
Model Driven Design of Heterogeneous Synchronous
Embedded Systems

Huafeng Zhang2, Yu Jiang1, Han Liu2, Hehua Zhang2, Ming Gu2, Jiaguang Sun2

Department of Computer Science, University of Illinois at Urbana-Champaign, Illinois, USA.1
School of Software, Tsinghua University,TNLIST, KLISS, Beijing, China2

ABSTRACT
Synchronous embedded systems are becoming more and more
complicated and are usually implemented with integrated
hardware/software solutions. This implementation manner
brings new challenges to the traditional model-driven de-
sign environments such as SCADE and STATEMATE, that
supports pure hardware or software design.

In this paper, we propose a co-design tool Tsmart-Edola to
facilitate the system developers, and automatically gener-
ate the executable VHDL code and C code from the for-
mal verified SyncBlock computation model. SyncBlock is a
lightweight high-level system specification model with well
defined syntax, simulation and formal semantics. Based on
which, the graphical model editor, graphical simulator, veri-
fication translator, and code generator are implemented and
seamlessly integrated into the Tsmart-Edola. For evaluation,
we apply Tsmart-Edola to the design of a real-world train
controller based on the international standard IEC 61375.
Several critical ambiguousness or bugs in the standard are
detected during formal verification of the constructed sys-
tem model. Furthermore, the generated VHDL code and C
code of Tsmart-Edola outperform that of the state-of-the-art
tools in terms of synthesized gate array resource consump-
tion and binary code size.

The abstract demo video address is :
https://youtu.be/D9ROyJmKZ4s

The tool, user manual and examples can be downloaded:

http://sts.thss.tsinghua.edu.cn/Tsmart-Edola/

CCS Concepts
•Software and its engineering → Model-driven soft-
ware engineering;

Keywords
model driven development, computation model, hardware-
software co-design

1. INTRODUCTION
With the increasing complexity of safety critical applica-

tions such as aerospace, transportation areas, etc., mixed
hardware-software solutions are increasingly adopted. Such
systems are commonly component-based, where some com-
ponents are implemented in hardware to ensure determi-
nacy and stability, while others without strict timing and
performance constraints are usually implemented in soft-
ware to save computation resource. This implementation
pattern leads to an increasing heterogeneity of the final sys-
tem, which challenges the traditional model driven design
(MDD) environment (for example, SCADE [2] does not sup-
port partitioning and hardware synthesis, Simulink [6] does
not support partition and temporal properties verification,
and the semantics of their underlying computation models
are complex and not easy for engineers to handle.).

Main Challenge: More specifically, the first challenge is
that how to capture the heterogeneous behavior of both
hardware and software modules in a unified co-design model,
especially for timing consistency. The behavior of hardware
module for synchronous applications is usually controlled
by a hardware clock with a strict cycle, while the timing of
software module usually depends on the size and complex-
ity of the code. The second challenge is that how to ensure
the correctness of the co-design model through a complete
validation for the static and temporal properties. The last
challenge is that how to overcome the gap between the com-
plex co-design model and low-level mixed hardware-software
parallel implementation on a dedicated hardware platform.

Proposed Toolkit: To address the above challenges, we
implement Tsmart-Edola, to assist the co-design of complex
safety-critical synchronous systems which embodies a mixed
hardware-software solution. As presented in Figure 1, Tsmart-
Edola is built on the formal computation model SyncBlock
[9]. (1) First, a graphical model editor based on the syntax of
SyncBlock is provided to support high-level modeling of hier-
archical system decomposition, and concurrent synchronous
behavior of both hardware and software components. (2)
Second, a graphical simulator based on the executive se-
mantics of SyncBlock is provided to support the interactive
graphical simulations of the model under development. (3)
Third, a verifier translator is provided to translate the se-
lected graphical model to a synchronized labeled transition
system that can be formally verified directly by tool Bea-
gle [8], to get the provably exhaustive. (4) Fourth, a code
generator is provided to generate VHDL code for the com-
ponents partitioned into hardware implementation, and C
code for software implementation. Because the timing in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...$15.00

http://dx.doi.org/10.1145/2970276.2970280

774

Graphical
Model Editor

Simulator

Verifier

Code
Generator

Functional
requirements

Model

VHDL
and C
codes

Model of Computation : SyncBlock
Syntax Semantics

Functional
requirements

Semantics
Interpretation

Model
Transformation

Synthesis
Mechanism

Model
Construction

VHDL
code

C
code

Graphical
Model Editor

Graphical
Simulator

Verifier
Translator

Code
Generator

Mixed
hardware/software

solution

Figure 1: Tsmart-Edola design toolkit builded on SyncBlock computation model. It consists of four components:
graphical model editor, graphical simulator, verifier translator, and code generator.

