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Abstract—Clone detection is widely exploited for software vulnerability search. The approaches based on source code analysis
cannot be applied to binary clone detection because the same source code can produce significantly different binaries due to different
operating systems, microprocessor architectures and compilers. In this paper, we present BinSeeker , a cross-platform binary seeker
that integrates semantic learning and emulation. With the help of the labeled semantic flow graph, BinSeeker can quickly identify M
candidate functions that are most similar to the vulnerability from the target binary. The value of M is relatively large so this semantic
learning procedure essentially eliminates those functions that are very unlikely to have the vulnerability. Then, semantic emulation is
conducted on these M candidates to obtain their dynamic signature sequences. By comparing signature sequences, BinSeeker
produces top-N functions that exhibit most similar behavior to that of the vulnerability. With fast filtering of semantic learning and
accurate comparison of semantic emulation, BinSeeker seeks vulnerability precisely with little overhead. The experiments on six widely
used programs with fifteen known CVE vulnerabilities demonstrate that BinSeeker outperforms three state-of-the-art tools Genius,
Gemini and CACompare. Regarding search accuracy, BinSeeker achieves an MRR value of 0.65 in the target programs, whereas the
MRR values by Genius, Gemini and CACompare are 0.17, 0.07 and 0.42, respectively. If we consider ranking a function with the
targeted vulnerability in the top-5 as accurate, BinSeeker achieves the accuracy of 93.33%, while the accuracy of the other three tools
is merely 33.33%, 13.33% and 53.33%, respectively. Such accuracy is achieved with 0.27s on average to determine whether the target
binary function contains a known vulnerability, and the time for the other three tools are 1.57s, 0.15s and 0.98s, respectively. Compared
to the time used to manually identify the true positive vulnerability from the false positive candidates reported by Gemini, the time
overhead of BinSeeker is negligible. Evidently, the proposed BinSeeker achieves a better balance between accuracy and efficiency.

Index Terms—semantic emulation, semantic learning, cross-platform binary, vulnerability search, neural network.
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1 INTRODUCTION

P RE-EXISTING code has been widely reused to improve
software development productivity. Releases of differ-

ent software products contain significant amounts of identi-
cal or similar code, a phenomenon known as code clone. The
related study has shown that 22.3% of the Linux kernel is
from the previous implementation [1]. Consequently, along
with the widespread usage of code clone, vulnerabilities
spread as well because the code fragments containing the
vulnerabilities are reused in other software products. In
addition, the patches that fix vulnerabilities are not auto-
matically propagated, thus the cloned vulnerabilities are
not patched even though the original code has been fixed.
For example, 145 unpatched cloned vulnerabilities were
confirmed in the Debian system [2].

In order to maintain code quality, it is critical to identify
cloned code once a vulnerability is detected. Unfortunately,
it is a very challenging task because the same source code
can be compiled with different compilation parameters and
even different compilers. In addition, with the popularity
of terminal devices, software programs on traditional X86
architecture are gradually ported to other architectures such
as ARM and MIPS. These different environments produce
different binaries given the same source code. To address
this challenge, cross-platform binary vulnerability search
has attracted increasing attention in recent years, and three
types of approaches have been proposed: static, dynamic
and learning approaches [3], [4], [5], [6], [7], [8], [9].

Static approaches usually rely on the graph matching
algorithm on control flow graphs (CFGs) to identify binary
code similar to the vulnerable code [3], [4], [10], [11]. How-
ever, CFGs of the same function differ significantly with dif-

ferent compilation configurations (e.g., O0–O3 optimization
levels, X86 and MIPS processor architectures), which leads
to inaccurate results. In order to enhance accuracy, Pewny
et al. [11] presents a method to broaden the analysis from
the similarity of basic blocks to the similarity of functions
based on CFGs. Although this method improves accuracy,
having too many false positives prevents it from being
widely adopted.

Dynamic approaches overcome the obstacle of inaccu-
rate search through monitoring the runtime traces of bi-
nary programs in real operating environments and then
performing equivalence checking between two traces [5],
[6]. However, significant overhead is inherent and dynamic
approaches are often expensive in practice. For example,
although CACompare [6] achieves over 80% search accuracy,
it takes CACompare about three hours to generate function
signatures and about seven hours to complete the search
task for the OpenSSL with 5,995 functions.

As a burgeoning technique, learning-based approaches
are increasingly applied to binary vulnerability search be-
cause of fewer domain knowledge requirements [7], [8], [9].
Since most of these approaches rely only on the CFGs to
convert assembly instruction features into numerical vec-
tors, they can quickly predict whether a binary function
is vulnerable. Unfortunately, their accuracy is rather low.
For example, the top-50 accuracy of Genius for two case
studies on a large set of firmware images is only 28%
and 48% [7]. With such a low accuracy, nontrivial manual
effort is often required to eliminate false positives, which
is not practical for industrial applications. To enhance the
robustness against structural differences in the CFG, we
propose VulSeeker [9], a semantic learning-based approach
that adopts lightweight instruction features and integrates
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DFG into CFG. Furthermore, we also attempt to supplement
multiple semantic signatures in VulSeeker-Pro [12] to eval-
uate function similarity against compilation optimization
differences on the same architecture.

Both learning-based and dynamic approaches have bar-
riers to use when it comes to large-scale code. For example,
consider such a scenario to determine whether a large
number of cross-architecture embedded firmware contain
a serious vulnerable function that has just been exposed. In
this case, applying the learning-based approach alone can
quickly predict the similarity between any function within
the firmware and the vulnerable function. Since it only
uses vectors to represent the cross-architecture function se-
mantics which can be insufficient, additional human efforts
are required to participate in the confirmation process. On
the other hand, the dynamic approach can well match the
same vulnerable function of different platforms, but may
suffer from time-demand bottlenecks of large-scale code.
Execution for all functions is extremely time consuming.

To overcome the above limitations and strike a balance
between accuracy and efficiency, we present BinSeeker1, a
cross-platform binary vulnerability seeker that integrates
learning and dynamic approaches. It seamlessly integrates
our previous works [9], [12] and supports the cross-
architecture function emulation to achieve better perfor-
mance. The intuitive idea is to apply the dynamic approach
to the quickly acquired narrow range of candidate functions
that are similar to the vulnerability, which can both improve
the search accuracy and reduce the time requirement. Sim-
ilar idea has also been applied in Driller for vulnerability
fuzzing, that combine the cheap searched based AFL to
achieve fast coverage and the expensive symbolic execution
to solve the constraints hard to be searched.

Given a vulnerable function, the learning component
in BinSeeker quickly identifies M candidate functions from
the target binary that are most similar to the vulnerable
function. With the aid of the labeled semantic flow graph,
BinSeeker captures more function-level semantics and is
more accurate than the existing learning-based approach
[8]. However, M has to be relatively large due to the inher-
ent inaccuracy in all learning-based approaches; otherwise,
false negatives are very likely to occur. To avoid manual
efforts of examining allM functions, the semantic emulation
component of BinSeeker conducts dynamic emulation on the
M candidates and identifies top-N functions that are most
similar to the vulnerable function. That is, BinSeeker first
conducts a computationally cheap and less accurate search
on the entire target program using semantic learning, and
then performs an expensive and more accurate search on
the M candidate functions using semantic emulation. With
N being much smaller than M , BinSeeker obtains highly
accurate results at a cost almost the same as that of a
semantic learning-based approach.

