
Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and
Scheduling

Chijin Zhou
KLISS, BNRist, School of Software

Tsinghua University
Beijing, China

zcj18@mails.tsinghua.edu.cn

Mingzhe Wang
KLISS, BNRist, School of Software

Tsinghua University
Beijing, China

wmzhere@gmail.com

Jie Liang
KLISS, BNRist, School of Software

Tsinghua University
Beijing, China

liangjie.mailbox.cn@gmail.com

Zhe Liu
Computer Science and Technology

NUAA
Nanjing, China

zhe.liu@nuaa.edu.cn

Yu Jiang∗
KLISS, BNRist, School of Software

Tsinghua University
Beijing, China

jiangyu198964@126.com

ABSTRACT
Coverage-guided fuzzing is one of the most popular software test-
ing techniques for vulnerability detection. While effective, current
fuzzing methods suffer from significant performance penalty due
to instrumentation overhead, which limits its practical use. Existing
solutions improve the fuzzing speed by decreasing instrumenta-
tion overheads but sacrificing coverage accuracy, which results in
unstable performance of vulnerability detection.

In this paper, we propose a coverage-sensitive tracing and sched-
uling framework Zeror that can improve the performance of ex-
isting fuzzers, especially in their speed and vulnerability detection.
The Zeror is mainly made up of two parts: (1) a self-modifying
tracing mechanism to provide a zero-overhead instrumentation for
more effective coverage collection, and (2) a real-time scheduling
mechanism to support adaptive switch between the zero-overhead
instrumented binary and the fully instrumented binary for better
vulnerability detection. In this way, Zeror is able to decrease col-
lection overhead and preserve fine-grained coverage for guidance.

For evaluation, we implement a prototype of Zeror and evaluate
it on Google fuzzer-test-suite, which consists of 24 widely-used
applications. The results show that Zeror performs better than ex-
isting fuzzing speed-up frameworks such as Untracer and INSTRIM,
improves the execution speed of the state-of-the-art fuzzers such as
AFL and MOPT by 159.80%, helps them achieve better coverage (av-
eragely 10.14% for AFL, 6.91% for MOPT) and detect vulnerabilities
faster (averagely 29.00% for AFL, 46.99% for MOPT).

KEYWORDS
Coverage-guided Fuzzing, Coverage-Sensitive Tracing, Scheduling
∗Yu Jiang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE 2020, 21 - 25 September, 2020, Melbourne, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Coverage-guided fuzzing is one of the most popular software test-
ing techniques for bug detection. In the past few years, it has gained
significant traction in academic research as well as in industry prac-
tice. Most notably, Google’s OSS-Fuzz [18] adopts American Fuzzy
Lop (AFL) [25], honggfuzz [21] and libFuzzer [34] to continuously
test open source applications. Over 16,000 bugs in 250 open source
projects are discovered by OSS-Fuzz.

A coverage-guided fuzzer feeds a program with random test
cases, collects coverage-increasing test cases (such test cases are
called interesting seeds), and generates new test cases by mutating
those seeds. The key goal of coverage-guided fuzzers is to maximize
coverage and explore deeper paths as fast as possible. Many fuzzing
optimizations have been proposed to maximize coverage, including
the ones that improve seed selection strategy [5, 14, 41, 42] or
mutation strategy [6, 28, 29, 36], the ones that integrate multiple
fuzzing optimizations [9, 30, 32], and the ones that leverage taint
analysis [2, 7, 8, 41], symbolic execution [40, 46, 49, 52, 53], human
knowledge [1, 45, 54], or machine learning [10, 16, 44] to assist
fuzzing.

While those above optimizations greatly improve performance,
especially in coverage improvements, they do not take fuzzing over-
head into consideration, which may hinder them from achieving
better scalability. For example, the overhead caused by coverage
collection is costly. We conduct experiments on AFL using real-
world programs of Google fuzzer-test-suite [17] to investigate the
overhead of collecting coverage. To our surprise, AFL spends an
average of 71.85% and up to 98.5% of its runtime to trace coverage.
Some related works try to decrease overheads from instrumenta-
tion. INSTRIM [22] reduces instrumentation cost by instrumenting
a part of basic blocks and reconstructing coverage information. Un-
tracer [39] avoids tracing coverage of non-coverage-increasing test
cases by removing visited instrumentation points. They can effec-
tively decrease overhead but cannot preserve fine-grained coverage
guidance, which limits their vulnerability detection.

To speed up fuzzing and further improve vulnerability discovery,
the main challenge is to keep a good balance between instrumenta-
tion overheads and the granularity of the collected coverage. Those
existing overhead reduction methodologies decrease the overhead

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang

with sacrificing coverage accuracy. For example, our experiments
demonstrate that compared with AFL, although improves the speed
by 155.75%, Untracer decreases coverage by 8.31%, which results
in an unstable ability of vulnerability discovery. Therefore, it is
not easy to keep a good balance between overhead reduction and
coverage accuracy.

In this paper, we propose a coverage-sensitive tracing and sched-
uling framework Zeror , which aims at increasing fuzzing speed
with diversely-instrumented binaries. The main idea is switching
to a self-modifying based zero-overhead-instrumented binary for
fuzzing when the normal instrumented binary fails to make better
progress. Zeror is mainlymade up of two parts: (1) A self-modifying
tracing mechanism to provide a zero-overhead instrumentation for
coverage collection. The self-modifying tracing mechanism reduces
the coverage collection overhead by restricting coverage tracing
to only coverage-increasing test cases. (2) A real-time scheduling
mechanism to support adaptive switch between the zero-overhead
instrumented binary and the fully instrumented binary. To choose
the optimal binary, it estimates the probabilities of discovering
interesting seeds for each binary by Bayesian inference. Instead
of doing a tradeoff between fuzzing speed and coverage accuracy
within a single binary, the scheduler helps fuzzers achieve both by
taking advantages of diversely-instrumented binaries.

We implemented the prototype of Zeror and applied it to sev-
eral state-of-the-art fuzzers, including AFL [25] and MOPT [36].
We evaluated them on Google fuzzer-test-suite, which consists
of 24 widely-used real-world applications. The evaluation results
demonstrate that Zeror performs better than existing fuzzing speed
up frameworks such as Untracer and INSTRIM. Compared with
Untracer, it covers 20.84% more branches with almost the same
execution time. Compared with INSTRIM, it covers 6.82% more
branches with 50.72% less execution time. It improves the execution
speed of original AFL instrumentation, which is also adopted in
MOPT, by 159.80%, helps them achieve better coverage (averagely
10.14% for AFL, 6.91% for MOPT) and exposure vulnerabilities faster
(averagely 29.00% for AFL, 46.99% for MOPT).

In summary, this paper makes following contributions:

• We propose a coverage-sensitive tracing and scheduling frame-
work, which integrates diversely-instrumented binaries and sup-
ports adaptive switch between them, to speed up fuzzing as well
as maintain the vulnerability detection ability.

• We propose a self-modifying tracing mechanism to reduce cov-
erage collection overhead. By using this mechanism, fuzzers will
be sensitive to edge-level coverage granularity and only trace
coverage of coverage-increasing test cases.

• We propose a real-time scheduling mechanism, which is able to
dynamically choose a proper instrumented binary for fuzzing
execution to achieve both speed and accuracy.

• We implemented the prototype of Zeror, which could be applied
to most of the state-of-the-art fuzzers such as AFL and MOPT.
The results show that Zeror could help boost execution speed
and discover vulnerabilities faster than the existing speed-up
framework such as Untracer and INSTRIM.

This paper is organized as follows: Section 2 introduces the back-
ground of coverage-guided fuzzing and coverage tracing. Section 3
illustrates the motivation of this work through an empirical study

on efficiencies of different coverage collection methods. Section 4
elaborates the idea and design of Zeror. Section 5 presents the im-
plementation and evaluation. Section 6 shows some related works
and the main differences, and we get the conclusion in Section 7.

2 BACKGROUND
2.1 Coverage-guided Fuzzing
Coverage-guided fuzzing is currently one of the most effective
and efficient vulnerability discovery solution. It aims to automati-
cally generate proof of concept (PoC) exploits by maximizing code
coverage. AFL [25], libFuzzer [34] and honggfuzz [21] are some
well-recognized coverage-guided fuzzers.