terval for the behavior of software modules usually depends
on the complexity of statements and the speed of processor,
the code generator needs to generate a scheduling mech-
anism to keep the timing consistency and synchronization
among different software and hardware modules, which are
executed in parallel and independent with each other.

With the support of Tsmart-Edola, we are able to shorten
the development cycle to build and validate a SyncBlock
model at high-level, compared to the traditional practice
which involves implementing the sketch-like design in low-
level programming languages as C and VHDL. In addition,
the graphical model validation through simulation and en-
hanced formal verification opens a user-friendly interface for
us to uncover design defects at the early development stage.
Once we have verified safety-critical properties over the sys-
tem model and iteratively improved the design details, ex-
ecutable code can be directly generated in C(software) and
VHDL(hardware). The synthesized implementation is com-
pact and has a smaller size than the results of some other
VHDL and C code generators. For example, when we ap-
ply it to a multifunction vehicle bus control system design,
given a function that can be modeled by both SyncBlock
and Stateflow with almost the same number of states and
transitions, the size of generated VHDL code and C code
is reduced by up to 40% and 50% respectively, compared to
Simulink code generators of Stateflow. Gate array consump-
tion of VHDL synthesis and binary code of C compilation
are also smaller by 35% and 49% respectively. Furthermore,
several safety-critical bugs in the standard IEC 61375 [4] are
detected during the model validation of Tsmart-Edola.

Contribution: Main contributions are summarized as:

• We have implemented Tsmart-Edola to support the
lightweight formal computation model SyncBlock, to
tackle the complexity of the heterogeneous embedded
system design, where graphical model construction,
simulation, verification, and effective partitioning and
modularized resource saving code generation are im-
plemented.

• We have applied it to a real system design, where de-
velopers successfully found critical bugs of the IEC
standard during the model validation, and deployed
the synthesized system in operation of real subway con-
trol. We have made it publicity free, which may mo-
tivate scientific community to use it to work on more
real model-driven design practice.

Paper Organization: Related work is presented in Sec-
tion 2. Some backgrounds on the formal computation model

SyncBlock is presented in Section 3. Section 4 briefly intro-
duces the tool implementation and integration of Tsmart-
Edola. Experiment results on the model-driven design of
a real train control system adopting the mixed software-
hardware solution are presented in Section 5, and we con-
clude in Section 6.

2. RELATED WORK
Model-Driven Embedded System Design: There are
large amounts of work and various toolkits in the industry
and academia supporting the design of general synchronous
reactive embedded software systems. For example, STATE-
MATE supports Statechart, which is good for control logic
description but the support of the dataflow and structure
description is limited [7]. SCADE uses safety state ma-
chine(SSM) as the formal basis, and has been successfully
applied in a variety of applications. While mainly focusing
on embedded software, SCADE currently has little support
for the synthesis of hardware. Simulink is now widely used
with Stateflow as its basis [6]. It presents strong model-
ing, simulation and synthesis capability, but has no formal
semantics for comprehensive verification on safety-critical
applications even with support of Design Verifier [12].

Except for the three famous industrial frameworks above,
there are some tools for academia interests. For example,
ForSyDe is implemented on a Haskell based domain spe-
cific language, served as high-level modeling and refinement
of digital systems [14]. POLIS supports CFSM, and uses
Esterel as the specification language for simulation and syn-
thesis [1]. Although it supports the co-design of hardware-
software, the model must be translated and use another
separate tool Ptolemy for simulation [3]. Others such as
GalsBlock and DDFchart focus on the applications with
both synchronous and asynchronous modules implemented
in pure hardware [11, 17, 15, 16].