To evaluate BinSeeker on widely-used open-source appli-
cations such as OpenSSL, we compare it with three state-
of-the-art cross-platform binary vulnerability search tools:
Genius [7] and Gemini [8] which are semantic learning-based
tools and CACompare [6] which is a semantic emulation-
based tool. The experimental results show that BinSeeker
significantly outperforms the three tools in comparison.
Regarding vulnerability search accuracy, BinSeeker achieves

1. The prototype implementation is open-source and is available at

an MRR (mean reciprocal rank) value of 0.65 in the target
programs, whereas the MRR values of Genius, Gemini and
CACompare are 0.17, 0.07 and 0.42, respectively. If we con-
sider ranking a function with the targeted vulnerability in
the top-5 as accurate, BinSeeker achieves a top-5 accuracy of
93.33%, while the top-5 accuracy of the other three tools is
merely 33.33%, 13.33% and 53.33%, respectively. In terms of
time used in the search, it takes Genius, Gemini, CACompare
and BinSeeker 8,992s, 849s, 8,432s and 1,323s respectively to
complete a search task on the OpenSSL binary. The results
demonstrate that BinSeeker is more accurate than semantic
emulation-based tools and the cost is comparable to that
of the learning-based approach. These advantages reduce
the burden of engineers when manually identifying true
positive cases. In summary, the present study makes the
following contributions:

• To date, BinSeeker is the first tool that integrates
semantic learning and emulation to improve search
accuracy and efficiency. Accuracy is critical as it
reduces manual efforts to inspect a large number
of functions. Meanwhile, BinSeeker achieves highly
accurate results at a cost almost the same as that of
the fast semantic learning-based approach.

• We optimize the original learning and emulation ap-
proaches to improve BinSeeker’s performance. Con-
sequently, the learning component is more accurate
with the extended labeled semantic flow graph and
the emulation engine is more lightweight and faster
with the optimized function signature extraction.

The rest of this paper is organized as follows: Section 2
introduces the background to help understand our neural
network model; Section 3 details the design and implemen-
tation of BinSeeker; Section 4 describes experimental results
compared to the state-of-the-art approaches; and Section 5
discusses challenges and future work. Section 6 delineates
related work and Section 7 presents the conclusion.

2 BACKGROUND

The semantic learning module of BinSeeker is based on the
Siamese framework [13] and the structure2vec network [14],
as shown in Fig. 1.

a) Application of the Siamese Framework and the
structure2vec Network to Vulnerability Search. In order to
identify the functions that are most similar to the one with
known vulnerability, a key step is to compute the similarity
between a pair of functions. In BinSeeker, the input pair of
functions are represented as LSFGs (described in Section
3.1.1), and the neural networks are dedicated to the LSFG
structures. The embedding vector generation strategy of the
structure2vec network transforms the vulnerability search
problem to be the problem of calculating the similarity
between function embedding vectors. Given two graphs g1
and g2, the label y in the training tuple 〈g1, g2, y〉 indicates
whether the two graphs are similar. This dual-input and
single-output tuple requires us to train two structure2vec net-
works, one for each graph, with shared parameters. Thus,
we embed two identical structure2vec networks into the
Siamese framework shown in Fig. 4(a), which is described
in detail in Section 3.1.3. The final effect is that the vector
representations of similar graphs are close to each other.

b) The structure2vec Network. Dai et al. [14] proposed
the structure2vec graph neural network, which proved to be
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Fig. 1. Two foundational network structures used in BinSeeker .

effective and scalable for structured data representation. The
vertices in the graph are connected to each other by the
edges. The structure2vec network can encode vertex features
and connection relationship of the edges in the graph as the
embedding vector to represent graph semantics. Fig. 1(a)
shows how the structure2vec network works to generate the
embedding vector based on the graph g on the left. The
example graph contains four verticesXi, i ∈ {1, 2, 3, 4}, and
each vertex is appended with an initial numerical vector
xi. The right side of Fig. 1(a) is the structure2vec network
structure that consists of one input layer, T hidden layers
(only one hidden layer is drawn for illustration), and one
output layer. In the structure2vec network, the number of
neuron nodes in the input layer and each hidden layer is
the number of vertices in the original graph g.

In the input layer, the input of each neuron node is the
initial numerical vector xi of the corresponding vertex. In
the tth (1 ≤ t ≤ T ) hidden layer, each hidden neuron
Hi is responsible for generating a new feature represen-
tation called the embedding vector µ̃(t)

i . We use formula
µ̃
(t)
i = F (xi,Σk∈E(i)µ̃

(t−1)
k ) to represent the mapping re-

lationship of each hidden neuron, where E(i) refers to the
set of vertices adjacent to vertex Xi. Through the mapping
function F , the feature of each vertex is propagated to
other vertices based on connected edges. This feature update
strategy takes into account the graph topology and ensures
that each vertex incorporates information from neighbors
within T hops after T hidden-layer iterations. Finally, the
output layer neuron Y aggregates the output embedding
vectors µ̃(T )

i of the T th hidden layer neurons to form the
final embedding vector of the entire graph.

c) The Siamese Framework. The Siamese framework [13]
shown in Fig. 1(b) solves the dual input problem of verifi-
cation of signatures written on a pen-input tablet. It mainly
consists of two identical sub-networks, each of which takes a
processed signature as its input and then outputs the feature
of the signature. The joining neuron is used to measure the
distance between these two output features of the two sub-
networks and output the similarity value ranging from -1 to
1. In addition, it is used as a network framework to train two
identical embedded sub-networks in an end-to-end manner,
which ensures that the two sub-networks share the same
parameters.

3 DESIGN OF BinSeeker
Our objective is to automatically identify whether a given
binary program contains known vulnerabilities or not. Lots
of vulnerability-related databases are open to the public.
For example, Common Vulnerabilities and Exposures (CVE)
[15] contains more than 120,000 vulnerabilities. In the case

of open-source software, which is often reused to improve
software development, some of the CVEs provide an explicit
indication of the source functions involved in the vulnerabil-
ities. Based on the indication of these known vulnerabilities
within a single function, clone-based search approaches
at the function-level granularity will help to detect those
known vulnerabilities in target cross-platform binaries.

As presented in Fig. 2, BinSeeker contains two major
modules: semantic learning and semantic emulation. Its in-
puts are a specific vulnerability and a target binary to be
searched. BinSeeker utilizes the fast predictive capability of
the customized deep neural network to obtain the initial
M (e.g., 200) candidate functions by eliminating extremely
dissimilar functions in the semantic learning module. Then,
BinSeeker sorts the M candidate functions based on function
dynamic signature sequences to generate top-N (e.g., top-
25) candidate functions as the final prediction results for the
vulnerability in the semantic emulation module.

3.1 Semantic Learning
The main goal of this module is to quickly eliminate re-
markably dissimilar functions from the target binary and
get the top-M candidate functions that are most similar to
a specific vulnerability. Its pivotal capability is to obtain
embedding vectors representing the function semantics and
use them for similarity comparison according to three steps:
LSFG construction, feature extraction, and customized deep
neural network.

3.1.1 LSFG Construction
Many existing methods rely on CFGs as a basis to obtain
function semantic representations. These representations are
either the symbolic formulas encoding the input-output
relationship of basic blocks [10], [11], [16] or the attributed
control flow graphs containing instruction features [7], [8].
Function semantics obtained through these methods can be
highly inaccurate since the CFGs show significant diversities
under different compilation scenarios [17].

We propose the labeled semantic flow graph (LSFG)
which combines the CFG and the data flow graph (DFG) to
capture more accurate function semantics. The idea is based
on the fact that the CFG determines the possible execution
sequences of basic blocks and the DFG depicts the transfer
and use of data within the function. The combination of
these two dependent relations makes function semantics
(explained in Section 3.1.3) resistant to structural and syn-
tactic differences in the CFGs under different architectures
and compilation optimization strategies.

LSFG is different from the program dependence graph
(PDG) [18] and hybrid information- and control-flow graph
(HI-CFG) [19] which also consists of DFG and CFG. They
work at different code granularity as well. For example,
PDG establishes an edge connection on the statement or
instruction granularity, while LSFG is on the basic block
granularity. HI-CFG not only needs to create data structure
nodes but also code block nodes. It also needs to use the
trace-based dynamic analysis approach to infer the edge
connections between these two types of nodes. Considering
that the complexity of the HI-CFG and PDG structures
sharply increases the processing time of the semantic learn-
ing model, we choose the more lightweight LSFG graph
representation which only creates code block nodes in the
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Fig. 2. Overall workflow of BinSeeker : the first phase relies on semantic learning to quickly predict top-M most similar candidate functions with a low
time cost, the second phase employs function emulation to output more accurate top-N candidates, where M and N can be dynamically configured.

