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Abstract—Dynamic timing errors (DTEs), that are caused by
the timing violations of sensitized critical timing paths, have
emerged as an important threat to the reliability of digital
circuits. Existing approaches model the DTEs without considering
the impact of input operands on dynamic path sensitization,
resulting in loss of accuracy. The diversity of input operands
leads to complex path sensitization behaviors, making it hard to
represent in DTE modeling.

In this paper, we propose SLoT, a supervised learning model
to predict the output of functional units (FUs) to be one of two
timing classes: {timing correct, timing erroneous} as a function
of input operands and clock period. We apply random forest
classification (RFC) method to construct SLoT, by using input
operands, computation history and circuit toggling as input
features and outputs’ timing classes as labels. The outputs’ timing
classes are measured using gate-level simulation (GLS) of a post
place-and-route design in TSMC 45nm process. For evaluation,
we apply SLoT to several FUs and on average 95% predictions
are consistent with GLS, which is 6.3X higher compared to the
existing instruction-level model. SLoT-based reliability analysis
of FUs under different datasets can achieve 0.7-4.8% average
difference compared with GLS-based analysis, and execute more
than 20X faster than GLS.

I. INTRODUCTION

With the continuous scaling of CMOS technology, timing
violations-induced DTEs have emerged as an important threat
to reliability. Increasing variability caused by process, voltage,
temperature and aging (PVTA) in advanced processes further
exacerbates this problem. Conventional synchronous design
typically applies conservative clock period based on static
timing analysis (STA) to ensure operations without timing
errors. This results in unnecessary loss of performance because
the DTEs might not occur even if the clock period does not
meet STA constraints because the critical path is not always
sensitized. Therefore, to improve performance, adaptive tech-
niques have been proposed to predict DTEs in advance and
adjust operating frequency to prevent such DTEs.

One typical approach is to predict the DTEs based on
instruction type [4] [14] [17]. It characterizes the maximum
timing delay of each instruction type from a set of se-
lected representative benchmarks. The instruction-level model
will predict DTEs if the maximum instruction-level timing
delay is beyond clock period. However, these instruction-
level models predict DTEs based on the maximum measured
timing delay, a worst-case scenario of sensitized timing delay
that overlooks the effect of input operands on dynamic path
sensitization behaviors, leading to a pessimistic modeling.

Actually, the instruction-level timing delay does not only rely
on the instruction type, but also its input operands, because
the dynamic path sensitization is directly affected by input
operands. This is seen in that one instruction might exhibit
different DTE behaviors when they execute different input
operands [17]. Prediction of DTEs is a difficult problem for
the space of dynamic timing characterization, instructions and
operands is large. Our attempt to raise the abstraction level
at which this characterization and prediction takes place to
microarchitectural level faces following challenges:

Challenge 1: dynamic path sensitization is potentially affected
by a large number of parameters, from operand values, in-
struction types and data dependencies. These become more
complex as we move up the level of abstraction in an attempt
to identify useful ”features” from the input parameter space
for effective DTE models

Challenge 2: there might be numerous failed timing paths
in the design, and the DTE might be caused by any one of
them. It is unclear how these features will determine what
paths to sensitize and inducing timing violations. We have
no prior knowledge of the circuit and in general, under
cryptographic assumptions Probably Approximately Correct
(PAC) learning of Boolean circuits is hard [16] even under
uniform distribution over the inputs [11].

Proposed approach: To overcome these challenges, we pro-
pose SLoT, a supervised learning model, to predict the DTEs
of FUs based on the input operands (workload) and clock
period. The key idea of SLoT is to establish a prediction
model that can best explore the relationship from input features
to sensitized critical paths by learning the existing patterns
and their corresponding output classes. For a given input data
and clock period reduction (CPR) from safe clock period,
SLoT predicts output data to be one of two predefined classes–
{timing correct, timing erroneous}.

First, we measure the DTEs at each cycle to generate output
class labels using GLS of post-layout design in TSMC 45nm
technology. We also perform a trial-and-error process to extract
useful features from input data. Second, we apply supervised
learning methods to construct and train SLoT for four FUs:
(INT ADD, FP ADD, INT MUL, FP MUL) with extracted
input features and output class labels. Third, we evaluate
the prediction accuracy of SLoT by comparing its predicted
results with GLS-based ground truth.

