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Abstract—The rapid development of Internet of things (IoT)
has triggered more security requirements than ever, especially in
detecting vulnerabilities in various IoT devices. The widely used
clone-based vulnerability search methods are effective on source
code, however their performance is limited in IoT binary search.

In this paper, we present IoTSeeker, a function semantic
learning based vulnerability search approach for cross-platform
IoT binary. First, we construct the function semantic graph to
capture both the data flow and control flow information, and
encode lightweight semantic features of each basic block within
the semantic graph as numerical vectors. Then, the embedding
vector of the whole binary function is generated by feeding the
numerical vectors of basic blocks to our customized semantics
aware neural network model. Finally, the cosine distance of
two embedding vectors is calculated to determine whether a
binary function contains a known vulnerability. The experiments
show that IoTSeeker outperforms the state-of-the-art approaches
for identifying cross-platform IoT binary vulnerabilities. For
example, compared to Gemini, loTSeeker finds 12.68% more
vulnerabilities in the top-50 candidates, and improves the value
of AUC for 8.23%.

Index Terms—function semantic learning, cross-platform bina-
ry, vulnerability search, IoT devices, neural network.

I. INTRODUCTION

VER the past decade, the number of IoT devices around
the world has increased dramatically. Gartner, Inc. fore-
casts that 26 billion connected things will be in use worldwide
by the year 2020 [1], [2]. Embedded system software is the
core of controlling IoT devices such as smart grid systems,
industrial control systems and medical devices, and its security
is particularly important [3]. Software in billions of IoT
devices have similarly-functional code and widely use third-
party libraries. This means that code clone plays an important
role in the development of embedded software, and is widely
used by programmers to improve the software production
efficiency. Study shows that 22.3% code of Linux kernel of
the IoT devices is from previous implementation [4].
For many IoT devices, security is an afterthought, leading to
unknown vulnerabilities introduced by the code clone are in-
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creasingly common. For example, the Debian operating system
of IoT devices confirms 145 unpatched clone vulnerabilities
[5]. In addition, with the popularity of IoT devices, software
programs on traditional X86 architecture are gradually being
ported to other architectures (e.g., ARM, MIPS) with different
compiler configurations. Correspondingly, vulnerabilities are
also propagated to IoT devices of different platforms. It is
envisaged that when attackers have mastered the exploitation
of a specific vulnerability, they can make use of it to attack
different platforms, which is very dangerous and may lead
to system failure. For example, a compromised Haier Smart-
Care automation system containing vulnerabilities can lead
to property damage, as an attacker can remotely hijack the
functionality of the appliances driven by the IoT device [6].

Many methods have been proposed to solve the cross-
platform IoT binary vulnerability search problem. For ex-
ample, Genius [7] presents a learning-based approach to
generate robust platform-independent function feature vector.
The similarity of two functions is transformed into the distance
between two function feature vectors. BinGo [8] first captures
the input-output relations of length variant partial traces to
create a signature model for the function, and then uses
Jaccard containment similarity [9] to measure the similarity
score between two different function signature models.

Although these methods have achieved certain results in
vulnerability search, they show two limitations in complex
search scenarios for large-scale code [10]. The first is that
insufficient and inaccurate function semantic information is
captured, leading to a high false positive rate. For example,
BinGo [8] relies heavily on the control flow graphs (CFGs)
to generate function signature model. However, the CFGs
are significantly divergent across different implementation
platforms, resulting in that its cross-platform clone detection
accuracy is less than 60%. The second is that most methods
require high computational overhead, making them difficult to
apply to complex large-scale binaries. For example, Genius
[7] requires the spectral clustering algorithm to generate a
codebook and inefficient graph matching algorithms in search.
Gemini [11] employs the deep learning model to reduce the
time cost, but it only considers the CFGs of functions, and
loses a large part of the function semantic information.

To overcome the above two limitations and strike a bet-
ter balance between accuracy and efficiency, we present
loTSeeker, a function semantic learning based cross-platform
binary vulnerability search approach for the IoT devices.
Through integrating the DFG and the CFG of the function to
a labeled semantic flow graph (LSFG), we adequately capture
the semantic information of a function. We select 8 types
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of features of basic blocks based on empirically study. Then
the embedding vector of the function is generated by feeding
features of basic blocks of the function to a customized neural
network model. We determine the similarity of two functions
by calculating the distance of their embedding vectors. This
method supports training a generic model for code clone
detection, and also supports the fine-tuning of the generic
model for a specific vulnerability search to obtain a better
precision.