Main Difference of Tsmart-Edola: (1) Most of the above
tools can generate either C or VHDL code for the whole
model, but few allows to configure some subsystems to be
implemented in C and others in VHDL, such as SCADE
and STATEMATE. Modular code generation is highly de-
manded by engineers. To guarantee the correctness of such
configurable co-synthesis, synchronization among the paral-
lel software and hardware modules is supposed to be fed with
special scheduling mechanism, which is seldom implemented.
(2) Tools such as Polis and Simulink address the modeling
and co-synthesis problem, but the verification support needs
to be increased with the increasing complexity and number
of safety requirements of the system. Our lightweight seman-
tics and modeling elements results in a easier understanding

775

mf_free
mf_ask

mf_out
mf_ enable

mf_ fin

send_start

mf_addr
mf_read

mf_empty

mf_init

bp_start

bp_num

mf_ack

mf_from_sram

mf_request

mf_init

bp_num

mf_ack

bp_start

pool_write
write_addr

bp_init

mf_init

write_edge

write_addr

read_addr

bp_init

data_in

data_out

mf_num

bp_start_mf

mf_init

mf_pool_empty
mf_request

bp_start_mf

In data_in

mf_num read_addr

mf_ enable
send_start

mf_out
mf_ fin

mf_pool_ram

mf_generator_ctrlmf_pool_ram_ctrl

mf_addr
mf_read

mf_ask
mf_free

mf_addr

mf_read

pool_write

mf_ask

mf_free

write_addr

bp_init

mf_init

bp_num

mf_ack

bp_start

S0

(t1)[bp_start==1]{counter=0;}

S2

S1

(t2)[mf_init==1]{ mf_ask==1}

var counter
Var counter_clr

S3

(t3)[mf_init==1&& mf_ask==1]

S4

(t5)[mf_init==1&&counter<=6] {counter_clr == 0;}

(t4)[mf_init==1]{ mf_read=1;
mf_addr=bp_num%2+counter;
write_addr=counter;
pool_write=1;}

S5

(t5)[mf_init==1&&counter>6]

(t5)[mf_init==1]
{counter=0; bp_init=1; mf_free=1;}

S0

(t1)[true]
{if (counter_clr == 0)
counter = 0;

Else
counter ++;

fi}

Figure 2: A visual example of SyncBlock parallel computation model, including the compound block, atom
block, input data port, output data port, dataflow connection, parallel automata, local variable, and transition.

and increases the verification and synthesis ability, which
makes the life of engineers easier. In summary, Tsmart-
Edola is not a subset of SCADE and Simulink, it increases
the verification and synthesis ability of them with the cost of
reducing the complex seldomly used features and semantics
of the underlying computation model. Notice that even if we
just use a subset of elements in SSM and Stateflow for mod-
eling, the synthesis and verification ability of the constructed
model in the SCADE and Simulink will not be increased.

3. BACKGROUND ON SYNCBLOCK
In SyncBlock computation model, a system is specified as

a combination of compound and atom blocks communicating
through point-to-point channels. The compound block does
not directly conduct computation. Instead, it presents the
hierarchical decomposition of general component structure
and data flow path among them. The atom block is refined
as parallel automata to capture the component behaviors
and detail computations.

We illustrate main features of SyncBlock with a graphical
example in Tsmart-Edola as presented in Fig. 2. This mod-
ule accomplishes the function of master frame generation
and sending logic. At the outermost level, compound block
mf generator is refined as three sub-blocks (atom block
mf pool ram, mf generator ctrl and mf pool ram ctrl).
Theses atom blocks cooperate to generate the master frame
to be sent in the train communication network. The dots
attached on the right side of each block are used to de-
note the output data port, while the dots on the left side
are used to denote the input data port. Communications
among these blocks are realized through the data port con-
nections. The arrow on the connection indicates the sig-
nal flow direction of data exchange, and the expression of
the connection facilitates the data-oriented behavior mod-
eling. The input data port of the compound block can
be connected to the input data port of the refined atom
blocks (e.g. bp start → bp start). The output data port
can be connected to the input data port of other blocks
(e.g. pool write → write edge), and the output data port
of high-level blocks (e.g. send start→ send start).

Atom block mf pool ram ctrl is refined by two paral-
lel automata with two local shared variables counter and
counter clr. The transition between two states consists of
three parts: name, guard, and action. All statements are de-
fined on the updates of data ports and local variables, and all
statements of an action ai attached on a transition are exe-

cuted in parallel. Automata contained in an atom block abi
is also executed in parallel and independent of each other,
but there still might be conflicts on read-write operations
(e.g. counter). Each local variable and output data port
can be written by one automaton, and the read operation is
prior to the write operation. All atom blocks contained in
the model are also executed in parallel. The complete rules
and definitions can be referred to the manual [9].

