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Scanners are commonly applied for detecting vulnerabilities in web applications. Various scanners with dif-
ferent strategies are widely in use, but their performance is challenged by the increasing diversity of target
applications that have more complex attack surfaces (i.e., website paths) and covert vulnerabilities that can
only be exploited by more sophisticated attack vectors (i.e., payloads). In this paper, we propose Scanner++,
a framework that improves web vulnerability detection of existing scanners through combining their capa-
bilities with attack intent synchronization. We design Scanner++ as a proxy-based architecture while using a
package-based intent synchronization approach. Scanner++ first uses a purification mechanism to aggregate
and refine attack intents, consisting of attack surfaces and attack vectors extracted from the base scanners’
request packets. Then, Scanner++ uses a runtime intent synchronization mechanism to select relevant attack
intents according to the scanners’ detection spots to guide their scanning process. Consequently, base scan-
ners can expand their attack surfaces, generate more diverse attack vectors and achieve better vulnerability
detection performance.

For evaluation, we implemented and integrated Scanner++ together with four widely used scanners,
BurpSuite, AWVS, Arachni, and ZAP, testing it on ten benchmark web applications and three well-tested
real-world web applications of a critical financial platform from our industry partner. Working under the
Scanner++ framework helps BurpSuite, AWVS, Arachni, and ZAP cover 15.26%, 37.14%, 59.21%, 68.54%
more pages, construct 12.95×, 1.13×, 15.03×, 52.66× more attack packets, and discover 77, 55, 77, 176 more
bugs, respectively. Furthermore, Scanner++ detected eight serious previously unknown vulnerabilities on
real-world applications, while the base scanners only found three of them.
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1 INTRODUCTION

Vulnerabilities in web applications are prevalent nowadays, accounting for the vast majority of
security issues in the Common Vulnerabilities and Exposures database [10]. Some of them can
lead to severe consequences once exploited by attackers. Today, many different methods have been
applied to detect and discover security issues in web applications. Among them, web vulnerability
scanners are one of the most commonly used tools.

In general, web vulnerability scanners can be divided into two categories, white-box, and black-
box. White-box scanners are static application software testing tools (SAST). They can analyze
the source code of web applications and trace their program logic to detect security issues. For
example, phpSAFE [25] uses static analysis to identify vulnerabilities in PHP-based applications
developed with OOP (Object-oriented Programming). RIPS [33] performs semantic analysis
based on source code to build a model for the program and detects vulnerabilities using taint
analysis. In practice, however, the source code of web applications is sometimes not available.
Besides, many vulnerabilities are caused by the overlapping effects between application security
issues and inappropriate server configurations, which are difficult for white-box scanners to deal
with. These tools can only detect vulnerabilities from the perspective of the application source code,
ignoring server factors. It will inevitably lead to more false positives and miss security issues.

In contrast, black-box scanners are dynamic application software testing tools (DAST), only
requiring access to the target website. Because of their simplicity of use and low false alarm rate,
they have attracted much attention. Some black-box scanners even become a necessary part of
several standards like Payment Card Industry Data Security Standard [29]. Black-box scanners
work by simulating the hacking process, constructing attack intents against the target website, and
analyzing response packets to detect vulnerabilities. A valid attack intent consists of a vulnerable
attack surface (i.e., website path) and appropriate attack vectors (i.e., payloads). The work cycle of a
typical black-box scanner can be divided into three stages, discovering attack surfaces, generating
attack vectors, and analyzing response packets. The first stage mainly performs a content discovery
procedure. Scanners will collect the scanning scope, web pages, and input points to determine
possible attack surfaces of the target website. Subsequently, in the second stage, the attack module
of the scanner will generate attack vectors for each attack surface to construct attack intents and
send them to the target site. Finally, when the corresponding response packet is returned, it will be
handled by the analysis module for vulnerability confirmation. This module will estimate whether
the intent counts as a valid attack or not.

However, when we apply these black-box scanners in practice, their performance varies accord-
ingly in different applications. As part of our preliminary evaluation, we used four scanners, Burp-
Suite, AWVS, Arachni, and ZAP, to test against several websites for a side-by-side comparison, as
shown in Table 1.

SEACMS (SEA for short) is a web application used for content management. It provides com-
monly used functions like article publishing, user comments, software download, user manage-
ment, etc. In this application, BurpSuite [30] detected 37 vulnerabilities, which has the best bug
detection capability among the four tools we tested. However, it performed poorly in the MyBlog-
gie application, or shortly MYB (a personal blog application), detecting seven fewer security issues
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Table 1. Preliminary Experiments Conducted on Three Web Applications with Four Different Scanners

Projects

Tools BurpSuite AWVS Arachni ZAP

Cov. Req# Vul# Cov. Req# Vul# Cov. Req# Vul# Cov. Req# Vul#

SEA 75.86% 4,634 37 49.15% 736 10 32.76% 2,837 5 24.14% 159 1
SCH 28.13% 1,376 4 28.24% 414 2 31.25% 1,944 2 14.06% 198 2
MYB 77.78% 4,510 4 49.21% 2,906 11 50.79% 46,752 2 77.78% 289 1

The rows marked with “Cov.” indicate the coverage rate, the rows with “Req#” indicate the numbers of attack requests,

and the rows with “Vul#” indicate the numbers of detected vulnerabilities.

than other tools like AWVS. Previous studies like [4, 5] have also shown the existence of such prob-
lem when comparing the performance of scanners, which can seriously affect the effectiveness of
vulnerability detection.

When we further collected and analyzed the coverage and the number of attack requests, we
found that such inconsistency mainly arises from a single scanner’s insufficient strategy when
constructing attack intents. The existing intent construction mechanism of each scanner is usually
designed with preferences. It can be efficient in some applications but may be less effective in
others. More specifically, the problem lies in two aspects.

(1) In the first stage of the working cycle, many scanners’ detection performance is limited due
to their inability to discover more comprehensive website content. The current content discovery
mechanism relies on crawling and dictionary-based path enumeration. The crawling component of
different scanners may be implemented with different configurations (e.g., depth of tracking, sup-
port for different content types). The embedded enumeration dictionaries also vary among scan-
ners. For different sites, the optimal content discovery strategies to achieve better performance are
not the same. Using only one strategy for all different test targets is not enough to obtain compre-
hensive attack surfaces. If the scanner does not cover a relatively complete scope of pages initially,
the subsequent process and the detection of vulnerabilities will be limited significantly. However,
if we can synchronize attack intents among scanners, a single tool can acquire the attack surfaces
explored by multiple strategies. Take the scanner Arachni [34] as an example. When we scan the
SEA website directly, it can only cover 32.76% of the website, with only five vulnerabilities detected.
If we can give Arachni assistance by synchronizing website structure information explored by the
other three scanners, its coverage can reach up to 75.86%, while 42 security issues can be identified.

(2) In the second stage, many scanners have a limited and narrow strategy for generating attack
vectors. For various test targets, applying only one type of attack vector generation mechanism is
not sufficient. If the attack vectors produced by the scanner can be more diverse, there is a greater
probability of detecting more vulnerabilities successfully. Synchronizing attack intents allows a
single tool to fuse attack vector generation strategies used by multiple scanners. For example,
when scanning the site SCH, ZAP [18] was able to generate only 198 attack requests and detected
two vulnerabilities. However, when we assisted ZAP in synchronizing attack vectors with the other
three scanners, it can generate 64 times the number of attack requests and detect 11 vulnerabilities
in the site.

Based on these observations, we propose Scanner++, an enhanced web vulnerability detection
framework with attack intent synchronization. Firstly, by extracting and refining contents from re-
quest packets sent by base scanners, we can aggregate attack surfaces and attack vectors effectively,
forming a synchronized attack intent library. Secondly, we design a run-time intent synchroniza-
tion mechanism. Through analyzing the detection spot of the target, we synchronize related attack
intents to the base scanner, thus augmenting its detection process. In this way, we can consolidate
attack surfaces explored by different scanners, and share attack vectors produced by them. By
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synchronizing attack intents constructed with various mechanisms, the overall scanning process
can be more robust and better applicable for diverse real-world targets.

For evaluation, we implemented Scanner++ and chose four high-performance base scanners
working under it. We employed benchmark applications that have been widely used in previous
research, and three real-world applications in CCDC, one of the largest security depository compa-
nies in the world as test-beds. The experiment results demonstrate that the base scanners perform
differently on various applications, while Scanner++ consistently and effectively improves their
vulnerability detection performance. Specifically, on ten open-source web applications, working
under the Scanner++ framework makes BurpSuite [30], AWVS [2], Arachni [34], and ZAP [18]
cover 15.26%, 37.14%, 59.21%, 68.54% more pages, construct 12.95×, 1.13×, 15.03×, 52.66× more
unique request packets, and discover 77, 55, 77, 176 more bugs, respectively. Moreover, using Scan-
ner++ can help base scanners detect 205 more security issues, even comparing with their combined
results. Furthermore, when we applied Scanner++ on the well-tested real-world web applications
in CCDC, eight serious previously unknown vulnerabilities were detected and fixed.

Overall, this paper makes the following contributions:

• We propose a fully non-intrusive attack intent synchronization framework for enhanced
web vulnerability detection. A proxy-based architecture and a package-based intent syn-
chronization approach are designed in it to perform intent synchronization among multiple
scanners.
• We implement Scanner++,1 where an attack intent purification mechanism and a run-time

intent synchronization mechanism are designed to efficiently synchronize base scanners
with relevant attack surfaces and vectors. Each scanner can fully utilize various strategies
during testing and achieve better vulnerability detection performance.
• We apply Scanner++ to open-source benchmarks and real-world applications. The exper-

iments show that Scanner++ improved the effectiveness of existing scanners greatly, and
confirmed many serious previously unknown bugs.

