths as widely and as fast as possible. The key idea is that
the seed that touches the hard-to-reach regions represents
good directions and should be automatically generated,
selected more and mutated more times, and the mutation on
these seeds are restricted to some positions and operations
to reserve the path depth and breadth. Specially, we employ
symbolic execution [19] in a lightweight approach to gen-
erate high quality initial seeds which pass complex checks.
Then, we apply a statistical seed selection algorithm to bal-
ance the mutation frequency of different categories of seeds.
We also develop a hybrid random and reachability-reserved
mutation strategy that decides how to mutate the selected
seeds depending on the rarity of the reached regions. This
achieves a dynamic balance between global exploration and
a deep search. Furthermore, to enhance the adaptability of
DeepFuzzer to complex industrial environments and system
building complexity, we develop an automatic environment
configuration component named toolchain.

DeepFuzzer is evaluated on the widely used benchmark
Google fuzzer-test-suite’ which consists of real-world pro-
grams. The number of paths executed, branches covered,
and unique crashes triggered are used as metrics. Compared
with the state-of-the-art fuzzers such as AFL, AFLFast, Fair-
Fuzz, QSYM, and MOPT used in the 24-hour experiment,
DeepFuzzer performs better, triggering 30%, 240%, 102%,
147%, and 257% more unique crashes, executing 40%, 36%,
36%, 98%, and 15% more paths and covering 37%, 34%, 34%,
101%, and 11% more branches, respectively. Furthermore,
we present the practice of fuzzing an industrial message
middleware from Huawei with DeepFuzzer. After epitomiz-
ing several typical but interesting industrial environment
traps, 9 previously-unknown vulnerabilities are reported,
including flaws that lead to denial of service or commu-
nication crashes. The main contributions of our study are as
follows:

e We propose DeepFuzzer, an efficient open source
fuzzer with qualified seed generation, balanced seed
selection, and hybrid seed mutation.

o We list typical obstacles encountered while applying
fuzzing to a real industrial project: libmsg from
Huawei. Solutions to each obstacle are also provided.

This paper is organized as follows: Section 2 introduces
a motivating example. Section 3 details our approaches with
DeepFuzzer to accelerate deep greybox fuzzing. Section
4 presents design and implementation details. Section 5
presents evaluation along with obstacles and solutions for
industrial practice. Section 6 introduces the related work.
We conclude by exploring implications in section 7.

2 MOTIVATING EXAMPLE
To show how DeepFuzzer can address complicated checks,
we walk through a code snippet presented in Listing 1. In

1. https:/ / github.com/Ljiee/deepfuzz
2. https:/ / github.com/google/fuzzer-test-suite /

1| int fun(char xfilename, int size) {
2 unsigned char buf[1000]; int fd;
3 if ((fd = open(filename, O_RDONLY))==-1)
4 exit (0);

5 read (fd, buf, size);

6 if(size > 1000) return -1;

7 //BLOCK A

8 if (» (uint64_t «+)buf == OxCAFEBABE)
9 //BLOCK B

10 printf ("Magic bytes!\n");

11 else

12 //BLOCK C

13 return -1;

14 if (buf[10] < 10) {

15 //BLOCK D

16 if(buf[12] < 10) {

17 //BLOCK E

18 bugs () ;

19 } else {

20 // BLOCK F

21 ...some other task...

22 }

23 } else {

24 //BLOCK G

25 ...some other task...

26 close (fd); return O;

27 }

28 close (fd); return O;

29| }

Listing 1. A motivating example illustrates that how DeepFuzzer
addresses complicated checks.

this code snippet, the paths covered depend on certain bytes
at fixed offsets. When fuzzing this program, AFL will be
stuck in Block C; Driller or QSYM will cost a lot of time
and resources to trigger the bug; DeepFuzzer will trigger
the bug easily and quickly. To clarify such differences, the
corresponding control flow and the testing process of AFL,
Driller or QSYM, and DeepFuzzer are presented in Figure 1.

fuzzing

Line 8: buf[0:8] == OXCAFEBABE

® ©
Line 14: buf[10] < 10
Line 16: buf{12] < 10 , e
w@® © O

Line 8: buf[0:8] == OXCAFEBABE

Line 14: buf[10] < 10

Line 16: buf[12] < 10 o @\
\ .
“® ® O

(a) The control flow graph of the
example in Listing 2

(b) The process of fuzzing the example
program with AFL

fuzzing
— symbolic execution

fuzzing

Line 8: buf[0:8] == OXCAFEBABE

© ® ©

Line 14: buf(10] < 10

Line 16: buf[12] < 10 @ @
w© O ©

Line 8: buf[0:8] == OXCAFEBABE

- © O

(c) The process of fuzzing the example
program with Driller or QSYM

(d) The process of fuzzing the example
program with DeepFuzzer

Fig. 1. The control flow graph of Listing 2 and the process of fuzzing the
program with AFL, Driller / QSYM, and DeepFuzzer.

In line 8 of Listing 1, buf[0] and buf[1] are compared
with certain bytes to validate the input. This pattern is
common in real-world programs such as libjpeg, lcms, and
libpng. However, it is a significant obstacle for pure AFL-

3

family fuzzers (AFL, AFLFast, and FairFuzz). Figure 1 (b)
shows the operation of AFL. Because it has no whitebox-
level knowledge about the program, it will get stuck at Block
C and guess with brute-force by mutating different bytes on
various offsets.

Figure 1 (c) shows the process of Driller or QSYM.
They cannot pass the check in line 8 directly, but symbolic
execution can help them to arrive at Block B. However,
they ignore the importance of bytes from 0 to 8 of buf.
Their following mutated seeds generated by fuzzing might
destroy these bytes and return back to Block C again. As a
result, they have to employ symbolic execution to pass line
14 and get to Block D. Note that the check at line 14 is not
very difficult, so solving it by symbolic execution is a waste
of resources to some extent. The check at line 14 also causes
more input seeds covering Block G than Block D. So Driller
or QSYM takes more times to fuzz seeds who hit Block G
and most mutated seeds of them would go back to Block C.
It is difficult for them to concentrate on fuzzing Block D and
to cover its descendant blocks. In the end, they might have
to use symbolic execution again to reach Block E and trigger
the bug. On the other hand, along with the increased depth
of the path, the cumulative constraints are also increasing.
So Driller or QSYM will spend more and more time to solve
these nested conditions.

Figure 1 (d) shows the operation of DeepFuzzer. It passes
the check at line 8 and gets to Block B at the beginning owing
to qualified initial seeds generated by symbolic execution.
Next, DeepFuzzer detects that offset 0 to 8 are crucial to
Block B. It preserves them and mutates other bytes to get
Block D. DeepFuzzer utilizes a balanced seed selection,
which means it balances Block D and G by giving the seeds
who hit Block D more mutation times. On top of that, its
restrict mutation preserves bytes in offset 0-8, 10, 12 and
only mutates other offsets. As a result, DeepFuzzer finds
Block E and triggers the bug quickly.

When testing real-world programs, the whole process of
Driller or QSYM would cost more time and resources. The
inefficient use of the results of symbolic execution causes fre-
quent switching between symbolic execution with fuzzing.
The long execution trace would accumulate constraints thus
lower the success rate in solving. In contrast, DeepFuzzer
combines symbolic execution in a more suitable way for
fuzzing real-world programs. In summary, DeepFuzzer is
superior to other fuzzers in the following three aspects:

1) DeepFuzzer employs symbolic execution to gener-
ate initial seeds, which ensures that the complicated
checks could be passed in the beginning. It also
preserves the efficient fuzzing process and avoids
the switching cost between the symbolic execution
and fuzzing.

2) DeepFuzzer utilizes the balanced seed selection to
give adequate mutation times for each seed. It
avoids wasting too many resources on exploring
frequent parts.

3) DeepFuzzer integrates the restricted and random
mutation to retain the results of the symbolic execu-
tion. As a result, DeepFuzzer passes the nested con-
ditions more easily and explores more and deeper
paths continually.