CFG but ignores the data dependence edges within each
basic block of the CFG. In terms of the efficiency and
accuracy of the experiment, the proposed LSFG is suitable
for the customized structure2vec-based semantic learning
network to learn the numerical semantic representation of
the binary function.

push   ebp
mov    ebp, esp
sub     esp, 28h
mov    eax, [ebp+arg_0]
mov    [ebp+var_C], eax
cmp [ebp+var_C], 2
jnz short loc_8048444

add     [ebp+var_C], 1
call     _puts
mov    eax, [ebp+var_C]
jmp short locret_8048457

loc_8048444:
sub     [ebp+var_C], 1
call     _puts
mov    eax, [ebp+var_C]

locret_8048457:
leave
retn

00

00

1

①
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④

1
[ 1, 1, 0, 1, 0, 0, 1, 3 ]

[ 0, 1, 0, 0, 1, 1, 0, 1 ] [ 0, 1, 0, 0, 1, 0, 0, 1 ]
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1 1

0 0

0 0

①
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④

(a) Example for LSFG construction (b) Example for feature extraction

Fig. 3. An example for the deep neural network input vector generation.

Fig. 3(a) illustrates an example of the proposed LSFG.
The solid lines (labeled by 0) represent control dependency,
while the dotted lines (labeled by 1) represent data depen-
dency. For a compiled binary function, the structure of its
assembly function is organized according to the CFG, which
can be easily parsed with the help of common disassembly
software (e.g., IDA Pro [20], angr [21]). CFGs obtained by
different methods are almost the same, while DFGs differ
according to different data dependence rules. In the present
paper, we construct the DFGs on top of CFGs by leverag-
ing the define-use rules and traversing all function paths.
Specifically, for two instructions i and j from two different
basic blocks, if the instruction i writes to a memory location
and the instruction j reads from the same memory location,
we create a data dependence edge from the basic block of
i to the basic block of j. It is worth noting that there is
at most one data dependence edge between two different
basic blocks. When a variable is directly read without being
written in the current basic block, we look for the pre-
ordered basic block in which the variable is last defined, and
then establish the data pointing edge between the two basic
blocks unless the variable is never defined in the function.
Therefore, the presence of memory address “[ebp+ var_C]”
forms a data dependence edge between the block 1 and 2
in Fig. 3(a).

3.1.2 Feature Extraction
The LSFG constructed above is not suitable yet as input into
our customized neural network (NN) model. The purpose
of feature extraction is to generate the block-level initial

numerical vectors related to functions that can be input into
the NN model to generate function-level embedding vectors
for similarity calculation. We should choose and extract
robust and lightweight features that change little under
various implementation platforms with different micropro-
cessor architectures and various compilation optimization
configurations as initial numerical vectors. By empirically
referring to features used in previous works [3], [7], [22]
and executing a series of experiments (described in Section
4.2.3) for different feature sets, we finally determine to use
the 8 types of features shown in Table 1.

TABLE 1
Basic-block level features used by BinSeeker .

Feature Name Example

No. of stack operation instructions push, pop
No. of arithmetic instructions add, sub
No. of logical instructions and, or
No. of comparative instructions test
No. of library function calls call printf
No. of unconditional jump instructions jmp
No. of conditional jump instructions jne, jb
No. of generic instructions mov, lea

We first count the number of each feature in each basic
block, then arrange them into numerical vectors in order,
and finally put these numerical vectors at the correspond-
ing vertex of LSFG. Fig. 3(b) presents the numerical vec-
tors of each basic block corresponding to the function in
Fig. 3(a). We denote the LSFG with numerical vectors as
g = 〈X,C,D〉, where X , C and D are the sets of (basic
block) vertices, control dependence edges and data depen-
dence edges, respectively. Each vertex xi ∈ X represents
the initial numerical feature vector. The LSFG mentioned
later in this paper refers to the LSFG with initial numerical
feature vectors unless otherwise specified. Paired LSFGs g1
and g2 are the input of the BinSeeker neural network.

3.1.3 Customized Deep Neural Network
Because the two basic networks introduced in Section 2
satisfy our vulnerability search requirement, this part clar-
ifies how to combine the Siamese [13] framework with the
adapted structure2vec [14] network to implement our cus-
tomized network. Since the structure2vec network is im-
plemented to support LSFGs, we call it the LSFG-based
embedding generation network.

a) BinSeeker Network Structure. Fig. 4(a) shows the
overall architecture of the BinSeeker neural network model.
Its inputs are two LSFGs, which are abbreviated as g1 and
g2. These two graphs (g1 and g2) are imported into two iden-
tical LSFG-based embedding generation networks, which
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Fig. 4. The network of BinSeeker for vulnerability search, including the customized similarity calculation, embedding and vector generation.

transform the structured graph information into function-
level embedding vectors (e.g., µ̃, ν̃) capturing the function
semantics. The Cosine function is used to calculate the
similarity of two embedding vectors, which represents the
similarity of two binary functions.

Fig. 4(b) is a detailed description of the LSFG-based
embedding generation network. This process is similar to
the basic structure2vec except for the graph type. We extend
structure2vec to deal with LSFG containing both data flow
(labeled 1 on the solid arrow) and control flow (labeled 0
on the solid arrow), while basic structure2vec works with
an ordinary undirected graph. In the input layer, the input
example LSFG g = 〈X,C,D〉 consists of four vertices Xi,
i ∈ {1, 2, 3, 4}, each of which represents a basic block of the
function and contains the block-level initial feature vector
xi. C(i) and D(i) represent the control dependence edge set
and the data dependence edge set of vertex i, respectively.

The adapted structure2vec network contains a total of
T hidden layer responsible for transforming graph infor-
mation into the function semantic embedding vector. Each
hidden layer node is represented as the updated block-
level embedding vector µ̃(t)

i , where different values of t
correspond to different hidden layers. During the tth hidden
layer iteration, the updated µ̃

(t)
i consists of three different

inputs: the initial feature vector xi of the corresponding
vertex Xi (the dotted arrow in Fig. 4), the sum l

(t−1)
c =

Σj∈C (i)µ̃
(t−1)
j of previous embedding vectors of vertices

pointing to Xi through the control dependency C(i), and
the sum l

(t−1)
d = Σj∈D(i)µ̃

(t−1)
j of previous embedding

vectors of vertices pointing to Xi through the data de-
pendency D(i). The updated µ̃t

i is expressed by mapping
function F with the formula: µ̃(t)

i = F (xi, l
(t−1)
c , l

(t−1)
d ) =

tanh(W1xi + σc(l
(t−1)
c ) + σd(l

(t−1)
d )). Fig. 4(c) illustrates

the procedure for generating the embedding vector µ̃(t)
i of

each hidden node, where σc, σd are two non-linear trans-
formation functions which are responsible for calculating
an embedding vector with more powerful representation
capability. Similar to [8], we define them as two n layer
fully-connected networks with the following equations:

{
σc(lc) = P1 ×ReLU(P2 × · · ·ReLU(Pn × lc))
σd(ld) = Q1 ×ReLU(Q2 × · · ·ReLU(Qn × ld))

where n is the embedding depth representing the number
of layers in a fully-connected network, Pi and Qi are p × p

dimensional parameter matrices for each layer of the two
fully-connected networks.

The overall procedure for generating function semantic
representation described above is integrated into the Al-
gorithm 1. W1 and W2 are d × p and p × p dimensional
parameter matrices, respectively. Through the T -layer iter-
ation from Lines 5 to 11 in Algorithm 1, a new embedding
vector of each vertex is generated, which not only follows
the topology structure of LSFG but also integrates the T -hop
interaction among vertices. In other words, the features of
the vertices are propagated to other vertices as the iteration
progresses, ensuring that each basic block within the func-
tion incorporates information from neighbors within T hops
after T hidden-layer iterations. Finally, the binary function
semantics, including the data flow dependency and the
control flow dependency, is aggregated into the function-
level embedding vector µ̃ in Line 12.

Algorithm 1: Generating function semantics
Input: LSFG g = 〈X,C,D〉

Hidden layer iteration number T
Output: Binary function semantics embedding vector µ̃

1 C(i) as the set of parent nodes that are the control
dependency of vertex i; D(i) as the set of parent nodes
that are the data dependency of vertex i.