4. TOOL IMPLEMENTATION
Tsmart-Edola is implemented on Eclipse Rich Client Plat-

form with Eclipse Graphical Editing Framework for 57,265
lines of Java code, where 36,278 lines are inherited from
Tsmart-GalsBlock [17] used for pure hardware design. The
visual interfaces of most model-driven design environment
are similar, but their kernel implementations for simulation,
verification, and code generation are different, because their
underlying computation models are totally different. Over-
all structure of Tsmart-Edola is presented in Figure 1.

Graphical Model Editor. Graphical model editor is
based on the model construction rules presented in [9], and
supports graphical modeling of hierarchical system decom-
position, point-to-point channel communication, and con-
current synchronous behavior. It facilitates to capture sys-
tem requirements and functional descriptions visually via
the SyncBlock model of Figure 2, and the main interface is
introduced in Figure 3.

Editor for structure and behavior model

Element for
Compound
and atom
block

Contents
in this
block

Error information

Contents in
this project

Structure interface of system decomposition modelled as compound block

Blocks
contained
In the
library

Tool Bar for model construction simulation, verification translation, and code generation

Figure 3: The overall interface of the implemented
Tsmart-Edola toolkit.

776

The interface shows how to construct the hierarchical struc-
ture and data connections among system components. It
contains six views. (0) The toolbar allows us to create, sim-
ulate, partition, verify, and synthesize code from the selected
blocks in the editor view. (1) The package explorer shows
the projects in the workbench and the models contained in
the current project. (2) The editor view shows the diagram
of a selected model and allows us to edit it by adding/remov-
ing elements. (3) The palette provides the elements (data
ports, connection, idle atom block, idle compound block)
that can be dragged and dropped in the model shown by
the editor. (4) The palette provides a reusable and common
system component models library that can be dragged into
the editor. (5) The element explorer shows the contents con-
tained in the block of the selected atom or compound block
in the editor view. (6) The properties view allows us to view
and edit the properties of the element selected in the editor
view and some error information presentation.

A similar interface to define component behaviors is also
designed. When the engineer selects an atom block in the
editor view of the structure interface described above, clicks
it twice, then the interface will be opened. It provides
similar views of Figure 3 except two differences. Instead
of the elements (data ports, connection, idle atom block,
idle compound block) for structure construction, the palette
view provides the elements (data ports, variables, transition,
states) that can be dragged to construct parallel automata
in the editor view. The properties view allows us to view and
edit the properties of an element, especially for the complex
actions and priorities attached on each transition.

Graphical Simulator. Graphical simulator is based on
the model interpretation algorithm of SyncBlock presented
in [9], and supports the interactive graphical simulation of
the system model. In the semantics of SyncBlock, it should
adhere to the reactions of the real system, where each sys-
tem reaction step mainly involves in three phases: import
inputs, compute changes and export outputs. During simu-
lation, users can explore the system behaviors to check the
correctness of the constructed model. The simulation func-
tion provides some basic functions: step-forward, step-roll
back, read inputs from the input files for multi-step forward,
etc. Through the interactive simulation, most functional re-
quirements can be checked.

Visual graph of the simulated block

Structure of
the simulated
block

Error information

Name and value
of input ports

Name and value
of output ports
and variables

initialize, forward, roll back, reset instruction

Figure 4: The overall interface of the simulation.

The simulation interface provides six views. (0) The tool-
bar allows us to do initialization, reset, execution forward,
and roll back. (1) The input view shows the name of the
input data ports, where the engineer can input the values
for each computation. (2) The output view shows the name

of the output data ports and the shared variables, where the
engineer can check the values after each computation. (3)
The editor view shows the content of the simulated block.
If we click an atom block twice, each automaton contained
in this block would be presented. The transitions in a com-
putation are executed visually, and the current active states
are highlighted in red. (4) The element explorer shows the
contents and the structure of the simulated blocks in the
editor view. (5) The properties view allows us to view some
error information during simulation.