The remainder of the paper is organized as follows: Section 2 presents a background of web appli-
cation vulnerabilities and scanners. In Section 3, we present an example to illustrate the motivation
of intent synchronization. Section 4 demonstrates the architecture and methodology of Scanner++.
Section 5 presents the evaluation of Scanner++. Section 6 discusses the potential threats to the va-
lidity of Scanner++. Section 7 introduces related work, and we conclude in Section 8.

2 BACKGROUND

When a user is interacting with a web application, the browser will send a request packet to a
specific path of the server. The request packet usually contains several parameters to put the infor-
mation that the user wishes to transmit. Then the browser will wait for the response packet from
the server and parse the web page contained in it. There are two most commonly used request
methods, the GET method and the POST method. One of the main differences lies in the position
of parameters in the request packets. The request packets using the GET method will have param-
eters placed at the link position, while the POST method will put parameters in the body section
of the request packets.

Some web applications contain severe security vulnerabilities, resulting in sensitive information
leakage, user identity theft, or even leaving the entire server under the control of attackers. The
process of exploiting a vulnerability is similar to the normal interaction mentioned above. An

1Scanner++ will be open-sourced at: https://github.com/ScannerPlusPlus, and artifacts on multiple platforms are released

at https://github.com/ScannerPlusPlus/ScannerPlusPlus/tree/main/Artifacts.
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Fig. 1. Motivating example of the enhanced vulnerability scanning of web applications, where the three

scanners A, B, and C have different abilities of content discovery and attack vector generation.

attacker will construct request packets with parameters filled with malicious data and send them to
a path of the vulnerable host. The attacker then estimates whether they have successfully exploited
the vulnerability and gathers the information needed from the response packets. The host of the
target server and the corresponding path make up an attack surface, which is the starting point
if an invasion happens. The malicious data sent by the hacker is described as attack vector. The
attack surface and the corresponding attack vectors constitute of an attack intent. Thus, a complete
attack against the target application means to construct a series of valid attack intents. Specifically,
it implies that the hacker should find a vulnerable attack surface, generate effective attack vectors,
assemble them into request packets, and then send out.

To prevent malicious requests, developers often apply some sanitization measures to user inputs.
Sanitization is a set of instruments that estimate whether the input contains attack vectors. Ideally,
each user input that may cause an attack will be properly sanitized, but based on previous research
[21], reaching such a high standard is challenging. Many attackers will try various methods of
mutating attack vectors to bypass such sanitization and achieve successful attacks.

Black-box scanners work essentially by mimicking the process described above. They detect vul-
nerabilities by automatically constructing attack intents on the target application. First, the scan-
ner gathers as much information about the target’s attack surfaces through the content discovery
process. The gathered attack surfaces essentially determine the scope of pages that scanners will
attempt to attack. The more comprehensive the detection of the attack surfaces, the more effec-
tive the scanner will be. Then, for each attack surface, the scanner will generate attack vectors to
construct the request packet. The attack vector generation process basically determines the attack
capability of the scanners. The more diverse the constructed attack vectors, the more effective the
scanner will be. After sending the request, the scanner will analyze the corresponding response to
determine whether it constitutes a valid attack. If necessary, it will further mutate the attack vec-
tors to bypass some existing sanitization mechanisms. When the scanner succeeds in composing
a valid attack, this indicates that it has found a vulnerability in the website.

3 MOTIVATING EXAMPLE

We use a simplified example to illustrate the motivation of enhanced scanning with intent syn-
chronization, as shown in Figure 1. This example is extracted from real-world web applications
and the vulnerability detection process of scanners.
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Table 2. Vulnerability Detection Capability of the Three Scanners in the Motivating Example

Tool
The Number of

Tested Pages
manage.php search.php

Content
Discovery

Attack Vector
Generation

Attack Intent
Construction

Content
Discovery

Attack Vector
Generation

Attack Intent
Construction

Scanner A 2
Scanner B 3
Scanner C 2
Work Separately and
Combine Results

6

Synchonize Intents
among Scanners

6

A white box indicates that the scanner is unable to complete the corresponding phase. A hatched box indicates that the

attack vector generated by the scanner is invalid. A black box indicates that the scanner is capable of completing the

corresponding phase.

The website’s root path has three pages (edit.php, user.php, search.php) and an admin path, which
contains three more subpages (login.php, manage.php, view.php). Among them, search.php contains
a remote file inclusion vulnerability [36]. manage.php has an arbitrary file download vulnerability
with a sanitization mechanism to check the extension in input to protect from attack. It will verify
whether the requested file is a picture with jpg extension. However, the designed mechanism is
inadequate, so it is still vulnerable. An attacker can insert NULL character to truncate the path,
and harvest the sensitive file content while keeping the extension as jpg at the same time. Such
insufficient sanitization situation is prevalent in today’s web applications.

In each stage of a black-box scanner’s work cycle, the strategies often vary in different scanners,
leading to inconsistent results. In the first step, the content discovery process, each scanner can de-
tect a portion of the site’s structure. Scanner A can discover search.php, but cannot generate attack
vectors against the type of vulnerability hidden on that page. This makes Scanner A impossible to
discover this vulnerability, as shown in the sixth and seventh columns of the first row in Table 2.
Although Scanner B supports constructing that kind of attack vectors, it fails to discover the page
search.php in the first step. The incomplete attack surfaces of Scanner B make it unattainable to
report the vulnerability as well, as shown in the second row of Table 2. In the second step, attack
vector generation, although Scanner C generates the attack vector path=../../../etc/passwd against
the page manage.php, but this attack vector is too naive and simple to bypass the website’s saniti-
zation mechanism. Thus, Scanner C cannot successfully exploit and discover the issue, as shown
in the third and fourth columns of the third row in Table 2.

In a word, if we use these three scanners separately, each one can only use its own content
discovery approach, thus exploring a part of the attack surfaces in the first stage, as shown in the
first row of Figure 2. Subsequently, targeted at that discovered part of attack surfaces, they can
only generate attack vectors with their own strategies. Even if we combine the results produced
by these three scanners, the overall coverage can be summed up, but in the end, the two security
issues still cannot be detected, as shown in the fourth row of Table 2 and the upper part of Figure 2.

Based on this motivation, we design the framework Scanner++, enabling multiple tools to syn-
chronize attack intents during their scanning process. However, unlike many other security testing
tools, web vulnerability scanners often operate in a complete closed-loop workflow. Direct inter-
ference with its internal state using intrusive methods would severely impair the universality. For
open-source scanners, this method will require significant manual labor when integrating new
ones. While for proprietary scanners, such a method will be completely unadaptable. How to im-
plement a fully non-intrusive attack intent synchronization framework is the first challenge we
need to tackle. Therefore, as shown in Figure 2, we implement a proxy-based architecture and
a package-based intent synchronization approach. The former ensures that applying Scanner++
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Fig. 2. The illustrative example of Scanner++’s working process. When base scanners work separately, each

tool can only discover a part of the website content and generate attack vectors based on their own strategies.

The two vulnerabilities cannot be detected. Through attack intent synchronization, each scanner can obtain

consolidated attack surfaces discovered by all tools and fusing multiple strategies to generate attack vectors.

In the end, the two vulnerabilities can be detected.

does not require any modifications to base scanners, allowing rapid integration of new ones. The
latter ensures that Scanner++’s intent-synchronization approach can be applied to all base scan-
ners, as Web applications’ interaction is based on the request-response packet exchange process.
In this example, Scanner++ will work as a proxy between Scanner A, B, C, and the target site. All
the attack requests sent by base scanners can be intercepted, and all the responses can be modified
by Scanner++.

Originated from this methodology, request and response packets are the appropriate entry
points to enhance scanners. We need to make full use of such constrained information to achieve
efficient attack intent synchronization. That is the second challenge we need to tackle. There-
fore, a purification mechanism and a run-time intent synchronization approach are designed. The
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former process aggregates and refines the attack intents extracted from request packets sent by
base scanners to construct a synchronized attack intent library. It contains consolidated attack
surfaces explored by three scanners during their content discovery process and valuable attack
vectors generated based on various strategies. In this way, all the five website pages discovered
and the attack vector generated by Scanner C on page manage.php will be collected. Based on this
library, the latter process achieves run-time synchronization by converting and supplementing
needed attack intents into corresponding response packets transmitted to base scanners.

In such a manner, Scanner B is able to share Scanner A’s content discovery results, B can
reach the page search.php. Then B can generate an attack vector against it and successfully de-
tect the vulnerability. Meanwhile, Scanner A can obtain the attack vector produced by Scan-

ner C against manage.php, it can further mutate it to produce a more complex attack vector,
“path=../../../etc/passwd%001.jpg”. Such an attack vector has an image extension (i.e., “.jpg”) that
can pass the checks of the sanitization module. However, the file download module reads the file
contained in the truncated path (i.e., the path before the NULL character), which is the content of
“/etc/passwd”. In this way, this attack vector can harvest the sensitive file while keeping the exten-
sion remains “jpg” at the same time. Such a fusing strategy can help them bypass the sanitization
mechanism, and detect the vulnerability hidden in manage.php.

With Scanner++, three scanners can synchronize their attack intents, and these two vulnerabil-
ities can be detected. By synchronizing the content discovery results, each scanner will be able
to obtain the website pages discovered by the others. This can make every scanner form a set of
more comprehensive attack surfaces, as shown in the third row of Figure 2. Moreover, by shar-
ing generated attack vectors accordingly, each scanner can reuse, further mutate, and generate
more complex and diverse ones. Overall, scanners’ test coverage and attacking capability will be
significantly enhanced, as shown in the lower part of Figure 2.