Figure 1 shows the general workflow of a coverage-guided fuzzer.
Given a target program and initial inputs, fuzzing works as follows:
(1) compile target program into target binary, where coverage in-
strumentation are injected; (2) execute the binary and spawn target
process; (3) queue initial inputs into seeds generator; (4) generate
test cases as input; (5) trace coverage to evaluate the test case; (6)
save the test case to corpus if there is coverage growth (i.e. the
test case is interesting), and goto step 4. During the fuzzing exe-
cution loop, performance is highly impacted by execution speed
during runtime. Fuzzer’s runtime consists of two parts, coverage
tracing and fuzzer’s internal logic (including child process estab-
lishment, seed selection and mutation, coverage comparison, etc.).
A simple-but-practical optimization for fuzzer’s internal logic is
AFL persistent mode, where a long-live process can be reused to
try out multiple test cases, eliminating the need for repeated fork()
calls and the associated OS overhead [26].

source code

instrumentation

fuzzing

report

seeds

generator

initial

seeds

Fuzzer

Target Process

input

feedback

binary

coverage

tracer

feedback

Figure 1: The general workflow of coverage-guided fuzzing

2.2 Coverage Tracing
Coverage-guided fuzzers utilize coverage information to guide
fuzzing. They track coverage of each execution, compare the cover-
age with preserved coverage, and check whether current test case is
coverage-increasing. The most common approach to gain coverage
information for fuzzing is instrumentation, which is taken vari-
ously by different fuzzers. For OS kernel fuzzing, Syzkaller [47] and

Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling ASE 2020, 21 - 25 September, 2020, Melbourne, Australia

kAFL [43] instrument target kernel by hardware-assisted mecha-
nisms (e.g. Intel PT [23]). For blackbox (source-unavailable) applica-
tions fuzzing, VUzzer [41] uses PIN [35] to dynamically instrument
black-box binaries. For whitebox (source-available) applications
fuzzing, libFuzzer and honggfuzz use SanitizerCoverage [19] in-
strumentation method provided by Clang compiler, and AFL im-
plements instrumentation by hardcoding basic-block keys into the
assembly file of target programs.

void foo(int *a)
{
 if (a)
 *a = 0;
}

(a) code

if (a)

*a = 0

return

(b) basic-block level

if (a)

*a = 0

return

(c) edge level

Figure 2: Different coverage granularities provided by Sani-
tizerCoverage. Basic-block level focuses on the coverage of
each node, while edge level focuses on the coverage of the
edge. Furthermore, an empty “dummy” block is inserted to
denote a critical edge between two basic blocks.

Different instrumentation mechanisms provide different cov-
erage granularities. SanitizerCoverage and AFL instrumentation
method are two most widely-used coverage instrumentation mech-
anisms. SanitizerCoverage offers basic-block level and edge level
instrumentation. Figure 2 illustrates the mechanisms in a brief ex-
ample. Basic blocks are the nodes of program’s control-flow graph,
denoting a piece of straight line code (i.e. there is no jump in or
out of the middle of a block). SanitizerCoverage extracts control-
flow graph of target program and instruments each basic block in
LLVM IR when the basic-block level instrumentation is activated.
To enhance instrumentation from basic-block level to edge level,
SanitizerCoverage adds “dummy” blocks to denote critical edges,
which is neither the only edge leaving its source block, nor the
only edge entering its destination block. Unlike SanitizerCover-
age, AFL instrumentation method tracks edge coverage directly.
It assigns random keys to target program’s basic blocks during
static instrumentation, dynamically calculates edge keys through
previous basic-block keys and current basic-block keys, and tracks
edge counters in a 64K hash table by edge keys [14, 25]. AFL is also
compatible with SanitizerCoverage [26].

3 MOTIVATIONS
Different coverage collection mechanisms trace different cover-
age granularities. The more accurate information gains through
tracing coverage, the more overheads fuzzing faces. However, it is
unclear how granularity relates to tracing coverage and overhead.
An intuitive impression is that, fuzzers guided by different cover-
age granularities have different strengths when fuzzing different
target programs. To verify our hypothesis, we conducted a prelim-
inary experiment on different coverage granularities to evaluate
each granularity’s efficiency. Three different coverage collection
instrumentation mechanisms are chosen in our experiment:

• AFL (edge): the fuzzer is AFL and target programs are instru-
mented by original AFL’s edge level instrumentation.

• AFL (basic-block): the fuzzer is AFL and target programs are
instrumented by SanitizerCoverage, using basic-block level in-
strumentation.

• AFL (coarse-basic-block): the fuzzer is AFL and the target pro-
grams are instrumented by Untracer [39], which decreases time
on handling discarded test cases but only obtains coarse basic-
block level coverage without accumulating hit count.
We run above three mechanisms on Google fuzzer-test-suite [17]

for 6 hours and select partial results for preliminary illustration (all
experiment settings are in line with Section 5.1). From the result of
Figure 3 and Table 1, we have the following observations:

Observation 1: tracing accurate coverage is costly. As illus-
trated in Section 2.1, coverage tracing and internal logic execution
are two constituent part of fuzzer’s runtime.We record AFL internal
logic execution time during each iteration, and calculate edge level
coverage tracing time by comparing each test case’s execution time
in instrumented version and non-instrumented version. As Figure 3
shows, time spent in tracing coverage accounts for averagely 71.85%
of AFL’s whole runtime. The ratio is even up to 98.5% when fuzzing
openssl-1.0.1f.

c-ares
guetzli

json
lcms

openssl-1.0.1f

openssl-1.0.2d
pcre2

0.0

0.2

0.4

0.6

0.8

1.0

57.5%
42.5% 62.3%

37.7% 68.2%
31.8%

60.5%
39.5%

98.5%
1.5%

72.0%
28.0%

84.0%
16.0%

Time spent on AFL internal logic
Time spent on coverage tracing

Figure 3: Percentage of internal logic execution time and
edge level coverage tracing time in AFL.

Observation 2: the efficiency of each coverage granularity
varies with target programs. We record the time spent in trig-
gering known vulnerabilities for each mechanism, and the result
is shown in Table 1. Due to the limitation of Dyninst [13], Un-
tracer is incompatible with some projects (denote as N/A). From
Table 1, we can see that: AFL (edge) exposes known vulnerabilities
faster than others on openssl-1.0.1f and openssl-1.0.2d; AFL
(coarse-basic-block) exposes known vulnerabilities faster than oth-
ers on guetzli. AFL (basic-block) exposes known vulnerabilities
faster than others on lcms, pcre2.

Focus of this Paper: From the observation 1, we find that trac-
ing coverage is costly. In search for coverage-increasing test cases,
fuzzing is based on genetic algorithm, which makes its effectiveness
highly impacted by execution speed. Thus, we focus on improving
fuzzing efficiency by reducing the coverage collection overhead.
We propose a novel self-modifying tracing mechanism to eliminate
needless coverage collection. Besides, inspired by the observation
2, instead of doing a tradeoff between fuzzing speed and coverage

ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang

Table 1: Time taken to trigger knownbugs for fuzzers guided
by different coverage granularities. ∞ denotes the fuzzer
cannot expose known bugs in 6 hours. N/A denotes compat-
ibility issues of Untracer on specific programs.

Project
Average Reaching Time (seconds)

AFL AFL AFL+Untracer
(edge) (basic-block) (coarse-basic-block)

c-ares 5 5 842
guetzli ∞ ∞ 16257
json 5 6 5
lcms 20679 4084 11827

openssl-1.0.1f 19 31 N/A
openssl-1.0.2d 8716 10407 N/A

pcre2 822 413 6095

accuracy, we propose a scheduling scheme, which helps fuzzers
achieve both goals by integrating diversely-instrumented binaries.

4 ZEROR DESIGN

source code

diversely-

insturmented

binaries

multiple

instrumentations

fuzzing

report

binary-

switching

scheduler

coverage

tracer

seeds

generator

initial

seeds

Fuzzer

Target Process

modify feedback input

switch

feedbackupdate

Figure 4: Overview of Zeror, which mainly includes the
self-modifying tracing mechanism implemented with mul-
tiple instrumentation and coverage tracer, and the real-
time scheduling mechanism implemented with the binary-
switching scheduler. Multiple instrumentation means the
self-modifying tracing based instrumentation and the full
instrumentation of the integrated original fuzzer.

Figure 4 depicts the basic work flow and main components of
Zeror. Different from traditional coverage-guided fuzzing, Zeror
will choose a proper binary as fuzzing target (i.e. the running pro-
gram for fuzzing) among diversely-instrumented binaries. Zeror
consists of two main components : coverage tracer and binary-
switching scheduler. (1) Coverage tracer collects coverage informa-
tion from fuzzing target, stores seeds into corpus if the seeds are

interesting and sends statistical data to binary-switching sched-
uler. It will self-adjust when fuzzing target changes: when fuzzing
AFL-instrumented binaries, coverage tracer will read coverage from
edge-counters hash table; when fuzzing the binaries instrumented
by self-modifying tracing, coverage tracer will monitor the status
of child process and modify the instructions of child process. (2)
Binary-switching scheduler records the statistical data from cover-
age tracer, estimates efficiency of each instrumented binary based
on the statistical data and choose the optimal binary as fuzzing
target when time to switch binary. Specially, we leverage empirical
Bayesian method to estimate efficiency in a cost-effective way and
adopt exponential smoothing to smooth the time-varying efficiency.

4.1 Self-modifying Tracing
As aforementioned, coverage-guided fuzzing spends the majority
of its runtime in collecting coverage. It is intuitive that restrict-
ing coverage tracing to only coverage-increasing test cases will
significantly reduce the overhead. However, how to sense coverage-
increasing seeds and ignore discarded test cases is still an open
problem. Different with static binary rewriting technique used in
Untracer [39], which is coverage-inaccurate, time-consuming and
not scalable on many complex programs, our solution, namely
self-modifying tracing, adopts self-modifying code technique to
address the problem. With the assistance of self-modifying trac-
ing, fuzzers could (1) dynamically remove visited instrumentation
points during fuzzing process; (2) sense fine-grained coverage; (3)
barely introduce new overhead.