3 DEeEPFuzzER APPROACH

Figure 2 presents an overview of the proposed approach.
Seed generation takes the C/C++ source code as input
and utilizes symbolic execution to generate qualified ini-
tial seeds to form the original circular queue. During the
fuzzing process, seeds are taken out from the queue one
after another. Seed selection determines whether to skip
a seed and compute the mutation times for each selected
seed. Seed mutation is responsible for mutating seeds in the
restricted or random strategy based on whether the seed
touches hard-to-reach areas. The bug report is produced by
the seeds which crash the program. Or if the mutated seeds
have new coverage, they will be added to the seed queue for
further mutations. Otherwise, the worthless mutated seeds
will be thrown into the trash. The process of AFL could
be contained in DeepFuzzer, which is framed in the dotted
box. There are three main differences between AFL and
DeepFuzzer. First, AFL lacks the process of seed generation.
Its initial seeds rely on manual supply. Second, it selects
seeds without considering the branch count statistics. Last,
it mutates seeds only by random mutation.

Source

y/l/

Qualified Seed
Generation

“;Initial Seeds

Interesting Hybrid Seed Mutation
Seed Circular Seeds
Queue

Take Skip

Random
Mutation

Restricted
Mutation

v

Mutate

Balanced Seed
Selection

Fig. 2. The interaction of DeepFuzzer algorithms.

3.1 AQualified Seed Generation

If a complex check can not be passed by initial seeds, it takes
significant computing resources to generate satisfied seeds
by pure luck. To compensate the format-agnostic nature of
greybox fuzzing, a symbolic executor is used to produce
high-quality initial seeds.

The symbolic executor works online and forks on
branches. To model the interaction between the program
and the environment, a subset of POSIX API is simulated
symbolically. For faster collection of constraints, LLVM bit-
code is chosen as the program representation to reduce the
instruction count. Different from normal whitebox fuzzers
such as Driller, the symbolic executor uses a strict time-
limited scheduler, because once the code can be covered by
initial seeds, fuzzer is more efficient at triggering bugs. Fol-
lowing the design principle that a symbolic executor should
be lightweight, the total execution time, maximum memory
usage, and constraint solving time are strictly limited to
prevent wasting computing resources on unnecessary ex-
plorations.

1| //BLOCK A

2| if(x == 0x12345678) {
3| //BLOCK B

4 if(...) |
5 //BLOCK D
6 }

7|}

8|l else {

9| //BLOCK C

10 if(...) |
11 //BLOCK E
12 }

13| }

Listing 2. Unfair selection.

When the symbolic executor halts, states are filtered to
only export seeds covering new paths. This optimization
is crucial, because one symbolic execution session might
contain tens of thousands of states, many of which exercise
the same path. The optimization drastically reduces the
number of seeds passed to the fuzzer.

3.2 Balanced Seed Selection

If valuable seeds are seldom selected, it would lead to
inadequate mutations. In contrast, if some worthless seeds
are selected too frequent, it would waste resources. The
balanced seed selection aims at assigning balanced mutation
times to each seed. We propose two rules named the branch-
sensitive fair skip rule and the branch-sensitive energy as-
signment rule to make the fuzzing tend to be in equilibrium.

Branch-sensitive fair skip rule. In AFL, whether a seed
is worth fuzzing depends on three factors: the size, the
running speed, and the number of fuzzed times. The skip
rule is fair for seeds, as the seed characteristics are the main
consideration. However, it is not fair for branches, as the
branch coverage distribution is left out. For each branch,
AFL only favours the smallest and the fastest seed covering
the branch. In AFL, if a seed is not favored or it has been
fuzzed before, AFL will skip it, which may lead to coverage
misses of some critical branches.

For example, consider the code snippet in Listing 2. We
use tuples AB, AC, BD, CE to represent branches. Suppose
the seed set S; and S5 contain seeds which can hit branch
AB and AC separately. Intuitively, if we select each seed
the same number of times, the probability of generating
seeds covering CE is much bigger than BD. Branch AB is
blocked by the magic bytes in a condition statement, leaving
explosive growth in the size of S5. So for the branch BD and
CE, the selection is not fair. To fix this problem, we should
give a high priority to seeds in S; and skip seeds in Sy
with a certain probability. In order to do this, we assign a
skip probability for every seed. This probability is inversely
proportional to the occurrence frequency of the code block.

We collect and use the branch hit count to indicate
the occurrence frequency to be common or rare. A branch
represents a basic block transition; its hit count reflects
the frequency of its associated blocks. Taking all runs into
account, the rarest branch of a seed denotes the branch which
has the minimum hit count among the hit branches of this
seed. Let z; be the hit count of the rarest branch for the
seed s;, n be the number of branches. v is a constant,

which diminishes the skip probability equally to increase
efficiency. The optimized fair skip probability for seed s; is:

P(z; !
=1 1
S) (Zj—1$j1> 0 (1)

The formula above assigns a higher mutation probability
for seeds exercising infrequent hit branches. After balancing
branches, we still follow the original skip rule of AFL to
omit unfavoured seeds.

Branch-sensitive energy assignment rule. Energy is
defined as the number of times seeds are mutated in the
random stage of fuzzing. AFL gives more energy to recently
created seeds which spend less execution time and achieve
more branch coverage. This heuristic helps AFL reach more
regions with less cost but also neglects the rarity of branches,
which usually leads to unbalanced energy assignment. For
example, a seed which only covers common branches might
run fast. Conversely, another seed runs slow but can hit rare
branches. Because of the lack of branch rarity, the assigned
energy for the first seed is excessive while for the latter is
inadequate.

To assign a more suitable number of mutation times
to seeds, we take the branch rarity into account similar
to the seed selection stage. Let s denote the selected seed
that needs to be mutated next, p(s) denote the energy of s,
and parr(s) denote the original energy calculated by AFL.
Given the number of times ¢(s) which s has previously been
chosen from the queue S and the hit number h(s) of the
rarest branch covered by s, DeepFuzzer computes p(s) as

s c(s)
p(s) = min <pAF5L() i(s) ,M> ()

p(s) is inversely proportional to h(s), which means the
rarer branch a seed can cover, the more energy the seed
will get. This helps to make the fuzzing process more
balanced towards the branch. The increase in ¢(s) gives the
exponential energy for reselected seeds to explore the states.
The constant M provides an upper bound on the number of
mutations per fuzzing iterations, which is 160k, the same as
with AFL. 8 balances the relation between the original AFL
energy assignment value and the branch-sensitive energy
assignment value.

3.3 Hybrid Seed Mutation

Before the main fuzzing process starts, seed generation
has supplied high-quality initial seeds automatically. These
seeds give the fuzzing a lot of valuable directions and help
the fuzzer pass the complicated checks (like line 2 in Listing
2) easily. But normal mutation strategy does not know the
delicate structure which is required to pass these checks.
Random mutation strategies easily damage the structure
and mess up the high-quality seeds, such as in Driller and
QSYM. Defeated by the complex checks, the fuzzing session
has to wander in shallow areas. The useless mutation also
wastes too many resources and causes inefficient fuzzing.
In order to take full advantage of the initial seeds and
to explore the deep places while maintaining breadth, we
propose a hybrid mutation strategy which combines the
restricted-mutation strategy and the random mutation strat-
egy. The restricted-mutation strategy mutates seeds which

5

cover tough reachable areas in a restricted way to preserve
the depth. For other seeds, DeepFuzzer preserves them to
retain the breadth with the random mutation strategy.

After several cycles, the original rare branches degener-
ate into common branches and new rare branches appear.
When it is difficult to cover rare branches, it is still possible
to utilize the random mutation strategy to further increase
the coverage. As described in the evaluation section, the
hybrid mutation solves the local convergence problem to a
certain extent, such as in FairFuzz. A branch is rare if its hit
count is less than or equal to rarity. rarity is the smallest
power of two, which bounds the number of input seeds
hitting the rarest branch. Let min_hit be the minimum hit
count of branches, rarity is:

ram'ty -9 [logy min_hit]

A target branch of a seed is the rarest branch among all
covered branches of the seed. With the target branch chosen,
the restricted mutation strategy can be performed. The algo-
rithm finds out strategies which would not diverge from the
target branch: for each byte in the seed, can it be overwritten,
deleted, or inserted? The overwritable bytes are computed
by replacing every byte of the input with a random byte. If
the result still hits the farget branch, the byte is designated
as overwritable. The property of deletable and insertable is
detected in a similar way: delete the byte being tested, or
insert a random byte before. Although three operations all
change the value of the testing byte, they will cause different
external results and all of them are indispensable. Take the
JPEG file as an example, it has several marker sections which
have fix length and data sections. We can only overwrite
bytes in the marker sections because other operations will
change the length and cause an invalid format. But in the
data sections, we can apply all of the three operations and
still get a valid JPEG file. Knowing the mutation property
for each byte, the seed is mutated in restricted ways at
corresponding positions. It is noteworthy that this algorithm
utilizes random bytes for replacement or insertion.