For evaluation, we compare loTSeeker with the state-of-
the-art cross-platform binary clone vulnerability search tools
on some widely used real world embedded system software
in IoT devices. The experimental results show that loTSeeker
outperforms the most recent and related tools BinGo [8],
Genius [7] and Gemini [11], and can accurately recognize
the similar cross-platform binary functions and detect more
vulnerabilities. In detail, during a complex search scenario,
the AUC value of IoTSeeker is 0.8849, which is 11.62%,
14.71% and 8.23% higher than that of BinGo, Genius and
Gemini, respectively. Furthermore, we use two vulnerabilities
(CVE-2015-1791, CVE-2014-3508) to evaluate the vulnerabil-
ity search capability of loTSeeker in 4643 firmware images.
For these two vulnerabilities, we found 39 and 41 real vulner-
abilities respectively in the top-50 results, which are at least
3 and at most 31 more vulnerability instances than any of the
comparison tools. The time cost of vulnerability search for
IoTSeeker is about 0.2s per function, and 1.7s, 1.57s, 0.15s
for BinGo, Genius and Gemini.

The following summarizes main contributions of this article:

o As far as we know, loTSeeker is the first that integrates
both the CFG and the DFG together and applies neural
network to automatically capture more binary function
semantics than existing state-of-the-art approaches.

o The high search accuracy and low time cost of loTSeeker
demonstrate its potential on effectively identifying vul-
nerabilities from large scale binaries of IoT devices.

The rest of this paper is organized as follows. Section II
details the overall design of our IoT binary search approach,
including semantic flow graph construction, semantic feature
extraction and customized neural network model suitable for
IoT binary. Section III describes our experimental results com-
pared to the state-of-the-art approaches and studies optimal
hyper-parameters. And Section IV presents the conclusion.

II. DESIGN OF IoTSeeker

Our objective is to design a vulnerability search approach
that can automatically tell whether a given binary program
from IoT devices contains clone vulnerabilities or not. Lots
of vulnerability-related databases are open to the public, such
as Common Vulnerabilities and Exposures (CVE) [12]. There
are more than 120,000 vulnerabilities in CVE, some of which
occurs within functions and provides corresponding source
code. As a result, the clone vulnerability search method at
the function-level granularity will help to find the known
vulnerabilities in target cross-platform binaries.

In this section, we describe the design of IoTSeeker. It
consists of three phases, the learning phase, the fine-tuning

phase and the vulnerability search phase. Each phase is
completed by three identical steps: labeled semantic flow graph
construction, semantic feature extraction and loTSeeker deep
neural network. The overall architecture is shown in Fig. 1.
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Fig. 1. Overall workflow of IoTSeeker.

The inputs to the learning phase are similar or dissimilar
function pairs, which come from binary programs compiled
under different platforms (e.g., architectures, compiling con-
figurations). The output of the learning phase is a generic
neural network model for binary function clone detection,
which is the basis for subsequent model fine-tuning. Although
the generic model can be used to search for the clone vulner-
abilities directly, its effectiveness is not satisfactory because
the training set may not contain vulnerability samples. So in
the fine-tuning phase, some vulnerability samples from human
experts are fed to the generic model to retrain a fine-tuned
model for the specific vulnerability search. The generic model
can be flexibly retrained multiple times for different types of
vulnerabilities. The vulnerability search phase uses the fine-
tuned model to search vulnerable functions in binaries of IoT
devices. The following is a detailed introduction to the three
identical steps for each phase.

A. Labeled Semantic Flow Graph Construction

Function semantics cannot be obtained by simply parsing
functions into syntax trees or CFGs [13], [14]. It usually
requires a higher level of abstract computation. Most methods
compute a set of symbolic formulas representing the input-
output relations of a basic block based on the CFGs [15]-
[17]. Function semantics obtained through these methods can
be significantly different in the face of changes in CFGs across
compilation options [18].

push ebp [©)
mov  ebp, esp
sub  esp, 28h
== 1 oo dmov eax, [ebprarg 0] === 1-=; )
! mov  [ebp+var_CJ, eax ! Sl diinonoonark- 1y
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call _puts sub  [ebp+var_CJ, | [0,1,0,0,1,1,0,1] [0,1,0,0,1,0,0,11
mov cax, [ebp+var_C| call _puts
jmp  short locret_8048457 mov  eax, [ebp+var_C] 0 0
L—0o—F—o0—] @

locret_8048457. @
leave
retn

[1,0,0,0,0,1,0,0]

(b) Example for feature extraction

(a) Example for LSFG construction
Fig. 2. An example of labeled semantic flow graph construction.