Self-modifying code (SMC) refers to the code that can modify its
own instructions during the execution of the program. It is widely
used in many of software systems to support runtime code gen-
eration [27, 37] and optimization [3], minimize the code size [11],
and reinforce dynamic code encryption and obfuscation [24]. There
are several advantages in SMC, such as fast paths establishment,
repetitive conditional branches reduction and algorithmic efficiency
improvement. To apply SMC to coverage tracing, we need to obtain
the addresses of instrumentation points at compilation stage, and
self-modifying the addresses at runtime stage. A step-by-step ex-
ample is shown in Figure 5 to elaborate how our solution performs
self-modifying tracing with compilation stage and runtime stage.

At compilation stage, we need to generate a zero-overhead bi-
nary and obtain the addresses of instrumentation points. However,
there are two challenges to be addressed: (1)How to inject instrumen-
tation points into target program? Blackbox instrumentation will
obtain redundant and less-accurate coverage information, which im-
pair fuzzing performance.While instrumenting programs in awhite-
box way like AFL instrumentation [25] or SanitizerCoverage [19]
will introduce costly overhead. Besides, using self-modifying code
based on AFL instrumentation also obtains coarse-grained coverage
because AFL only injects instrumentation points into basic blocks.
Thus, an instrumentation approach which obtains fine-grained cov-
erage and introduces less overhead is demanded. (2) How to track
the addresses of instrumentation points? Compilers will deactivate
some code optimizations as soon as any address of basic block is
obtained, and the un-optimized binary will be executed at a low
speed. Thus, we need to track the addresses of instrumentation
points in a proper way.

Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling ASE 2020, 21 - 25 September, 2020, Melbourne, Australia

Address Binariy Codes Assembly

0x2b1980 55 push %rbp

0x2b1981 48 89 e5 mov %rsp,%rbp

0x2b1984 b8 01 00 00 00 mov $0x1,%eax

0x2b1989 39 f7 cmp %esi,%edi

0x2b198b 7f 0c jg 2b1999

0x2b198d b8 02 00 00 00 mov $0x2,%eax

0x2b1992 7c 05 jl 2b1999

0x2b1994 b8 03 00 00 00 mov $0x3,%eax

0x2b1999 5d pop %rbp

0x2b199a c3 retq

Address Binariy Codes Assembly

0x2b1980 cc int3 ...

0x2b1981 48 89 e5 mov %rsp,%rbp

0x2b1984 b8 01 00 00 00 mov $0x1,%eax

0x2b1989 39 f7 cmp %esi,%edi

0x2b198b 7f 0c jg 2b1999

0x2b198d cc 02 00 00 00 int3 ...

0x2b1992 7c 05 jl 2b1999

0x2b1994 cc 03 00 00 00 int3 ...

0x2b1999 cc int3 ...

0x2b199a c3 retq

Address Binariy Codes Assembly

0x2b1980 55 push %rbp

0x2b1981 48 89 e5 mov %rsp,%rbp

0x2b1984 b8 01 00 00 00 mov $0x1,%eax

0x2b1989 39 f7 cmp %esi,%edi

0x2b198b 7f 0c jg 2b1999

0x2b198d cc 02 00 00 00 int3 ...

0x2b1992 7c 05 jl 2b1999

0x2b1994 cc 03 00 00 00 int3 ...

0x2b1999 cc int3 ...

0x2b199a c3 retq

int foo(int a, int b)
{
 if (a > b)
 return 1;
 else if (a < b)
 return 2;
 else
 return 3;
}

%eax <- 1
if (a > b)

%eax <- 2
if (a > b)

%eax <- 3

return

True

True

False

False

Compilation Stage Runtime Stage

Execute binary and
inject breakpoints

Recover binary code
when trigger interrupt

Construct CFG Generate binary file and
record target addresses

① ② ③ ④

Figure 5: A step-by-step demonstration of self-modifying tracing. It eliminates needless overhead spent in tracing coverage of
non-coverage-increasing test cases with two stages. It first instruments target programs, obtains addresses of instrumentation
points and generates a non-instrumented executable binary file at compilation stage. Then, it does fuzz testing on the binary,
detects whether instrumentation points are triggered and removes visited instrumentation points at runtime stage. (The seg-
ments in blue rectangles is the text segments of the program’s memory layout, the addresses of instrumentation points are
highlighted in blue, the modified instructions are highlighted in red, the recovered instructions are highlighted in orange.)

To generate a zero-overhead binary and track the addresses of
instrumentation points, it works as follows to compile a program
from source code to object file:

• Inject instrumentation points. Before the compiler starts per-
forming platform-independent code optimizations, we con-
struct control flow graph and inject an instrumentation point,
i.e. a CALL instruction to invoke callback function, at the start
of each basic block. Note that, similar with SanitizerCover-
age, the instrumentation could be enhanced from basic-block
level to edge level by adding "dummy" blocks to denote crit-
ical edges as Section 2.2 illustrates. Instrumenting before
code optimizations allows control flow graph to preserve
semantics of source code so that coverage information is
collected accurately.

• Record & Clear. We record the corresponding basic block
symbols of injected CALL instructions and erase all the in-
jected CALL instructions after compiler finishes platform-
independent code optimizations at intermediate representa-
tion (IR) level. In this way, the generated IR could be non-
instrumented while the recorded basic block symbols inherit
the fine-grained coverage information from instrumentation
points.

• Emit addresses.We obtain addresses of instrumentation points
through the recorded basic block symbols, allocate a memory
in the generated object file and emit the addresses into the
memory after compiler finishes platform-dependent code op-
timizations at machine-specific intermediate representation
(MIR) level. Note that, the addresses are a series of offsets in
object file and will be relocated to absolute addresses when a
linker generates executable binary. In this way, the addresses
of instrumentation points are written in generated binary
and could be accessed to perform self-modify tracing during
runtime.

In the text segments after step 2 of Figure 5, we highlight four
addresses (0x2b1980, 0x2b198d, 0x2b1994 and 0x2b1999) in blue
to denote the addresses of instrumentation points. For simplicity, we
only show basic-block level instrumentation; however, our solution
enhances instrumentation from basic-block level to edge level by
adding “dummy” blocks to denote critical edges. After compilation
stage, a zero-overhead binary is generated and prepared for fuzzing.

At runtime stage, the coverage tracer of Zerorwill execute the
zero-overhead binary, inject breakpoints into it and perform fuzzing
on this target. Algorithm 1 details the actions of the coverage tracer.
First, as presented in lines 2-8, the fuzzer executes the binary, re-
ceives the addresses of instrumentation points, and replaces original
instructions with 0xcc. The corresponding demonstration is shown
in step 3 in Figure 5, the binary codes of instrumentation points
are replaced with 0xcc (we highlight the instructions in red). Once
the process executes 0xcc, it will trigger SIGTRAP interrupt, and
wait for parent process to resume it. After the injection, the fuzzer
performs fuzzing on the child process, and monitors the status of
it. Once receiving SIGTRAP from child process, the fuzzer stores
current input as interesting seed for further mutation, recovers the
instruction that belongs to the address, and resumes child process,
as presented in lines 11-18. The corresponding demonstration is
shown in step 4 in Figure 5.

Within the self-modifying tracing, we maintain a set of instru-
mentation points which have never been visited (unvisitedAddrs
in Algorithm 1) during fuzzing process. The set will tend to be
an empty set as the fuzzer explores target program’s states more
deeply. Once a instrumentation point is visited, it will be removed
and never be collected again. Besides, the self-modifying tracing
does not introduce new overhead during fuzzing process. There-
fore, along with the fuzzing process, it can theoretically eliminate
coverage collection overhead almost down to zero.

ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang

Algorithm 1: Action of self-modifying coverage tracer
Input : the target binary 𝑏

Executor 𝐸𝑥𝑒𝑐
/* A map to store (address, instruction) pairs */

1 𝑎𝑑𝑑𝑟 .initial()
2 𝐸𝑥𝑒𝑐 .run(𝑏)
3 𝑎𝑑𝑑𝑟𝑠 = receiveInstrumentedAddrs()
4 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐴𝑑𝑑𝑟𝑠 = 𝑎𝑑𝑑𝑟𝑠

/* Inject breakpoints into child process */

5 foreach 𝑎𝑑𝑑𝑟 in 𝑎𝑑𝑑𝑟𝑠 do
6 𝑖𝑛𝑠𝑡𝑟 = readInstrFromAddr(𝑎𝑑𝑑𝑟)
7 𝑎𝑑𝑑𝑟𝑀𝑎𝑝 .insert(𝑎𝑑𝑑𝑟 , 𝑖𝑛𝑠𝑡𝑟)
8 writeInstrIntoAddr(0𝑥𝑐𝑐 , 𝑎𝑑𝑑𝑟)
9 end

10 async event loop
11 if receive SIGTRAP from child process then
12 readSeedAndStore()

/* Recover the instruction */

13 𝑎𝑑𝑑𝑟 = readRip()
14 𝑖𝑛𝑠𝑡𝑟 = 𝑎𝑑𝑑𝑟𝑀𝑎𝑝 .get(𝑎𝑑𝑑𝑟)
15 writeInstrIntoAddr(𝑖𝑛𝑠𝑡𝑟 , 𝑎𝑑𝑑𝑟)
16 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐴𝑑𝑑𝑟𝑠 = 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐴𝑑𝑑𝑟𝑠 − {𝑎𝑑𝑑𝑟 }
17 𝐸𝑥𝑒𝑐 .resume()
18 end
19 end

4.2 Binary-switching Scheduling
Section 3 reveals that the efficiency of each coverage granularity
varies with target programs. Inspired by this, we believe that switch-
ing among diversely-instrumented binaries during fuzzing process
will improve fuzzing performance. However, estimating efficien-
cies of diversely-instrumented binaries is challenging, because: (1)
program-dependent efficiency: the efficiency of each binary varies
with target programs, thus we cannot share one static set of pa-
rameters configuration among different programs; (2) time-varying
efficiency: even for testing one target program, the efficiency of
each coverage granularity changes over time as the fuzzer explores
target program’s states more deeply; (3) cost-effective solution: the
solution should be cost-effective and less-frequent due to the high
throughput of fuzzing.