4 IMPLEMENTATION

DeepFuzzer consists of three main components — the seed
generator, the fuzzer, and the toolchain. The symbolic seed
generator is based on KLEE. The improved fuzzer is based
on AFL. The toolchain is based on a standard system
toolchain invocation. KLEE and AFL work on vastly differ-
ent levels of program representation. To help bridge the gap,
DeepFuzzer follows the interface specification of libFuzzer.
With this layer of abstraction, DeepFuzzer can use different
entry points for symbolic execution and fuzzing. This is
automatically done by the toolchain component.

The symbolic seed generator is responsible for produc-
ing high-quality initial seeds. It is a wrapper of KLEE. The
source code of KLEE is not modified, but the search strategy
is fine-tuned for seed generation. When the symbolic execu-
tor halts, states are filtered to only export seeds covering
new paths. Besides the tuning, there are three adaptations.
First, to support symbolic execution and basic POSIX API
simulation, we ship KLEE built with uclibc. Second, we
set the execution time of KLEE to 20 minutes. Finally,

we develop a converter to convert the results of KLEE to
available seeds.

The fuzzer component changes the source code of AFL.
It modifies the logic of seed selection and seed mutation to
implement the algorithm we proposed. The seed selection
algorithm applies the skip rule and the energy assignment
rule to balance the mutation times of branches. Three maps
are defined: one counts the hit number of every branch, one
labels whether a branch is interesting, denoting the rarest of
all branches a seed can cover. The last one records the times
a seed is successfully selected for fuzzing. When a seed is
taken out from the queue, we skip it with the probability
calculated by the formula (1) in section 3.2. The energy
which is computed as the formula (2) in section 4.2 controls
the random mutation times for each seed. The hybrid seed
mutation strategy assigns each seed with a fittest mutation
strategy. The restricted mutation strategy is only used for
the seeds that hit rare branches, it finds which bytes in a
seed can be overwritten, deleted, or inserted, and the rules
are obeyed in the mutation stage.

The toolchain component intercepts standard system
toolchain invocation, which enables customization on the
flags passed to the compiler and linking stage. Depending
on different build modes (symbolic vs fuzzing), different
sets of compiler flags are injected. The toolchain component
takes care of the trivial details of different build systems
such as CMake or AutoConf. It injects the flags as the
specification of build systems. When building LLVM bit-
code for symbolic execution, DeepFuzzer uses a pre-built
bitcode file to supply the main function when linking. It
feeds its argument(argv) as input, which simplifies the
environment interaction modelling of KLEE. The linking
stage also combines all the LLVM bitcode files into a whole
file for KLEE. When building an executable file for fuzzing,
a slightly patched AFL driver in libFuzzer is used as the
main function for linking. The patch adds support for
clean-up logic at exit. From our observation, programs with
background threads tend to crash because of an incorrect
exit procedure; false positives on memory leakage are also
found. Moreover, the toolchain also enables sanitizers such
as ASAN to detect latent bugs. The toolchain component
also adds an additional LLVM pass to collect coverage
information.

DeepFuzzer encapsulates the internal complexities
above into a collection of command line utilities. The com-
mand line utilities forms a workflow for software develop-
ers, providing an easy-to-use interface. The utilities detect
the system environment and configure each internal tool.
In this way, optimal parameters are automatically decided,
thus software developers do not have to manually tune
the parameters. Furthermore, from our empirical study, one
of the major obstacles for complex fuzzers to run on real
industry systems is system configuration inconsistency. A
compatibility layer is implemented in DeepFuzzer, which
contains various software library dependencies of each com-
ponent. As long as the kernel and glibc is recent enough,
DeepFuzzer is able to run on any Linux distribution.

5 EVALUATION

We evaluate the effectiveness of DeepFuzzer on the widely
used benchmark Google fuzzer-test-suite and other real-
world programs. The influence of symbolic seed generation,
balanced seed selection, and hybrid seed mutation are quan-
tified. Compared with the state-of-the-art fuzzers, Deep-
Fuzzer performs better. For example, compared with one
of the most recently developed symbolic execution aided
tool — QSYM, it triggers 147% more unique crashes, covers
98% more paths, and achieves 101% more covered branches
respectively. Furthermore, we deployed DeepFuzzer to the
highly customized runtime environment of Huawei and
fuzzed the message middleware libmsg. After epitomiz-
ing several typical but interesting industrial environment
traps, 9 previously-unknown vulnerabilities were reported,
including flaws that lead to denial of service or communi-
cation crash. On this basis, we summarize ways to improve
the utility of fuzzers in the industrial practical environment.

5.1 Benchmark Evaluation
5.1.1 Experiment setup

Google fuzzer-test-suite is a widely used fuzzing bench-
mark, including real-world projects such as boringssl, c-
ares, guetzli, lems, libarchive, libssh, libxml2, pcre2, proj4,
and re2. They are derived from real-life libraries which have
typical bugs, hard-to-find code paths and other challenges
for bug-finding tools. We use three metrics to evaluate
the results of fuzzers on these ten real-life projects. These
metrics consist of the number of exercised paths, covered
branches, and triggered unique crashes. The first two met-
rics evaluate the coverage of the target programs. AFL dis-
tinguishes the crash by different execution paths. Although
several unique crashes which might point to the same bug,
no bugs can be found without a crash. In other words,
the discovery of unique crashes is a prerequisite for the
discovery of bugs. Thus this number reveals the probability
of finding vulnerabilities.

To quantify the effect of seed generation, balanced seed
selection, and hybrid seed mutation, respectively, we sep-
arately integrate each component on the original imple-
mentation of AFL. Then we compare DeepFuzzer with
some AFL-family tools consists of AFL, AFLFast, and Fair-
Fuzz. Two state-of-the-art fuzzers namely QSYM and MOPT
are also compared with DeepFuzzer. In particular, QSYM
is the most recently developed symbolic execution aided
fuzzing tool. Because QSYM needs at least two cores (it
requires an AFL instance to run simultaneously), we also
run DeepFuzzer and MOPT with two cores. In addition,
AFL, AFLFast, and FairFuzz are also compared in the
same environment settings. To have a better comparison,
except for Google fuzzer-test-suite, we also evaluate these
fuzzers on three large real-world programs namely ffmpeg,
openjpeg, tcpdump. Apart from the three metrics namely
paths executed, branch covered and crash triggered, we also
analyze the bugs found by each fuzzer.

We run each tool accompanied with Google AddressSan-
itizer (ASAN) for 24 hours on a 64-bit machine which has 32
cores (Intel(R) Xeon(R) CPU E5- 2630 v3 @ 2.40GHz), 128GB
of main memory, and uses Ubuntu 16.04 as host OS.

5.1.2

We first verify whether the seed generation mechanism can
generate high-quality seeds to optimize the performance of
fuzzing or not. We feed AFL with initial seeds generated
by our symbolic-execution-based generator. Synthetically
considering the time to generate enough high-quality initial
seeds and the fuzzing performance, we choose 20 minutes
for symbolic execution. The average count of initial input
seeds generated by symbolic execution is 70. Table 1 shows
the total number of three metrics for the benchmark in 24
hours. For comparison, we also list the statistics of original
AFL. To have a fair comparison, we generate the same
number of random valid inputs for AFL.

We observe that the initial seeds increase 17% more paths
executed and 23% more branches covered. Benefiting from
increased coverage, the improved version finds about 150%
more unique crashes than running AFL.