We propose the labeled semantic flow graph (LSFG) which
combines the control flow graph (CFG) and the data flow graph
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TABLE I
BASIC-BLOCK LEVEL FEATURES USED BY loTSeeker.

Feature Name Example
No. of stack operation instructions push, pop
No. of arithmetic instructions add, sub
No. of logical instructions and, or
No. of comparative instructions test

No. of library function calls call prinf
No. of unconditional jump instructions jmp

No. of conditional jump instructions jne, jb
No. of generic instructions mov, lea

(DFG) to extract the function semantics. The idea is based
on the fact that the CFG determines the possible execution
sequences of basic blocks and the DFG depicts the transfer
and use of data within the function. By combining two kinds
of dependency relations together, we can get more complete
function semantics, which will be more immune to structural
and syntactic differences introduced by the CFGs under d-
ifferent architectures and compilation optimization strategies.
Fig. 2(a) illustrates an example of the LSFG. The solid lines
marked as 0 represent the control dependency, while the dotted
lines marked as 1 represent the data dependency.

For a compiled binary function, the structures of the CFG
obtained by different methods are almost the same, while
the DFG differs according to different data dependency rules.
We construct the DFGs on top of CFGs by leveraging the
define-use rules and traversing all function paths. Specifically,
for two instructions ¢ and j from two different basic blocks
which meet the CFG topology, if the instruction 7 writes to
a memory location and the instruction j reads from the same
memory location, we create a data dependent edge for these
two basic blocks. It is worth noting that there is at most
one data dependent edge between two different basic blocks.
Therefore, the presence of memory address “[ebp + var_C|”
forms a data dependent edge between the block (1) and 2) in
Fig. 2(a).

B. Semantic Feature Extraction

The LSFG constructed above is not suitable to be directly
input into the function semantic learning model. We should
choose and extract some robust initial numerical features that
should change little under various implementation platforms
with different microprocessor architectures and various com-
pilation optimization configurations. By empirically analyzing
the binaries from various platforms and referring to features
used in previous works [7], [11], [19], we have finally deter-
mined to use those 8 types of features shown in Table I as the
initial semantic representation of each basic block.

We first count the number of each feature in each basic
block, then arrange them into numerical vectors in order, and
finally put these numerical vectors to the corresponding vertex
of LSFG. Fig. 2(b) is the numerical vectors of each basic
block corresponding to the function in Fig. 2(a). We denote
the LSFG with numerical vectors as g = (X, C, D), where
X, C and D are the sets of (basic block) vertices, control
dependent edges and data dependent edges, respectively. And

Fig. 3. The graph model of the structure2vec approach. There would be
multiple hidden layers on the right, but only one layer is drawn for illustration.

each vertex x; € X represents the initial numerical feature
vector. The LSFG mentioned later refers to the LSFG with
initial numerical feature vectors unless otherwise specified.
Paired LSFGs g1, g are the input of loTSeeker neural network.

C. IoTSeeker Neural Network

The neural network model is the most important part to
complete feature integration and vulnerability search. Deep
learning models such as convolutional neural network (CNN)
for image recognition and recurrent neural network (RNN)
for natural language processing cannot be used directly for
vulnerability search, because their input is usually a picture or
a textual description. However, our input should be a pair of
functions (more specifically, a pair of LSFGs) and the output
is their degree of similarity. To apply to our vulnerability
search scenario, the neural network that is dedicated to graph
topology is required. We will first introduce two basic neural
networks, and then present how to coalesce them to get the
loTSeeker neural network model.

1) Basic Siamese Neural Network: The Siamese neural
network [20] solves the dual input problem of verification of
signatures written on a pen-input tablet. It mainly consists
of two identical sub-networks. Each sub-network takes a
processed signature as its input, then output the feature of
the signature. The joining neuron is used to measure the
distance between these two output features of the two sub-
networks, and output the similarity value ranging from -1 to
1. In IoTSeeker, Siamese is used as a network framework
to train two identical embedded sub-networks in an end-to-
end manner, which ensures that the two sub-networks share
the same parameters. So, the final effect is that the vector
representations of similar functions are close to each other.