We propose a real-time scheduling mechanism to address above
problems. In short, it adaptively switches fuzzing binary among
diversely-instrumented binaries at set intervals. During fuzzing
process, it collects statistical data (i.e. the number of interesting
seeds, the number of executions and the time spent on fuzzing),
dynamically monitors the number of interesting seeds each binary
could discover, and choose an optimal binary as fuzzing target when
the switch time is up. We leverage empirical Bayesian method to
estimate efficiency in a cost-effective way and adopt exponential
smoothing to smooth the time-varying efficiency.

Estimate efficiency. To simplify the time-varying problem, we
discretize continuous time into time periods and assume efficiency
is invariant at each time period. For a binary, the efficiency at time

period 𝑡 is defined as

𝑒𝑡 =
𝐼𝑡

𝑇𝑡

=
𝐼𝑡

𝑀𝑡
∗ 𝑀𝑡

𝑇𝑡
= 𝑟𝑡 ∗ 𝑠

(1)

where 𝐼𝑡 denotes the number of discovered interesting seeds during
the time period 𝑡 , 𝑇𝑡 denotes the time spent on fuzzing during the
time period 𝑡 ,𝑀𝑡 denotes the number of executions during the time
period 𝑡 , 𝑟𝑡 denotes the quotient of 𝐼𝑡 and𝑀𝑡 (namely, interesting-
testcases rate, ITR), and 𝑠 denotes execution speed which can be
seen as a constant with respect to binary. Given a binary’s statisti-
cal data [𝐼1, 𝐼2, · · · , 𝐼𝑡], [𝑇1,𝑇2, · · · ,𝑇𝑡] and [𝑀1, 𝑀2, · · · , 𝑀𝑡] before
current time period 𝑡 , we aim to estimate ITRs 𝑟𝑡 , and further cal-
culate the estimation of efficiency 𝑒𝑡 of the binary at current time
period 𝑡 through equation (1).

With empirical Bayesian methods, the integrals over conditional
probability distributions are substituted by the empirical statistics
in the observed data, which allows us to estimate the posterior
probabilities, e.g. a binary’s ITRs, by leveraging the information
from its statistical data. For each binary, there is an underlying prob-
ability distribution of ITR, and at each time period 𝑡 , the binary’s
ITR 𝑟𝑡 could be regarded as a outcome of the distribution. We use
Beta distribution to parameterize the generative process, defined as
𝐵𝑒𝑡𝑎(𝛼, 𝛽). Besides, obviously, for each binary at time period 𝑡 , the
number of interesting seeds 𝐼𝑡 obeys the Binomial distribution with
parameters𝑀𝑡 and 𝑟𝑡 . Thus, we have a Beta-Binomial compound
distribution for the statistical data. The generative process of our
Bayesian model is described as follows:

• Sample 𝑟 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽), 𝑝 (𝑟 |𝛼, 𝛽) ∝ Γ (𝛼+𝛽)
Γ (𝛼)Γ (𝛽) 𝑟

𝛼−1 (1 − 𝑟)𝛽−1

• Sample 𝐼 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑀, 𝑟), 𝑝 (𝐼 |𝑀, 𝑟) ∝ 𝑟 𝐼 (1 − 𝑟)𝑀−𝐼

where Γ is Gamma function. Therefore, the likelihood over all
number of interesting seeds is:

𝐿 =𝑝 (𝐼1, 𝐼2, · · · , 𝐼𝑡 |𝑀1, 𝑀2, · · · , 𝑀𝑡 , 𝛼, 𝛽)

=

𝑡∏
𝑖=1

∫
𝑟𝑖

𝑝 (𝐼𝑖 |𝑀𝑖 , 𝑟𝑖)𝑝 (𝑟𝑖 |𝛼, 𝛽)𝑑𝑟𝑖

∝
𝑡∏
𝑖=1

∫
𝑟𝑖

Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽) 𝑟

𝐼𝑖
𝑖
(1 − 𝑟𝑖)𝑀𝑖−𝐼𝑖 𝑟𝛼−1𝑖 (1 − 𝑟𝑖)𝛽−1𝑑𝑟𝑖

=

𝑡∏
𝑖=1

Γ(𝛼 + 𝛽)
Γ(𝑀𝑖 + 𝛼 + 𝛽)

Γ(𝐼𝑖 + 𝛼)
Γ(𝛼)

Γ(𝑀𝑖 − 𝐼𝑖 + 𝛽)
Γ(𝛽)

(2)

Then, the maximum likelihood can be calculated through the fix-
point iteration (FPI) [38, 50]:

𝛼𝑥+1 =𝛼𝑥

∑𝑡
𝑖=1 [Ψ(𝐼𝑖 + 𝛼𝑥) − Ψ(𝛼𝑥)]∑𝑡

𝑖=1 [Ψ(𝑀𝑖 + 𝛼𝑥 + 𝛽𝑥) − Ψ(𝛼𝑥 + 𝛽𝑥)]

𝛽𝑥+1 =𝛽𝑥

∑𝑡
𝑖=1 [Ψ(𝑀𝑖 − 𝐼𝑖 + 𝛽𝑥) − Ψ(𝛽𝑥)]∑𝑡

𝑖=1 [Ψ(𝑀𝑖 + 𝛼𝑥 + 𝛽𝑥) − Ψ(𝛼𝑥 + 𝛽𝑥)]

(3)

where Ψ(𝑥) is the digamma function, and can be quickly calculated
through Bernardo’s algorithm [4].

With equation (3), the 𝛼 and 𝛽 could be iteratively estimated,
furthermore, the posterior estimation of current time period’s ITR
could be calculated as 𝑟𝑡 = 𝐼𝑡+𝛼

𝑀𝑡+𝛼+𝛽
. To accelerate the convergence

Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling ASE 2020, 21 - 25 September, 2020, Melbourne, Australia

speed of the iteration method, we use method of moments [20]
to calculate the initial values 𝛼0 and 𝛽0. Besides, to smooth time-
varying observed data, we leverage exponential smoothing [15] to
calculate the smoothed number of interesting seeds:

𝐼𝑖 =

{
𝐼 ′
𝑖

𝑖 = 1
𝛾𝐼 ′

𝑖
+ (1 − 𝛾)𝐼𝑖−1 𝑖 > 1 (4)

where 𝐼 ′
𝑖
is the observed number of interesting seeds, 𝐼𝑖 is the

smoothed number of interesting seeds which is used in equation (3),
𝛾 ∈ (0, 1) is the smoothing factor. As time passes the smoothed
𝐼𝑖 becomes the exponentially decreasing weighted average of its
past observations, in this way, we can capture time relationship
between ITRs.

Once the posterior estimation of ITR 𝑟𝑡 of the binary is estimated,
the estimation of efficiency 𝑒𝑡 could be calculated through equa-
tion (1). Thus, at current time period 𝑡 , we can estimate efficiencies
of every diversely-instrumented binaries [𝑒1𝑡 , 𝑒2𝑡 , · · · , 𝑒𝑘𝑡], and form
a probability distribution by normalizing these efficiencies:

𝑝 (𝑋 = 𝑖) =
𝑒𝑖𝑡∑𝑘
𝑗=1 𝑒

𝑗
𝑡

(5)

where 𝑒
𝑗
𝑡 denotes the efficiency of binary 𝑗 . When the time to

switch, we can select the target binary for fuzzing according to the
probability distribution.

Switch among binaries. Based on the efficiency estimation,
we can implement the binary-switching scheduler, as detailed in
Algorithm 2. First, as presented in lines 1-3, the scheduler randomly
chooses several (in line with the configurations) binaries and per-
forms fuzzing on these binaries through executor. For each binary,
the executor will fork a child process to test them, which is simi-
lar to AFL’s fork server [26]. Then, the scheduler asynchronously
listens events from executor and timer. Executor will periodically
report statistics (number of executions, number of interesting seeds,
time spent on fuzzing during the time period), and scheduler will
record these statistics when receive them from executor as pre-
sented in lines 5-8. As presented in lines 10-18, when it is time
to switch binary, the executor will stop its child processes, and
then, the scheduler will calculate the posterior estimation of each
binary’s ITR and choose optimal binaries for fuzzing according to
the probability distribution of equation (5). Note that, the scheduler
supports not only running in single mode (i.e. single-core fuzzing)
but also running in parallel mode (i.e. multi-cores fuzzing), which
is more common in real industrial practice [31, 33].