Is qualified seed generation positive or negative

TABLE 1
Influence on Qualified Seed Generation

Metric ‘ AFL + Random Seed AFL + Qualified

Generation Seed Generation
Path 22522 26249
Branch 63371 77907
Crash 244 610

The improvements in performance have two reasons.
First, symbolic execution generates seeds which can pass
some complicated checks. Many paths and vulnerabilities
can only be found after passing these complicated checks.
However, it is very difficult to produce these seeds by muta-
tion alone. Second, these seeds provide plenty of directions
for fuzzing and widen the breadth of the fuzzing process.
Without these seeds, AFL may get trapped in a few easily
discovered directions, which limits it to finding new paths
in the later stage. As the coverage increases, the probability
of finding vulnerabilities also increases.

Let us take the detail of fuzzing pcre2 from the bench-
mark as an example, as presented in Figure 4. The num-
ber of paths and branches are higher than with random
seeds almost from the beginning to the end. High-quality
initial seeds bring the benefits of discovering more paths
and branches to the improved version at the very begin-
ning. With the help of qualified initial seeds, AFL executes
deeper paths. The abundant directions and the ability to
easily reach deep regions increase the coverage steadily and
evenly. In contrast, when feeding AFL with random initial
seeds that have scarce directions, its speed to find new
regions is low. Profiting from the increased coverage, the
improved version triggers more unique crashes in the long
run.

We also analyze the branch coverage when fuzzing pcre2
with initial seeds generated by random or symbolic execu-
tion. As Figure 3 shows, their branch coverage is not same.
They both have their own unique branches but AFL finds
about 3000 more unique branches when runs with qualified
initial seeds.

Qualified seed generation produces a set of high-quality
initial seeds which exercise deep paths. Those seeds are ex-
clusive to the version with qualified initial seeds, as complex

With Random
Generation

With Qualified
Generation

common
26540

Fig. 3. The Venn diagram of branch coverage with random or qualified
seed generation for fuzzing pcre2.

checks in deep paths cripple traditional greybox fuzzing.
With the exclusive seeds, this version first achieves higher
coverage, which enables unique opportunities to explore
state spaces behind those deep paths. Thus many crashes
hidden in these paths are only triggered when fuzzing with
seed generation. On the other hand, when running AFL with
qualified initial seeds, it executes more paths in a shorter
time. That means AFL could try more branch combinations
and as a result, trigger more crashes.

From these statistics and analysis, we find that the
symbolic-execution-based seed generation is positive to
fuzzing. It not only improves the coverage but also boosts
the probability of finding vulnerabilities.

5.1.3 Is balanced seed selection positive or negative

We implement the balanced seed selection algorithm on
AFL and verify whether it works or not. The result presents
that it assists AFL in growing both the number of paths
and branches for each tested project. As Table 2 shows, the
increase in the number of paths and branches are 12% and
14% respectively. And in total, it triggers 122% more unique
crashes.

TABLE 2
Influence on Balanced Seed Selection

Metric | AFL AFL + Balanced

Seed Selection
Path 20279 22656
Branch | 61974 70559
Crash 211 469

The main reason for the performance improvement is
that the balanced selection treats each branch equally, giv-
ing the corresponding seed a suitable number of mutation
times so that each seed can generate enough meaningful
results without wasting resources. In contrast, AFL does not
take the rarity of branches into account, which limits the
effectiveness. Some worthless seeds are mutated too many
times while others are not mutated enough. As a result, in
the same amount of time, we find more branches and paths.
Accordingly, the probability of finding vulnerabilities also
increases.

Figure 5 shows the performance comparison of fuzzing
pcre2. In the beginning, there are no marked differences
between them. However, because of the more balanced
choice and the reasonable energy given to seeds, all metrics
continue to rise while AFL cannot find new paths any more.
With the increase of coverage, it also triggers more crashes.

16000 30000

—— AFL + qualified generation
AFL + random generation

14000
25000
12000

10000 20000

8000 15000

Y
=
3
S

Number of paths

10000

Number of branches

4000
5000

2000

—— AFL + qualified generation
AFL + random generation

w
G
)

—— AFL + qualified generation
AFL + random generation

NN W
o O o
S o o

-
o
S

Number of crashes

100

50

10! 102 10° 10! 102

time(s)

(a) paths over time

104

Fig. 4.

(b) branches over time

10°
time(s)

(c) crashes over time

10° 104 10! 102 104

time(s)

Number of paths, branches, and unique crashes change over time for fuzzing pcre2 with seed generation.

—— AFL + seed selection
AFL

—— AFL + seed selection

AFL 25000

20000

15000

o
S 9
s 8
S o

Number of paths

Number of branches

10000
5000

4000 /
2000 1//

—— AFL + seed selection
AFL

——
/

/

/

/

Number of crashes

10°
time(s)

(a) paths over time

104

Fig. 5.

(b) branches over time

10° 104

time(s)

(c) crashes over time

10° 104 10! 102

time(s)

Number of paths, branches, and unique crashes change over time for fuzzing pcre2 with seed selection.

—— AFL+ seed mutation
AFL

—— AFL+ seed mutation
AFL

16000 30000
14000
25000

/-

12000

10000 20000

Number of paths.
Number of branches

8000 15000
6000
10000
4000 y
2000 //// 5000
o 0

—— AFL+ seed mutation
AFL

o
S
S

s

I
s ©
s o

Number of crashes
w
S
S

/

J/

N
S
S

-
1)
S

L/

o

10°
time(s)

(a) paths over time

10% 10! 10?

(b) branches over time

10°
time(s)

(c) crashes over time

10° 10* 10° 10! 102 104 10°

time(s)

Fig. 6. Number of paths, branches, and unique crashes change over time for fuzzing pcre2 with seed mutation.

From these statistics and analysis, we conclude that the
balanced seed selection is positive to fuzzing. It helps AFL
cover more states steadily and hunt more bugs.

5.1.4

We implement the hybrid mutation strategy on AFL. As
Table 3 demonstrates, the total number of covered paths in-
creases 24%, the total number of branches covered increases
18%, and the total number of triggered unique crashes
grows 123%.

Is hybrid seed mutation positive or negative

TABLE 3
Influence on Hybrid Seed Mutation

Metric | AFL AFL + Hybrid Seed
Mutation

Path 20279 25215

Branch | 61974 73397

Crash 211 471

The main reason for the performance improvement is
that the hybrid seed mutation combines the branch-reserved
mutation to keep depth and the random mutation to keep
breadth. As for the seeds which can cover rare branches, the
branch-reserved mutation makes it possible to explore the
deeper paths which still contain the original rare branches.
For the other seeds, the random mutation strategy is ap-
plied thus other common branches can be found with more
probability.

We also use pcre2 to demonstrate more details. Figure 6
indicates that the growth rate of the coverage (the number
of paths and branches) are almost the same at the beginning.
Then AFL gradually exceeds DeepFuzzer for a while. This
is because the restricted mutation has some extra operations
to identify and preserve rare branches, which may cost
extra time. However, many deep paths are hidden in the
regions where can only be exercised through rare branches.
Although exploring these regions costs much time and
lowers the speed, our mutation strategy has the ability to
continue raising the metrics when AFL is hard to find new

paths and branches. Consequently, DeepFuzzer also triggers
more crashes.

From these statistics and analysis above, we find that the
hybrid mutation strategy is positive to fuzzing. It improves
the coverage and facilitates hunting more vulnerabilities.

5.1.5 DeepFuzzer performance

We integrate the qualified seed generation, balanced seed
selection, and hybrid seed mutation to form DeepFuzzer.
Because they are complementary and serially connected,
results get better when qualified seed generation, balanced
seed selection and hybrid seed mutation are combined. Seed
generation produces qualified seeds that reach deep regions
of the program state space. Hybrid mutation strategy fur-
ther explores the program on the basis of the reachability
brought by initial seeds. Balanced selection assigns each
seed a reasonable mutation time.