2 for i ∈ X do
3 µ̃

(0)
i = 0

4 end
5 for t = 1 to T do
6 for i ∈ X do
7 lt−1

c = Σj∈C(i)µ̃
(t−1)
j

8 lt−1
d = Σj∈D(i)µ̃

(t−1)
j

9 µ̃i
(t) = tanh(W1xi + σc(l

t−1
c ) + σd(lt−1

d ))
10 end
11 end
12 return µ̃ = W2(Σi∈X µ̃

(T )
i )

b) Learning Parameters. Paired embedding vectors (e.g.,
µ̃, ν̃) are obtained through two identical LSFG-based embed-
ding generation networks with two LSFGs (e.g., g1 and g2)
as inputs. The output of the whole network represents the
similarity of the two functions and is measured by the Cosine
function denoted as ŷ = cos(ũ, ṽ) = (ũ · ṽ)/(

∥∥ũ∥∥ · ∥∥ṽ∥∥),
where ŷ is the predicted similarity output of two functions,
ranging from−1 to 1. Given the ground truth y ∈ {1,−1} of
LSFGs g1 and g2, y = 1 indicates they are similar functions;
otherwise, they are dissimilar. Suppose that the training
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data set has M pairs of labeled samples 〈g1, g2, y〉, then
our training objective is to minimize the training errors. We
use the stochastic gradient descent algorithm to minimize
the error function minE(W1,W2, P1 · · ·Pn,Q1 · · ·Qn) =∑M

m=1(ŷ − y)2 and obtain the most appropriate model
parameters (e.g., W1, P1).

3.2 Semantic Emulation

The primary goal of semantic emulation is to sort the M
candidate functions obtained from the semantic learning
module. By exploiting three steps to obtain more accurate
results, semantic emulation reduces the burden of engi-
neers when manually inspecting the M functions: argument
recognition, function emulation, and similarity calculation.

3.2.1 Argument Recognition
Before emulating the execution of a function, BinSeeker
first needs to recognize the required function arguments,
which are usually classified as register arguments and stack
arguments. With the aid of IDA Pro [20], argument recog-
nition is implemented based on the disassembled assembly
code from the binary program. For example, the first three
arguments of a function may be register arguments stored
in the EAX, EDX and ECX registers in the X86 architecture.
The remaining arguments are passed through the program
stack, whose space grows from the high address to the low
address. Each function has a stack pointer indicating the
stack start address. When traversing the assembly instruc-
tions, if an instruction accesses a stack address that is larger
than the stack start address, the offset of the address relative
to the stack start address is recorded as a stack argument.

3.2.2 Function Emulation
BinSeeker first generates a set of random integers for ar-
gument assignment. For each function, the same random
integer sequence is assigned to identified argument registers
and stack offsets in turn. To facilitate the emulation of
multiple instruction sets, BinSeeker converts each assembly
function into the semantics-preserving VEX-IR (intermedi-
ate representation) [23]. As shown at the top of Fig. 5, for
a single machine instruction, the conversion process may
generate multiple consecutive VEX-IR statements. Unlike
a machine instruction that may have multiple consecutive
semantic operations, each VEX-IR statement has only one
operation and applies to multiple instruction sets. Through
emulating the execution of the function on the VEX-IR
based on the assigned argument values, we extract unified
semantic signatures for the binary functions of different
instruction sets.

During the emulation execution, BinSeeker emulates each
function individually and records the dynamic execution
trace of the function, which we call its semantic signature.
When BinSeeker encounters a call to function B while em-
ulating function A, it also enters function B and records
the semantic signature of function B in function A. This
solves the predictive barrier of function inlining to the
semantic learning module. In addition, BinSeeker excludes
the main function to prevent it from encompassing the entire
program. When mutual recursion is encountered, we set a
threshold beyond which the function will not be entered
again to limit the times for executions of the recursion.

When the same loop is emulated more than the thresh-
old, we reverse the current branch condition to exit the
loop and continue the subsequent emulation. The threshold
can be dynamically set during emulating, and we refer to
CACompare [6] to set the threshold for a fair comparison.

Assembly function Semantic signature

var_C = dword ptr -0Ch
arg_0  = dword ptr  8

1   push ebp
2   mov ebp, esp
3   sub esp, 28h
4   mov eax, [ebp+arg_0]
5   mov [ebp+var_C], eax
6   cmp [ebp+var_C], 2
7   jnz short loc_8048444
8   add [ebp+var_C], 1
9   mov dword ptr [esp], offset s ; "v=3"
10  call _puts
11  mov eax, [ebp+var_C]
12  jmp short locret_8048457
13  loc_8048444:      
14  sub [ebp+var_C], 1
15  mov dword ptr [esp], offset aV1 ; "v=1"
16  call _puts
17  mov eax, [ebp+var_C]
18  locret_8048457:
19  leave
20  retn

//Line 4 reads the argument value 3
I        3
//Line 6 are comparison opcodes and operands
CC    3 2 EQ

// Line 15 is the data read from .rodata section 
I        “v = 1”
LC    _puts  //Line 16 is a library call
O      1  //Line 17  is the return value 

sub   eax, 41h

t2 = GET:I32(eax)
t0 = Sub32(t2,0x00000041)
PUT(cc_op) = 0x00000006
PUT(cc_dep1) = t2
PUT(cc_dep2) = 0x00000041
PUT(cc_ndep) = 0x00000000
PUT(eax) = t0

VEX-IR transformation
X86 instruction:

VEX-IR:

Fig. 5. The example assembly function and its semantic signature.

The semantic signature consists of four parts: input val-
ues, output values, comparison opcodes/operands, and library
function calls. The bottom of Fig. 5 illustrates an assembly
function and its semantic signature generated at the end
of the emulation. Here the sample function contains only
one stack argument named arg_0, and its corresponding
memory location ‘[ebp+arg_0]’ is assigned a value of 3.
Input values contain the data read from both the assigned
argument values and the data sections (e.g., .rodata, .data).
The instructions in Lines 4 and 15 of Fig. 5 contain data
reads, and their semantic information is marked as “I value”.
Output values consisLt of the return value and memory
write values whose addresses are outside the range of the
function stack. Line 17 in Fig. 5 is the output value of the
function when 3 is used as the function argument. The
output values are represented as “O value” in the semantic
signature. Comparison opcodes refer to the condition that
controls the jump of basic blocks, and comparison operands
mean the two values used for comparison. An example
is presented in Line 6 of Fig. 5, denoted as “CC operands
opcode”. Library function calls record the uses of C language
standard library functions during function emulation. Its
semantic information is recorded as “LC name”, such as the
Line 16 in Fig. 5.

3.2.3 Similarity Calculation
After obtaining semantic signatures of the vulnerable func-
tion and the top-M candidate functions, BinSeeker uses the
Jaccard similarity coefficient to calculate the similarity score
as follows: J (A,B) = |A

⋂
B| / |A

⋃
B|, where A and B

are semantic signature sequences of the vulnerable function
and the target function. By descending the similarity scores,
BinSeeker reorders the top-M candidate functions and out-
puts more accurate top-N functions as the final suspected
vulnerable functions.
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3.3 Implementation
For the semantic learning module, we use IDAPython pro-
vided by IDA Pro [20] to create the CFG for each binary
function and extract features for each basic block. Based
on the CFG, we infer whether there should be a data
dependence edge between two basic blocks by leveraging
the LLVM IR plugin [24] on IDA Pro. We use TensorFlow [25]
to implement the customized neural network and apply the
stochastic gradient descent algorithm to automatically learn
model parameters.

For the semantic emulation module, we use the decom-
piler of the IDA Pro for the X86 and ARM binary. For the
MIPS binary, we use IDAPython to traverse CFG paths to
obtain register arguments approximately according to the
function calling convention. The key idea is to treat registers
that are not written before the first read in the function as
register arguments. We also employ IDAPython to traverse
assembly instructions of the function to determine the ad-
dress offsets which are recorded as stack arguments. Then
we utilize PyVEX [26] to convert each assembly function
into the VEX-IR representation [23]. BinSeeker emulates each
binary function on the VEX-IR representation. After em-
ulating each function contained in the target binary, we
record its semantic signature in a separate file. But for
the signatures of vulnerable functions, we store them in
a custom data structure into a MongoDB database [27] to
repeatedly perform search tasks.