4 ENHANCED SCANNING ARCHITECTURE

In this section, we will introduce the methodology of Scanner++ to achieve enhanced web vulner-
ability detection. The framework of purifying and synchronizing attack intents of base scanners
is presented in Figure 3.

First, an Attack Intent Purification process is conducted. Scanner++ can intercept the original
requests from base scanners and extract attack intents. Then it utilizes the intent refinement algo-
rithm to deduplicate and refine the collected intents to construct the Synchronized Intent Library.
Consisting of a comprehensive Attack Surface Set and Attack Vector Pool, this library serves as a
synchronized summary of the attack intents constructed by each scanner.

To share information effectively between scanners, Scanner++ implements a Run-time Intent

Synchronization mechanism. In the first step, it selects the relevant attack intents from the syn-
chronized library based on the current scanning position of the target. Then, Scanner++ converts
and injects the obtained attack intents into the response packets. Finally, Scanner++ transfers the
modified response packets to the base scanners. The supplemented attack surfaces can help the
scanner’s content discovery process identify a more comprehensive website structure. At the same
time, each scanner can use and further mutate the obtained attack vectors to improve the scanner’s
attack capability.

4.1 Attack Intent Purification

The first step in enhanced web vulnerability detection is to extract and refine the attack intents
from each scanner’s request packets to constitute an attack intent library.

Most scanners work in a closed-loop and do not natively provide an interface to obtain inter-
mediate results (e.g., attack intents). Also, to ensure scalability, we must design a non-intrusive
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Fig. 3. Overview of Scanner++. The attack intent purification process first extracts and refines attack surfaces

and vectors from the request packets sent by base scanners to construct a synchronized attack intent library.

The run-time intent synchronization process will then synchronize and supplement related attack intents to

the base scanners through response packets.

Fig. 4. Request packets sent by base scanners are collected and extracted to obtain attack surfaces and

attack vectors, which will be aggregated and refined to construct the synchronized intent library.

method to collect attack intents generated by each scanner. Therefore, we implement the approach
of parsing request packets to extract and aggregate attack intents. We intercept all the request pack-
ets sent by base scanners, then analyze and extract the host part, path part, and content part out
of each request, as shown in Figure 4. A request packet’s attack surface is determined by its host
and its path, and the attack vector can be described by its path and content. In this way, we can
iterate each request packet, and aggregate the attack intents constructed by different scanners.
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ALGORITHM 1: Attack Vector Refinement Algorithm

Input: AttIntents[] covers attack intent list extracted from request packets from multiple scanners.
Output: AttIntentLib[] includes valuable attack intents that will be used in enhanced scanning.

1 AttSur f aces[], AttVectors[]←− ExtractFromIntent(AttIntents[]);

2 AttSur f aceSet ←− ∅;

3 AttVecPool ←− ∅;

4 for Sur in AttSur f aces[] do

5 toSave ←− TRUE;

6 for SetAttSur in AttSur f aceSet do

7 if CompareSurface(Sur , SetAttSur ) == TRUE then

8 toSave ←− FALSE;

9 break;

10 end

11 if toSave == TRUE then

12 EnrichAttackSurfaceSet(AttSur f aceSet , Sur );

13 end

14 for Vec in AttVectors[] do

15 (InPoint , InContent )←− ExtractAttackVector(Vec);

16 AttType ←− AnalyseAttackType(InContent );

17 if NewInputPointCovered(AttVecPool , InPoint ) then

18 EnrichAttackVecPool(AttVecPool ,Vec);

19 else if NewAttTypeDiscovered(AttVecPool , InPoint , AttType) then

20 EnrichAttackVecPool(AttVecPool ,Vec);

21 else

22 continue;

23 end

24 end

25 AttIntentLib[] = (AttSur f aceSet , AttVecPool );

Exploitations of Web application vulnerabilities have relatively fixed formats, so scanners gen-
erally use predefined templates to generate attack vectors. When multiple tools scan the same
target, some of the collected attack vectors are not character-wise duplicated, but the semantics
are equivalent. Direct synchronization of such attack vectors can lead to poor performance, making
vulnerability detection even less effective than the merged results of scanners working in isolation.
It is necessary to design a refinement algorithm to reduce such repetitive information and only re-
tain the valuable attack intents. We designed this algorithm based on analyzing input points and
attack types, as shown in Algorithm 1. It takes attack intents extracted from multiple scanners as
input and output the refined attack intents.

First, it extracts attack surfaces and attack vectors from the input variable, as presented in line
1. Then, it initializes AttSur f aceSet and AttVecPool as empty sets to store all the unique attack
surfaces and attack vectors. To refine the extracted attack surfaces, the algorithm can check the col-
lected information and remove the duplicate data directly based on cross-comparison, as presented
in lines 4–13. For refining attack vectors, we need to further estimate their content to guarantee
only retaining the valuable ones. As presented in line 15, we first extract the input point and its
content from the attack vector. In request packets, input points are determined by the paths and
the parameter names, while input contents are the parameter values. Then, we estimate the attack
type of the input content. In web applications, exploitations of the same type of vulnerability of-
ten have common characteristics. Based on these, we can determine which kind of vulnerability is
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targeted by the current attack vector. We summarize the characteristics of 11 common attack types,
seven of which are on the OWASP Web Application Security Risk List [26]. The AnalyseAttackType

function utilizes these exploitation characteristics to parse the content of the requests and evalu-
ate the potential attack type. If the extracted input point has never occurred before, we mark this
attack vector as valid since it has discovered a new attack entry. If the input point has been added,
we check whether the attack type has already been recorded. If the attack vector is a new type
targeted at the input point, NewAttTypeDiscovered function will return true, and this attack vector
will remain. In this way, we can construct the AttVecPool, which contains all the attack entries and
exploitations of different types while reducing the duplicate and invalid attack vectors. Using only
these valid attack vectors in enhanced scanning can speed up the detection process.

Finally, Scanner++ constructs the attack intent library with a comprehensive attack surface set
and attack vector pool. It assembles valuable attack intents constructed by each base scanner, and
will be used for the subsequent scanning.

4.2 Run-time Intent Synchronization

All the valuable attack intents constructed by different strategies are purified and stored in the
attack intent library. We can use it to synchronize the attack intents to base scanners. Consider-
ing the closed-loop workflow of scanners, the response packet is the appropriate entry point to
supplement the information. Meanwhile, parsing response packets is the critical step for scanners
to analyze the target site and decide on the subsequent actions. Appending responses with syn-
chronized attack intents allows the scanner to synthesize the strategies of other tools, improving
the potency of generated attacks. To match the scanner’s detection progress, Scanner++ tracks the
current attack location by analyzing its outgoing request packets and obtains only the relevant at-
tack intents from the synchronized library. Then, Scanner++ converts them into elements that can
be recognized by the scanner and injects into the corresponding response packet. Such a run-time
synchronization mechanism contains two steps, intent selection and intent injection.

Intent Selection. Each scanner tends to set limits on the maximum processing time and the
length of response packets. Synchronizing all attack intents into one single page at once would in-
terfere with the normal operation of the scanner. We need to further consider each tool’s scanning
progress to provide the corresponding scanner with the precise parts of intents it needs. Therefore,
according to the scanner’s current detection spot, the framework will select only the relevant at-
tack intents from the library at the proper time. To estimate the detection spot of the scanner, we
can analyze the sent request packets. Intent selection is based on the “Host” part and the “Path”
part in the request packet. According to RFC2616 Section 5 [32], these parts are necessary fields
in a request packet. Any valid request packet must contain such information. The host section
determines the current target that the tool wishes to scan. The path section determines the spe-
cific part of the target it is trying to attack. Therefore, we can obtain the related attack surface
information from the synchronized intent library based on the host of the outgoing request packet
since it demonstrates the target of scanning. We can also obtain the related attack vectors from
the library based on the request’s path since it illustrates the specific part of attacking. Through
such selection, the relevant intents in the library can be retrieved in real time with the scanning
progress of the tool, thus improving the efficiency.

Intent Injection. It is difficult for us to interfere with scanners directly in scanning, as the
whole process is worked as a closed-loop. To ensure versatility, we need to convert attack intents
into a format that all base scanners can process. Therefore, we designed the intent injection process
to convert different attack intents to the corresponding HTML elements and supplement them into
the response packet.
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Fig. 5. Related attack surfaces and attack vectors are selected based on the detection spot of the scanner.

After converting the intents, it will be injected into the response packets.

First, we need to guide the scanners to use the attack surfaces of the obtained intents during
their content discovery, as shown in the upper part of Figure 5. A site’s metadata is often stored in
files such as robots.txt, sitemap.xml, etc. Their contents are formatted in a specific way to give infor-
mation about the website’s structure. Scanners often begin their content discovery by requesting
site metadata as seed information to assist the whole process. Therefore, we can inject the attack
surfaces into these metadata files to guide scanners’ content discovery procedure. Whenever a
scanner is requesting metadata information, we convert the related attack surfaces into the format
specified by the metadata file. Then we supplement them in the corresponding response packet. In
this way, the obtained attack surfaces will be a part of the sources that scanner will use to identify
website structure. Therefore, a scanner can acquire the attack surfaces in the synchronized library
discovered by others, thus improving the test coverage.