TABLE 4
Number of paths (two cores)

Project | AFL AFLFast FairFuzzQSYM MOPT DeepFuzzer
boringssl | 664 697 756 716 565 766
c-ares 29 30 29 34 31 36
guetzli 511 390 912 663 749 1638
lems 277 318 266 293 234 296
libarchive | 2238 2117 1573 1079 2032 2738
libssh 17 17 17 18 15 20
libxml12 2710 2358 2318 1870 5289 5827
pcre2 11038 10719 12110 11479 11332 12568
proj4 64 65 61 76 58 245
re2 2113 2087 2008 2413 1367 2213
ffmpeg 7676 7235 7394 1459 8110 9081
openjpeg | 440 534 445 276 785 645
tepdump 1670 3899 2498 500 5232 5265
Total ‘ 29447 30466 30387 20876 35799 41338

Table 4, 5, 6 compares the performance of DeepFuzzer,
QSYM as well as other AFL-family fuzzers. Because QSYM
requires an AFL instance to run simultaneously and needs
at least two cores, we also run DeepFuzzer and other
fuzzers with two cores. Besides Google fuzzer-test-suite, we
also evaluate these fuzzers on three large real-world pro-
grams namely ffmpeg, openjpeg and tcpdump. The results
show that DeepFuzzer outperforms other fuzzers including
QSYM. Table 4 and Table 5 show that DeepFuzzer has
a higher coverage than other fuzzers. Compared to AFL,
AFLFast, FairFuzz, QSYM, and MOPT, DeepFuzzer executes
40%, 36%, 36%, 98%, and 15% more paths, covers 37%, 34%,
34%, 101%, and 11% branches respectively. From Table 6,
we observe that DeepFuzzer triggers more unique crashes
than other fuzzers. DeepFuzzer crashes 10 programs while
AFL, AFLFast, FairFuzz, QSYM, and MOPT crash 5, 5, 5,
7, and 3 programs. According to the number of unique
crashes triggered, DeepFuzzer achieves an improvement
of 30%, 240%, 102%, 147%, and 257% compared to AFL,
AFLFast, FairFuzz, QSYM, and MOPT. We also develop a
component that analyzes these crashes by discriminating
frames extracted from core dump files to get the number of
bugs in Table 7, which have also been manually checked. It
shows that DeepFuzzer finds 11 bugs while AFL, AFLFast,
FairFuzz, QSYM, and MOPT find 5, 5, 5, 7, 5 bugs, respec-
tively.

TABLE 5
Number of branches (two cores)

Project | AFL AFLFast FairFuzzQSYM MOPT DeepFuzzer
boringssl 9680 9897 10733 9228 9228 11320
c-ares 277 268 277 277 277 277
guetzli 5544 3403 8420 5155 8568 32521
lems 7327 7319 6724 6911 6211 7720
libarchive | 24673 25318 18919 10635 23202 27191
libssh 1595 1592 1595 1595 1595 1595
libxmI2 34281 33413 32546 26212 54453 57048
pcre2 75997 73711 76233 71208 73013 78552
proj4 594 592 592 594 588 2574
re2 32805 32538 32419 32665 29454 33025
ffmpeg 104618 98244 105500 46055 140297 139346
openjpeg | 4071 4471 4062 2497 4912 5018
tepdump | 21479 38596 31377 5980 46050 45025
Total | 322941 329362 329397 219012 397848 441212

QSYM outperforms other fuzzers such as Driller and
VUzzer[20] in small scale projects like LAVA-M in its pa-
per. And QSYM also applies many optimizations to scale
symbolic execution to complex programs. However, in our
experiments, QSYM fails to outperform DeepFuzzer in large
real-world programs of Google fuzzer-test-suite. In particu-
lar, in three large programs namely ffmpeg, openjpeg, and
tcpdump, DeepFuzzer covers 450% more paths and 191%
more branches than QSYM. From Table 6, we observe that
DeepFuzzer triggers more crashes than QSYM in 9 projects.
Table 7 shows that DeepFuzzer finds three more bugs than
QSYM. The main reason behind might relate to the size of
the program. Most of the programs we tested have a large
size than programs tested in QSYMs paper such as base64.

TABLE 6
Number of crashes (two cores)

Project | AFL AFLFastFairFuzzQSYM MOPT DeepFuzzer
boringssl | 0 0 0 0 0 0
c-ares 6 7 9 3 9 7
guetzli 0 0 0 0 0 2
lems 20 13 48 29 0 7
libarchive | 0 0 0 0 0 31
libssh 0 0 0 0 0 0
libxml2 22 7 8 3 65 19
pcre2 1361 510 840 699 439 1734
proj4 0 0 0 0 0 0
re2 3 1 1 0 0 6
ffmpeg 0 0 0 2 0 7
openjpeg | 0 0 0 5 0 20
tecpdump | 0 0 0 2 0 3
Total | 1412 538 906 743 513 1836

It is well known that symbolic execution suffers from
the path explosion problem in which the number of paths
to explore grows exponentially with the program size. To
mitigate this problem, hybrid fuzzing offloads the trivial
part of the exploration to fuzzing, and only utilizes the
symbolic execution to solve the difficult part. Thus the sym-
bolic execution engine can discard a large number of trivial
paths and alleviate the path explosion. However, as the
exponential path growth is intrinsic to symbolic execution,
even as the optimizations in QSYM cannot either lower the
asymptotic computational complexity, not to mention the
stage of SMT solving, an NP-complete problem. When the
program gets larger, the cost of tracing greybox fuzzing,

TABLE 7
Number of bugs (two cores)

Project | AFL AFLFast FairFuzzQSYM MOPT DeepFuzzer

0

boringssl
c-ares
guetzli
lems
libarchive
libssh
libxmI2
pcre2
proj4

re2
ffmpeg
openjpeg
tecpdump

Total

RN R O RO e e

UI|looco—~roRrROORORO
| o0 O0ORORRPROORORO
| oo —RrOR R OO RrRORO
N | mRr R, OO RROORORO
U OO0 0O O NOODODONO

—_
—_

collecting constraints, and solving constraints also increases.
As a result, the performance gains brought by symbolic
execution tend to diminish when employing QSYM in test-
ing large programs. In contrast, DeepFuzzer adopts a more
lightweight approach when invoking symbolic execution.
By moving the symbolic execution forward to generate
initial seeds, it controls the time and resource usage and
eliminates the cost of switching between two techniques.
DeepFuzzer also utilizes the balanced seed selection to
fuzzing valuable seeds, and it will quickly cover a lot of
”difficult” areas by hybrid seed mutation based on initial
seeds. The results and the analysis demonstrate that when
testing real-world software, utilizing symbolic execution to
generate high-quality initial input seeds and fully utilize
them in fuzzing might be a better combination of two
techniques.

From these statistics and our findings explained in the
analysis above, we find that DeepFuzzer has the ability
to increase not only coverage, but also the probability of
identifying vulnerabilities by triggering more crashes.

5.2

In order to evaluate DeepFuzzer in a real industrial en-
vironment, we collaborated with engineers from Huawei
and deployed DeepFuzzer to fuzz 1ibmsg developed there.
libmsg is a proprietary message middleware which is
responsible for transferring the message of the entire dis-
tributed system department. We encountered several obsta-
cles that have failed some academic fuzzers, Driller, for ex-
ample, takes two engineers two weeks of effort to configure
but then failed. Benefiting from the toolchain of DeepFuzzer
to support automatic fuzzing environment configuration,
we overcame the obstacles and ran the program successfully.
DeepFuzzer found 9 previously-unknown vulnerabilities,
including flaws that lead to slow resource leak, denial of
service, and immediate system crashes.

Industrial Practice

5.2.1 Experiment setup

The complete fuzzing procedure for DeepFuzzer consists
of the preparing stage and the fuzzing stage. Steps of the
preparing stage contain writing the fuzzing driver, prepar-
ing the environment, compiling hardened binary, and val-
idating the fuzzing driver. When the preparation is down,

10

DeepFuzzer starts to feed the program with a lot of seeds
and monitor exceptions in the fuzzing stage. In order to
boost the convenience of the fuzzing process, DeepFuzzer
tries to automate all the steps as much as possible with
the toolchain module. The only thing that the test engi-
neers need to do manually is writing the corresponding
fuzzing driver, which exposes an interface to DeepFuzzer
for feeding the input and execution. The external network
interface is chosen to focus on testing the protocol handlers
of 1ibmsg. Choosing this interface brings us three benefits:
completeness for the reachability of almost all code paths
of 1ibmsg, convenience for feeding input, and accuracy for
identifying vulnerabilities.