5 EVALUATION
We implemented the framework Zeror. The instrumentation mech-
anism in self-modifying tracing is implemented on the top of LLVM
10.0.0 [48]. The Record&Clear procedure is implemented in the ini-
tialization of llvm::MachineModuleInfo and the Emit addresses
procedure is implemented in the EmitBasicBlockStart method
of llvm::AsmPrinter. We create a global variable to record the
mapping of MBB Symbol (MCSymbol* type) and MBB id (uint32_t
type). The runtime logic of monitoring status of process and mod-
ifying instructions of memory in self-modifying tracing is based
on ptrace. For scalability, the scheduler component contains the
self-modifying based zero-overhead binary and the original fully

Algorithm 2: Action of binary-switching scheduler
Input :List of diversely-instrumented binaries 𝐵

Executor 𝐸𝑥𝑒𝑐
Configurations 𝐶

1 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 .initial(𝐵)
2 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 = 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 .chooseRandom(𝐶 .numCores)
3 𝐸𝑥𝑒𝑐 .run(𝑡𝑎𝑟𝑔𝑒𝑡𝑠);
4 async event loop
5 if receive statistics from executor then
6 𝑏𝑖𝑛𝑎𝑟𝑦, 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 = 𝐸𝑥𝑒𝑐 .read()
7 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 .record(𝑏𝑖𝑛𝑎𝑟𝑦, 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠)
8 end
9 if time to switch binary then
10 𝐸𝑥𝑒𝑐 .stop()
11 foreach 𝑏 in 𝐵 do

/* calculate the posterior estimation

of the binary’s ITR */

12 𝛼0, 𝛽0 = 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 .calByMoment(𝑏)
13 𝛼, 𝛽 = 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 .calByFPI(𝑏, 𝛼0, 𝛽0)
14 𝑟 = betaExpectation(𝛼, 𝛽)
15 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 .update(𝑏, 𝑟)
16 end
17 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 = 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 .chooseOptimal(𝐶 .numCores)
18 𝐸𝑥𝑒𝑐 .run(𝑡𝑎𝑟𝑔𝑒𝑡𝑠);
19 end
20 end

instrumented binary of the integrated fuzzers such as AFL and
MOPT. The interval of switching binaries and reporting statistical
data are set to 600s and 60s respectively, which barely introduces
new overhead and brings best performance after multiple attempts
with different values. Inspired by the AFL persistent mode [26], our
framework sets up a thread which runs a ptrace task to monitor
the status of child process. Once the child process triggers a crash
or exceeds timeout limit, the thread will terminate and re-spawn
the child process.

We evaluated Zeror in three aspects. First, we applied Zeror
to AFL and compared the performance with two state-of-the-art
fuzzing speed up frameworks, Untracer [39] and INSTRIM [22], to
assess the efficiency. Then, we generalized Zeror to MOPT [36], a
state-of-the-art fuzzer, to study the scalability. Finally, we evaluated
the effectiveness of each component of Zeror.

5.1 Experiment Settings
To reveal the practical performance of Zeror, the evaluation was
conducted on fuzzer-test-suite [17], a widely-used benchmark from
Google. This test suite consists of 24 popular real-world applications
which have interesting known vulnerabilities, hard-to-find code
paths, or other challenges for bug finding tools. The initial seeds
were collected from the built-in test suite and each source code
inside the test suite was compiled with -O2 flag. To reduce the
side effect caused by AFL’s file I/O overhead [51], all fuzzers were
running in tmpfs. All experiments were performed on a 64-bit

ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang

Table 2: Fuzzing performances of different AFL-based fuzzing-speed-up methods.

Project average execution time for each test case (𝜇𝑠) number of covered branches
AFL AFL+INSTRIM AFL+Untracer AFL+Zeror AFL AFL+INSTRIM AFL+Untracer AFL+Zeror

boringssl 96.69 69.68 N/A 33.05 2661 2694 N/A 2549
c-ares 43.34 25.42 13.95 16.32 57 57 55 57

freetype2 44.68 25.17 25.13 20.33 8255 9268 7007 10059
guetzli 99.92 67.98 45.80 41.00 4757 4845 4748 4987
harfbuzz 149.82 80.36 66.06 55.73 8148 8048 7195 9168
json 145.82 100.03 64.33 98.39 1315 1333 1152 1346
lcms 97.71 70.92 44.18 63.96 2115 2244 1436 2077

libarchive 193.44 112.50 112.90 112.72 1208 1119 1082 1618
libjpeg 1469.47 668.96 261.30 337.36 2364 2564 2399 2857
libpng 15.34 5.48 5.27 7.54 1092 1096 1029 1140
libssh 638.00 340.52 309.62 309.29 867 867 867 867
libxml2 268.07 135.05 N/A 88.13 4063 4318 N/A 4745

llvm-libcxxabi 137.61 81.61 43.75 42.04 6488 6005 6000 7012
openssl-1.0.1f 3418.66 1998.27 N/A 1948.43 4748 6745 N/A 7372
openssl-1.0.2d 161.09 92.48 N/A 63.23 1825 1828 N/A 1769
openssl-1.1.0c 210.70 89.74 N/A 50.60 1712 1711 N/A 1658
openthread 145.51 91.17 64.80 85.16 3561 3537 3279 3591

pcre2 199.12 102.21 53.86 49.11 6890 6888 6597 6890
proj4 23.22 14.24 8.47 7.86 2541 2584 2347 3886
re2 640.24 391.97 260.19 235.40 4608 4647 4533 4725
sqlite 221.18 160.84 136.01 141.40 1892 1997 1986 1972
vorbis 96.14 58.08 36.45 25.48 2035 2152 1817 2079
woff2 31.55 20.12 11.80 8.67 2119 2152 1453 2157

wpantund 1921.02 2019.62 1544.89 1789.23 7959 7892 7802 8781
Zeror improvement +159.80% +50.70% -0.46% +10.14% +6.82% +20.84%

Table 3: Time to expose known bugs, ∞ denotes the fuzzer
cannot expose the known bugs in 6 hours and the projects
whose bugs can not be triggered by any fuzzer are removed.

Project AFL AFL+INSTRIM AFL+Untracer AFL+Zeror
c-ares 8 26 842 8
guetzli ∞ ∞ 16257 6001
json 5 5 5 5
lcms 20679 ∞ 11827 10953

llvm-libcxxabi 788 2197 2347 709
openssl-1.0.1f 19 19 ∞ 21
openssl-1.0.2d 8716 6877 ∞ 6013

pcre2 822 1375 6095 439
re2 ∞ ∞ ∞ 8194

woff2 3565 1535 ∞ 3260

machinewith 40 cores (Intel(R) Xeon(R) Gold 6148 CPU@2.40GHz),
128 GiB of RAM and Linux 5.5.13. Due to the random effects in
fuzzing, we conducted each experiments for six hours and repeated
it ten times. And we reported average performance.

In terms of metrics, we evaluate the performance of fuzzers in
three aspects, namely execution time, branch coverage and time
to expose known bugs. The execution time is the average time the
LLVMFuzzerTestOneInput function consumed. Different fuzzers
are guided by different coverage granularity, for fair comparison,
we collect their generated seeds, feed the seeds to original AFL and
gather the number of covered branches through AFL BITMAP. The
time to expose known bugs is the time consumed by the fuzzer to
trigger the first crash.

5.2 Efficiency of Zeror
We applied Zeror to AFL (namely AFL+Zeror) by switching be-
tween AFL-instrumented binary and self-modifying tracing instru-
mented binary based on binary-switching scheduler. We evaluated
it on all the 24 programs of Google fuzzer-test-suite and compared

it with two state-of-the-art fuzzing speed-up techniques, INSTRIM
and Untracer. Specifically, for the baseline AFL, the version used
is 2.52b and the compilation tool chain is afl-clang-fast [26],
which is the most efficient instrumentation method that AFL pro-
vide; for INSTRIM, we activate INSTRIM-APPROX mode, which
shows best performance in their evaluations [22].

The results are presented in Table 2 and Table 3. The 2-5 columns
of Table 2 show the average execution time per test case and the
Zeror improvement in the last row refers to the execution speed
increase. The 6-9 columns of Table 2 show the number of branches
covered by each fuzzer and the Zeror improvement in the last
row refers to branch increase. Table 3 shows the time taken by
each fuzzer to expose known bugs, the projects whose bugs cannot
be triggered by all the fuzzers in 6 hours are removed from the
table. Note that, due to the limitation of Dyninst [13], Untracer is
incompatible with some projects (including boringssl, libxml2,
openssl-1.0.1f, boringssl-1.0.2d and openssl-1.1.0c), we
denote the corresponding table cell as N/A. From the two tables,
we can deduct the following conclusions:

• Zeror increases the execution speed of AFL. In Table 2, the av-
erage execution time of AFL+Zeror is less than AFL for every
benchmark projects. Specifically for libjpeg, the average exe-
cution time of AFL and AFL+Zeror are 1469.47𝜇𝑠 and 337.36𝜇𝑠
respectively, which indicates that Zeror increases the execu-
tion speed of AFL by 335.58%. Averagely, Zeror increases the
execution speed of AFL by 159.80%.