4 EXPERIMENTAL EVALUATION

BinSeeker is based on the similarity of semantic represen-
tation (namely, embedding vector in semantic learning and
signature in semantic emulation) to complete cross-platform
binary vulnerability search. We compare BinSeeker with
three most recent and related state-of-the-art cross-platform
binary vulnerability search tools: Genius [7] and Gemini [8]
which are semantic learning-based tools, and CACompare
[6] which is a semantic emulation-based tool. Furthermore,
BinSeeker-2 as the front end learning module of BinSeeker
is also involved in the comparison to demonstrate whether
we can replace the front end with Genius or Gemini. Our
experiments aim to answer the following two questions:

• RQ1. Is BinSeeker more accurate in predicting similar
cross-platform binary functions than the other tools?

• RQ2. How efficient is BinSeeker in completing a vul-
nerability search task?

4.1 Experiment Setup
All experiments are performed on an 8-core 3.60GHz Intel
i7 machine with 8G memory, an NVIDIA GeForce 1070 GPU
and Ubuntu 14.04 LTS operating system.

Data Preparation. In order to mitigate experimenter bias
and allow for a fair comparison, we prepare the same two
datasets as in the other studies [6], [7], [8] as described
below to complete different evaluation tasks. Dataset I is
used to train the BinSeeker- semantic learning model and to
directly compare BinSeeker- with Gemini to explore whether
the proposed BinSeeker- model can achieve better similar

2. BinSeeker- is similar to our previous implementation VulSeeker [9].
VulSeeker-Pro [12] is not included in the comparison experiments be-
cause it focuses on the optimization of a single architecture.

code prediction accuracy. Dataset II is used to evaluate
the accuracy and efficiency of BinSeeker for widely studied
vulnerabilities. Since the experiment in the other three tools
in comparison involves three architectures, we also include
binaries of the same three architectures (X86, ARM and
MIPS) for unbiased comparison.

• Dataset I. Similar to [8], it includes a set of binaries
compiled from three open-source software: BusyBox
(v1.21.0), OpenSSL (v1.0.1f and v1.0.1u) and Coreutils
(v6.5 and v6.7). We use two compilers (GCC v4.9
and Clang v3.4) with four optimization configura-
tions (O0–O3) to compile these programs to three
architectures. As a result, we get a total of 368,256
functions and 4,673K basic blocks.

• Dataset II. We select widely-used real-world pro-
grams from those favored for evaluation by other
tools in comparison as shown in Table 2, such as
OpenSSL and Coreutils from Genius [7], curl and Wget
from CACompare [6]. The vulnerabilities in these pro-
grams differ greatly in CFGs across platforms and
are difficult to detect accurately [6], [7], [8]. Each
program is compiled into four optimization level
versions (O0–O3) of three architectures using two
compilers (GCC v4.9 and Clang v3.4).

TABLE 2
Dataset II: Open-source programs for vulnerability search

CVE No. Program Module Version

2018-11212 libjepg jmemmgr
9a

2018-11213 libjepg rdppm2018-11214 libjepg

2018-0494 Wget wget 1.19.12017-6508

2015-1791

OpenSSL openssl 1.0.1f
2014-3508
2016-6302
2016-6303
2016-2842

2014-9471 Coreutils date 8.13

2017-7407 curl curl 7.53.1

2015-3237
curl libcurl 7.40.02015-3145

2015-3144

Ground Truth. The training of the customized semantic
learning model requires a large number of labeled samples
of similar and dissimilar binary function pairs. We use
the following strategies to automatically label the samples
in the dataset I. With the source code of the function f ,
we compile it into a set of binary functions denoted as
set(f) = {f1, f2, · · · , fn} across different implementation
platforms. For each function fi in set(f), we randomly
select a different function fj , i 6= j to make up a similar
sample, and label them as 〈fi, fj ,+1〉. We also randomly
select another binary function sk that is not in set(f) to
construct a dissimilar sample, and label them as 〈fi, sk,−1〉.
A total of 2,761,920 pairs of samples are constructed, where
the number of similar sample pairs is half, and no two
identical pairs of samples exist.

Training Details. We apply 10-fold cross-validation to
train and evaluate BinSeeker. Namely, we partition the sam-
ples into 10 subsets, each time nine subsets are used to



8

train a model, and one subset is chosen as the test set.
We repeat this 10 times and each time the picked test
subset is different. The reported result is averaged over 10
times. When training the model, 100,000 pairs of samples
in nine subsets are randomly selected for training in each
epoch. After finishing each epoch, we randomly shuffle the
training set. Note that we refer to the learning component
in BinSeeker as BinSeeker-. That is, BinSeeker- produces M
candidate functions based on similarity to the function with
a known vulnerability.

Default Configuration. Based on our experiments (dis-
cussed in Section 4.5), we set up the hyper-parameters of
semantic learning module as follows: the training epoch is
100, the learning rate is 0.0001, the embedding depth n is 2,
the embedding size p is 64, the number of iterations T for
each basic block is 6 and the size of mini-batch is 10. For the
semantic emulation module, the values of M and N are set
to 200 and 25, respectively.

4.2 Accuracy of Vulnerability Search
Here we mainly answer the RQ1 and focus on whether
BinSeeker can identify vulnerabilities across platforms more
accurately than other tools. For each search of the vulner-
able function, we obtain the 200 candidate functions from
BinSeeker- and finally choose top-25 functions most likely to
have the same vulnerability.

4.2.1 Overall Result
We use the vulnerable functions in the X86-GCC-O3 version
of binaries as the source, and the goal of BinSeeker is to
identify functions from the other versions of binaries that
have the same vulnerability. In our experiments, we perform
23 different searches for each vulnerability in dataset II,
which results in 345 different searches in total. Columns 2–6
in Table 3 show the search ranking of each vulnerability, and
each cell is the average ranking on the 23 different searches3,
such as X86-Clang-O0 and MIPS-Clang-O3.

In Table 3, we first use the top-k metric to measure
the search accuracy of the vulnerable function. For the 15
vulnerabilities, we count how many times each tool can
rank the real vulnerable function in the top-k candidate
list and compute their corresponding percentage for each
tool in comparison, where the results are recorded in Rows
17–20 and the ’@’ character is the separator of the number
and percentage. From Table 3, for different values of k, the
number of vulnerabilities identified by BinSeeker is signifi-
cantly more than that of the compared tools. Specifically, for
Genius, Gemini and CACompare, there are only 3, 1 and 8 vul-
nerabilities ranking in the top-3 candidate list, which results
in 20.00%, 6.67% and 53.33% top-3 accuracy, respectively.
On the other hand, BinSeeker identifies 11 real vulnerabil-
ities and achieves a 73.33% top-3 accuracy rate. Similarly,
the top-5 accuracy for Genius, Gemini and CACompare are
merely 33.33%, 13.33% and 53.33%, respectively, whereas for
BinSeeker that is 93.33%. All vulnerabilities are ranked in the
top-20 candidate list by BinSeeker. In contrast, the values for
the other three tools are 8, 5 and 10, respectively.

In statistics, MRR (mean reciprocal rank) is commonly
used to measure the evaluation of the target search results

3. We have split Table 3 and listed search rankings according to
the architectures, compilers, and optimization options in detail on the
website https://github.com/PaperData/TSE_data.

TABLE 3
The accuracy of five tools for comparison on 15 vulnerabilities.