2) Basic structure2vec Neural Network: Since functions are
represented as graphs, it is critical to learn accurate function
semantics from the graphs. We notice that the vertices in
the graph are not isolated, but are connected to each other
by the edges. Dai er al. [21] proposed structure2vec graph
neural network which is an effective and scalable approach for
structured data representation. It can encode vertex features
and connection relationship of the edges in the graph as
the embedding vector to represent function semantics. Fig. 3
shows how structure2vec works to generate such embedding
vector based on the graph topology on the left. The example
graph contains four vertices X;(i € {1,2,3,4}), and each
vertex is appended with an initial numerical vector x;. The
right side of Fig. 3 is the corresponding structure2vec network

1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2019.2947432, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Continuous values €[-1, 1]

Function embedding
vector fi

Function embedding
vector ¥

LSFG-based embedding || LSFG-based embedding
generation network generation network

t t

Labeled semantic Labeled semantic
flow graph g4 flow graph g,

(a) The network model of ToTSeeker for
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Fig. 4. The deep neural network of IoTSeeker for vulnerability search.

structure that consists of one input layer, 7" hidden layers (only
one hidden layer is drawn for illustration) and one output layer.
In structure2vec, the number of neuron nodes in the input layer
and each hidden layer is the number of vertices in the original
graph g.

In the input layer, the input of each neuron node is the
initial numerical vector x; of the corresponding vertex. In the
tth (1 < t < T) hidden layer, each hidden neuron H; is
responsible for generating a new feature representation called
the embedding vector ﬁgt), which encodes the initial numerical
vector x; and t-hop interactions between vertex features. We
use formula ,75.” = F(xi,ZkeE(i)ﬁ,(ffl)) to represent this
mapping relationship, where F (i) refers to the set of vertices
adjacent to vertex X;. Through the mapping function F', the
feature of each vertex is propagated to other vertices based
on connected edges. This feature update strategy takes into
account the graph topology and ensure that each vertex within
the graph has corresponding 7-hop context information after
T hidden layer iterations. Finally, the output layer neuron
Y aggregates the output embedding vectors ﬁET) of the T*"
hidden layer neurons to form the embedding vector (function
semantic feature representation) of the entire graph.

3) Extended loTSeeker Neural Network: The embedding
vector generation strategy of the structure2vec is especially
suitable for our LSFG, which simplifies the vulnerability
search problem to calculate the similarity of function embed-
ding vector. In our vulnerability search scenario, our goal is
to determine whether given two LSFGs g1, go are similar. The
label y in the training sample (g1,¢2,y) indicates whether
the two graphs are similar. This dual-input and single-output
sample requires us to train two structure2vec networks with
shared parameters, each of which is responsible for one LS-
FG. So, we embed two identical structure2vec networks into
Siamese framework to achieve this. Since the structure2vec
is implemented to support the LSFG, we call it LSFG-based
embedding generation network.

Network structure: The overall architecture of loTSeeker
neural network model is showed in Fig. 4(a). Each LSFG-
based embedding generation network takes a LSFG ¢ as input
and output its embedding vector zi which captures function
semantics by taking into account the structured graph infor-
mation. The Cosine function is used to calculate the similarity
of two embedding vectors (e.g., 1, /), which represents the

(b) LSFG-based embedding
generation network

suoneIo) 10Ke] |

[ﬁf"”.j € C(i)J [ﬁf"“,j en(i)

(c) A schematic diagram for generating the embedding
vector of each vertex during #-layer iteration.

similarity of two binary functions.

Fig. 4(b) is a detailed description of the LSFG-based
embedding generation network. This process is similar to
the basic structure2vec except for the graph type. We extend
structure2vec to deal with labeled semantic flow graph (LSFG)
containing both data flow (labeled 1 on the solid arrow)
and control flow (labeled O on the solid arrow), while basic
structure2vec works with an ordinary undirected graph. The
example LSFG ¢g = (X, C, D) consists of three vertices X;,
i € {1,2,3}, each of which represents a basic block of
the function and contains the initial feature vector x; as the
network input. C(¢) and D(%) represent the control dependent
edge set and data dependent edge set of vertex i, respectively.

The extended structure2vec network contains a total of T’
hidden layer responsible for transforming graph information
into function semantic embedding vector. Each hidden layer
node is represented as the updated embedding vector ﬁl(-t),
where different ¢ values correspond to different hidden layer.
During the ¢** hidden layer iteration, the updated i\’ consists
of three different inputs: initial feature vector z; of the
corresponding vertex X; (the dotted arrow in Fig. 4), the
sum [ = jec(i)ﬁy*l) of previous embedding vectors of
vertices pointing to X; through the control dependency C(:),
and the sum 17" = Sjcpal " of previous embedding
vectors of vertices pointing to X; through the data dependency
D(i). The function mapping F can be expressed by the
formula: ﬁg” = F(z;, 1877, lfitfl)) = tanh( Wiz + 0. (18 ") +
ad(lgtfl))). Fig. 4(c) illustrates the schematic diagram for
generating the embedding vector ﬁz(.t) of each hidden layer
node, where o, o4 are two non-linear transformation functions
which are responsible for calculating an embedding vector
with more powerful representation capability. Similar to [11],
we define them as two n layer fully-connected networks with

the following forms:

oelle) = P x ReLU(Py % -+ ReLU(Py x 1))
ga(la) = Q1 X ReLU(Qz X - ReLU(Qn x 1)) (D

where n is the embedding depth of each vertex, P; and Q;
are p X p dimensional parameter matrixes for every layer of
the two fully-connected networks.