Verifier Translator. Verifier translator is based on the
formal semantics of SyncBlock, and translates selected graph-
ical model to a labeled transition system. Detail translation
rules such as each parallel automata flatten, complex ac-
tions split, are described in the manual [9]. The generated
transition system is described within the generated files with
suffix *.elts, and can be directly invoked by tool Beagle [8]
for formal verification. We just need to click the button“Ex-
port to ETLS” in the toolbar, the SyncBlock model would be
automatically translated into the labeled transition system
file, and efficiently verified by the tool Beagle. The for-
mal verification makes up the incompletion of simulation to
strengthen the correctness for safety critical requirements.

Code Generator. Code generator is based on the co-
synthesis mechanisms presented in [9], and generates the
hardware description files with suffix *.vhd for the blocks
partitioned into hardware implementation, and executable
software code files with suffix *.c for the blocks partitioned
into software implementation. Noting that many partition-
ing algorithms have been proposed in the last decades, which
is not the main concern and contribution of this work, and
we use our previous algorithms [10] for partitioning. The
key idea is to custom each atom block of SyncBlock as a
node in the partitioning algorithm and find a bipartition
P on a communication graph denoted as G(V,E), where
V is a set of nodes {v1, v2 · · · vn} and E is a set of edges
{eij |1 ≤ i, j ≤ n}, and P = (Vh, Vs) such that Vh

⋃
Vs = V

and Vh

⋂
Vs = ∅. Then, the partitioning problem can be

decided by a decision vector x(x1, x2 · · ·xn), representing
implementation way of n task modules. When the value of
xi is 0 (1), the task module will be implemented in hardware
(software). Objective of the problem is changed to search an
n-dimensional space to find the optimal value of the decision
vector on the objective function of hardware cost H(x) and
time constraints T (x).

Then, for software synthesis, we use C sub-function call to
capture the compound block, and C thread definition to cap-
ture the automata contained in the atom block. Because the
automata contained in the innermost atom block are running
in parallel and synchronized with the clock, the thread for
each automaton needs to be synchronized with the barrier.
We implement a dynamic barrier in two files named timer.h
and timer.c as the synchronization scheduler of all threads.
For hardware synthesis, we use the architecture description
code of component map in VHDL to capture the compound
block, and the behavior description code of process defini-
tion in VHDL to capture the automata contained in the
atom block. Furthermore, to keep the execution cycle con-
sistency between the reaction of hardware FPGA processor
and the reaction of software ARM processor, the frequency
of the FPGA processor is used to initiate the parameter of
the sleep() function contained in the generated software. We
just need to click the button “Export Model as C” and “Ex-
port Model as VHDL” in the toolbar, the SyncBlock model

777

would be automatically translated into the corresponding
executable C and VHDL code. The generated code out-
performs the state-of-the-art VHDL and C code generated
by other tools in terms of synthesized gate array resource
consumption and binary code size.

5. EXPERIMENT RESULTS
To evaluate the effectiveness of Tsmart-Edola, we apply

it to the model-driven design of a multifunction vehicle bus
controller(MVBC) used in the train communication network
(TCN), which is standardized in IEC 61375 [18, 19]. We
compare it with BeagleBone [13] (one available design frame-
work for MVBC of class 2) and Simulink (one framework for
general system design). We mainly compared them in the
bug detection of the IEC standard 61375 and the resource
consumption during the model-driven design of MVBC. Over-
all results are presented in Tabel 1 and introduced as follow.

More complex example

Figure 5: The model in Tsmart-Edola for the MVB
controller of level 5.

Model Construction: Strictly following the specification
of the standard IEC-61375, two types of communication ser-
vices of MVBC are modeled as eighteen compound blocks
presented in Figure. 5. Modules can be hierarchically con-
structed and debugged in Tsmart-Edola. The constructed
SyncBlock model for the whole system is presented in Fig-
ure 5, with details can be referred to the website in the
abstract. Inheriting those modeling of MVBC within class
1-4 of previous works presented in section 2, we build the
model for process data communication which is later par-
titioned for hardware implementation. Then, according to
the description of IEC-61375, we build the model for mes-
sage communication of class 5 which is partitioned for soft-
ware implementation. The MVBC of class 5 supports both
process data and message data communication with mixed
hardware-software implementation, as adopted by the most
widely used MVBC D113 of Duagon company [5].