CVE No. Genius Gemini CACompare BinSeeker- BinSeeker

2018-11212 5 79 1 5 1
2018-11213 3 4 1 3 1
2018-11214 3 17 1 3 1
2018-0494 9 75 3 72 1
2017-6508 10 17 68 14 2
2015-1791 48 236 67 189 4
2014-3508 96 58 60 45 2
2016-6302 50 418 19 149 5
2016-6303 78 328 236 175 12
2016-2842 149 392 1 197 1
2014-9471 1 2 2 2 2
2017-7407 5 7 3 3 2
2015-3237 23 28 1 30 1
2015-3145 8 149 40 38 5
2015-3144 69 503 16 105 1

Top-1 (#@%) 1@6.67 0@0 5@33.33 0@0 7@46.67

Top-3 (#@%) 3@20.00 1@6.67 8@53.33 4@26.67 11@73.33

Top-5 (#@%) 5@33.33 2@13.33 8@53.33 5@33.33 14@93.33

Top-20 (#@%) 8@53.33 5@33.33 10@66.67 6@40 100@100

MRR 0.17 0.07 0.42 0.13 0.65

ordered by the probability of correctness, where reciprocal
rank value is the multiplicative inverse of the ranking of
the first correct result. In our search scenario, there is only
one correct result per search. So we also use this indicator
(MRR = 1

|Q|
∑|Q|

i=1
1

ranki
, |Q| = 15 here) to measure the

effectiveness of the four tools. When each search result is
ranked first, the MRR reaches a maximum value of 1. From
Table 3, we can see that BinSeeker has an MRR of 0.65, which
is much larger than that of the other four tools.

4.2.2 Result Analysis
The ranking in Table 3 shows that the two learning-based
approaches Genius and Gemini rank four and nine vulner-
abilities beyond 50, respectively. We have examined the
assembly functions with the corresponding vulnerability
and found the reasons that can cause the inaccuracy. One is
that function inlining exists in the higher optimization level
binary functions during compiling, which affects instruction
features of the function. The other reason is that the CFGs of
the same function are changeable under different platforms,
which is reflected in the semantic embedding vector of the
function. These lead to inaccurate prediction results of these
two tools. Semantic emulation-based approach CACompare
also ranks 4 vulnerabilities beyond 50. Because the illegal
arguments passed to the functions cause the body of the
function to be bypassed during emulation, unrepresentative
semantic signatures are produced. In addition, constant
integers in programs are treated as memory references to
constant data sections (e.g., .rodata section) in one platform,
and is directly used as immediate values in another plat-
form. For binary functions from the same source function,
the instruction addressing patterns and the order of instruc-
tion accessing memory differ greatly. This also affects the
order and number of semantic signatures. These cause the
phenomenon of mismatching.

BinSeeker improves the search accuracy of Gemini by
introducing LSFG in the semantic learning component. Then
BinSeeker executes semantic emulation on similar functions
to further improve the search accuracy of the vulnerability.
This is why BinSeeker can achieve the best results. How-
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ever, one function with the targeted vulnerability is ranking
outside the top-10 candidate results in Table 3. The reasons
that reduce the accuracy of CACompare also have effects on
BinSeeker, since they all involve the process of function em-
ulation. Fortunately, BinSeeker only emulates M functions,
thus to a certain extent avoiding the shortcomings that affect
search accuracy of CACompare. Due to the combination of
semantic learning and emulation, BinSeeker can make use of
the advantages of both and compensate for the correspond-
ing disadvantages. As a result, BinSeeker achieves an ideal
search ranking in most cases, and a somewhat poor ranking
in rare cases.

4.2.3 Contributions of LSFG and Feature Set
We propose a new semantic learning approach in BinSeeker,
which has a 1.23× ranking improvement when compared to
the learning-based approach Gemini. It has a similar process
to Gemini, but differs in two aspects. The first difference is
that we also add the DFG between basic blocks instead of
just using the CFG. The other difference is that we use a set
of different features to participate in generating function-
level embedding vectors. Thus we conducted experiments
on dataset I to verify the contributions of these two im-
provements to search accuracy improvement. Based on the
default configuration detailed in Section 4.1, we train our
models on the training set according to the following two
different requirements, then evaluate the effectiveness on
the test set.
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Fig. 6. Contributions of LSFG and feature set in BinSeeker

a) Effectiveness of LSFG. After fixing the feature set
of BinSeeker-, we use CFG, DFG, PDG and LSFG separately
for the experiments. Fig. 6(a) shows their effectiveness in
the form of ROC curve (receiver operating characteristic
curve). The area enclosed by the ROC curve and the x-
axis is expressed as AUC (area under the curve), which
is equivalent to the probability that a randomly chosen
positive example is ranked higher than a randomly chosen
negative example. The AUC values for CFG, DFG, PDG
and LSFG are 0.86, 0.83, 0.85 and 0.88, respectively. When
the model achieves high classification accuracy, even small
improvements are not trivial. We conclude that applying
CFG alone in the semantic learning module can achieve
better search accuracy than that of DFG and PDG. It means
that the control flow structure of the function is better
at identifying similar functions than data transfer in our
semantic learning module. However, by adding DFG, the
search accuracy will be further improved. This proves that
the LSFG used in BinSeeker is effective and achieves a 2.33%
improvement than CFG alone.

b) Effectiveness of Feature Set. Related researches have
proposed several sets of block-level features for predicting

similar functions in learning-based methods [7], [22]. By
observing and analyzing the characteristics of different bi-
naries compiled across different platforms, we propose a set
of features that are suitable for performing the vulnerability
search task. We use the feature set of Gemini and feature
set of BinSeeker- to conduct experiments for code similarity
prediction, both of which are based on LSFG. Fig. 6(b)
shows the performance of different feature sets. We observe
that the feature set of BinSeeker- has better performance
compared to the feature set of Gemini. The AUC value for
BinSeeker-’s feature set is 0.88, which is 12.8% higher than
the feature set of Gemini. The experiment shows that the
proposed feature set in Section 3.1.2 is more robust and
change little under various implementation platforms with
different microprocessor architectures and various compila-
tion optimization configurations.

4.3 Time Cost of Vulnerability Search
We discuss search time obtained by using dataset II and
training time which is based on the dataset I, respectively.

Search Time. We answer RQ2 about how much time
BinSeeker needs to complete a vulnerability search task. This
will have a direct bearing on whether BinSeeker can be used
in the industry. We use the X86-GCC-O0 version of the
program as the target to experiment for time cost. Table 4
shows the time cost of the five tools for each program.
Column 2 lists the number of functions in each program.
Columns 3–7 are the time cost to complete a vulnerability
search. All the time is measured in seconds, and the values
are rounded.

TABLE 4
Time cost of the five tools on each program. (Unit: second)

Program #Functions Genius Gemini CACompare BinSeeker- BinSeeker

libjpeg 580 928 81 343 110 206
Wget 804 1,326 116 531 160 282
Openssl 5,995 8,992 849 8,432 1,145 1,323
Coreutils 119 198 20 92 23 44
curl-7.53.1 1,113 1,747 167 722 225 362
curl-7.40.0 2,760 4,664 469 1,022 549 805

AVG 1,895 2,976 284 1,857 369 504

In this experiment, the program contains an average of
1,895 functions. Gemini, BinSeeker- and BinSeeker demand
less time cost in completing a vulnerability search, which are
284s, 369s and 504s on average, respectively. It means that
they need an average of 0.15s, 0.19s and 0.27s to calculate
the similarity between a target function and a vulnerable
function. However, Genius and CACompare require 2,976s
and 1,857s to finish one vulnerability search from 1,895
functions. Their time costs are much higher and require
4.90× and 2.68× more than that of BinSeeker. As a result,
BinSeeker is clearly better suited to perform the vulnerability
search task on a large scale of code.

Looking closely at Columns 2 through 7 of Table 4, we
find that the time cost of Genius, Gemini and BinSeeker-
increases linearly with the number of functions roughly. The
main reason is that these three tools need to extract features,
generate semantic embedding vectors, and compute the
similarity to the vulnerability for all functions of the pro-
gram. However, the time cost of CACompare and BinSeeker
does not follow the same pattern. CACompare emulates each
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function dynamically, so the number of loop executions in
the function affects the time cost, which does not conform to
the linear growth phenomenon. In contrast to that, BinSeeker
only needs to perform the emulation for the fixed number
of candidates. Therefore, the more functions are in the pro-
gram, the closer the time spent by BinSeeker is to BinSeeker-.