Secondly, we also need to guide the scanner to leverage the attack vectors of the obtained intents,
as shown in the lower part of Figure 5. We first categorize the related attack vectors into two parts
according to the request method, GET-type and POST-type. (1) GET-type requests put parameters’
names and values in the link. In HTML specification, a “href ” element can place a link on the page.
Therefore, for each attack vector using the GET request method, we read the input point and
the input content to construct a “href ” element. For example, consider an attack request packet
shown in the upper-left corner of Figure 6. This is a typical SQL injection attack that uses the
GET method. The attack vector contained in this packet can be converted to the element shown
in the upper-right corner of Figure 6. (2) POST-type requests can be sent through a form whose
parameters will be the fields of that form. A “form” element can store such information on a web
page based on HTML standard. For attack vectors that use the POST request method, we construct
a “form” element. For example, consider an attack request packet shown in the lower-left corner
of Figure 6. The attack vector contained in this packet can be extracted and converted to the page
element shown in the lower-right corner Figure 6. Then we inject these constructed elements into
the response packet and forward it to the scanner.

These converted elements are in accordance with the standard HTML syntactic standard [7].
They are generic and can be correctly parsed by all base scanners. Meanwhile, these elements are
converted from attack vectors after refinement. It ensures that few valueless attack vectors will be
converted and inserted into pages, preventing scanners from sending duplicate and invalid attacks.
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Fig. 6. Two examples about the attack vector injection that uses GET method and POST method.

Therefore, base scanners can share and send attack vectors generated by others through triggering
these injected elements, furthermore they can mutate them to construct more complex ones.

Since the scanner’s working is motivated by parsing the elements of the response packet, com-
plementing the identifiable elements transformed from the diverse attack intents will optimize the
following scanning process. In this way, Scanner++ can synchronize the required attack intents
from the library and complement to the scanners at the right time. Each scanner can share other
tools’ attack intents based on their current needs. Such a run-time synchronization mechanism
can expand the attack surfaces and increase the diversity of the generated attack vectors, there-
fore detecting more vulnerabilities.

4.3 Scanner++ Implementation

The proxy part of Scanner++ is implemented based on the mitmproxy library, which provides sev-
eral interfaces for processing HTTP messages. Based on this library, we implemented the packet
interception and extraction process to obtain attack intents from request packets. Response packet
modification in the intent injection process can also be conducted utilizing this library. The syn-
chronized intent library can be implemented based on various DBMS. The prototype presented
in the repository is implemented based on MySQL. This database should have at least four tables
that store the GET and POST attack intents before and after refinement. Extracted attack surfaces
can be stored either in the database or as a separate file. Scanner++ is directly applicable to most
current scanners and has good scalability to integrate more tools, since almost all scanners can be
configured with a proxy server in the setup options.

In this paper, we instantiate Scanner++ framework with four base scanners, including two com-
mercial scanners—BurpSuite [30] and Acunetix Web Vulnerability Scanner (AWVS) [2], and two
open-source scanners—Arachni [34] and ZAP [18]. They are selected as base scanners for their rel-
atively good vulnerability scanning effect studied in previous performance comparison research
like [4, 5, 15], and their wide range of uses. AWVS and BurpSuite are popular commercial scanners,
which are among the top ten products in Gartner’s Survey [17]. Arachni is a top-performing popu-
lar open-source scanner [23]. ZAP is developed by OWASP [27], a famous non-profit organization
focusing on web application security. Scanner++ is not limited to these four scanners since other
scanners can also be easily integrated by configuring the proxy server option.

Furthermore, we implemented three auxiliary components to make enhanced scanning easier
to use.

Infinite Content Substitution. Some website contents like calendars or photo galleries, are
generated dynamically and infinitely by the same component, but the response packets to such
contents are different each time scanners request it. They are likely to be identified as different
pages by scanners, tested repeatedly, and analyzed as an infinite sequence of pages. Removing
pages containing such content out of the scanning scope can be tedious. Furthermore, removing
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the whole page might make scanners miss some security issues hidden in the other parts of that
web page. With Scanner++, users can specify such infinite and useless contents with a regular ex-
pression prior to scanning. Then, these contents will be automatically removed from all response
packets during subsequent process. In this way, with a single configuration, we can avoid mean-
ingless attacks and analysis against these infinite contents while keeping other parts of that web
page available.

Session Sharing Mechanism. Many sites often require a user login status to use the full func-
tionality. If the scanner performs vulnerability detection without logging in, it will necessarily
fail to reach several parts of the target and miss a considerable number of security issues. With
the session sharing mechanism, users can set the cookie when visiting the target website in the
framework. During the subsequent scanning process, the framework automatically adds the cookie
information to the request packets sent by all scanners. In this way, multiple scanners can perform
vulnerability detection in the already logged-in context through a single configuration.

Polluting Requests Blocking. During the work of the scanner, various request packets are
sent out. Some requests can invoke functions like password change or user deletion, which can
seriously affect the website’s running. To avoid such requests from polluting the target website
and causing interruptions in the scanning process, the user can characterize these polluting re-
quest packets in the framework. When the scanner sends such requests, the framework will auto-
matically block them. Also, users can use this technique in combination with the session sharing
mechanism mentioned above. For example, to avoid the scanner from triggering the logout func-
tion that would invalidate a configured session, the user can automatically set the framework to
block the logout request packets.

5 EVALUATION

To present the effectiveness of enhanced scanning, we conduct thorough evaluations on ten bench-
mark web applications that have been used as test-beds by previous research like [3, 13, 35]. We
also applied Scanner++ to detect vulnerabilities in three real-world web applications of CCDC
(Central Depository & Clearing Co., Ltd), an important securities depository company, to verify
its performance in industrial practice. We answer the following five questions:

• RQ1: Does Scanner++ help base scanners perform better than working separately?
• RQ2: Can the refinement algorithm improve the efficiency of enhanced scanning?
• RQ3: How is the effectiveness of the synchronized intent library of Scanner++ when en-

hancing a new scanner?
• RQ4: How does Scanner++ perform on real-world vulnerability scanning scenarios?
• RQ5: How is the scalability of Scanner++?

RQ1 focuses on verifying the performance improvement of Scanner++ for the base scanners. We
use the coverage rate, number of attack requests, and numbers of detected vulnerabilities as metrics
to compare the performance of scanners working with and without Scanner++. RQ2 is used to
evaluate the effectiveness and performance of the intent refinement algorithm. Experiments are
conducted to compare attack intents and the performance of scanners with and without intent
refinement algorithm. RQ3 is mainly used to assess the effectiveness of the synchronized intent
library of Scanner++. In addition to the four base scanners, we adapt a new scanner, Wapiti, with
Scanner++ by leveraging the existing attack intent library. RQ4 is used to evaluate the performance
of Scanner++ in real-world web applications. We also give a case study to illustrate the process of
the framework in assisting vulnerability detection. RQ5 is primarily used to evaluate the scalability
of Scanner++. By gradually increasing the scanners involved in the synchronization, we evaluate
the performance of Scanner++ under various base tool scenarios.
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Table 3. Benchmark Web Applications Used for Evaluation

Abbr. Project Name Description Version Lines#

SEA SeaCMS A software download website. 1.0 99155
SCH SchoolMate An alumni contact book. 1.5.4 7445
MYB myBloggie A blog website. 2.1.4 7428
OSC osCommerce An online shopping website. 2.3.3 57898
GEC geccbblite An online message board. 0.1 478
ELE Elemata A personal website. 3.0 87410

WAC Wackopicko A scanner performance test-bed. - 3389
WCH WebChess An online chess game. 0.9 5011
SCR SCARF Stanford research forum. - 1615
FAQ FAQforge An FAQ publish website. 1.3.2 1667

Column Abbr. means the name abbreviations of projects. Column Line# means the lines of source

code in this project.

5.1 Data and Environment Setup

Scanner++ and the base scanners (two commercial scanners—BurpSuite [30] and AWVS [2], and
two open-source scanners—Arachni [34] and ZAP [18]), were deployed on Ubuntu 20.04 with 16-
cores of 2.90GHz each and 16GB RAM.

Firstly, we evaluate Scanner++ on ten benchmark web applications, as shown in Table 3. These
applications have been widely used in previous research to compare scanner performance, e.g.,
[3, 13, 35]. The lines of code range from 478 to 99,155, representing web applications of vari-
ous sizes. The selected dataset also covers various application categories, such as discussion fo-
rums, personal blogs, online shopping sites, online games, etc. We deployed each application on
the server, created appropriate user accounts, browsed the application, and submitted necessary
forms to ensure that the website is fully functional. Then, we backup the entire website and its
database to preserve the original state of the application. After each scanner performing vulnera-
bility detection, the website needs to be restored to ensure a fair comparison. We have uploaded
all benchmark applications, related information and a complete end-to-end demonstration to the
repository.2

Secondly, we use Scanner++ to detect vulnerabilities in real-world web applications to further
evaluate its performance in industrial practice. Since a black-box scanner works like a hacker’s
attacking process, it may affect the target site’s normal operation. Therefore, we cannot arbitrar-
ily choose online websites as test targets. After communication and discussion, we decided to
cooperate with CCDC, applying this framework to scan their web applications. China Central

Depository & Clearing Co., Ltd.(CCDC) is one of the largest securities depository companies
in the world. At the end of 2020, it had a total of 110 trillion RMB of various assets under its regis-
tration and management. There are three target applications for our evaluation, Bond Information
Network, Bank Information Registration System, and Bond Information Disclosure System. The
main features of test targets are described in Table 4. All of them are well-tested core web applica-
tions responsible for trade dealing and financial service. We made a complete mirror deployment
of them on the intranet of CCDC. We then installed the framework with base scanners on the
intranet for vulnerability detection to avoid affecting real running websites. In this way, we are
able to evaluate the effectiveness of the framework in real-world industrial applications.