The overall procedure for generating function semantic
representation described above is implemented and integrated
in Algorithm 1. W and W5 are d X p and p X p dimensional
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parameter matrixes respectively. Through the 7T-layer iteration
in Algorithm 1 from line 5 to 11, a new feature representation
of each vertex is generated, which not only follows the
topology structure of LSFG, but also integrates the 7'-hop
interaction among vertices. In other words, the features of
the vertices are propagated to other vertices as the iteration
progresses, ensuring that each basic block within the function
has corresponding context information. Finally, the binary
function semantics, including the data flow dependency and
the control flow dependency, is aggregated into the correspond-
ing embedding vector z in Line 12.

Algorithm 1: Algorithm for generating function semantics

Input: LSFG g = (V, E, x)

Hidden layer iteration number 7'
Output: Binary function semantics embedding vector f
C/(1) as the set of parent nodes that are the control dependency
of vertex i; D(7) as the set of parent nodes that are the data
dependency of vertex <.

-

2 for i € V do

s | @” =0

4 end

s fort =11t T do

6 for i € V do

7 lﬁtfl) — Ejec’(i)ﬁ;til)
t—1 i1

8 l; )= EjeD(z')M§ )

’ @O = tanh(Wiz: + 0. (1870) + 0a(l ™))

10 end

11 end

12 return i = Wz(zieVﬁgT))

Learning parameters: Paired embedding vectors (e.g., i,
v) are obtained through two identical LSFG-based embedding
generation networks with two LSFGs (e.g., g1, g2) as inputs.
The output of the whole network represents the similarity of
the two functions and is measured by the Cosine function
denoted as § = cos(u,v) = (u-v)/(||@] - |2]]) , where 7 is the
prediction output of the similarity of two functions, ranging
from —1 to 1. Given the ground truth y € {1, —1} of embed-
ding vectors u and v, where y = 1 indicates they are similar
functions, otherwise dissimilar. Suppose that the training data
set has M pairs of labeled samples (f1, f2, y), then our training
objective is to minimize the training errors. We can use
stochastic gradient descent algorithm to minimize error func-
tion min E(Wy, Wz, P1--- Pn,Q1---Qn) = S M _ (§—y)? and
obtain the most appropriate model parameters (e.g., Wy, P).
After the generic model is trained, specific vulnerability sam-
ples from human experts can be optionally fed to the generic
neural network model to retrain a fine-tuned neural network
model for the specific vulnerability search.

III. EXPERIMENTAL EVALUATION

IoTSeeker is based on code similarity detection to complete
binary code vulnerability search in IoT devices. Therefore, our
experiments are centered at the following two questions:

« RQI. What accuracy can loTSeeker achieve in predicting

similar cross-platform binary functions of IoT devices
when compared with other approaches?

e RQ2. How many real known vulnerabilities can
IoTSeeker identify in existing large code bases from em-
bedded system software of IoT devices when compared
with other approaches?

A. Experiment Setup

All experiments were performed on a server with an Intel
Xeon ES running at 2.2GHz, 64GB memory and 2 NVIDIA
GeForce Titan X GPUs.

Data Preparation. We prepare two datasets to complete
different evaluation tasks shown in Table II. The following is
a brief description:

« Dataset I. We choose five open-source projects com-
monly used on IoT devices. Then we use two compilers
to compile these five projects into six target processor
architecture binaries under four optimization options. As
a result, we get a total of 240 binary versions containing
735,540 functions and more than 9,345K basic blocks.
There are 1,222,950 pairs of samples constructed in this
dataset.

o Dataset II. We adopt the same firmware image dataset
from IoT devices (such as IP cameras, routers and access
points) used by [7], [11]. We use this dataset to evaluate
the effectiveness and the efficiency of loTSeeker on real
vulnerability search. It consists of 4,643 successfully
disassembled firmware images.

TABLE I
DESCRIPTIONS OF THE DATASET.

