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ABSTRACT
Code reuse improves software development efficiency, however, vul-
nerabilities can be introduced inadvertently. Many existing works
compute the code similarity based on CFGs to determine whether
a binary function contains a known vulnerability. Unfortunately,
their performance in cross-platform binary search is challenged.

This paper presents VulSeeker , a semantic learning based vul-
nerability seeker for cross-platform binary. Given a target function
and a vulnerable function, VulSeeker first constructs the labeled
semantic flow graphs and extracts basic block features as numerical
vectors for both of them. Then the embedding vector of the whole
binary function is generated by feeding the numerical vectors of
basic blocks to the customized semantics aware DNNmodel. Finally,
the similarity of the two binary functions is measured based on
the Cosine distance. The experimental results show that VulSeeker
outperforms the state-of-the-art approaches in terms of accuracy.
For example, compared to the most recent and related work Gemini,
VulSeeker finds 50.00% more vulnerabilities in the top-10 candidates
and 13.89% more in the top-50 candidates, and improves the values
of AUC and ACC for 8.23% and 12.14% respectively. The video is
presented at https://youtu.be/Mw0mr84gpI8.
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1 INTRODUCTION
In order to improve the efficiency of software development, copy-
paste of code and reuse of third-party libraries are common. If such
a development process is poorly managed, unpatched vulnerable
code can easily be propagated to different software programs. With
the popularity of terminal devices, software programs on traditional
x86 architecture are gradually being compiled and ported to other
architectures (e.g., ARM, MIPS). As a consequence, more and more
binary programs contain a large number of similar or identical
vulnerable codes. For example, 145 unpatched clone vulnerabilities
are confirmed in the Debian system [7].

Manyworks have been presented to perform vulnerability search
for cross-platform binaries based on code clone techniques [3, 5, 6,
9, 14] or fuzzy testing [8, 13]. Most of the clone-based techniques
analyze the control flow graph (CFG) to determine whether a binary
contains vulnerabilities or not [3, 5, 6, 14]. They perform well on
their settings, but the accuracy and efficiency may lose coming
across to large-scale binaries.

In this paper, we present VulSeeker1, a semantic learning based
vulnerability seeker for cross-platform binary. VulSeeker acquires
a higher accuracy and efficiency through the labeled semantic flow
graph (LSFG) construction and the semantics aware deep neural
network (DNN) based function semantics generation. The LSFG
contains both the CFG and DFG (data flow graph), so more semantic
information of a binary function is captured than using the CFG
alone. The semantics aware DNN model transforms numerical fea-
tures of basic blocks within the function into function semantics
(or embedding vector). Vulnerability is identified by measuring the
similarity of two binary functions based on the Cosine distance of
their embedding vectors.

For evaluation, we compare VulSeeker with the state-of-the-art
cross-platform binary clone vulnerability search approach on some
widely used third-party benchmarks consisting of real-world appli-
cations. The experimental results show that VulSeeker outperforms
the most recent and related work Gemini [14]. On average, in terms
of clone detection, the AUC and ACC of VulSeeker are 88.49% and
81.3%, which are 8.23% and 12.14% higher than those of Gemini.
Furthermore, we use the CVE-2015-1791 vulnerability to evaluate
the vulnerability search capability in 4643 firmware images. In the
top-10 and top-50 most similar results, VulSeeker found 50.00% and
13.89% more real vulnerabilities than Gemini.

1VulSeeker is available at https://github.com/buptsseGJ/VulSeeker
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(a) Overall architecture and workflow of VulSeeker .

push   rbp
mov    rbp, rsp
sub      rsp, 30h
mov    [rbp+var_24], edi
mov    [rbp+var_14], 0
mov    [rbp+var_10], 1
mov    [rbp+var_4], 0
cmp    [rbp+var_10], 0
jz        short loc_40057b

add      [rbp+var_24], 1
mov    eax, [rbp+var_24]
mov     eax, 0
jmp      short loc_400593

loc_40057B: 
add     [rbp+var_14], 1
mov    eax, [rbp+var_14]
mov    eax, 0

mov     [rbp+var_4], eax
mov     eax, 0
leave
retn
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(b) An example of the LSFG construction.
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(c) An example of the block feature extraction.

Figure 1:VulSeeker design. (a) is the overall architecture. (b-c) are examples for LSFG construction and block feature extraction.