5.2.2 Typical obstacles and solutions

After choosing the interface, things did not go as smoothly
as we planned. We almost stumbled at each step due to
the complexity and diversity of the industrial environment.
Typical obstacles that would fail other fuzzers are listed as
follows:

The first obstacle is the system build complexity.
libmsg has a complex build procedure. Due to the histor-
ical burden, the build scripts are a mix of bash, autoconf,
and CMake. This situation is also common for complex
projects which have many dependencies in companies. It
is tedious to manually modify a series of scripts to enable
sanitizers. We solved it with the toolchain component of
DeepFuzzer. The toolchain component can recognize differ-
ent build systems and inject appropriate instrumentation-
related compiler options.

The second obstacle is the shallow bugs. When validat-
ing the fuzzing driver, the program crashed on virtually
every seed, even the most simple ones constructed by hand.
The shallow bugs hindered further operations. We solved it
by collaborating with the developer to fix these bugs.

The last obstacle is the bug-hiding code segments. As
a messaging library, 1ibmsg is expected to handle errors
and run continuously until explicitly told to exit. It simply
disables the error reporting and directly exits with status
code 0. Many projects also have a similar mechanism for
maintaining continuous availability. But the mechanism can
also mislead fuzzers because they rely on an exit code
to identify crashes. The solution is to remove the logic
which disables the error reporting mechanism and patch
DeepFuzzer to detect a non-zero exit code.

5.2.3 Results

After overcoming those obstacles, we successfully ran Deep-
Fuzzer on 1ibmsg. Benefiting from the adapting experience
and the toolchain component of DeepFuzzer, we also suc-
cessfully adapted AFL in the same setting.

Table 8 shows the existing known vulnerabilities and
the results of AFL and DeepFuzzer. It illustrates that Deep-
Fuzzer performs better. AFL and DeepFuzzer detects 5 and
11 vulnerabilities, respectively. Two known vulnerabilities
are found by both fuzzers. In other words, AFL and Deep-
Fuzzer reveal 3 and 9 unknown vulnerabilities, respectively.

For the only one memory leak vulnerability that is not
captured by both AFL and DeepFuzzer, we find that they
may be unable to cover some regions of the program, limited
by the simple fuzzing driver which converted from the

TABLE 8
Number of vulnerabilities Detected

| Known AFL DeepFuzzer

Type

Incorrect exit procedure

File descriptor leak

Reachable assertion

Unaligned memory access
Uncontrolled memory allocation
Use after free

Memory leak

Total |

OB N = =N

W RPOONOOO
gjlooconNORRN

11

simple sample code. Manual tests may have the advantage
of having knowledge of the program, and they can system-
atically cover most of the interfaces and APIs. We believe
a better driver will help DeepFuzzer solve this problem
and capture more vulnerabilities. Nine other previously
unknown vulnerabilities are captured by DeepFuzzer. For
example, the file descriptor leak can only be triggered when
all file descriptors are exhausted by feeding a large number
of inputs. However, manual tests might never detect this
problem because it usually feeds the program with a small
number of predefined inputs.

From these statistics and above analysis, we find that
DeepFuzzer can be applied in industrial practice to hunt real
bugs. With the experience gained from overcoming those
obstacles, it is easier to apply fuzzing on other real-world
projects. These experiences and the developed toolchain can
not only help DeepFuzzer, but also have some reference
value for adapting other fuzzers on real projects.

5.3 Discussion

There are some reasons for limiting the use of DeepFuzzer
in practice. We provide below some potential methods to
enhance its functioning.

Unlike static analyzers working on source code, fuzzing
is a dynamic method. Fuzzers that cannot be executed in
the environment of the target program are worthless. The
complex environment and configurations, including the op-
erating system, the compiler, and the hardware, are usually
vastly different thus may lead to configuration inconsis-
tency. DeepFuzzer and many advanced academic technolo-
gies are usually limited by environmental inconsistency and
diversity, resulting in unavailability. In order to improve the
utility, DeepFuzzer has a support layer in the toolchain, so
it can run in almost all recent Linux versions. Despite this,
it might still be unavailable because of configuration failed.
For example, the seed generator of DeepFuzzer does not
support multi-threading and inline assembly code, and we
have to disable seed generation for programs that have these
features.

Missing the fuzzing driver is another threat for efficient
fuzzing. Developing a fuzzing driver requires sufficient
domain knowledge as well as adequate understanding of
fuzzing technology. Unfortunately, typically people who
develop fuzzers lack domain knowledge while developers
with domain knowledge do not understand fuzzing. To
solve this, promoting fuzzing technology is necessary, the
developer needs to put writing the fuzzing drivers as a step

11

in the development process. On the other hand, to lower the
cost, converting sample code or unit tests to form fuzzing
drivers might be a convenient method.

In addition, some of the programs being tested use low-
level interventions such as the signal handler, which pre-
vents DeepFuzzer and other fuzzers from detecting anoma-
lies. These workarounds are hard to locate in the source code
but must be found and bypassed. Besides detecting crashes,
fuzzers can also monitor the usage of resources. A resource
utilization anomaly may also imply a bug. For example,
after investigating the exceedingly high number of execu-
tion timeouts, we find the uncontrolled memory allocation
vulnerability. When the allocation is too large, the kernel
will over-commit memory, which slows down the memory
accesses. There are also some limitations in other aspects, for
example, DeepFuzzer cannot divide unique crashes caused
by the same bug in real-time. Its crash analyzer component
can only work after the fuzzing process.

6 RELATED WORK

For the related work, we focus on generation-based fuzzing,
mutation-based fuzzing, and symbolic execution-based
fuzzing. We also discuss the differences between these
works and our study.

6.1 Generation-Based Fuzzing

Generation-based fuzzing generates inputs from scratch
based on specifications. For programs which require inputs
in complex formats, this fuzzing technique is especially use-
ful. The specification can be separated into two categories
including input model and context-free grammar.

Model-based fuzzers [21], [22], [9] employ a model of the
protocol. The model is executed on- or off-line to generate
complex interactions with the test program. Peach [22] is
an input model-based fuzzer and combines generation and
mutation capabilities. Peach operates by applying fuzzing
to models of the data and the state. The data-model de-
scribes the format of the input, and the state-model defines
the ways of interacting the data with the fuzzing targets.
Skyfire [9] generates inputs from a context-sensitive gram-
mar model, which is learned from corpora and grammars.

Many fuzzers [10], [23], [24], [25] generate inputs based
on context-free grammar. Csmith [10] is a C-compiler test
tool which can generate random C programs conforming
to the C99 standard. This tool has the ability to generate
programs exploring typical combinations of C-language fea-
tures while free of undefined and unspecified behaviours.
Sirer and Bershad developed lava [23] to generate effec-
tive test suites for JVM. IFuzzer [24] takes the context-free
grammar of a language as the input to generate parse trees
and to extract code fragments from a given test-suite. Then
it generates new code fragments by performing genetic
operations on the parse tree.

Some tools try to automatically learn the specifica-
tion [26], [27], [28]. Glade [26] automatically synthesizes
a context-free grammar from seeds and blackbox program
access, and then uses the synthesized grammar in conjunc-
tion with a standard grammar-based fuzzer to generate new
test inputs. Learn&Fuzz [27] employs neural-network-based

statistical learning to automatically generate input grammar
from sample inputs.

DeepFuzzer is a mutation-based fuzzer, so it differs
greatly from these tools. Though DeepFuzzer also generates
inputs with lightweight symbolic execution, these inputs
play the role of the initial seeds to supply start points for
mutational fuzzing, and are further mutated and scheduled
based on coverage information.

6.2 Mutation-Based Fuzzing

Mutation-based fuzzing is a basic way to detect vulnera-
bilities when the fuzzer knows little about the program. It
generates input seed by modifying the existing inputs.