Contributions: This paper makes the following contributions:
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• We build a DTEs extraction module using standard ASIC
design flow and post-layout GLS to analyze the sources of
DTEs and the effect of input operands. Based on which,
we can extract the useful input features to train the model.

• We propose a methodology to construct automatic models
for DTEs prediction using supervised learning methods
by taking input operands, clock period and circuit activity
into account.

• We demonstrate the performance of SLoT in its average
prediction accuracy at 95% across several FUs and CPRs,
which is 6.3X higher than the instruction-level model.
Furthermore, we demonstrate the usage of SLoT in
reliability analysis of FUs under the input data profiled
from real-world applications, which achieves 0.7-4.8%
average difference compared with GLS-based reliability
analysis, and executes 20X faster than GLS.

II. PROBLEM FORMULATION

Problem Formulation: We follow the procedure of represent-
ing the DTE of a circuit as a function of circuit parameters
and input workload. More specifically, we abstract a circuit
as a mapping from an input space I consisting of p circuit
parameters (e.g., the circuit structure, and clock speed) and
m input bits, to create an input I . Suppose the function
implemented by an ideal circuit, without timing errors is φi
and the function of the real physical circuit is φr, which
includes the effect of DTEs. The output value in error are
ψ(I) = φi(I) ⊕ φr(I), where ⊕ is the XOR operator. Our
goal is to learn (an approximation) of ψ given a range of
inputs and circuit parameters.

However, in general we do not know the structure of the
ψ function – it is not even clear a-priori if the structure
of ψ is similar to the structure of the circuit function φ.
We thus propose to evaluate a sequence of non-parametric
classification methods to classify the inputs to map into
different outputs as shown in Section III-B.

Definition: We define x[t] as the input operands vector, y[t]
as the GLS output and ygold[t] as the pure-RTL simulation
output value, all at cycle t. Note that y[t] may contain timing
errors while ygold[t] is always clean. We define the two classes
for output value: Ce representing timing erroneous and Cc

representing timing correct, and we define the class of y[t] as
C[t]. At cycle t, if y[t] = ygold[t], then C[t] is marked as class
Cc. If mismatched, then C[t] is marked as class Ce. Our goal
is to learn the output class C[t] at cycle t as a function of input
workload, clock period and FU type, denoted as follows:

C[t] = f(tclk, FUtype, x[t], x[t− 1], x[t− 2], ..., x[1]) (1)

where tclk is the clock period, FUtype is FU type, x[t], x[t−
1], ... x[1] are the input workload at cycle t, t − 1, ...1. The
reason of putting previous (history) inputs is that we do not
know whether previous input workload will have an effect on
the DTE behavior of current cycle t. Therefore, we need to
investigate the features from input data which affect the output
DTE behaviors, as shown in Section III-B. In summary, this
becomes a binary classification problem: for a given input data
and circuit parameters at cycle t, t−1, ...1, SLoT predicts the
output C[t] to be one of two classes: Cc or Ce.

III. SLOT MODEL

SLoT Model: It is comprised of three phases as shown in
Fig. 1: DTEs Extraction, Model Training and Model Evalua-
tion. a) The DTEs Extraction phase implements the standard
ASIC flow and uses GLS to generate output values y[t] under
given input data and circuit parameters. Then the output value
is compared with clean output data generated from pure-
RTL simulation to determine the timing class: Cc if matched,
otherwise Ce. Such output class labels will be used in the
next Model Training phase. b) In the Model Training phase,
we preprocess the training data and extract useful features
from them, which will then be incorporated into modeling.
We then apply RFC method to construct the model with the
input features and output timing class labels generated from
last phase. c) In the Model Evaluation phase, SLoT predicts
the timing class of the FU output value for a given test input
data and circuit parameters, and then compare the predicted
result with GLS ground truth to compute prediction accuracy.
More details about the three phases are illustrated as follows.