Type #Function | #Project | Source

Programs:OpenSSL(v1.0.1f, v1.0.1u),
BusyBox(v1.21.0), Coreutils(v6.5, v6.7)
Compilers: GCC(v4.9),GCC(v5.5)
Optimization levels: O0-O3

Processors: X86, X64, MIPS32,
MIPS64, ARM32 and ARM64

Dataset 1 735,540 240

Firmware images from IoT devices (such as

Dataset IT ‘ 25.202.314 ‘ IP cameras, routers and access points)

4,643 ‘

Comparison Tools. We compare loTSeeker with three state-
of-the-art tools: BinGo [8], Genius [7] and Gemini [11]. BinGo
is a traditional CFG-based technique that generates function
model by extracting length variant partial trace and compares
them to detect similar functions. Genius is a spectral clustering
based technique that uses bipartite graph matching algorithm
to generate function vectors and then perform function com-
parison. Gemini is a learning-based technique that compares
embedding vectors which are learned from CFGs to predict
function similarity. For fair comparison, we reimplement the
other three tools, and train Genius and Gemini on our dataset
according to their configuration.

Ground Truth. We use the following strategies to au-
tomatically label the training samples in dataset I for the
generic neural network model of the learning phase. With
the source code of function f, we compile it into a set of
binary functions denoted as set(f) = {f1, f2, -+, fn} across
different compilation options. For each function f; in set(f),
we randomly select a different function f;,7 # j to make
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up a similar sample, and label them as (f;, f;, +1). We also
randomly select another binary function sy, that is not in set(f)
to construct a dissimilar sample, and label them as (f;, sk, —1).
A total of 1,222,950 pairs of samples are constructed. We
apply 10-fold cross-validation to train and evaluate loTSeeker.
Namely, we partition the samples into 10 subsets, each time
nine subsets are used to train model, and one subset is chosen
as test set. We repeat this 10 times and each time the picked
test subset is different. The reported result is averaged over
the 10 times.

For a specific vulnerability search task, to get a higher
prediction accuracy, we can optionally provide a small number
of additional samples from human experts to fine-tune the
generic neural network model in the fine-tuning phase. In
this paper, we compile each vulnerability f into 240 binary
versions and construct 240 pairs of similar samples (f;, f;, 1)
and 240 pairs of dissimilar samples (f;, s, —1). We use the
augmented dataset which consists of the 480 samples and 1%
randomly selected samples of dataset I to retrain a fine-tuned
model for 5 epochs. The advantage of this is that we only need
a model to accurately predict whether a particular vulnerability
is included in any compiled version of the binary.

Default Training Configuration. Following those related
previous works, we set up the hyper-parameters of the model
as follows: the training epoch is 100, the learning rate is
0.0001, the embedding depth n is 2, the embedding size p
is 64, the number of iterations 1" for each basic block is 6 and
the size of mini-batch is 10. After finishing each epoch, we
randomly shuffle the training set.

B. Accuracy of Code Clone

We answer RQ1 about what accuracy our approach can
achieve in identifying similar binary functions of IoT devices
across different platforms. We use BinGo, Genius and the
generic models of both loTSeeker and Gemini to perform
this experiment on dataset I. Since we adopt 10-fold cross-
validation method to train models and there are 10 different
test sets in total, we conduct experiments on each test set
separately and take the average of 10 experiments finally.
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Fig. 5. ROC curves of code clone for different approaches.

Fig. 5 is the accuracy of code clone shown with the ROC
(receiver operating characteristic) curves. The area enclosed
by the ROC curve and the z-axis is expressed as AUC
(area under the curve), which is equivalent to the probability

that a randomly chosen positive example is ranked higher
than a randomly chosen negative example [22]. Therefore,
classifiers with larger AUC values have better generalization
performance. We can see that the curve drawn by loTSeeker is
above the curves drawn by other three tools, which means that
we can achieve a higher true positive rate with a lower false
positive rate. The AUC values of BinGo, Genius, Gemini and
loTSeeker are 0.7928, 0.7714, 0.8176 and 0.8849, respectively.
The main reason is that in addition to the CFG, we also
construct the DFG for tracking the usages of variables between
basic blocks. By the 6-layer iteration during generating the
function embedding vector, features of basic blocks propagate
6-hops forward. Therefore, each basic block holds the seman-
tic information hidden in the LSFG, which ultimately results
in the effective identification of clone functions.