In summary, for a single function, although the time
cost of BinSeeker is 0.12s more than the fastest tool Gemini
on average, BinSeeker manages to achieve a better search
accuracy in a reasonable amount of time. Although Genius
is also a learning-based approach, it is nearly 10× slower
than Gemini or BinSeeker- and thus inappropriate to be the
semantic learning module of BinSeeker.

Training time. Since only the learning-based approaches
require training models, we describe the training time for
three tools in comparison: Genius, Gemini, and BinSeeker-.
With 100,000 pairs of samples, Genius requires 50 days to
produce a model by spectral clustering. To train models for
100 epochs under our default configurations, Gemini and
BinSeeker- require 17 and 22 days, respectively. Nevertheless,
the training process is a one-time cost without any effect on
vulnerability search efficiency after deployment. It means
that once obtaining an effective model, we can use it in any
appropriate scenario without having to retrain it again. As
we will see in Section 4.5.4, we do not need to train for
100 epochs. The 50-epoch model can be as good as the 100-
epoch model, and the AUC value increases very slowly as
the epoch rises so that we can reduce the training time of
BinSeeker- by half (specifically, 11 days).

4.4 Effectiveness of BinSeeker- Front End
The search accuracy experiment in Section 4.2 shows that
Genius performs slightly better than BinSeeker-. The first
intuition is whether we can use Genius as the front end of
BinSeeker to get candidate lists for known vulnerabilities.
Therefore, in this section, we will evaluate this thought
from the aspects of accuracy and efficiency by analyzing
the experimental data. The role of the front end is to output
a list of candidate functions for further refinement ordering
by the back end. Therefore, changing the value of M will
affect whether the output candidate list of the front end
can actually contain known vulnerabilities. The experiments
mainly focus on combining Genius and BinSeeker- with the
semantic emulation back end respectively to evaluate the
recall rate and time cost, abbreviated as Genius + Emulation
vs. BinSeeker. Since the only difference is the front end, we
only change the value of M, and the other configurations are
the same as those in Sections 4.2 and 4.3.

The effectiveness of the front end in BinSeeker can be
evaluated via the recall rate, which measures the ability
of the search system to find real vulnerabilities. In this
experiment, the value of N is fixed to 20, M has four values
(that is 50, 100, 150, and 200), and the front-end output is
denoted as top-M candidates. Let TP be the number of
true vulnerabilities ranking in the top-M candidates (true-
positives) and FN be the number of true vulnerabilities
ranking outside the top-M candidates (false-negatives). For
the false-negative case, BinSeeker would not identify them
correctly. The metric recall rate = TP

(TP+FN) reflects the
completeness of the searched positives on the top-M can-
didates. Table 5 shows the recall rates with different M
values and the average time cost used to calculate each pair
of vulnerable function and target function.

TABLE 5
The recall rate on different M values and the average time cost.

Tools Recall Rate, N=20 Time Cost
M=50 M=100 M=150 M=200

Genius+Emulation 73.33 93.33 100.00 100.00 1.57
BinSeeker 60.00 66.67 80.00 100.00 0.19

As can be seen from Table 5, whenN is fixed at 20, differ-
ent M values produce diverse recall rates for the two kinds
of combinations between two front ends and one back end.
WhenM is 50, the combination of Genius plus emulation can
generate a recall rate of 73.33%, which can identify 22.22%
more real vulnerabilities than BinSeeker. When M expands
to 100, the recall rate of the former reaches 93.33% and im-
proves 39.99% than BinSeeker. However, when M increases
to 200, the recall rate of both reaches 100% in dataset II. Once
the target binary is determined, the total number of binary
functions to be processed by each front end is the same
and does not change with M . So the average time cost of
processing each pair of functions is also an important factor
in choosing a suitable front end. BinSeeker’s front end only
needs 0.17s to handle a pair of functions, while Genius takes
7.26 times more time. This means assuming that a binary
has 5,000 functions, it takes Genius and BinSeeker- 2.18 hours
and 0.26 hours to output top-M candidate functions to the
emulation module, respectively. In addition, model training
time for Genius is 2.27 times that of BinSeeker-.

As a summary, when the total number of functions to
be searched is determined, the front end that we need to
choose should take as little time as possible to gain the
maximum recall rate. Obviously, BinSeeker- front end with
slightly larger M value is more suitable than Genius here.

4.5 Hyper-parameters Studies
In this section, we explore how to set the most appropri-
ate parameters for BinSeeker and evaluate the impacts of
different hyper-parameters on search accuracy. Studies con-
tain two parts: the parameter settings of semantic learning
module BinSeeker- with dataset I, the selection of M and
N values in BinSeeker with dataset II. The first part is from
Section 4.5.1 to Section 4.5.4, where all the hyper-parameters
are evaluated on the test set. In the study of each hyper-
parameter, except for the parameter being evaluated, other
parameters take default settings, as described in Section 4.1.
The second part is discussed in Section 4.5.5.

4.5.1 Size of Training Epochs
Increasing training epochs results in more time being spent
in weight updating. However, it is pointless to increase
the number of training epochs blindly, which may not
substantially change the parameter values of the model. So
we want to know when the performance of the model tends
to be stable. In total, we train the model for 100 epochs and
evaluate the loss value and AUC value on the test set for
every epoch. The loss value refers to the sum of the squares
of the difference between the predicted similarity and the
label value among all samples. Fig. 7(a) and Fig. 7(b) show
the loss value and the AUC value, respectively. We can
see that our approach has achieved a good performance in
about 50 epochs, the AUC value is 0.88, and the loss value is
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(d) ROC curves for the embedding depth n
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(e) ROC curves for the number of iterations T
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Fig. 7. Hyper-parameter studies results. Employing the test set of dataset I, Fig. 7(a–e) describe the predictive effects of the semantic learning
model with different choices of the training epochs, the embedding size, the embedding depth and the number of iterations. Using dataset II, Fig.
7(f) shows the percentage of vulnerabilities that BinSeeker can successfully find under different M and N values. With the variation of embedding
size, the embedding depth and the number of iterations, the AUC value of BinSeeker remains higher than that of Gemini. The temporary exception
in Fig. 6(b) is because our model contains more parameters and needs more epochs for training in the early stage.

0.83. The loss values for both approaches are below 1.2. As
the number of epochs increases, we eventually have a higher
AUC value than Gemini, even though it is lower in about the
first 30 epochs. The main reason is that our model contains
more parameters and needs more epochs for training in the
early stage.

4.5.2 Embedding Size
The embedding size refers to the dimension of the em-
bedding vector used to represent the function semantics.
We use the ROC curves to evaluate which embedding size
can achieve the best performance. Fig. 7(c) plots the exper-
imental results. When the embedding size is greater than
64, their corresponding ROC curves are close to each other.
We choose 64 as the default embedding size because it can
reduce the time cost of training and prediction. Whatever
embedding size is set up for BinSeeker, the AUC value is
higher than that of Gemini with the optimal settings. This
phenomenon also applies to the embedding depth and the
number of iterations.

4.5.3 Embedding Depth
The embedding depth refers to the number of layers of the
two fully-connected networks represented as σc, σd. Fig.
7(d) shows the effects of varying embedding depth. The
relatively good AUC value is obtained when the embedding
depth is 2. This means that by increasing a two-layer fully-
connected network, the generated embedding vectors also
get higher representation capabilities and better capture the
function semantics. However, when the embedding depth
exceeds 2, there will be no benefit other than a higher time
cost of training and prediction.

4.5.4 Number of Iterations

It refers to the number of hidden layers in the LSFG-based
embedding generation network in Fig. 4(b). We vary the
number of iterations T and get results of ROC curves drawn
in Fig. 7(e). When the number of iterations is 6, our approach
achieves the best performance of code clone. This means
that the feature vector of each vertex in LSFG can propagate
6-hops along with the graph topology.

4.5.5 Selection of M and N Values

The performance of BinSeeker depends on the M candidate
functions produced by the semantic learning module. This
group of experiments will discuss the influence of M values
on the value of N in BinSeeker. Fig. 7(f) shows the effective-
ness of different M and N values. The x-axis is the different
M values (50, 100, 200, and 400). The y-axis is the percentage
of vulnerabilities that BinSeeker can successfully find when
the M and N values are fixed. For each M, we study the
percentage of four N values (1, 5, 10, and 25).