A. DTEs Extraction

We use integer FUs as well as floating point FUs which
can provide more complex circuit structure compared to their
integer counterpart. We change the data types and circuit
structures to better evaluate the robustness of our model. We
use FloPoCo [5] to generate the synthesizable VHDL codes of
FUs with wrapper at input and output ports. We then use Syn-
opsys Design Compiler to synthesize the VHDL codes and use
Synopsys IC Compiler to generate post place-and-route netlist
in TSMC 45nm technology. Next, we use Synopsys PrimeTime
to perform static timing analysis, generating Standard Delay
Format (SDF) file. We select the operating voltage to be 0.85V
and temperature to be 50◦C. Then, we vary clock periods to
simulate the netlist with Mentor Graphics Modelsim to do
SDF back-annotation gate-level simulation to generate output
data y[t]. Finally, we compare the simulated output data y[t]
with pure-RTL simulation output data ygold[t] to generate C[t],
where t = 1, 2, 3, ...N .

The input stimuli of simulation comes from two sources:
Python-written random data generator and the application in-
put data profiled using Multi2Sim [15], a cycle-accurate CPU-
GPU heterogeneous architectural simulator. In every cycle, we
provide input stimuli operands to the GLS and generate output
y[t] at cycle t, which will then be classified into either Cc or
Ce based on definitions in Section II. These generated output
timing class labels will then be used in Model Training phase
described in Section III-B. We perform this experiment under
various circuit parameters and input data.

B. Model Training

Data Preprocessing: We preprocess the random input data
to convert it into correct format, for example, 0.5 should be
converted to 00111111000000000000000000000000 if the FU
is of IEEE-754 single-precision format. The reason of doing
this is that, the FU accepts 32-bit input vectors and each
bit value could affect the dynamic path sensitization hence
the final timing class. The decimal value, cannot precisely
represent the impact of each bit location. Therefore, in our
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Fig. 1. SLoT model overview with three key stages: a) DTEs Extraction to examine the DTEs under different input workloads and CPRs, and to generate
output timing class labels to be used in next stage; b) Model Training to apply random forest classification (RFC) to construct SLoT with extract input features
from preprocessed data and output timing class labels generated from last stage; c) Model Evaluation to evaluate SLoT prediction accuracy by comparing its
predicted results with GLS-generated ground truth, under different benchmarks datasets.

model training, we take each bit value to compose input
features rather than the decimal value alone.

To save training effort, we remove the repetitive pair of
{x[t − 1], x[t]} in the training input data, because the same
pair of current and preceding input leads to same timing class
as shown next. We also exclude an ambiguous case where the
preceding input x[t − 1] is the same with current input x[t],
because even if timing violation occurs at cycle t, the output
could still appear to be correct.
Input Feature Extraction: Then, from the processed training
input data, we need to find out the useful input features that
determines the output timing class. Empirically, the current
cycle input workload x[t] directly affects the dynamic path
sensitization at cycle t, hence the final output timing class.
However, it is not clear whether the preceding input will
have impact on the current cycle path sensitization and timing
behavior. To explore the effect of history input workload,
we use a trial-and-error process, which iteratively vary the
preceding input while fixing the current input workload. We
set the experiment as follows:

• Case 1: we fix the current input x[t] and randomly vary
the preceding cycle input x[t − 1], where we set cycle
t = 10, 30, 50, 70, .... We use this to evaluate the effect
of immediately preceding input.

• Case 2: we fix both the current input x[t] and the
immediately preceding input x[t − 1], while randomly
varying the preceding input of immediately preceding
input x[t − 2], where we set t like above. We use this
to evaluate the effect of deeper history.

We use 100K cycles for simulation and use different CPRs.
In Case 1, we found the timing class C[t] varies irregularly.
More specifically, by comparing every two neighboring output,
e.g., y[30] and y[50], we found 44% neighboring pairs exhibits

different timing classes. In Case 2, we found all output timing
class C[t] exhibits exactly the same behaviors, i.e., all Cc

or Ce. This shows that only the preceding and current cycle
input vectors x[t − 1], x[t] are accountable for timing errors
in the current cycle t. This is reasonable that the preceding
input workload set a state for the circuit, and then the current
input toggles nets based on the current state. Therefore, path
sensitization or nets toggling activity depends on both the cur-
rent circuit state and current circuit input. Therefore, we find
out the sources that determines the dynamic path sensitization
behaviors and consider that as model input features.