For Gemini and IoTSeeker in some less complex scenarios,
the accuracy of Gemini and loTSeeker can be much higher
than the results presented in Fig. 5. For example, in the
dataset settings of [11], Gemini’s AUC value of the pre-trained
model is 0.971 and ours is about 0.984, which is much higher
than the value of 0.8849 and 0.8176 tested in the presented
experiments. Two reasons lead to this situation. One is that
our dataset I contains 5 different programs, but the dataset of
Gemini only contains 2 of them. The other is that we compile
these programs into six architectures, including three 64-bit
ones, and Gemini only compiles them into three 32-bit ones.
The number of general-purpose registers used in 32-bit and 64-
bit architectures is different, which affects the feature vectors
of basic blocks, and its results drop accordingly. We found that
more complex the dataset is, more improvements loTSeeker
would achieve.

C. Hyper-parameter Studies

We evaluate the impacts of different hyper-parameters on
the accuracy of code clone with dataset I. Due to the time
and resource limitation, we train each model with the training
set for 50 epochs. All the hyper-parameters are evaluated on
the test set. In the study of each hyper-parameter, except for
the parameter being evaluated, other parameters take default
settings as described in Section III-A. We summarize all the
investigated hyper-parameters of loTSeeker in Table III. Values
that enable loTSeeker to achieve the best predictive capability
are bolded in Column Values. Column Metric represents the
evaluation criteria used to select the most appropriate hyper-
parameter values.

1) Size of Training Epochs: Increasing training epochs
results in more times of weight updating. However, it is
pointless to increase the number of training epochs blindly,
which may not substantially change the parameter values of
the model. So we want to know when the performance of the
model tends to be stable. In total, we train the model for 100
epochs and evaluate the loss value and the AUC value on the
validation set for every epoch. Fig. 6(a) and Fig. 6(b) show
the loss value and the AUC value respectively. We can see
that our approach has achieved a good performance in about
50 epochs, the AUC value is 0.87, and the loss value is 0.83.
The loss values for both approaches are below 1.2. As the
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Fig. 6. Hyper-parameter studies results on dataset I. Fig. 6(a) and Fig. 6(b) show the effects of training epochs. Fig. 6(c-f) describe the predictive effects
of the generic model with different choices of the embedding size, the embedding depth, the number of iterations and feature sets. When studying each
hyper-parameter, the choices of other hyper-parameters are the optimal setting described in Section III-A. With the variation of embedding size, the embedding
depth and the number of iterations, the AUC value of loTSeeker remains higher than that of Gemini. The reason of temporary exception in Fig. 6(b) is that
our model contains more parameters and needs more epochs for training in the early stage.

TABLE III
THE SUMMARY OF ALL INVESTIGATED HYPER-PARAMETERS IN [oTSeeker.

Parameter Values Metric Description
Epoch 22(?206(;) ’ ]A(EJS(S: The number of rounds for model training
L 16,64, The dimension of the embedding vector
embedding size p 128,256 ROC used to represent the function semantics
. 1,2,3, The number of layers of two fully-
embedding depth n 4,5 ROC connected networks in o. and o4
. . 1,24, The number of hidden layers in the LSFG-
iteration T 6,8 ROC based embedding generation network
. . ToTSeeker, Determine which initial feature set
feature selection Geni ROC . . N o
enius is suitable for vulnerability search

number of epochs increases we eventually have a higher AUC
value than Gemini, even though our AUC value is lower in
about the first 30 epochs. The main reason is that our model
contains more parameters and needs more epochs for training
in the early stage.

2) Embedding Size: The embedding size refers to the
dimension of the embedding vector used to represent the
function semantics. We use the ROC curves to evaluate which
embedding size can achieve the best performance. Fig. 6(c)
plots the experimental results. When the embedding size is
greater than 64, their corresponding ROC curves are close
to each other. We choose 64 as the default embedding size,
because it can reduce the time cost of training and prediction.
Whatever embedding size is set up for loTSeeker, the AUC
value is higher that that of Gemini with the optimal settings.
This phenomenon also applies to embedding depth and the
number of iterations.

3) Embedding Depth: The embedding depth refers to the
number of layers of two fully-connected networks represented

as o.,04. Fig. 6(d) shows the effects of varying embedding
depth. The relatively good AUC value is obtained when the
embedding depth is 2. This means that by increasing a two-
layer full-connected network, the generated embedding vectors
have stronger representation capabilities and better capture
the function semantics. However, when the embedding depth
exceeds 2, there will be no benefit other than higher time cost
of training and prediction.

4) Number of Iterations: It refers to the number of hidden
layers in the LSFG-based embedding generation network in
Fig. 4(b). We vary the number of iterations 7', results of ROC
curves are drawn in Fig. 6(e). When the number of iterations is
6, our approach achieves the best performance of code clone.
This means that the feature vector of each vertex in LSFG can
propagate 6-hops along the topological structure of LSFG.