• Zeror helps AFL cover more branches. In Table 2, AFL+Zeror out-
performs AFL on 17 out of 24 projects. Specially, AFL+Zeror im-
proves the number of covered branches by 55.27% on openssl-1.
0.1f and 33.94% on libarchive. Averagely, AFL+Zeror increases
the number of covered branches of AFL by 10.14%.

• Zeror helps AFL expose bugs faster. In Table 3, AFL+Zeror ex-
poses known bugs faster than original AFL on 8 out of 10 projects.

Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling ASE 2020, 21 - 25 September, 2020, Melbourne, Australia

Specially, AFL+Zeror is 1.87x faster than AFL in term of trigger-
ing the bug in pcre2, and exposes the bugs of re2 and guetzli,
which cannot be exposed by original AFL in 6 hours.

• Zeror shows better performances compared with other fuzzing
speed-up techniques. Compared with INSTRIM, Zeror is av-
eragely 50.70% faster for each execution, covers 6.82% more
branches and spends less time on bugs exposure. Compared
with Untracer, Zeror covers 20.84% more branches averagely
and spends less time on bugs exposure. Because of the real-time
scheduling, Zeror is averagely 0.46% slower than Untracer, which
is almost negligible.

2
6

2
8

2
10

2
12

2
14

time (s)

5000

5500

6000

6500

7000

7500

8000

8500

9000

nu
m

be
r o

f c
ov

er
ed

 b
ra

nc
he

s AFL+Zeror
AFL
AFL+INSTRIM
AL+Untracer

Figure 6: The number of covered branches over time when
fuzzing harfbuzz. The x-axis is on a logarithmic scale.

Case study. Figure 6 visualizes the real-time change of covered
branches on harfbuzz when different fuzzing speed-up methods
are applied on AFL. We can observe that AFL+Zeror covers more
branches than all the other methods most of the time. Specifically,
AFL+Zeror takes 211 seconds to achieve almost the same number of
covered branches as AFL and INSTRIM take 214 seconds. Untracer
covers less branches most of the time compared with other methods,
even compared to the original AFL. As demonstrated in Table 2,
Untracer is the fastest for test case execution, but when it deletes
almost all the instrumentation points, it will also lose the fine-
grained coverage information such as hit count of branches for
fuzzing guidance, and will greatly reduce the number of covered
branches. INSTRIMmakes AFL faster, but not as fast as Untracer and
Zeror, and it reconstructs the coverage information for guidance
with instrumenting a part of basic blocks, to partially maintain the
ability to cover more branches.

From the above statistics, it is reasonable to draw the conclusion
that: with the aid of Zeror, fuzzers are able to gain higher speedup,
covers more branches, and exposes bugs faster. In addition, Zeror
shows better performance of coverage increase and vulnerability
discovery compared with other fuzzing speed-up techniques.

5.3 Scalability of Zeror
In addition to AFL, we also generalize our experiments to another
state-of-the-art fuzzer, MOPT [36], to study the scalability of Zeror.
MOPT is a fuzzer that improves fuzzing performance by optimizing
the efficiency of mutation strategy. We applied Zeror to MOPT
(namely MOPT+Zeror) in the same way as AFL+Zeror and eval-
uated it on all the 24 programs of Google fuzzer-test-suite. The

results are shown in Figure 7 and Table 4. From Figure 7 we can ob-
serve that MOPT+Zeror improves the number of covered branches
in 17 out of 24 projects and averagely increases the number of cov-
ered branches by 6.91% compared with the original MOPT. Specifi-
cally, MOPT+Zeror improves the number by 64.95% on proj4 and
40.45% on libarchive. Table 4 shows the time taken by MOPT and
MOPT+Zeror to expose known bugs, those projects whose bugs
cannot be triggered by them in 6 hours are removed from the table.
From Table 4 we can observe that with the aid of Zeror, MOPT
exposes known bugs faster. Specially, Zeror improves the speed of
bug exposure by 2.39x on llvm-libcxxabi, 2.01x on pcre2.

bo
rin

gs
sl

c-
ar

es

fre
et

yp
e2

gu
et

zl
i

ha
rfb

uz
z

js
on

lc
m

s

lib
ar

ch
iv

e

lib
jp

eg

lib
pn

g

lib
ss

h

lib
xm

l2

llv
m

-li
bc

xx
ab

i

op
en

ss
l-1

.0
.1

f

op
en

ss
l-1

.0
.2

d

op
en

ss
l-1

.1
.0

c

op
en

th
re

ad

pc
re

2

pr
oj

4

re
2

sq
lit

e

vo
rb

is

w
of

f2

w
pa

nt
un

d

0

10

20

30

40

50

60

re
la

tiv
e

im
pr

ov
em

en
t (

%
)

Figure 7: Relative covered branches improvement of
MOPT+Zeror compared with MOPT.

Table 4: Time to expose known bugs, and the projects whose
bugs cannot be triggered by them in 6 hours are removed.

Project MOPT MOPT+Zeror
c-ares 8 8
json 5 5

llvm-libcxxabi 1818 761
openssl-1.0.1f 31 21
openssl-1.0.2d 1633 1320

pcre2 1944 968
woff2 3767 3196

In summary, Zeror is applicable to other fuzzing optimizations
like MOPT, and more importantly, Zeror can further improve
fuzzing vulnerability discovery performance on top of them. Al-
though we only use MOPT for illustration in the experiment, it
can be easily applied to other fuzzers such as AFLFast [5] and
FairFuzz [28].

5.4 Evaluation of Individual Components
Zeror consists of two main mechanisms: self-modifying tracing
and real-time scheduling. To analyze the effects of each individual
mechanism, we configure two variants of our framework:
• Zeror- represents the fuzzer which adopts AFL as seeds generator
and only integrates self-modifying tracing mechanism.

• Zeror represents the fuzzer which adopts AFL as seeds generator.
Besides, it integrates self-modifying tracing and AFL’s instrumen-
tation to collect coverage, and dynamically switches between
the two instrumented binaries during fuzzing process based on
real-time scheduling mechanism.

ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang

Evaluation of self-modifying tracing. Since Untracer [39]
shares the similar idea with our self-modifying tracing compo-
nent, we evaluate our tracing by comparison with Untracer, us-
ing 19 projects of fuzzer-test-suite (Untracer is incompatible to
the rest 5 projects). For speed improvement, both methods elimi-
nate the coverage-collecting time of non-coverage-increasing test
cases by erasing visited instrumentation points, but with differ-
ent approaches. Figure 8a shows that, when considering erasing
instrumentation points, self-modifying tracing saves much more
time than Untracer on the average time consumed. Averagely, self-
modifying tracing is 13.74x faster than Untracer when erasing in-
strumentation points. The saved coverage tracing time can be used
for efficient binary-switch scheduling. Additionally, self-modifying
tracing is edge-awarewhile Untracer is basic-block-aware. Figure 8b
shows the relative covered branches improvement of self-modifying
tracing, from which we can conclude that self-modifying tracing
mechanism helps fuzzer cover more branches compared with Un-
tracer. Specifically, self-modifying tracing improves the branch
coverage by 56.92% on proj4, 48.43% on libarchive, 43.80% on
lcms, 42.90% on freetype2.

c-
ar

es

fre
et

yp
e2

gu
et

zl
i

ha
rfb

uz
z

js
on

lc
m

s

lib
ar

ch
iv

e

lib
jp

eg

lib
pn

g

lib
ss

h

llv
m

-li
bc

xx
ab

i

op
en

th
re

ad

pc
re

2

pr
oj

4

re
2

sq
lit

e

vo
rb

is

w
of

f2

w
pa

nt
un

d

0
50

100
150
200
250
300
350

av
er

ag
e

tim
e

(
s) Untracer

Zeror-

(a) Average time taken for different methods to erase instrumen-
tation points (lower is better).

c-
ar

es

fre
et

yp
e2

gu
et

zl
i

ha
rfb

uz
z

js
on

lc
m

s

lib
ar

ch
iv

e

lib
jp

eg

lib
pn

g

lib
ss

h

llv
m

-li
bc

xx
ab

i

op
en

th
re

ad

pc
re

2

pr
oj

4

re
2

sq
lit

e

vo
rb

is

w
of

f2

w
pa

nt
un

d

0

10

20

30

40

50

60

re
la

tiv
e

im
pr

ov
em

en
t (

%
)

(b) Relative covered branches improvement of Zeror- compared
with Untracer.

Figure 8: Comparison between Zeror- and Untracer.

Evaluation of real-time scheduling. Our scheduling mech-
anism integrates two binaries: the zero-overhead binary instru-
mented by self-modifying tracing and the original binary instru-
mented by the integrated fuzzer, and then dynamically switches
between them. To study the effectiveness of the scheduler, we com-
pare Zeror with Zeror- and AFL. The overall result is consistent
to Table 2, and for page limitation, we only visualize 2 projects to
demonstrate the coverage increase process of different configura-
tions in Figure 9. Both Zeror- and Zeror cover more branches than

AFL, and Zeror outperforms Zeror-. The visualization indicates that
integrating two different instrumented binaries with the real-time
scheduling helps fuzzers achieve better performance.