Many tools [8], [12], [14], [29], [20], [13], [30] apply
various techniques to boost the fuzzing process. AFLFast,
AFLGo, CollAFL, and VUzzer focus on improving the seed
selection. AFLFast [12] proves that the process of AFL can
be regarded as a Markov chain. A power schedule computes
the times of random mutation for each seed. AFLFast carries
out a fast power schedule based on the path frequency of the
seeds executed. Similar to AFLFast, AFLGo [14] implements
a simulated annealing-based power schedule, which helps
to fuzz some target areas in the codes. In particular, it pro-
poses a way to measure the distance between the seeds and
the targets. CollAFL [29] provides more accurate coverage
information to mitigate path collision. It also utilizes the
coverage information to apply some seed selecting strate-
gies. VUzzer [20] utilizes static analyze to obtain the control
structure and prioritizes seeds which execute deep paths.
It also uses taint analysis to help mutate seeds. FairFuzz
[13], ProFuzzer [30], and MOPT [15] focus on improving
the seed mutation. FairFuzz only mutates seeds which hit
rare branches and it strives to ensure the mutant seeds
still hit the rarest ones. ProFuzzer probes the input fields
(for example, assertion, raw data, off-size) and adapts the
mutation strategy to them. MOPT schedules the mutation
operators based on Particle Swarm Optimization.

Compared with these tools, DeepFuzzer considers the
seed generation, seed selection, and seed mutation make up
a whole fuzzing process and coordinates them to gain an
edge over other fuzzers. The process of seed generation is
lacked in all of these tools. For seed selection, DeepFuzzer
controls the mutation times like AFLFast and AFLGo. The
difference is that DeepFuzzer attributes the times by branch
frequency, which associates with the state space of the
program more tightly than path frequency. CollAFL, VUzzer
and DeepFuzzer all collect the branch coverage, but in-
put selection schemes are different. CollAFL utilizes the
topology of blocks to calculate the number of untouched
neighbour branches when fuzzing, which determines the
weight of an input. Similarly, VUzzer also utilizes the topol-
ogy to assign higher weights to deeply nested basic blocks.
Then it prioritizes deep paths by selecting seeds based on
the sum of the weights of all the basic blocks covered.
Differently, DeepFuzzer is unaware of the structure of the
target program. It utilizes the branch count statistics to infer
rare branches and calculate the weights.

For seed mutation, DeepFuzzer, FairFuzz, and ProFuzzer
all recognize the critical bytes which influence the execution
behaviour of the target problem through per-byte mutation.

12

But they differ in details. DeepFuzzer applies the hybrid
mutation strategy which combines the random and the re-
stricted mutation strategies. Compared with FairFuzz which
only applies reserved mutation, the random mutation of
DeepFuzzer preserves the probability of exploring other
regions so that the local convergence of FairFuzz is unlikely
to occur in DeepFuzzer. Compared with ProFuzzer, the
mutation of DeepFuzzer is lightweight. ProFuzzer replaces
each byte with all 256 values to extract features and infer
the fields. In contrast, DeepFuzzer only replaces each byte
with one random value to infer the delicate structures of
the input. As a result, ProFuzzer has an additional stage to
probe the input fields while DeepFuzzer integrates it into
the mutation stage. MOPT focuses on how to select muta-
tion operators. Different from it, DeepFuzzer concentrates
on refining mutation operators to improve mutation quality.

6.3 Symbolic Execution-Based Fuzzing

Symbolic execution treats the input of the program as
symbols, collects the constraints to generate symbolic for-
mulas and employs constraint solvers to find out concrete
inputs. Godefroid presents an introduction to automatic
input generation using symbolic execution [31]. Some tools
apply pure symbolic execution [32], [33], [34] while others
integrate it with other techniques [17], [35], [36].

SAGE [32], KLEE [33], and Mayhem [34] are pure sym-
bolic execution tools. SAGE uses the generational search that
better leverages expensive symbolic execution. It collects
constraints by actually running the program on well-formed
inputs, then negates the constraints one by one and solves
them to produce inputs. KLEE is a refined version of EXE
[37]. It employs a variety of constraint solving optimizations
and uses a heuristics search to get high code coverage.
KLEE runs on-line — it forks on branching in a single run,
which differs from SAGE — working on execution traces
off-line. Mayhem combines them by alternating between on-
line and off-line. It can automatically find exploitable bugs
in binary programs. Although these tools are powerful, the
path explosion problem is still inevitable.

Driller [17] integrates symbolic execution and mutation-
based fuzzing to mitigate the path explosion problem. It uti-
lizes quick fuzzing to explore most of the paths and switches
to symbolic execution to solve complex constraints when the
fuzzer gets stuck. QSYM [18] makes hybrid fuzzing scalable
enough to test real-world applications. VeriFuzz [38] com-
bines fuzzing with static analysis, and it uses constraint-
solver to generate initial seeds. Some tools [35], [36] combine
taint analysis and symbolic execution. The basic idea is
guiding symbolic execution towards vulnerable parts found
by taint analysis. They work on a limited class of bugs and
need the user to specify attack points.

Compared with pure symbolic execution tools, Deep-
Fuzzer strictly limits the constraint solving time to prevent
wasting too much computing resources with unnecessary
explorations. Beyond this, DeepFuzzer utilizes symbolic
execution only in the beginning to produce initial seeds.
The essential difference between DeepFuzzer and Driller
or QSYM is the usage of symbolic execution. DeepFuzzer
utilizes it for generating high-quality seeds while Driller or
QSYM applies it to overcome complex checks when fuzzing

gets stuck. VeriFuzz also generates seeds with constraint-
solver. But it and Driller use a blind mutation strategy.
Although they pass checks with the help of symbolic exe-
cution, they are likely to get stuck again. In contrast, Deep-
Fuzzer has the ability to reserve the result of the symbolic
execution by only mutating bytes at limited positions in
restricted ways.

In the evaluation section, we mainly compared Deep-
Fuzzer with AFL, AFLFast, FairFuzz, QSYM, and MOPT.
They are chosen because they are the most relevant and
are state-of-the-art fuzzers. For example, QSYM is the most
recently developed symbolic execution aided fuzzing tool,
and performs better than AFL and Driller as stated in its
paper [18]. For a fair comparison, some other recent works
are excluded. They include some works which are not
much related, such as Skyfire, a generation-based fuzzer,
or fuzzers that have different purposes, such as AFLGo,
a patch testing fuzzer, or that are known not to be high
performing, such as FidgetyAFL, or that have engineering
problems, as with Driller. It took us one month to try to cus-
tomize Driller on Google benchmark, but we failed. Driller
is designed for testing the CGC binaries in cluster. The
property of cluster fuzzing implies the high cost of configur-
ing the environment, for example messaging middlewares
and databases. The property of CGC-oriented implies the
lack of environment modelling and system call support.
It is impossible to run applications in Google fuzzer-test-
suite when emulation of mmap() is missing. In addition,
Driller only supports standard input, but these applications
all require file input. LibFuzzer is also excluded because of
the engineering problem. libFuzzer will shut down when
it finds a crash, while other tools continue fuzzing unless
manually terminated.

7 CONCLUSION

In this paper, we propose DeepFuzzer, which applies sym-
bolic seed generation, balanced seed selection, and hybrid
seed mutation to the acceleration of deep greybox fuzzing.
The light-weight symbolic execution supplies high-quality
initial seeds which contain abundant mutation information.
The seed selection and mutation take full account of branch
coverage balance to decide how to select and mutate seeds
to ensure depth and breadth. Evaluated on Google fuzzer-
test-suite, DeepFuzzer outperforms other commonly used
fuzzers, and it is capable of exploring a wider program
state space and triggering more crashes. In addition, we
apply DeepFuzzer in a complex industrial development en-
vironment to fuzz a real-world program 1ibmsg of Huawei.
We set out the main obstacles and relevant solutions. After
overcoming these obstacles, DeepFuzzer performed well
and reported 9 previously-unknown bugs. This engineering
practice and the developed toolchain provide some refer-
ences for fuzzing other industrial software. Our future work
focuses in two directions. The first is to support concurrency
for the seed generator, and the other is to integrate the
resource utilization to guide greybox fuzzing.