Model Validation: After preliminary graphical model sim-
ulation, the constructed model is translated through verifier
translator, and safety-critical properties are formulated as
logic assertions for Beagle verification. For example, you can
formalize the requirement that during data packet retrans-
mission procedure, the resent data packet number should be
the next packet to be sent as the formula as:

[]((NK==true) derive (NK number==next send))

Unfortunately, the assertion fails to pass the verification.
Through manually analysis of the counterexample provided
in Beagle, we located the violation in the atom block frame

retransmission contained in the compound block message
service. The bug is tracked to C statement {expected :=
NK seq nr; send not yet := (expected + credit) % 8;} con-
tained in the action of transition for the data retransmission,
which is located in Table 33 of the standard IEC 61375. In
this buggy scenario, the system fails to update the value
of packet number to be retransmitted. To fix the bug, the
statement needs to be changed to ({ expected := NK seq nr;
send not yet := (expected + credit) % 8; next send := ex-
pected;}). As presented in Table 1, six problems about
the message transmission and master rotation are verified
and detected, which can be traced back to the pseudo code
descriptions in Table 33-35 and Figure 105 of IEC 61375.
By fixing the bugs in the standard, the modified SyncBlock
model passes the verification.

Code Generation: Following the implementation style of
Duagon company, the process data communication related
modules partitioned for hardware implementation are syn-
thesized with 11,000 lines of VHDL code, and the message
communication related modules partitioned for software im-
plementation are synthesized with 65,000 lines of C code.

The VHDL code for the atom block mf generator ctrl
of Figure 2 contains 359 lines of code with 7KB in size. If
we use Stateflow to model this function and generate code
by Simulink, the size grows to 12 KB, although number of
the state and transition is the same for Stateflow model and
SyncBlock model. Furthermore, because SyncBlock compu-
tation model uses the bounded integer, type of the inter-
face declaration in generated VHDL code is mapped to the
ranged integer. This contributes to a great reduction on
resource usage when generating the RTL (Register Transfer
Level) file from VHDL code. When we synthesized all VHDL
code into the target device xc6slx16-3ftg256 with the xilinx
ISE, it will cost 3380 number of slice registers, while for
the VHDL code generated by Simulink for Stateflow model,
the number is increased to 5421. The generated C code
for atom block master transfer is 893 lines with 53KB in
size. But in Simulink, generated C code is almost double-
sized to be 98KB with 2461 lines of code for the main logic.
The generated C code can also be compiled and simulated in
the visual studio development environment of Microsoft, and
the binary file is 349 kb and 683 kb for the code generated
by SyncBlock and Simulink respectively. The difference is
mainly derived from the fact that Simulink generates many
extra configuration files and introduces many libraries for
scalability. Similar results hold for the comparison between
Tsmart-Edolaand BeagleBone. Details about the resource
utilization of VHDL synthesization and C compilation, and
the bug detection results are concluded in Table 1, which
proves the efficiency of the toolkit Tsmart-Edola.

Synthesized Device: Then, the synthesized binary files for
the generated VHDL code and C code can be loaded into
the FPGA and ARM processors on the MVBC network card,
respectively. To test the reliability of the co-synthesized sys-
tem, we connect the widely-used industrial product MVBC
card D113 with our synthesized controller card for real-
time communication. The co-synthesized system is embed-
ded into an industrial computer to receive instructions from
the keyboard. We use an application running on the indus-
trial computer to monitor the communication, and read the
message data from the memory. Sequences and contents of
data frames are accurately compatible with the definition in
the standard IEC-61375. In addition, the automatically co-

778

Table 1: Resource utilization of VHDL synthesization and C compilation for MVBC system of class 5 and 2.
VHDL Logic Utilization Tsmart-class-5 Simulink-class-5 Tsmart-class-2 BeagleBone-class-2

Number of Slice Registers 3380 5421 2577 3728
Number of Slice LUTs 4724 6957 3915 5374

Number of fully used LUT-FF pairs 2927 4295 2009 2712
C Compilation Tsmart-class-5 Simulink-class-5 Tsmart-class-2 BeagleBone-class-2

Binary File Size KB 349 683 0 0
Bug in IEC Standard Detected 6(verification) 1(simulation) 2(verification) 1(verification)

synthesized MVBC passes the physical and electrical test.
It has been also equipped on a real test train traveling over
thirty thousand kilometers without failures.