2 RELATEDWORK
Binary Clone Detection. COP [9] is a plagiarism detection tool
that combines program semantics with longest common subse-
quence based fuzzy matching. BinGold [2] extracts the semantics
of binary code in terms of both the DFG and the CFG, and syn-
thesizes them into a novel representation called the semantic flow
graph. However, it does not support cross-architecture clone de-
tection. BinSim [11] calculates the equivalences of aligned system
calls to better handle code obfuscation. It combines dynamic slicing
with the weakest precondition calculation to identify fine-grained
semantic similarities between two execution traces.

Vulnerability Search. Bingo [3] leverages selective inlining
and length variant partial trace to compute function semantics,
which constitute function models to perform similarity comparison
and vulnerability search. Genius [6] utilizes the spectral clustering
to generate a codebook and calculates the similarity between a
specific ACFG and each representative ACFG in the codebook based
on the bipartite graph matching algorithm. Gemini [14] extracts the
same lightweight features as Genius and only relies on the CFG to
generate the embedding vector of the function. Then the similarity
of two embedding vectors is measured to get a prediction result.

Main Difference. Different from the above work, as far as we
know,VulSeeker is the first tool that combines CFG andDFG to form
LSFG, and applies deep learning to perform vulnerability search for
cross-platform binary. It extracts 8 types of lightweight instruction
features for each basic block in LSFG. Based on the graph topology
and the revised semantics aware DNN model, we apply 6 layer
iterations to the LSFG to obtain the semantic representation of the
entire binary function, and acquire higher accuracy.

3 VULSEEKER DESIGN
The overall workflow of VulSeeker is shown in Figure 1(a). It con-
tains four major components: LSFG construction, block feature ex-
traction, function semantics generation and similarity calculation.
The goal of VulSeeker is to determine whether the target binary
contains functions similar to known vulnerabilities or not. There-
fore, its input is two binary functions from the target binary and
the vulnerability database. Firstly, VulSeeker constructs the LSFGs
for the two binary functions. Then it extracts 8 types of lightweight
instruction features and encodes them as a numerical vector for
each basic block of the LSFG. Function semantics is generated by

feeding the numerical vectors of basic blocks within the LSFG to
the semantics aware deep neural network (DNN) model. Finally,
VulSeeker outputs whether the target binary function contains a
known vulnerability or not based on the similarity of embedding
vectors of the two input functions.

3.1 LSFG Construction
Labeled semantic flow graph contains both the CFG and the data
flow graph (DFG), and their edges are marked as 0 and 1 respec-
tively. Its purpose is to improve the accuracy of function semantics
generation, because it considers both the control structure and
the data transfer within a function, which will effectively mitigate
the structural interference introduced by the varying CFG under
different platforms. Figure 1(b) illustrates an example of the LSFG.

We use IDAPython provided by IDA Pro [12] to create the CFG
for the basic blocks of each binary function. Based on the CFG,
we infer whether there should be a data pointing edge between
two basic blocks by leveraging the LLVM IR plugin [10] on IDA
Pro. For two instructions i and j from two different basic blocks
which meet the CFG topology, if the instruction i writes a memory
location and the instruction j reads the same memory address, we
create a data dependent edge for these two blocks. In addition, only
the data dependencies between different blocks are preserved, and
there is at most one data dependent edge between two basic blocks.
VulSeeker stores the control edges and data edges of each function
in two files.

3.2 Block Feature Extraction
By referring to features used in previous works [2, 6] and executing
a series of code clone experiments for different feature sets, we
have finally determined to use 8 types of features shown in Table
1 as the initial semantic representation of each basic block. These
selected features are lightweight and robust, which can be easily
extracted and change little under various implementation platforms
with differentmicroprocessor architectures and various compilation
optimization configurations. We utilize the IDAPython to extract
features for each basic block. Then we encode the 8 features of
each basic block as a numerical vector. Figure 1(c) is the numerical
vectors of each basic block corresponding to the function in Figure
1(b). For each binary function, numerical vectors of all the basic
blocks within the function are stored in a separate file.
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Table 1: Basic-block level features used by VulSeeker.

Feature Name Example

No. of stack operation instructions push, pop
No. of arithmetic instructions add, sub
No. of logical instructions and, or
No. of comparative instructions test
No. of library function calls call printf
No. of unconditional jump instructions jmp
No. of conditional jump instructions jne, jb
No. of generic instructions mov, lea

3.3 Function Semantics Generation
The input of this component is the d dimensional initial numerical
vectors of all the basic blocks within the function, and the output
is the p dimensional embedding vector representing the function
semantics. To precisely capture function semantics, data and control
dependencies between basic blocks along the LSFG topology need
to be considered. Referring to the structure2vec neural network [4],
we propose a semantics aware DNN model shown in Figure 2 that
specializes in processing structured LSFG representation.
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(b) A schematic diagram for generating the embedding 
vector of each vertex during t-layer iteration.
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Figure 2: The DNN model of VulSeeker.