2
6

2
8

2
10

2
12

2
14

time (s)

1400

1600

1800

2000

2200

2400

2600

2800

nu
m

be
r o

f c
ov

er
ed

 b
ra

nc
he

s

Zeror
Zeror-
AFL

(a) libjpeg

2
6

2
8

2
10

2
12

2
14

time (s)

6000

6500

7000

7500

8000

8500

9000

nu
m

be
r o

f c
ov

er
ed

 b
ra

nc
he

s

Zeror
Zeror-
AFL

(b) harfbuzz

Figure 9: Branches covered over time with different configu-
rations. The x-axis is on a logarithmic scale.

5.5 Discussion
Although binary-switching scheduler is able to integrate multi-
ple diversely-instrumented binaries, we applied Zeror to fuzzers
by switching only between original instrumented binary and self-
modifying tracing instrumented binary in our evaluation, which
could not fully excavate Zeror’s potentiality, but already demon-
strates the effectiveness of tracing and scheduling. Furthermore,
even with the scheduling of two binaries, it improves both speed
and coverage. Recently, Dinesh [12] proposed a novel approach of
instrumentation, we plan to integrate it in the future.

0 50 100 150 200 250 300 350
time (min)

1700

1750

1800

1850

1900

1950

nu
m

be
r o

f c
ov

er
ed

 b
ra

nc
he

s

(a) Number of covered branches
over time.

0 50 100 150 200 250 300 350
time (min)

20

30

40

50

60

70

80

pr
ob

ab
ilit

y
of

 c
ho

se
n

(%
)

Tracing-instrumented binary
AFL-instrumented binary

(b) Chosen probabilities of dif-
ferent binaries over time.

Figure 10: Case study on sqlite of AFL-Zeror.

Another potential concern is whether the scheduling mechanism
can help fuzzer shift into proper binary. Figure 10 is the real-time
visualization of covered branches and the chosen probabilities of
diversely-instrumented binaries when AFL+Zeror is applied to test
sqlite. We can observe that the chosen probability of the binary
instrumented by AFL is in decline when the number of covered
branches reaches the plateau at the time of 30min-60min, and Zeror
has high probability to shift into the faster binary (instrumented by
self-modifying tracing) when the AFL-instrumented binary cannot
make any process. The observation indicates that the scheduling
scheme do help fuzzer properly choose binary for execution. How-
ever, the scheduling scheme only collects execution statistical data,
which may not be sufficient enough to fully display its efficiency.
It could be further improved by gaining more information from
data-flow analysis and control-flow analysis.

Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling ASE 2020, 21 - 25 September, 2020, Melbourne, Australia

6 RELATEDWORKS
Optimize fuzzing strategies. Existing optimizations of fuzzing
reside in different stages. For the preparation stage, CollAFL [14]
provides a solution to collect coverage feedback without bitmap
collision, DeepFuzzer [32] leverages symbolic execution to gener-
ate qualified initial seeds. For the seed selection stage, AFLFast [5]
gives more mutation times to valuable seeds which exercise low-
frequency paths, Cerebro [29] prioritizes seeds in corpus on the
basis of static analysis and dynamic scoring. For the seed mutation
stage, FairFuzz [28] mutates input seeds in a restricted way so that
they are more likely to still explore the rarest branch, MOPT [36]
finds the optimal selection probability distribution of operators with
respect to fuzzing effectiveness. Specially, a number of seed muta-
tion optimizations leverage taint analysis such as REDQUEEN [2],
Angora [7] and Matryoshka [8]. REDQUEEN [2] uses a lightweight
input-to-state correspondence mechanisms as an alternative to
data-flow analysis, Angora [7] adopts byte-level taint analysis
and a gradient-descent algorithm for constraint penetration, Ma-
tryoshka [8] identifies nesting conditional statements by control
flow and taint flow and proposed three strategies for mutating the
input to solve path constraints.

Boost fuzzing speed. Xu et al. [51] design three new operating
primitives to solve the performance bottlenecks of parallel fuzzing
on multi-core machines. INSTRIM [22] reduces instrumentation
cost by selectively instrumenting a part of basic blocks and re-
constructing coverage information. Untracer [39] avoids tracing
coverage of non-coverage-increasing test cases by removing visited
instrumentation points.

Main differences. Optimizations of fuzzing strategies are or-
thogonal to Zeror, and most of them could also benefit from Zeror.
For example, the experiment results show that, with the aid of
Zeror, MOPT achieves better performance of coverage exploration
and vulnerability discovery. Different from INSTRIM and Untracer,
our study aims to boost fuzzing speed while preserve fine-grained
coverage collection. Although Untracer has a similar idea with
our self-modifying tracing component, rather than static binary
rewriting, our tracing relies on self-modifying code to erase visited
instrumentation points, which barely introduces new overheads
and provides more fine-grained coverage collection. With the novel
binary-switching scheduler, more improvements can be achieved.

7 CONCLUSION
In this paper, we propose a coverage-sensitive fuzzing framework
Zeror, which integrates diversely-instrumented binaries to boost
fuzzing speed and further improve the vulnerability discovery.
Zeror is mainly made up of two parts: (1) a self-modifying tracing
mechanism to provide a zero-overhead instrumentation for cover-
age collection; and (2) a real-time scheduling mechanism to select
the proper instrumented binary for fuzzing on the basis of empirical
Bayesian inference. In the experiments of fuzzing projects from
Google fuzzer-test-suite, results show that with the aid of Zeror,
fuzzers are able to gain higher speedup, cover more branches, and
more importantly, expose bugs faster than the existing speed-up
techniques. It can be applied to most of the existing fuzzers. In our
future work, we plan to complement Zeror with other orthogonal
fuzzing optimizations.

8 ACKNOWLEDGEMENT
This research is sponsored in part by National Key Research and De-
velopment Project (Grant No. 2019YFB1706200), the NSFC Program
(No. U1911401, 61802223), the Huawei-Tsinghua Trustworthy Re-
search Project (No. 20192000794), and the Equipment Pre-research
Project (No. 61400010107).

REFERENCES
[1] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. 2020.

IJON: Exploring Deep State Spaces via Fuzzing. In 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 1597–1612.

[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In 26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019. https://www.ndss-symposium.
org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dynamo: a
transparent dynamic optimization system. In Proceedings of the 2000 ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Vancouver, Britith Columbia, Canada, June 18-21, 2000. 1–12. https:
//doi.org/10.1145/349299.349303

[4] Jose M Bernardo. 1976. Algorithm AS 103: Psi (digamma) function. Journal of
the Royal Statistical Society. Series C (Applied Statistics) 25, 3 (1976), 315–317.

[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October
24-28, 2016. 1032–1043. https://doi.org/10.1145/2976749.2978428

[6] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015. 725–741. https://doi.org/10.1109/SP.2015.50

[7] Peng Chen andHao Chen. 2018. Angora: Efficient Fuzzing by Principled Search. In
2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA. 711–725. https://doi.org/10.1109/SP.2018.00046

[8] Peng Chen, Jianzhong Liu, and Hao Chen. 2019. Matryoshka: Fuzzing Deeply
Nested Branches. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15, 2019. 499–
513. https://doi.org/10.1145/3319535.3363225

[9] Yuanliang Chen, Yu Jiang, FuchenMa, Jie Liang, MingzheWang, Chijin Zhou, Xun
Jiao, and Zhuo Su. 2019. EnFuzz: Ensemble Fuzzing with Seed Synchronization
among Diverse Fuzzers. In 28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019. 1967–1983. https://www.usenix.
org/conference/usenixsecurity19/presentation/chen-yuanliang

[10] Yuqi Chen, Christopher M. Poskitt, Jun Sun, Sridhar Adepu, and Fan Zhang.
2019. Learning-Guided Network Fuzzing for Testing Cyber-Physical System
Defences. In 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. 962–973. https:
//doi.org/10.1109/ASE.2019.00093

[11] Saumya K. Debray andWilliam S. Evans. 2002. Profile-Guided Code Compression.
In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Berlin, Germany, June 17-19, 2002. 95–105.
https://doi.org/10.1145/512529.512542

[12] Sushant Dinesh. 2019. RetroWrite: Statically Instrumenting COTS Binaries for
Fuzzing and Sanitization. Ph.D. Dissertation. Purdue University Graduate School.

[13] FoRTE-Research. 2020. Illegal pointer to buffer in Dyninst. https://github.com/
FoRTE-Research/UnTracer-AFL/issues/5

[14] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. CollAFL: Path Sensitive Fuzzing. In 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. 679–696. https://doi.org/10.1109/SP.2018.00040

[15] Everette S Gardner Jr. 1985. Exponential smoothing: The state of the art. Journal
of forecasting 4, 1 (1985), 1–28.