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32-44, 1990.

(2]

(3]

(4]

(5]

6]

(71

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

13

B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natara-
jan, and J. Steidl, “Fuzz revisited: A re-examination of the reli-
ability of UNIX utilities and services,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 1995.
“libFuzzer in Chrome,” https://chromium.googlesource.com/
chromium/src/+/master/testing/libfuzzer/README.md, 2017,
[Online; accessed 12-November-2017].

“Continuous fuzzing for open source soft-
ware,” https:/ /opensource.googleblog.com/2016/12/
announcing-oss-fuzz-continuous-fuzzing.html, 2016, [Online;
accessed 26-January-2018].

“SDL PROCESS: VERIFICATION,”
com/en-us/SDL/process/verification.aspx,
26-January-2018].

“Microsoft Security Risk Detection (“Project Springfield”),
https:/ /www.microsoft.com/en-us/research/project/
project-springfield /, 2015, [Online; accessed 26-January-2018].
“A Basic Distributed Fuzzing Framework for
FOE,” http:/ /blogs.adobe.com/security /2012/05/
a-basic-distributed-fuzzing-framework-for-foe. html, 2012,
[Online; accessed 28-January-2018].

M. Zalewski, “American fuzzy lop,” 2015.

J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” 2017.

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understand-
ing bugs in C compilers,” in ACM SIGPLAN Notices, vol. 46, no. 6.
ACM, 2011, pp. 283-294.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 2123-2138.
M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 1032-1043.

C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 475-485.

M. Bshme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS17), 2017.
C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“{MOPT}: Optimized mutation scheduling for fuzzers,” in 28th
{USENIX} Security Symposium ({USENIX} Security 19), 2019, pp.
1949-1966.

M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao,
and]. Sun, “Safl: increasing and accelerating testing coverage
with symbolic execution and guided fuzzing,” in Proceedings of
the 40th International Conference on Software Engineering: Companion
Proceeedings. ACM, 2018, pp. 61-64.

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution.” in NDSS, vol. 16,
2016, pp. 1-16.

L Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A Practical
Concolic Execution Engine Tailored for Hybrid Fuzzing,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018, pp. 745—
761.

J. C. King, “Symbolic execution and program testing,” Communi-
cations of the ACM, vol. 19, no. 7, pp. 385-394, 1976.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing,” in Proceedings
of the Network and Distributed System Security Symposium (NDSS),
2017.

“Fuzzer Automation with SPIKE,” http:/ /resources.
infosecinstitute.com/fuzzer-automation-with-spike/, [Online;
accessed 12-February-2018].

M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, p. 34, 2011.
E. G. Sirer and B. N. Bershad, “Using production grammars in
software testing,” in ACM SIGPLAN Notices, vol. 35,no. 1. ACM,
1999, pp. 1-13.

S. Veggalam, S. Rawat, I. Haller, and H. Bos, “Ifuzzer: An evolu-
tionary interpreter fuzzer using genetic programming,” in Euro-
pean Symposium on Research in Computer Security. Springer, 2016,
pp- 581-601.

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with Code Frag-
ments.” in USENIX Security Symposium, 2012, pp. 445-458.

https:/ /www.microsoft.
[Online; accessed

”

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing pro-
gram input grammars,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
ACM, 2017, pp. 95-110.
P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine
learning for input fuzzing,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Press, 2017, pp. 50-59.
M. Hoschele and A. Zeller, “Mining input grammars from dy-
namic taints,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ~ACM, 2016, pp.
720-725.
S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen,
“CollAFL: Path sensitive fuzzing,” in 2018 IEEE Symposium on
Security and Privacy (SP). 1EEE, 2018, pp. 679-696.
W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and
B. Liang, “ProFuzzer: On-the-fly Input Type Probing for Better
Zero-Day Vulnerability Discovery,” in ProFuzzer: On-the-fly Input
Type Probing for Better Zero-Day Vulnerability Discovery. 1EEE, 2019,
0

P. Godefroid, “Test generation using symbolic execution,” in
IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2012). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2012.

P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated white-
box fuzz testing.” in NDSS, vol. 8, 2008, pp. 151-166.

C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex
Systems Programs.” in OSDI, vol. 8, 2008, pp. 209-224.

S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Security and Privacy (SP), 2012 IEEE
Symposium on. 1EEE, 2012, pp. 380-394.

I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dows-
ing for Overflows: A Guided Fuzzer to Find Buffer Boundary
Violations.” in USENIX Security Symposium, 2013, pp. 49-64.

M. Neugschwandtner, P. Milani Comparetti, I. Haller, and H. Bos,
“The borg: Nanoprobing binaries for buffer overreads,” in Proceed-
ings of the 5th ACM Conference on Data and Application Security and
Privacy. ACM, 2015, pp. 87-97.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler, “EXE: automatically generating inputs of death,” ACM
Transactions on Information and System Security (TISSEC), vol. 12,
no. 2, p. 10, 2008.

A. B. Chowdhury, R. K. Medicherla, and R. Venkatesh, “VeriFuzz:
Program aware fuzzing,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2019, pp. 244-249.

Jie Liang received the BS degree in computer
science from Beijing University of Posts and
Telecommunications, Beijing, China, in 2017. He
is currently working toward the Ph.D. degree
in software engineering at Tsinghua University,
Beijing, China. His research interests include
program analysis and its applications to industry.

Yu Jiang received the BS degree in software
engineering from Beijing University of Posts and
Telecommunications in 2010, and the PhD de-
gree in computer science from Tsinghua Univer-
sity in 2015. He worked as a Postdoc researcher
in the department of computer science of Uni-
versity of lllinois at Urbana-Champaign, IL, USA,
in 2016, and is now an assistant professor in
Tsinghua University. His current research inter-
ests include domain specific modeling, formal
computation model, formal verification and their

applications in embedded systems.

o~ -
o

14

Mingzhe Wang received the BS degree in
software engineering from Beijing University of
Posts and Telecommunications, Beijing, China,
in 2018. He is currently working toward the Ph.D.
degree in software engineering at Tsinghua Uni-
versity, Beijing, China. His research interests in-
clude program analysis and its applications to
industry.

Xun Jiao is an assistant professor in the ECE
department of Villanova University. He obtained
the Ph.D. degree from the department of Com-
puter Science and Engineering at the University
of California, San Diego. He received the dual
bachelors degree from the Beijing University of
Posts and Telecommunications, China and the
Queen Mary University of London, United King-
dom, in 2013. His research interests include
error-tolerant computing and machine learning.

Yuanliang Chen received the BS degree in soft-
ware engineering from Nanjing University, Nan-
jing, China, in 2017. He is currently working to-
ward the Ph.D. degree in software engineering at
Tsinghua University, Beijing, China. His research
interests include program analysis and its appli-
cations to industry.

Houbing Song received the PhD degree in elec-
trical engineering from the University of Virginia,
Charlottesville, VA, in August 2012. In August
2017, he joined the Department of Electrical,
Computer, Software, and Systems Engineering,
Embry-Riddle Aeronautical University, Daytona
Beach, FL, where he is currently an Assistant
Professor and the Director of the Security and
Optimization for Networked Globe Laboratory
(SONG Lab, www.SONGLab.us). His research
interests lie in the areas of cyber-physical sys-

tems, the Internet of things, cloud computing, big data, connected
vehicles, wireless communications and networking, and optical commu-
nications and networking.

Kim-Kwang Raymond Choo received the Ph.D.
in information security in 2006 from Queens-
land University of Technology, Australia. He is
currently a cloud technology endowed associate
professor at University of Texas at San Antonio,
an associate professor at the University of South
Australia, and a guest professor at China Uni-
versity of Geosciences. He is the recipient of
various awards including ESORICS 2015 Best
Research Paper Award, Winning Team of Ger-
manys University of Erlangen-Nuremberg Digital

Forensics Research Challenge 2015, and 2014 Highly Commended
Award by the Australia New Zealand Policing Advisory Agency. His
research interests include cyber security and forensics.