2Applications and configuration demonstrations are uploaded at https://github.com/ScannerPlusPlus/ScannerPlusPlus/

tree/main/BenchmarkWebsites.
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Table 4. Real-world Web Applications for Evaluation

Abbr. Web Application Description

BIN
Bond

Information Network

Includes bond price
updating, dynamic

display pages.

BIRS
Bank Information

Registration System

Includes bank account
management, bank information

submission functions.

BIDS
Bond Information
Disclosure System

Contains a series of
trade account management,

transaction submission functions.

Column Abbr. means the abbreviation names of the targets.

Table 5. Scan Coverage Reached by Different Base Scanners

Project
BurpSuite AWVS Arachni ZAP Combined

– + – + – + – + - +
SEA 75.86% 80.71% 49.15% 77.59% 32.76% 75.86% 24.14% 79.31% 77.19% 80.71%
SCH 28.13% 59.38% 28.24% 46.88% 31.25% 40.63% 14.06% 46.88% 40.63% 59.38%
MYB 77.78% 80.95% 49.21% 79.37% 50.79% 66.67% 77.78% 80.95% 77.78% 80.95%
OSC 82.03% 84.00% 56.18% 84.00% 45.64% 80.14% 46.91% 85.82% 84.00% 85.82%
GEC 84.62% 92.31% 76.92% 92.31% 69.23% 92.31% 69.23% 92.31% 84.62% 92.31%
ELE 61.67% 65.00% 28.33% 61.67% 10.00% 50.00% 23.33% 60.00% 61.67% 65.00%

WAC 66.04% 75.51% 58.49% 69.39% 59.18% 71.43% 49.06% 73.50% 74.00% 77.55%
WCH 55.56% 68.19% 51.85% 72.72% 59.26% 73.37% 59.26% 73.37% 66.67% 73.37%
SCR 75.00% 94.74% 89.47% 94.74% 52.63% 94.74% 52.63% 94.74% 94.74% 94.74%
FAQ 78.95% 89.47% 68.42% 84.21% 47.37% 84.21% 47.37% 94.74% 84.21% 94.74%

Average Improvement +15.26% +37.14% +59.21% +68.54% +7.92%

The columns with “-” present the coverage of the corresponding base scanner working separately without the

Scanner++ framework. The columns marked with “+” present the coverage reached by the corresponding scanner

working under the Scanner++ framework. The column “Combined” indicates the combination coverage reached by the

four scanners.

5.2 Evaluation on Benchmark Applications

According to the design of Scanner++, base scanners are enhanced mainly in two aspects, expand-
ing the attack surface and increasing the diversity of attack vectors. In this section, we illustrate
the effectiveness in these two aspects and finally compare base scanners’ performance working
with and without the framework.

The evaluation process is as follows. We first use each of the four base scanners working sep-
arately to detect vulnerabilities against the target website. Subsequently, we then have scanners
work under Scanner++ to test against target sites. We choose page coverage, unique attack request
packets, and vulnerability detection results as metrics. Reported vulnerabilities are verified based
on code auditing and exploitation attempt. For each vulnerability detected by the scanner, we con-
duct a code audit on the reported web page and try to construct a payload based on the reported
vulnerability type. A security issue is confirmed if an attack path does exist based on the auditing
process and if the vulnerability can be exploited through the attack attempt. The data is presented
in Tables 5 and 6.

To evaluate the effect of Scanner++ on expanding each base scanner’s attack surfaces, we mea-
sured the coverage rate on target websites, as shown in Table 5. The coverage of all tested tar-
gets was significantly improved by the enhanced scanning. Compared to the results of each tool
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Table 6. The Number of Attack Request Packets Sent by Each Base Scanner

Project
BurpSuite AWVS Arachni ZAP Combined

– + – + – + – + - +
SEA 4,634 19,040 736 5,124 2,837 102,711 159 25,279 8,366 152,154
SCH 1,376 27,315 414 2,537 1,944 162,584 198 12,749 3,932 205,185
MYB 4,510 96,839 2,906 31,351 46,752 121,169 289 51,879 54,457 301,238
OSC 12,021 133,397 13,144 20,891 26,368 167,838 6,058 480,388 57,591 802,514
GEC 3,007 36,733 832 7,156 2,286 344,652 625 49,794 6,750 438,335
ELE 5,268 179,873 960 1,138 1,069 381,109 143 101,228 7,440 663,348

WAC 7,837 91,667 4,836 8,488 32,504 484,539 1,468 2,630 46,645 587,324
WCH 13,719 74,002 3,371 6,619 38,317 251,020 4,936 50,714 60,343 382,355
SCR 4,226 143,039 29,082 35,903 32,253 379,445 4,253 70,146 69,814 628,533
FAQ 5,719 67,494 683 1,884 5,880 654,084 656 163,105 12,938 886,567

Average Improvement +12.95× +1.13× +15.03× +52.66× +14.38×
The columns with “-” present the amount of the corresponding base scanner working separately without the

Scanner++ framework. The columns with “+ present the packet amount sent by the corresponding scanner working

under the Scanner++ framework. The column named “Combine” shows the total combined amount of request packets

of four scanners, working together with or without Scanner++, denoted with “+” and “-”, respectively.

working individually, the average coverage of BurpSuite, AWVS, Arachni, and ZAP using Scan-
ner++ increased by 15.26%, 37.14%, 59.21%, and 68.54%, respectively. During the enhanced scan-
ning process, Scanner++ provides the corresponding attack surfaces from the synchronized intent
library to base scanners according to their detection spot so as to guide their content discovery
process. In this way, each scanner can further perform content discovery based on a set of expan-
sive attack surfaces synchronized from other scanners, culminating in a more complete structure
of the target site.

The variety of generated attack vectors determines a scanner’s ability to bypass the sanitization
mechanism and exploit security issues. The attack vectors will finally be constructed into request
packets and sent out. Therefore, the diversity of request packets can reflect the attack capability of
the scanners. We compared the number of unique request packets sent by each scanner with and
without the Scanner++ framework, as shown in Table 6. In the framework, base scanners can syn-
chronize valuable attack vectors generated by others and further mutate on them to increase the
diversity of the final request packets. With Scanner++, the number of unique attack request pack-
ets sent by BurpSuite, AWVS, Arachni, and ZAP increased by 12.95×, 1.13×, 15.03× and 52.66×,
respectively. Different scanners achieving different increases of attack vectors is mainly due to
their various scanning preferences. For example, AWVS is a commercial tool that is often used to
scan sites in production directly, so the strategy is more conservative and tends to send fewer re-
quest packets. In contrast, ZAP’s scanning appears to be more aggressive and will attempt to attack
in greater numbers. It is precisely these strategic differences that allow us to make synchronized
scanning more effective. Regardless of the scanning preferences, Scanner++ can integrate different
strategies of the base scanners and significantly increase the diversity of generated attack vectors,
improving their attacking capabilities.

We further verified the vulnerabilities reported by each base scanner with and without Scan-
ner++. For each scanner, the numbers of detected vulnerabilities are shown in Table 7. We can
find that Scanner++ can help BurpSuite, AWVS, Arachni, and ZAP identify 77, 55, 77, and 176 ad-
ditional security issues, respectively. After deduplication and comparison of the detection results
of all scanners, the outcome shows that 205 additional unique vulnerabilities can be found using
enhanced scanning than simply having multiple scanners working individually and then merging
their results. At the same time, as shown in Table 7, the false alarm rates of BurpSuite, AWVS,
Arachni, and ZAP has changed by +3.77%, –0.52%, –2.44%, and +9.43% after using Scanner++,
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Table 7. The Number of Vulnerabilities Detected by Different Base Scanners

Project
BurpSuite AWVS Arachni ZAP Combined

– + – + – + – + – +

SEA 37/0 44/0 10/0 15/0 5/0 42/3 1/0 20/0 45/0 73/3
SCH 4/0 18/1 2/0 20/0 2/1 11/1 2/1 11/4 6/2 32/6
MYB 4/0 15/1 11/1 17/1 2/0 6/0 1/0 25/4 15/1 40/6
OSC 4/0 8/0 0/0 3/1 0/2 2/0 0/0 40/22 4/2 47/23
GEC 4/0 9/0 1/0 10/0 4/0 10/0 1/0 6/1 6/0 16/1
ELE 1/0 5/0 8/0 8/0 1/0 8/1 1/0 29/7 8/0 32/8

WAC 3/0 8/0 5/0 5/0 4/0 5/2 2/1 2/2 6/1 10/4
WCH 4/0 10/0 10/0 13/0 11/0 12/0 6/1 8/1 13/1 16/1
SCR 1/0 17/0 17/1 20/1 6/1 8/1 6/0 35/10 20/2 50/12
FAQ 14/0 19/4 2/0 10/0 2/0 10/1 2/0 22/3 17/0 29/5

Total Amount 76/0 153/6 66/2 121/3 37/4 114/9 22/3 198/54 140/9 345/69
Delta of FP Rate +3.77% –0.52% –2.44% +9.43% +10.63%

Average Improvement +77 +55 +77 +176 +205

Numbers in front of the “/” indicate true positive amounts and numbers behind indicate false positive amounts. The

columns with “-” present the data when the scanner works separately without Scanner++. The columns marked with

“+” present the data when the scanner works with the Scanner++ framework. The column “Combined” indicates the

deduplicated number of unique vulnerabilities reported by the four scanners.

respectively. Such small variation in the false alarm rate is mainly due to the changes in the overall
number of vulnerabilities detected and the scope of pages covered. The seriousness of false posi-
tives depends on the vulnerability oracle in base scanners’ analysis module, which the attack intent
synchronization does not interact with. Therefore, from the standpoint of Scanner++’s working
principle, it will not be a cause of false alarms for base scanners.