[16] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: machine
learning for input fuzzing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017. 50–59. https://doi.org/10.1109/ASE.2017.8115618

[17] Google. 2020. Google fuzzer-test-suite. https://github.com/google/fuzzer-test-
suite

[18] Google. 2020. OSS-Fuzz - continuous fuzzing of open source software. https:
//google.github.io/oss-fuzz/

[19] Google. 2020. SanitizerCoverage. https://clang.llvm.org/docs/SanitizerCoverage.
html

[20] Lars Peter Hansen. 1982. Large sample properties of generalized method of
moments estimators. Econometrica: Journal of the Econometric Society (1982),
1029–1054.

https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/3319535.3363225
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://doi.org/10.1109/ASE.2019.00093
https://doi.org/10.1109/ASE.2019.00093
https://doi.org/10.1145/512529.512542
https://github.com/FoRTE-Research/UnTracer-AFL/issues/5
https://github.com/FoRTE-Research/UnTracer-AFL/issues/5
https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1109/ASE.2017.8115618
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://google.github.io/oss-fuzz/
https://google.github.io/oss-fuzz/
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html

ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang

[21] honggfuzz@googlegroups.com. 2020. hongfuzz - security oriented fuzzer with
powerful analysis options. http://honggfuzz.com

[22] Chin-ChiaHsu, Che-YuWu,Hsu-ChunHsiao, and Shih-KunHuang. 2018. Instrim:
Lightweight instrumentation for coverage-guided fuzzing. In Symposium on
Network and Distributed System Security (NDSS), Workshop on Binary Analysis
Research.

[23] Intel. 2017. Intel Processor Trace Tools. https://software.intel.com/en-us/node/
721535

[24] Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken-ichi Matsumoto.
2003. Exploiting Self-Modification Mechanism for Program Protection. In 27th
International Computer Software and Applications Conference (COMPSAC 2003):
Design and Assessment of Trustworthy Software-Based Systems, 3-6 November 2003,
Dallas, TX, USA, Proceedings. 170. https://doi.org/10.1109/CMPSAC.2003.1245338

[25] lcamtuf. 2017. American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/afl/
[26] lcamtuf. 2017. Fast LLVM-based instrumentation for afl-fuzz. https://github.

com/google/AFL/blob/master/llvm_mode/README.llvm
[27] Peter Lee andMark Leone. 1996. Optimizing MLwith Run-Time Code Generation.

In Proceedings of the ACM SIGPLAN’96 Conference on Programming Language
Design and Implementation (PLDI), Philadephia, Pennsylvania, USA, May 21-24,
1996. 137–148. https://doi.org/10.1145/231379.231407

[28] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018. 475–485. https://doi.org/10.1145/3238147.3238176

[29] Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu, Cen Zhang, Xiaofei Xie,
Haijun Wang, and Yang Liu. 2019. Cerebro: context-aware adaptive fuzzing for
effective vulnerability detection. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 533–544. https://doi.org/10.1145/3338906.3338975

[30] Jie Liang, Yuanliang Chen, MingzheWang, Yu Jiang, Zijiang Yang, Chengnian Sun,
Xun Jiao, and Jiaguang Sun. 2019. Engineering a Better Fuzzer with Synergically
Integrated Optimizations. In 30th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2019, Berlin, Germany, October 28-31, 2019. 82–92.
https://doi.org/10.1109/ISSRE.2019.00018

[31] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang
Sun. 2018. PAFL: extend fuzzing optimizations of single mode to industrial
parallel mode. In Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. 809–814.
https://doi.org/10.1145/3236024.3275525

[32] Jie Liang, Yu Jiang, Mingzhe Wang, Xun Jiao, Yuanliang Chen, Houbing Song,
and Kim-Kwang Raymond Choo. 2019. DeepFuzzer: Accelerated Deep Greybox
Fuzzing. IEEE Transactions on Dependable and Secure Computing (2019).

[33] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei Zhang. 2018.
Fuzz testing in practice: Obstacles and solutions. In 25th International Conference
on Software Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy,
March 20-23, 2018, Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd
(Eds.). IEEE Computer Society, 562–566. https://doi.org/10.1109/SANER.2018.
8330260

[34] libfuzzer@googlegroups.com. 2020. libFuzzer – a library for coverage-guided
fuzz testing. https://llvm.org/docs/LibFuzzer.html

[35] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Ge-
offrey Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M. Hazelwood.
2005. Pin: building customized program analysis tools with dynamic instrumen-
tation. In Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, Chicago, IL, USA, June 12-15, 2005. 190–200.
https://doi.org/10.1145/1065010.1065034

[36] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019. 1949–1966. https://www.usenix.org/conference/usenixsecurity19/
presentation/lyu

[37] Henry Massalin. 1993. Synthesis: An efficient implementation of fundamental
operating system services. (1993).

[38] Thomas Minka. 2000. Estimating a Dirichlet distribution.
[39] Stefan Nagy and Matthew Hicks. 2019. Full-Speed Fuzzing: Reducing Fuzzing

Overhead through Coverage-Guided Tracing. In 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. 787–802. https:
//doi.org/10.1109/SP.2019.00069

[40] Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy. 2019.
Deferred concretization in symbolic execution via fuzzing. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019. 228–238. https://doi.org/10.1145/
3293882.3330554

[41] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuf-
frida, and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary
Fuzzing. In 24th Annual Network and Distributed System Security Sym-
posium, NDSS 2017, San Diego, California, USA, February 26 - March 1,

2017. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
vuzzer-application-aware-evolutionary-fuzzing/

[42] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In Proceedings of the 23rd USENIX Security Symposium, San Diego,
CA, USA, August 20-22, 2014. 861–875. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/rebert

[43] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel,
and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS
Kernels. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver,
BC, Canada, August 16-18, 2017. 167–182. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/schumilo

[44] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman
Jana. 2019. NEUZZ: Efficient Fuzzing with Neural Program Smoothing. In 2019
IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019. 803–817. https://doi.org/10.1109/SP.2019.00052

[45] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls, Ruoyu
Wang, Christopher Kruegel, and Giovanni Vigna. 2017. Rise of the HaCRS:
Augmenting Autonomous Cyber Reasoning Systems with Human Assistance. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 347–362.
https://doi.org/10.1145/3133956.3134105

[46] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Gio-
vanni Vigna. 2016. Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution. In 23rd Annual Network and Distributed System Secu-
rity Symposium, NDSS 2016, San Diego, California, USA, February 21-24,
2016. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

[47] syzkaller@googlegroups.com. 2020. syzkaller – an unsupervised coverage-guided
kernel fuzzer. https://github.com/google/syzkaller

[48] LLVM team. 2020. The LLVM Compiler Infrastructure. https://llvm.org/
[49] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin

Zhao, and Jiaguang Sun. 2018. SAFL: increasing and accelerating testing
coverage with symbolic execution and guided fuzzing. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeed-
ings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chau-
dron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 61–64.
https://doi.org/10.1145/3183440.3183494

[50] Xuerui Wang, Wei Li, Ying Cui, Ruofei Zhang, and Jianchang Mao. 2011. Click-
through rate estimation for rare events in online advertising. InOnlinemultimedia
advertising: Techniques and technologies. IGI Global, 1–12.

[51] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing
New Operating Primitives to Improve Fuzzing Performance. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. 2313–2328. https:
//doi.org/10.1145/3133956.3134046

[52] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM
: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018. 745–761. https://www.usenix.org/conference/usenixsecurity18/
presentation/yun

[53] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send Hard-
est Problems My Way: Probabilistic Path Prioritization for Hybrid
Fuzzing. In 26th Annual Network and Distributed System Security Sym-
posium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-
my-way-probabilistic-path-prioritization-for-hybrid-fuzzing/

[54] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, Chengnian Sun, and Yu Jiang.
2019. VisFuzz: Understanding and Intervening Fuzzing with Interactive Vi-
sualization. In 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 1078–1081.
https://doi.org/10.1109/ASE.2019.00106

http://honggfuzz.com
https://software.intel.com/en-us/node/721535
https://software.intel.com/en-us/node/721535
https://doi.org/10.1109/CMPSAC.2003.1245338
http://lcamtuf.coredump.cx/afl/
https://github.com/google/AFL/blob/master/llvm_mode/README.llvm
https://github.com/google/AFL/blob/master/llvm_mode/README.llvm
https://doi.org/10.1145/231379.231407
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3338906.3338975
https://doi.org/10.1109/ISSRE.2019.00018
https://doi.org/10.1145/3236024.3275525
https://doi.org/10.1109/SANER.2018.8330260
https://doi.org/10.1109/SANER.2018.8330260
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/1065010.1065034
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3293882.3330554
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1145/3133956.3134105
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://github.com/google/syzkaller
https://llvm.org/
https://doi.org/10.1145/3183440.3183494
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1145/3133956.3134046
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-my-way-probabilistic-path-prioritization-for-hybrid-fuzzing/
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-my-way-probabilistic-path-prioritization-for-hybrid-fuzzing/
https://doi.org/10.1109/ASE.2019.00106

	Abstract
	1 Introduction
	2 Background
	2.1 Coverage-guided Fuzzing
	2.2 Coverage Tracing

	3 Motivations
	4 Zeror Design
	4.1 Self-modifying Tracing
	4.2 Binary-switching Scheduling

	5 Evaluation
	5.1 Experiment Settings
	5.2 Efficiency of Zeror
	5.3 Scalability of Zeror
	5.4 Evaluation of Individual Components
	5.5 Discussion

	6 Related Works
	7 Conclusion
	8 Acknowledgement
	References