Figure 2(a) is a LSFG denoted as д = ⟨V , E ⟩, containing three
vertices with initial numerical vectors: x1, x2, x3, where V and E
represent the vertex set and edge set, respectively. Edges marked
1 and 0 indicate data dependency and control dependency, respec-
tively. The DNN model contains a total of T layer iterations, and
each iteration transforms the initial numerical vector xi of each
vertex i into its embedding vector µ̃ (t )i . After obtaining the embed-
ding vectors of all the basic block vertices within the function, we
aggregate them into the p dimensional embedding vector µ̃ of the
function with the formula µ̃ = W2(Σi∈V µ̃

(T )

i ), where W2 is a p × p
dimensional parameter matrix.

Figure 2(b) illustrates the schematic diagram for generating the
embedding vector µ̃ (t )i of each vertex i during the t-layer iteration.
The input of the transformation process consists of three different
parts: initial numerical vector xi of the corresponding vertex i (the
dotted arrow in Figure 2(a-b)), the sum of previous embedding vec-
tors of vertices pointing to vertex i through the control dependency
(denoted as C(i)), and the sum of previous embedding vectors of
vertices pointing to vertex i through the data dependency (denoted
as D(i)). The embedding vector of vertex i is calculated through the
formula µ̃ (t )i = tanh(W1xi + σc (Σj∈C(i) µ̃

(t−1)
j ) + σd (Σj∈D(i) µ̃

(t−1)
j )), where

W1 is a d × p dimensional parameter matrix. σc and σd are two
n layer fully-connected networks responsible for calculating an
embedding vector with more powerful representation capability,
they are represented as follows:{

σc (lc ) = P1 × ReLU (P2 × · · · ReLU (Pn × lc ))
σd (ld ) = Q1 × ReLU (Q2 × · · · ReLU (Qn × ld ))

where n is the embedding depth of each vertex, Pi and Qi are p × p
dimensional parameter matrixes. Through T layer iterations, the
feature of each vertex is propagated to other vertices as the iteration
progresses along with the LSFG topology, ensuring that each basic
block of the function has corresponding context semantics.

3.4 Similarity Calculation
Once obtaining the embedding vector µ̃ for target function and
the embedding vector ν̃ for vulnerable function, VulSeeker calcu-
lates their similarity with the Cosine function ŷ = cos(µ̃, ν̃ ) = µ̃ ·ν̃


µ̃


·


ν̃ 


 ,
where ŷ is the similarity score, ranging from −1 to 1. If the sim-
ilarity score ŷ is larger than a pre-defined threshold, the target
binary function is considered similar to the vulnerability. We use
TensorFlow [1] to implement the semantics aware DNN model and
apply the stochastic gradient descent algorithm to automatically
learn model parameters, such asW1,W2,P1 and Q1.

4 EXPERIMENTAL RESULTS
VulSeeker mainly contains 3 executable files that can be used based
on the following steps: 1) modify the config.py file to configure the
target programs for vulnerability search; 2) execute the command.py
file to generate the LSFGs and extract initial numerical features
for basic blocks; 3) execute the search_by_list_vulseeker.py file to
obtain the embedding vectors of functions and get the function list
in descending order of similarity scores.

VulSeeker is evaluated on two datasets. Dataset I contains 735,540
functions with 9,345K basic blocks. We compile BusyBox (v1.21.0),
OpenSSL (v1.0.1f and v1.0.1u) and Coreutils (v6.5 and v6.7) in X86,
X64, MIPS32, MIPS64, ARM32, ARM64 architectures, using GCC
(v4.9 and v5.5) with optimization levels O0-O3. Dataset II consists
of 4643 firmware images for various architectures from [6]. All
experiments are conducted on default configurations of the DNN
model as follows: the embedding depth n is 2, the embedding size
p is 64, the number of iterations T for each basic block is 6, the
training epoch is 100.