The statistics demonstrate that Scanner++ can expand the attack surfaces, increase the base
scanners’ ability to generate attack vectors through synchronized intents, and thus improve the
base scanners’ vulnerability detection performance. It is worth noticing that simply integrating
the results of each scanner directly can only achieve limited performance. As shown in the “Com-
bined” columns of Tables 5, 6, and 7, Scanner++ still shows significant improvements compared
to direct result combination across scanners. This fully demonstrates that higher coverage, more
attack vectors, and better vulnerability detection can be achieved if scanners’ attack intents can
be efficiently synchronized.

Answer to RQ1: Compared to scanners working separately, working under Scanner++
can help scanners reach a higher coverage rate, generate more diverse attack vectors,
and detect more web application vulnerabilities.

5.3 Efficiency of Attack Intent Refinement

The attack intent library is one of the most critical components of Scanner++ and is used to accom-
plish synchronization of attack intents among base scanners. The refinement algorithm is the key
to ensure that the synchronized information in the library is valid and effective. In this section, we
illustrate its effectiveness through experiments.

Since the attack surface refinement is simply just a cross-comparison process, we mainly focus
on evaluating the refinement of attack vectors. We counted the number of attack vectors before
and after applying the refinement algorithm, as shown in Table 8. In each site tested, an average
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Table 8. The Number of Attack Vectors Before and After Using the

Refinement Algorithm

Project
Without Refinement With Refinement

Improve
GET POST GET POST

SEA 833 47 62 5 92.39%
SCH 13 732 2 56 92.21%
MYB 382 514 22 150 80.80%
OSC 44,102 6,168 2,812 599 93.21%
GEC 1,108 285 121 8 90.74%
ELE 5,339 23 1,447 21 72.62%

WAC 12,432 567 360 42 96.91%
WCH 1,655 470 137 68 90.35%
SCR 4,017 1,885 227 224 92.36%
FAQ 4,032 371 177 29 95.32%

Average 8497 657 92.26%

The column “GET” indicates the number of GET-type attack vectors, and the column

“POST” indicates the number of POST-type attack vectors.

of 8,497 attack vectors are extracted from the request packets of the base scanner. Among these
attack vectors, some are valid, and some are repetitive or ineffective. After applying the refinement
algorithm, the number of attack vectors drops to 657, reduced by 92.26% on average. It can be seen
that the algorithm can significantly reduce the number of shared attack vectors.

With the significantly reduced attack vectors by refinement, Scanner++ can help detect more
vulnerabilities in less time. To evaluate the specific efficiency improvements achieved by the re-
finement algorithm, we further conducted another comparison of Scanner++ with and without
the refinement algorithm. Since some scanners cannot stop running automatically on a few web-
sites when the refinement algorithm is not used, we set each scanner’s maximum working time at
24 hours. We compared the number of vulnerabilities detected and the time consumption, as shown
in Table 9. With the refinement algorithm, the average time consumption decreases from 32,489
to 14,379, a 55.74% reduction. However, the numbers of detected vulnerabilities increase from 63
to 345.

Compared with the statistics shown in Table 7, without the refinement algorithm, synchronized
scanning will not even be as effective as the direct combination of individual results. With the
algorithm, however, the time consumption is significantly reduced, but the vulnerability detection
performance becomes better. Based on our observation of the scanning process through the ex-
periment, there are three main reasons. First, since no refinement algorithm is used, many attack
vectors may be inserted into one page simultaneously, and the response packets become so large
that some tools (e.g., Arachni) cannot handle the excessively long responses. This might cause
the scanner to immediately stop analyzing the page and miss some security issues. Second, many
scanners set limits for the processing and attack time of one page. Without using the algorithm,
invalid or duplicate attack intents are injected into the page, misleading the scanner. If the tool
wastes time on ineffective attack vectors, the truly valid ones will be discarded and ignored once
the threshold is exceeded. Besides, detection of various web vulnerabilities, such as time-based
blind SQL injection and time-based command injection, is very time-consuming. Extra useless
attack intents can lead to an exponential increase in scan time and eventually lead to timeouts.
Third, too many invalid attack intents might cost significant memory resource to store and ana-
lyze. Some scanners (e.g., BurpSuite) might stop working once the allocated memory is exhausted.
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Table 9. Average Time Consumption and Vulnerabilities Detected by

Scanners With and Without the Refinement Algorithm

Project
Without Refinement With Refinement

Time(s)
Avg: 32,489

Vul
Total: 63

Time(s)
Avg: 14,379

Vul
Total: 345

SEA 8,574 20 3,661 73
SCH 12,051 5 7,572 32
MYB 32,703 9 9,249 40
OSC 45,280 2 17,323 47
GEC 22,955 2 5,516 16
ELE 43,484 9 30,646 32

WAC 36,868 3 15,529 10
WCH 12,217 7 9,796 16
SCR 85,020 1 23,971 50
FAQ 25,740 5 20,525 29

Column “Vul” represents the number of true positive vulnerabilities detected.

Column “Time” column indicates the average seconds the scan took.

Overall, with the attack intent refinement, each tool’s time consumption can be greatly reduced,
and 282 more vulnerabilities are discovered.

Answer to RQ2: The attack intent refinement algorithm is able to reduce the invalid
attack vectors, save scan time significantly, and increase the overall performance of
enhanced scanning.

5.4 Effectiveness of Synchronized Intent Library

Scanner++’s synchronized intent library is a key component for sharing content discovery and
attack vector generation process among multiple scanners. It is sufficiently universal and contains
valuable attack intents. When limited time is available, Scanner++ can leverage an existing library
to enhance new scanners’ vulnerability detection, even if the new tool has not engaged in the
construction process of it. With the already-built library, Scanner++ can directly work on the Run-

time Intent Synchronization stage. It can estimate the current detection spot of the new scanner
at run-time, then obtain the needed attack intents from the existing library constructed by other
scanners, convert them to page elements that the scanner can recognize, and finally, insert it into
the response packet to assist in its detection process. Such flexible use allows Scanner++ to adapt
new tools in a much shorter time, letting a new scanner’s detection process to be quickly enhanced
using the constructed attack intent library.

To further illustrate this, we conducted an experiment to enhance a new scanner, Wapiti [39],
with the attack intent library built from the four base scanners, BurpSuite, AWVS, Arachni, and
ZAP mentioned above. The experiment results are shown in Table 10. With Scanner++ and the con-
structed attack intent library, the coverage rate of Wapiti increased by 68.65%, with 28.98× more
attack vectors generated on average and 62 more vulnerabilities discovered. This fully demon-
strates the effectiveness of the synchronized intent library. Even if its attack intents are obtained
from a different set of tools, it can still be directly used to enhance a new scanner with the help
of Scanner++. Naturally, if the attack intents generated by Wapiti can be collected and refined
to the attack intent library, the four base scanners can be further enhanced by the capabilities of
Wapiti.
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Table 10. Coverage, the Number of Attack Requests, and the Detected Vulnerabilities

of the New Scanner Wapiti

Project
Coverage The Number of Requests The Number of Vulnerabilities

– + – + – +

SEA 24.14% 68.42% 47 26,341 0 13
SCH 14.06% 46.88% 214 14,135 2 12
MYB 77.78% 80.95% 1,141 9,812 1 5
OSC 46.91% 84.00% 4,937 364,975 0 3
GEC 53.84% 76.92% 498 52,315 3 5
ELE 10.00% 30.00% 221 3,504 0 4

WAC 49.06% 75.51% 5,434 14,276 1 3
WCH 55.56% 73.37% 4,739 13,204 4 8
SCR 52.63% 94.74% 5,299 37,844 3 9
FAQ 36.84% 78.95% 558 155,710 2 16

Average Improvement +68.65% +28.98× +62

The columns denoted with “+” show the performance of Wapiti with the Scanner++ framework using the already-built

intent library. The columns denoted with “-” show the performance of Wapiti without the Scanner++ framework.

Table 11. Vulnerabilities Detected by Scanners in CCDC With and

Without using the Framework Scanner++

Target Without Scanner++ With Scanner++

BIN
Sensitive Information

Disclosure(1)

Sensitive Information
Disclosure(1),
Boolean Type

SQL Injection(1)

BIRS XSS(1)
XSS(1),

Unrestricted File Upload(1),
Arbitrary File Download(2)

BIDS XSS(1)
XSS(1),

Path Traversal(1)

Total 3 8

The number in parentheses indicates the number of vulnerabilities detected in

the corresponding category. The row “Total” indicates the number of

vulnerabilities detected.

Answer to RQ3: The synchronized intent library of Scanner++ is effective and very
flexible to use. Even with an existing attack intent library, Scanner++ can still effectively
improve the performance of a new scanner.

5.5 Performance on Real-world Applications

To evaluate the framework’s performance in real industrial practice scenarios, we worked with
CCDC, deploying Scanner++ to detect the vulnerabilities in their well-tested web applications.
We created a full image copy of three target websites on its intranet and deployed the framework
with base scanners. We then detected vulnerabilities with and without the framework, respectively.
After that, we deduplicated and verified the detected security issues. Since we do not have access
to the source code of their website, we cannot tally specific coverage information. Instead, we use
the number of vulnerabilities detected as the metric, as shown in Table 11.
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Fig. 7. Detection process of the arbitrary file download vulnerability in the site BIRS.