5) Features Selection: Related researches have proposed
several sets of binary function features for predicting code
similarity in machine learning methods [7], [19]. By observing
and analyzing the characteristics of different binaries compiled
across different platforms, we propose a set of features that
are suitable for performing code similarity prediction tasks.
Section II-B introduces these features in detail. We use dataset
I to verify the performance of different feature sets.

Based on the default configuration detailed in Section III-A,
we use different feature sets to train our models on the train
set, then evaluate the effects on the test set. Fig. 6(f) shows the
performance of different feature sets on dataset I using ROC
curves. We observe that the feature set we choose has the best
performance compared to other feature sets on loTSeeker. The
AUC value for our feature set is 0.8849, which is higher than
just using the feature set of Genius.
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TABLE IV
ACCURACY OF VULNERABILITY SEARCH IN THE TOP-K REPORTED
RESULTS. N@K MEANS #NUM@ K HERE.

CVE-2015-1791 | CVE-2014-3508

#N@1 #N@10 #N@50 #N@IOO‘ #N@1 #N@10 #N@50 #N@100

BinGo 0 1 21 37 0 2 19 42
Genius 0 2 8 16 0 3 10 23
Gemini 1 4 36 75 1 7 35 73
IoTSeeker 1 6 39 83 1 7 41 82

D. Accuracy of Vulnerability Search

We answer RQ2 about how effective IoTSeeker is in iden-
tifying vulnerability functions in IoT devices when compared
with other clone-based vulnerability search approaches. Refer-
ring to the vulnerability search experiments of other tools [7],
[11], we use the same two vulnerabilities (CVE-2015-1791
and CVE-2014-3508) to perform comparative experiments.
We use the fine-tuned models of loTSeeker and Gemini in
this experiment. By feeding a small amount of additional
vulnerability function pairs, we can get fine-tuned models
for a particular vulnerability search after a few rounds of
fine-tunings. As described in Section III-A, we fine-tune the
generic models of both IoTSeeker and Gemini in dataset I,
and then search for vulnerabilities in dataset II consisting of
4,643 firmware images (such as IP cameras, routers and access
points) of IoT devices. For each vulnerability, we carry out 5
epochs of fine-tuning.

For the search results of the MIPS32 version vulnerability,
we sort the functions in all firmware images in descending
order of similarity scores. Table IV shows the effectiveness of
vulnerability search on the top-/K most similar results. In the
comparison experiment, we take 4 different K values, namely
1,10,50 and 100. For each K value, we manually confirm the
number of true positive instances in the top-K reported results
and count them as #Num@K.

From Table IV, we can see that the fine-tuned model of
loTSeeker has a great improvement on the search accuracy.
For four different K values, loTSeeker always identifies more
real vulnerabilities than other tools. BinGo and Genius have
average search accuracy lower than 45% and 25%, respec-
tively. When the report results are given by these two tools,
a large amount of manual effort has to be required to filter
out false positives. Only loTSeeker and Gemini find real
vulnerabilities in top-1 reported results. But for the CVE-
2015-1791 vulnerability, loTSeeker finds 2, 3 and 8 more
vulnerabilities than Gemini in the top-10, top-50 and top-100
results, which are 50%, 8.33% and 10.67% higher accuracy,
respectively. For the CVE-2014-3508 vulnerability, loTSeeker
has 17.14% and 12.33% higher search accuracy than Gemini
in the top-50 and top-100 results. Since our approach not
only considers the control dependency but also constructs the
transfer and use of the data, which captures more accurate
and sufficient function semantic information. As a result,
IoTSeeker achieve a higher accuracy than other three tools,
and more vulnerabilities are detected. In terms of time cost,
BinGo, Genius, Gemini and IoTSeeker need an average of 1.7s,
1.57s, 0.15s and 0.2s to calculate the similarity between a

target function and a vulnerable function.

IV. CONCLUSION

In this paper, we present loTSeeker, a cross-platform binary
vulnerability search approach for IoT devices based on func-
tion semantic learning. With integrating both the data flow
dependency and the control flow dependency of the binary
function, we capture more function semantics. Experiments
show that IoTSeeker achieves 88.49% AUC value, which
improves 11.62%, 14.71% and 8.23% than that of BinGo,
Genius and Gemini, respectively. For the case studies of two
vulnerability searches, we discover at least 3 and at most
31 more vulnerability instances compared with any of three
state-of-the-art tools in the top-50 candidates. loTSeeker only
needs about 0.2s to determine whether a function has a known
vulnerability or not. The high predictive accuracy and low time
cost indicate loTSeeker is suitable for effectively identifying
vulnerable functions from the embedded system software of
IoT devices.
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