6. CONCLUSION
In this paper, we develop the toolkit Tsmart-Edola to facil-

itate the design of complex synchronous embedded systems
with both hardware and software components. The graph-
ical model construction, and validation through simulation
and verification help us find problems in the early stage of
system design. After all properties are satisfied, we can gen-
erate executable implementation from the validated model
automatically, with some components in C, and others in
VHDL. Furthermore, when we apply it to the model-driven
design of MVBC based on the standard IEC 61375, several
critical bugs and some other ambiguousness in the standard
are detected during the model verification, and automatic
implementation based on the bug-free model has been de-
ployed and in operation in real subway controllers. In the fu-
ture, code generators to Java and Verilog will also be added,
code verifiers will also be integrated for the verification of the
generated code and the toolkit itself, and different versions
for different operation systems will be provided.

7. ACKNOWLEDGMENT
This research is sponsored in part by NSFC Program (No.

91218302, No. 61527812), National Science and Technology
Major Project (No. 2016ZX01038101), Tsinghua University
Initiative Scientific Research Program (20131089331), MIIT
IT funds (Research and application of TCN key technologies
) of China, and The National Key Technology R&D Program
(No. 2015BAG14B01-02).

8. REFERENCES
[1] F. Balarin. Hardware-software co-design of embedded

systems : the POLIS approach. The Kluwer
international series in engineering and computer
science. Kluwer Academic Publishers, 1997.

[2] Berry. Scade-synchoronous design and validation of
embedded control software. In Proceedings of the
workshop Next generation design and verification
methodologies for distributed embedded control
systems, pages 19–33. Springer, 2007.

[3] J. T. Buck, S. Ha, E. A. Lee, and D. G.
Messerschmitt. Ptolemy: A framework for simulating
and prototyping heterogeneous systems. 1994.

[4] I. E. Commission et al. Iec 61375-1. Train
Communication Network, 2011.

[5] Duagon. Mvb controller: D113. 2014.

[6] G. Hamon and J. Rushby. An operational semantics
for stateflow. In Fundamental Approaches to Software
Engineering, pages 229–243. Springer, 2004.

[7] D. Harel and M. Politi. Modeling reactive systems with
statecharts: the STATEMATE approach.
McGraw-Hill, Inc., 1998.

[8] F. He, L. Yin, and B.-Y. Wang. Beagle
http:// sts.thss.tsinghua.edu.cn/ ceagle/ .

[9] Y. Jiang, M. Gu, and J. Sun. User manual of
syncblock. In Technical Report, pages 1–56. Tsinghua
University, 2015.

[10] Y. Jiang, H. Zhang, X. Song, W. N. Hung, M. Gu,
and J. Sun. Uncertain model and algorithm for
hardware/software partitioning. In IEEE Computer
Society Annual Symposium on VLSI, 2012, pages
243–248. IEEE, 2012.

[11] H. Zhang, X. Song, W. N. Hung, M. Gu, and J. Sun.
Design of mixed synchronous/asynchronous systems
with multiple clocks. In IEEE transaction on parallel
and distributed systems. IEEE, 2014.

[12] T. MathWorks. Simulink. Inc., Natick, MA, 2010.

[13] R.Aarthipriya and S. Chitrapreyanka. Fpga
implementation of multifunction vehicle bus controller
with class 2 interface and verification using
beaglebone black. International Journal of Science
and Engineering Research, 3(5):3221–3225, 2015.

[14] I. Sander and A. Jantsch. System modeling and
transformational design refinement in forsyde [formal
system design]. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on,
23(1):17–32, 2004.

[15] R. Wang and M. Gu. Formal modeling and synthesis
of programmable logic controllers. Computers in
Industry, 62(1):23–31, 2011.

[16] W. Wei and X. Fan. Imperfect information dynamic
stackelberg game based resource allocation using
hidden markov for cloud computing. 2016.

[17] H. Zhang, Y. Jiang, X. Song, W. N. Hung, M. Gu,
and J. Sun. Tsmart-galsblock: A toolkit for modeling,
validation, and synthesis of multi-clocked embedded
systems. In Proceedings of the 2014 Foundations of
Software Engineering. ACM, 2014.

[18] Y. Yang. From stateflow simulation to verified
implementation: A verification approach and a
real-time train controller design. In 2016 IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2016.

[19] Y. Jiang and H. Zhang. Design and optimization of
multi-clocked embedded systems using formal
techniques. IEEE Transactions on Industrial
Electronics, 62(2):1270–1278, 2015.

779