Without the enhanced scanning framework, the base scanners can only detect three vulnera-
bilities in the target applications, and the types are relatively simple, only with XSS and sensitive
information disclosure. However, with Scanner++, all base scanners can synchronize their attack
intents. They can discover more attack surfaces and share valuable attack vectors. This allows the
scanners to cover deeper site paths and pages, and generate augmented attack intents to detect
a wider variety of covert vulnerabilities. As a result, it detects eight vulnerabilities in the applica-
tion with six types, including path traversal, XSS, unrestricted file upload, arbitrary file download,
sensitive information disclosure, and boolean type SQL injection.

For instance, let us see how Scanner++ helps improve tools’ ability to detect one of the arbitrary
file download vulnerabilities hidden in the BIRS site, as shown in Figure 7. First, the vulnerable
page is quite deep and circuitous in the site structure, making it difficult for a single scanner to
find a simple content discovery strategy. With Scanner++’s attack surface sharing, scanners can
expand their discovery results and successfully reach the page. Second, to detect the vulnerability,
the attack vector must have a NULL character placed at the end of the target file path to bypass the
extension check which is used as the sanitization mechanism of the server. Then, the attack vector
needs to be converted to base64-encoded format, since the back-end program in BIRS will first
decode the parameter content as Base64 text. Such relatively complex attack vector processing
prerequisites can make a scanner with one sole mutation strategy fail to detect the vulnerabil-
ity. However, with Scanner++’s attack vector sharing, the scanner can generate elaborate attack
vectors and successfully detect this vulnerability. Ultimately, base scanners with Scanner++’s run-
time intent synchronization approach have detected this high-risk security issue that allows an
attacker to access arbitrary files on the server.

All these eight vulnerabilities are previously unknown security issues. They have been labelled
as high risk by the developers of CCDC and have been fixed accordingly.
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Answer to RQ4: The enhanced vulnerability detection framework is also effective
when scanning real-world web applications, assisting base tools to detect more com-
plex security issues in industrial practice.

5.6 Scalability of Scanner++

As an enhancement framework that requires the integration of multiple base scanners, it is an
important issue whether Scanner++ is sufficiently scalable. To better illustrate this, we conducted
an additional experiment of Scanner++ with four different numbers of base scanners.

Compared with other benchmark applications, four scanners show relatively consistent perfor-
mance on the GEC and FAQ application. On such a consistent performance basis, if Scanner++ has
significant enhancements when synchronizing different numbers of base tools, it can demonstrate
that the framework is applicable with various base scanner scenarios and has great scalability.
Execution time, memory consumption, coverage, number of attack request packets and detected
vulnerabilities are used as metrics. The results are shown in Table 12.

As presented in the Table, Scanner++ can work well with different numbers of base scanners. As
more scanners are involved in synchronization, the coverage rate, the number of attack requests,
and the number of detected vulnerabilities gradually increase. In the site GEC, the coverage rate of
base scanners increased from 69.23% to 92.31%. There is also a significant increase in the number
of request packets when more scanners are involved in synchronization. The number of packets
generated by ZAP, for example, gradually increased from 691 to 49,794. At the same time, the
numbers of detected vulnerabilities by each scanner also improved gradually. For example, when
two scanners are involved in synchronization, AWVS is only able to detect six vulnerabilities on
the GEC site. Then, one more bug can be detected by AWVS when BurpSuite is included into the
framework. When all four scanners are used, AWVS is able to report 10 vulnerabilities. The same
trend can also be seen in the FAQ site. This fully demonstrates that in spite of the numbers of base
scanners, Scanner++ can still enhance their performance.

Answer to RQ5: Scanner++ has great scalability working with different numbers of
base scanners. With more tools involved in the synchronization, the overall perfor-
mance gradually increased at the same time.

6 DISCUSSION

Based on the evaluation of benchmark applications and real-world applications, we demonstrate
that Scanner++ helps base scanners perform better. However, some limitations still threaten the
usability and performance of enhanced scanning. The main limitations are discussed below.

The first potential threat is the selection of base scanners. Diversified base scanners can facilitate
the effectiveness of Scanner++. Not only is this reflected in the types of vulnerabilities supported,
but the variety of content discovery and attack vector generation strategies can also make the
synchronized scanning better. Subsection 5.1 describes our base scanner selection. We selected
these scanners based on previous performance comparative research. Also, there is diversity in
the types of vulnerabilities supported by the four base scanners. BurpSuite supports 153 different
types of vulnerabilities, Arachni supports 27 types of vulnerabilities, AWVS supports 42 types of
vulnerabilities, and ZAP supports 158 types of vulnerabilities. Specific type lists can be found in
[1, 20, 28, 31]. However, just because scanners work well on their own does not necessarily mean
that they are sufficiently diverse in their strategies. To the best of our knowledge, there has been no
previous comparative research of the strategy differences between scanners at each stage. Many
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Table 12. Scanner++ Working with Different Numbers of Base Scanners

Tools
GEC FAQ

Cov. Req# Vul# Time Mem. Cov. Req# Vul# Time Mem.

One
Scanner

ZAP 69.23% 691 1 31 113.81 47.37% 657 2 79 116.54

Two
Scanners

ZAP 69.23% 5815 2 353 127.06 68.42% 12984 9 1671 115.23
AWVS 76.92% 4038 6 581 109.8 68.42% 1673 7 735 104.78

Three
Scanners

ZAP 76.92% 21849 5 1332 160.75 78.95% 95520 18 12043 181.1
AWVS 84.62% 6104 7 1493 141.02 84.21% 1806 10 799 158.34

BurpSuite 84.62% 28436 7 1365 162.31 84.21% 39469 17 2649 168.11

Four
Scanners

ZAP 92.31% 49794 6 1851 159.91 94.74% 163105 22 18352 165.36
AWVS 92.31% 7156 10 1818 136.15 84.21% 1884 10 1034 125.69

BurpSuite 92.31% 36733 9 1777 169.8 89.47% 67494 19 4731 184.06
Arachni 92.31% 344652 10 16620 160.47 84.21% 654084 10 57983 169.12

Column with “Cov.” indicates the coverage achieved by the scanner. Column with “Req#” indicates the number of

attack requests sent by the scanner. Column with “Vul#” indicates the number of detected vulnerabilities. Column

with “Time” indicates the time consumption(seconds) of the tool scanning the target. The column marked with

“Mem.” indicates the memory consumption(MB) of Scanner++.

scanner developers are also reluctant to disclose the specific mechanisms they used. Therefore, for
the time being, we can only select the scanners based on their performance. A possible solution to
this threat is to try more scanners testing against the same site and use the framework to collect
and observe the attack surfaces and attack vectors explored and constructed by each one. We can
have a grasp on their content discovery strategies and attack vector generation mechanisms by
analyzing their intermediate process. We can then further evaluate their diversity based on the
result and decide which scanners have more strategy differences. These scanners are suitable to
participate in the framework Scanner++.

The second potential threat is that the enhanced scanning process may still not easy enough to
use. In Section 4.4, we described three facilities to improve the usability of scanning and reduce the
repetitive configuration process of scanners. These facilities can handle common scenarios that
require unique settings for individual scanners and improve preliminary preparation efficiency.
However, the usability can still be improved for better scalability on various applications and dif-
ferent scan tasks. For example, we can integrate some APIs that call scanner functions into the
framework. The user can then operate the framework, and the framework translates the corre-
sponding operation into the API of each scanner to call the corresponding function. This allows
the framework to provide a unified access portal to the user.

The third potential threat to validity is the overhead of enhanced scanning. Based on our experi-
ment, Scanner++ itself does not have much impact on the base scanners’ efficiency, as the number
of attack requests per unit time does not decrease significantly. The number of attack requests
sent per second only changes from 10.81 to 9.87, which is only a 8.70% decrease, demonstrating
Scanner++’s low overhead despite the added mechanisms. Meanwhile, it takes only 1.31 seconds
to refine 8,479 attack vectors on average, demonstrating the high efficiency of the refinement algo-
rithm. The process of intent injection is essentially converting attack intents into website metadata
or page elements and appending them to the end of the response packet. The conversion process
follows a predefined template and is therefore very fast. Based on our experiment, the conversion
time of 5,367 GET-type attack vectors and 1,202 POST-type attack vectors (all the attack vectors col-
lected from ten benchmark websites) is only 0.0061 seconds and 0.0512 seconds, respectively. Each
intent injection only needs a part of these vectors, so it will not slow down the working process.
These statistics demonstrate that intent injection will not affect the efficiency of base scanners. It
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is worth noting that using the total execution time of the tool to measure the additional overhead
of efficiency is not an appropriate metric. Unlike some other dynamic testing tools (e.g., fuzzers)
that run continuously, web application scanners automatically stop after iterating through all ex-
plored paths and predefined attack vector generation strategies. Lower coverage and fewer attack
vectors of scanners working alone will result in shorter runtime, while its effectiveness will be
limited. But with Scanner++, along with a wider range of attack surfaces and more vectors, we
can accomplish those increasing number of valid attacks or requests with more scanning time,
thus detecting more vulnerabilities. In the future, we can make better use of the distributed scan-
ning capabilities of some base scanners, deploying Scanner++ in a distributed manner to further
improve the efficiency of enhanced scanning through parallelization.

The fourth potential threat is the manual efforts needed for adapting Scanner++ to the new scan-
ners. As a non-intrusive proxy running between base scanners and target applications, Scanner++
can be easily applied to most black-box scanners. Adapting new scanners only requires configur-
ing their proxy server. The vast majority of scanners provide a direct interface for this. For the few
scanners that do not provide an interface, adaptation can be made using a simple external proxy
tool such as ProxyChains. Once configured the proxy settings, Scanner++ can monitor every ex-
changed packet, fetch and complement information of base scanners without any modification.