From Fig. 7(f), we know that when N is fixed, the number
of vulnerabilities BinSeeker can detect increases with the
increase of the M value. But the N value needs to be at
least 25 to achieve 100% search accuracy. Larger M value is
more likely to ensure that the vulnerability can be searched,
which is cost-effective to increase the time cost of just 0.98s
per function on average. When the M value is fixed, the
percentage also gets higher with the increase of the N value.
When M is 200, the percentage can reach 100%. However,
it may not grow to 100% due to a small M value that will
result in no vulnerability in the top-M candidate results. To
sum up, the values of M and N are best set to 200 and 25 for
all vulnerabilities to be found within a relatively short time.
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5 THREATS TO VALIDITY

We present some potential threats that may affect the per-
formance of BinSeeker and provide some coping strategies.

a) Semantic Learning Model. The performance of
BinSeeker depends on the top-M candidate functions ex-
ported by the semantic learning module. If we can reduce
the value of M without losing accuracy, the total vulnera-
bility search time required by BinSeeker will be shortened.
When training the network model, we can enhance the
generalization ability of the model by increasing the discrete
training samples from multiple binary programs. In general,
the model with a larger training epoch will have stronger
vulnerability prediction ability. Nevertheless, we need to
pay attention to model over-fitting.

b) Function Inlining. Compiler optimizations may in-
line some functions to the callers to maximize the runtime
speed. Whether the analyzed function contains inlined func-
tions affects the number of instructions within the function,
and ultimately affects function embedding vectors. Bingo
[4] proposes an inline decision algorithm based on six
commonly-observed invocation patterns. It is possible to
adopt the algorithm to inline called functions selectively,
then to extract basic block features. In this way, analyzed
cross-platform functions will have a consistent inline strat-
egy, which is likely to increase search accuracy.

c) Binary Obfuscation. Code obfuscation can signifi-
cantly change the control flow structure (e.g., CFG flat-
tening, opaque predicates), sometimes even the data de-
pendence structure, which brings enormous side effects to
the function semantics. Before constructing the LSFG for
learning and emulating, we first need to deobfuscate code
[28], which will effectively solve the impact of obfuscation.

d) Binary Diversity. The binary functions obtained from
the same source code under different compilation scenarios
have great differences. For some less complex compilation
scenarios, the accuracy of Gemini and BinSeeker can be much
higher than the results presented in Fig. 7(b). For example,
in the dataset settings of [8], Gemini’s AUC value of the
model is 0.971 and ours is about 0.984, which is much higher
than the value of 0.818 and 0.885 tested in our test set.
Our dataset I contains five different programs of various
sizes with more compilation options, but the dataset of
Gemini only contains two. We find that the more complex
the compilation scenario is, the greater the improvement
BinSeeker achieves. The emulation approach described in
this paper mitigates the impact of binary diversity to some
extent.

e) False Negative. If the front end BinSeeker- gets some
false negative, the second part is useless. But both learning-
based and emulation-based approaches have the problem
of false negatives and false positives. The false positives of
learning-based approaches are more serious, and the false
negatives of emulation-based approaches are more serious.
To our best knowledge, it is not possible to completely solve
the problem of false positives and false negatives currently,
and there is no exhaustive solution for every single one.
We can increase the parameter M to reduce the possibility
of false negative cases, as described in Section 4.5.5. In the
case of the original Gemini, if we consider a function with
vulnerability ranked top-5 as accurate, Gemini only achieves
an accuracy rate of 13.33%. When the values of M and N are
100 and 5, the false negatives of BinSeeker is only 33%, and
the top-5 accuracy is 67%. From the figure, we know that

when N is fixed, the number of vulnerabilities BinSeeker
can detect increases with the increase of the M value. Larger
M value is more likely to ensure that the vulnerability can
be in the candidate list, which is cost-effective to increase
the time cost of just 0.98s per function on average. In our
experiments, when the values of M and N are set to 200
and 25, all vulnerabilities can be found in the top-25 results.
This is a significant breakthrough in reducing the human
efforts of manually confirming real vulnerabilities from a
large number of suspicious functions.

6 RELATED WORK

6.1 Syntax and Structure Based Search
The idea of vulnerability search based on syntax and struc-
ture is that similar code fragments have similar syntax
structures. CCFinder [29] detects cloned source code in large
scales based on lexical code tokens. It generates the token
sequences of the source code through a lexical analyzer
and then obtains the regularized sequences with rule-based
transformation. Finally, it applies a suffix-tree matching
algorithm to compute similarity. BinDiff [30] builds CFGs
of the two binaries and then adopts a heuristic algorithm
to normalize and match the two CFGs. BinSlayer [31] im-
proves BinDiff by adopting the Hungarian algorithm [32]
for bipartite graph matching. DECKARD [33] produces an
abstract syntax tree (AST) to represent the source program,
and further extracts feature vectors from AST, improving
the efficiency and accuracy of the detection.

6.2 Semantics Calculation Based Search
Semantics calculation based vulnerability search approaches
use the semantic features calculated from the syntactic
structures to better represent searched codes. COP [10] is a
plagiarism detection tool that combines program semantics
with the longest common sub-sequence based fuzzy match-
ing. BinHunt [34] considers matching CFGs as the maxi-
mum common induced sub-graph isomorphic problem. It
leverages symbolic execution and theorem proving to match
the basic blocks with the same semantics. BLEX [35] is a
dynamic function matching tool that uses several semantic
features obtained during the function execution (for exam-
ple, values read from the program heap) in the matching
process. BinGold [22] extracts the semantics of binary code
concerning both data and control flow and synthesizes
them into a novel representation called the semantic flow
graph. However, it does not support cross-architecture clone
detection, and its average precision is 74.97%. BinSim [5]
calculates the equivalences of aligned system calls to better
handle code obfuscation. It is a hybrid method to identify
fine-grained semantic similarities or differences between
two execution traces.

6.3 Learning Based Search
Learning-based vulnerability search approaches automati-
cally learn semantic features of the program or select proper
code similarity algorithms to find the cloned code. VulPecker
[36] applies the SVM classification approach to select a set of
code-similarity algorithms that could distinguish unpatched
pieces of code from the patched ones. VulDeePecker [37] uses
code gadgets to represent programs and employs BLSTM
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neural network to extract features instead of having hu-
man experts manually defining the features. In [38], the
authors present a deep learning-based clone detection tool,
extracting hidden patterns of the lexical and syntactic levels
based on the RNN. Based on the bipartite graph matching
algorithm, Genius [7] calculates the similarity between a
specified ACFG (attributed control flow graph) and each
representative ACFG in the codebook generated by the
spectral clustering algorithm. Gemini [8] generates an em-
bedding vector for each function represented by the CFG,
then compares each pair of vectors to get the prediction
result. VulSeeker [9] proposes a set of lightweight instruc-
tion features and integrates DFG into CFG to enhance
the robustness against structural differences in the CFG.
VulSeeker-Pro [12] supplements multiple semantic signatures
to evaluate function similarity, and mainly focuses on the
optimization of a single architecture. BinSeeker seamlessly
integrates our previous optimization [9], [12], and supports
the cross-architecture function emulation to achieve a better
performance in both time and accuracy.

7 CONCLUSION

In this paper, we present BinSeeker, an accurate and efficient
cross-platform binary vulnerability seeker that integrates
semantic emulation with semantic learning. In semantic
learning, by combining both the data flow dependency
and the control flow dependency of the binary function,
we capture more function semantics than the existing ap-
proaches and output the M candidate functions that are
similar to the vulnerable function. Then through semantic
emulation, BinSeeker further improves the search accuracy
and outputs more accurate top-N candidate functions out
of the M candidates. Overall, BinSeeker achieves higher
search accuracy with a lower computation requirement than
state-of-the-art tools such as Genius, Gemini and CACompare.
Compared to the time users spend in manually identifying
real vulnerabilities from a collection of hundreds of false
positives and a few true positives, the running time is
almost negligible. Our future work will seek to improve the
robustness of the semantic emulator and apply it to more
platforms.
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