Accuracy of Code Clone. We treat two different compiled ver-
sions of the same source function as a pair of similar functions and
vice versa. We randomly select 2500 pairs of similar functions and
2500 pairs of dissimilar functions from the dataset I to perform the
comparative experiment with Gemini configured with the optimal
parameters [14]. Figure 3 is their ROC (receiver operating charac-
teristic) curves of code clone. We observe that the ROC curve of
VulSeeker is above Gemini, which means that VulSeeker can achieve
a higher true positive rate at the same false positive rate. The AUC
value and ACC value of VulSeeker are 88.49% and 81.3%, which
are 8.23% and 12.14% higher than those of Gemini. In summary,
VulSeeker outperforms Gemini, because in addition to the CFG, we
also construct the DFG for tracking the usages of variables between
basic blocks. During function semantics generation, we obtain more
robust semantic information with a revised DNN structure, which
is beneficial to the effective identification of clone functions.
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Figure 3: ROC curves of code clone.

Furthermore, the experimental result of Gemini here is lower
compared with the description of the literature [14]. Two reasons
lead to this situation. One is that our dataset I contains 5 programs,
but Gemini only contains 2 of them. The other is that we compile
these programs into six architectures, including three 64-bit ones,
and Gemini only compiles them into three 32-bit ones. The number
of general-purpose registers used in 32-bit and 64-bit architectures
is different, which affects the feature vectors of basic blocks, and
its results drop accordingly. In their relatively simpler setting, they
could acquire the AUC value of 97%, andwe could improve the value
to almost 99%. We found that the more complex the dataset is, the
more improvements VulSeeker would achieve, and the performance
of Gemini drops faster than VulSeeker for complex settings.

Accuracy of Vulnerability Search. We employ dataset II to
evaluate the effectiveness of VulSeeker and Gemini in vulnerability
search. We take CVE-2015-1791with 48 compiled versions as the vul-
nerable function. For each version of the vulnerability, we employ
the two tools to perform the search task from known vulnerable
firmware images. For each firmware image, we sort the functions
in descending order of the average similarity scores for 48 searches.
VulSeeker ranks the vulnerability function 8th on average, whereas
Gemini ranks 99th on average. If we take the highest rankings
out of 48 searches for each firmware image, VulSeeker has a 100%
chance of finding the vulnerable function in top-3 candidates which
is 11.76% higher than Gemini.

Table 2: The accuracy of vulnerability search

top-K Gemini VulSeeker

#Num Percent #Num Percent

1 1 100% 1 100%
5 2 40% 3 60%
10 4 40% 6 60%
50 36 72% 41 82%
100 75 75% 83 83%

For the search results of theMIPS32 version vulnerability, we sort
the functions in all firmware images in descending order of similar-
ity scores. Table 2 shows the effectiveness of vulnerability search on
the top-K most similar results among all functions. Column 1 is the
different K value. Columns 2 and 4 are the number of real vulnera-
bilities in the top-K results, and columns 3 and 5 are the percentage
of corresponding real vulnerabilities. We can see that VulSeeker
has a great improvement on the search precision than Gemini. In

top-10 results, VulSeeker finds 50% more vulnerabilities than Gem-
ini. In summary, VulSeeker outperforms Gemini in the vulnerability
search in terms of the CVE-2015-1791. We also do some evaluation
on other CVEs, and the performance improvements remain.

Time Cost. VulSeeker mainly consists of four components, and
for the size of the experimental database, it can determine whether
the given binary function contains a known vulnerability within
an average of 0.20 seconds, while Gemini takes about 0.15 seconds.
Function semantics generation takes up almost half of the time
cost, and its time cost grows linearly with the number of basic
blocks within the function. Although the time cost of VulSeeker is
0.05 seconds more than Gemini, we can achieve a higher search
accuracy in a reasonable time.

5 CONCLUSION
In this paper, we present VulSeeker , a cross-platform binary vul-
nerability seeker based on semantic learning. With integrating the
CFG and the DFG of the binary function, we capture more func-
tion semantics. Experimental results show that VulSeeker achieves
88.49% AUC value and 81.3% ACC value for code clone, which
improves 8.23% and 12.14% than Gemini, respectively. In the case
study of CVE-2015-1791 vulnerability search,VulSeeker finds 50.00%
more vulnerabilities in the top-10 candidates and 13.89% more in
the top-50 candidates. For the time cost of vulnerability search,
VulSeeker needs 0.20 seconds to determine whether a function has
a known vulnerability or not in the relatively huge database. These
demonstrate that VulSeeker is suitable for vulnerability search of
large-scale code.
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