7 RELATED WORK

Vulnerability Detection on Web Applications. With increasing attacks on web applications,
many researchers have developed web vulnerability detection tools.

White-box vulnerability detection tools use techniques like static analysis and symbolic execu-
tion to analyze the source code of web applications. Among them, RIPS [33] is one of the most
widely used scanners in industrial practice. Dahse and Holz [11] used intra- and inter-procedural
analysis to model application in PHP language and uses taint analysis to detect vulnerabilities.
phpSAFE [25] constructed a program model with AST and supported analyzing web applications
developed with OOP. Livshits et al. [22] used specifications which were provided by users to find
security issues in Java web applications.

Black-box vulnerability detection tools can work without the source code of applications and
check security issues by simulating the attacking process. Commercial scanners like BurpSuite
[30], AWVS [2], and Nessus [38] are the most common testing tools used by companies. A few
open-source scanners, like Arachni [34], ZAP [18], and Wapiti [39] also perform quite well in vul-
nerability detection. In addition to these tools, many researchers are trying to optimize black-box
scanners to detect more kinds of vulnerabilities. In [12], authors proposed a state-aware scanner,
by inferring the application’s internal state to achieve higher coverage and assist the detection
process. In [14], authors used genetic algorithm to generate attack requests and detect cross site
scripting vulnerabilities in web applications. In [8], authors focused on detecting inconsistent in-
put validation between the front-end and back-end, using black-box detection methodology to
examine parameter tampering opportunities in web applications. In [37], authors used taint track-
ing to scan persistent client-side XSS in the wild. Some research also studied the hybrid black-box
and white-box approaches to detect vulnerabilities. For example, Navex [3] used static analysis to
construct a property graph and combines dynamic analysis to scan PHP web application vulnera-
bilities. Saner [6] used static analysis technique to model the sanitization process, and composed
it with dynamic analysis to execute sanitization code on malicious inputs to detect improper sani-
tization procedures.

Unlike previous works, we are not proposing a new concrete scanner. Instead, we systematically
study the framework of enhanced scanning with attack intent oriented synchronization. Black-box
scanners can be integrated into our framework and performs better than working separately.
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Enhance Vulnerability Detection with Multiple Tools. There are some research working
on fusing multiple tools for vulnerability detection. Some works tries to combine the results of
single tools directly to reduce the false negative. For example, SmartBugs [16] combines the results
of multiple vulnerability detection tools to perform security checks on smart contracts. Nunes
et al. [24] combine the union of results from several static analysis tools (i.e., white-box scanners)
to detect security issues in PHP-based web applications. Different from those work, Scanner++
supports interaction of different scanners during the whole scanning process and can enhance
multiple black-box scanners without access to the source code, thus supporting web applications
developed in any languages.

In fuzzing of libraries, EnFuzz [9] integrated diverse fuzzers with global seed pool to achieve
higher coverage and bug discovery. Based on EnFuzz, Cupid [19] designed a complementary se-
lecting strategy to automatically combine fuzzers and improve the final coverage. Different from
fuzzers, black-box web vulnerability scanners work in distinct ways and solve different problems.
Fuzzers randomly mutate and generate invalid data as test cases to detect bugs in programs and
libraries. In comparison, scanners need to interact with web applications based on the request-
response model and generate highly structural test cases based on vulnerability exploitation tem-
plates to detect security issues like SQL injection. Therefore, fuzzers like AFL cannot be used to
detect web application vulnerabilities.

Due to the differences of scanners and fuzzers above, the research challenges and target domain
of Scanner++ and cooperating fuzzers like EnFuzz are significantly different. Scanner++ is a non-
intrusive black-box intent synchronization framework targeted at web application vulnerabilities.
Since black-box scanners work in a closed-loop manner, we adopted a proxy-based working ar-
chitecture and a package-based intent synchronization approach to ensure scalability. Ensemble
fuzzers like Enfuzz and Cupid are intrusive grey-box fuzzing integration frameworks targeted at
bugs in programs or libraries. They enhance base fuzzers’ coverage through seed synchronization.

Therefore, Scanner++ is entirely incomparable with cooperating fuzzers because of the follow-
ing reasons. First, integration strategies adopted by cooperating fuzzers cannot apply to scanners.
Unlike fuzzers, most scanners work in a complete closed-loop manner. Any intrusive methods
designed in cooperating fuzzers will severely change base scanners’ original workflow. Second,
web application vulnerabilities cannot be detected by cooperating fuzzers like EnFuzz and Cupid.
They can only be detected through highly structural test cases generated based on exploitation
characteristics and mutated based on semantic equivalent substitution. Meanwhile, since most
vulnerabilities in web applications will not trigger crashes, they can only be identified by parsing
response packets. Therefore, fuzzers, based on random mutation strategy and crash-based oracle,
cannot identify web application vulnerabilities.

8 CONCLUSION

In this paper, we systematically investigate the idea of attack intent synchronization to enhance
the vulnerability detection of web applications. Scanner++ improves the capability of existing scan-
ners by synchronizing valuable attack intents and supplementing related ones among different
base scanners according to their detection spots at run-time. First, this framework assists the scan-
ners’ content discovery process by providing related attack surfaces identified by each other. In
this way, scanners can obtain a more comprehensive site structure and achieve higher coverage.
Second, it enhances scanners’ attack vector generation process by sharing related attack vectors
generated by each other. Scanners can be guided to mutate and generate more complex attack vec-
tors, thus increasing their attack capabilities. Based on our evaluation, Scanner++ helps popular
base scanners perform better in terms of coverage, unique request amount and detected vulnera-
bilities on benchmark applications. On real-world web applications used in CCDC, we have found
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eight serious previously unknown vulnerabilities. Moreover, Scanner++ can be easily utilized to
integrate more base scanners for industrial practice.

Our future work mainly focuses on three aspects: the first is to evaluate the diversity of dif-
ferent base scanners more systematically and try to choose more diverse ones for the enhanced
scanning framework; the second is to design more advanced attack intent purification mechanism
and run-time intent synchronization mechanism to further optimize the performance; the third
is to upgrade the usability of the framework and design more auxiliary facilities to reduce time
consumption of the pre-configuration process.

APPENDICES

A EXPLOITATION OF THE VULNERABILITY DETECTED IN CCDC

Vulnerabilites in the tested real-world applications can cause a great deal of damage. As an ex-
ample, we illustrate in more detail how the arbitrary file download vulnerability found by Scan-
ner++ in the application BIRS can be exploited. As shown in Figure 8, we further attempted to
exploit this vulnerability in three ways. (A) First, we harvested all the source code of the web
application with this vulnerability. For attackers, trying to compromise the application based on
analyzing the source code will make vulnerability discovery and exploitation much easier. (B) Sub-
sequently, we tried to obtain configuration files of the web application. Checking through the
harvested files, we found that the needed credential to connect to the database is exposed. With
this information, we successfully connected to the Oracle database attached to the application.
A malicious attacker may tamper with sensitive data stored in the database directly or with an
SSRF vulnerability. With accessing the database, we used system command execution functions
(e.g., DBMS_EXPORT_EXTENSION in Oracle DBMS) to get a reverse shell and gain control of the
server. (C) In addition, many web applications are hosted on servers that have multiple network
interfaces. The server used by BIRS has two network interfaces, one connected to the public net-
work to receive requests from users and the other connected to the intranet to obtain necessary
information from other internal hosts. We harvested network-related files such as /proc/net/arp,
/etc/network/interfaces to probe internal network structure and gather information of other inter-
nal hosts. Since the internal systems are normally protected by the network topology, they often
have a weaker security posture. Considering that the authorization scope of our study is limited to
this server, we did not go further trying to compromise intranet hosts. For an attacker, this server
can be used as a perfect entry point to carry out attacks on other hosts in the intranet.

Fig. 8. Exploitation attempt of the arbitrary file download vulnerability detected in the site BIRS. Attackers

can harvest application source code, configuration files or network-related files to discover vulnerabilities,

get a reverse shell, and compromise other hosts in the intranet.
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B ENGINEERING EFFORTS REQUIRED TO ADD NEW SCANNERS

Since Scanner++ uses a proxy architecture, adapting new scanners only requires configuring their
proxy server. Therefore, little manual efforts are needed to add new scanners to Scanner++. In the
repository, we provide a detailed procedure for configuring proxies for several popular scanners.
Also, we list the configuration process of the tool ProxyChains as a general proxy configuration
scheme.

To further demonstrate this, we invited five software engineers from CCDC to configure
five base scanners, BurpSuite, AWVS, Arachni, ZAP, and Wapiti, working under Scanner++. We
recorded the time consumption of the configuring process, as shown in Table 13.

Table 13. Time Consumption of Five Software Engineers Adapting

Base Scanners Working Under Scanner++

Engineer ID
Time Consumption (Seconds)

BurpSuite AWVS Arachni ZAP Wapiti

1 214 62 234 204 37
2 267 84 241 247 46
3 231 71 187 215 35
4 195 72 201 186 28
5 209 63 192 196 34

Average 223.2 70.4 211 209.6 36

The row “Average” indicates the average time consumption.

Considering the different configuration process of base scanners, the average preparation time
of adapting the tool varies from 36 seconds to 223.2 seconds. Meanwhile, all software engineers
can prepare base scanners for working under Scanner++ within five minutes. This fully illustrates
that Scanner++ can be quickly applied to new scanners.
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