On the other hand, we explore circuit parameters that can
reflect or partially reflect the timing violation behaviors. One
parameter that can be used is output vectors. The circuit
output timing errors occur if and only if at least one output
bit location faces timing violation. The timing violation of a
particular bit occurs only when there is at least one sensitized
timing path ended in that bit faces violation. The necessary
condition for a path being sensitized is that all nodes along that
path are toggled [3]. Hence, if the end point, i.e., the output
bit, is not toggled, the path is not sensitized. In other words,
only the toggled output bit could cause a timing violation to
sensitized path. Thus, we also take the final output value into
our modeling as part of input feature. Note that, we take the
pure-RTL clean output value {ygold[t − 1], ygold[t]} as input
features. In summary, by composing aforementioned features,
our final input features are {x[t−1], x[t], ygold[t−1], ygold[t]}.

Random Forest Classifier(RFC): We evaluate several com-
monly used supervised learning classification methods: k-
nearest neighbor (k-NN), support vector machine (SVM), lo-
gistic regression (LR), and random forest classifiers (RFC) for
their increased sophistication and practical use, from Scikit-
learn package [12]. Table.I presents the prediction accuracy,
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training and testing time of four methods using 100K random
training data and 10K random test data. LR is fastest because
of its relatively easy computation process by assigning weight
to each bit position. However, it achieves lowest accuracy
because the contribution of each bit position is not linear to
final output and might change if other bits changed. KNN
makes predictions based on the distance between input vectors,
which overlooks the different significance (effects) of different
bit positions on final output. Although SVM achieves good
accuracy but its long running time impedes its use. Finally,
we choose RFC due to its high accuracy, fast computing time
and superior interpretability.

TABLE I
PREDICTION ACCURACY, TRAINING AND TESTING TIME OF FOUR

LEARNING METHODS.

method Accuracy Training Time Testing Time
LR 85% 42.8s 0.21s

KNN 87% 4224s 849s
SVM 92% 18600s 1968s
RFC 93% 94.74s 0.26s

RFC is an ensemble method that fits a number of decision
tree (DT) classifiers and use averaging to reduce the overfitting
problem of DT classifier. In this case, each bit position
contributes to the final output timing behavior differently, and
could affect each other. This situation is fit for using decision
tree because a decision rule could be formed by learning the
joint contribution of different bit positions.
Training Process: As discussed above, we set {x[t −
1], x[t], ygold[t−1], ygold[t]} as input feature and C[t] as output
class labels, where x[t], ygold[t], x[t − 1], and ygold[t − 1]
are input and output binary vectors at cycle t and t − 1, and
C[t] ∈ {Ce, Cr} is output timing class provided by DTEs
Extraction phase. We then apply RFC to 1M random training
input data and corresponding output timing class labels to
construct a binary classification model.

C. Model Evaluation
For a given input workload and circuit parameter, our model

will predict the corresponding output timing class to indicate
whether there is a timing violation. We evaluate the model
performance using prediction accuracy, and compare it with
baseline models.

1) Evaluation Metric: We derive prediction accuracy by
comparing the SLoT predicted result with GLS results:

prediction accuracy =
#matched cycles

#total cycles
(2)

where #total cycles is the number of total simulation cycles,
and #matched cycles is the number of cycles at which
predicted result matched GLS result, i.e., both results are either
Cc or Ce.

2) Comparison Methods: We compare SLoT against fol-
lowing baseline methods which can help us evaluate the true
performance of our model:

• INST-level: this model is consistent with the instruction-
level model used in [4] [14] where the model will predict
Ce when the clock period does not meet the measured
maximum instruction-level timing delay, otherwise Cc.

• SLoT-NH: this model is trained similarly with SLoT ex-
cept it does not consider preceding cycle input history
as input features, i.e., it only considers {x[t], ygold[t]} as
input features. Since it only consider current cycle output,
it does not consider output toggling as well.

• SLoT-NT: this model is trained similarly with SLoT ex-
cept it does not consider circuit output toggling as input
features, i.e., it only considers {x[t − 1], x[t]} as input
features.

IV. EXPERIMENTAL RESULTS

In this section, we characterize FUs timing behavior under
five different CPRs. Then, we present the prediction accuracy
of SLoT model and compare with the baseline models. Finally,
we use SLoT to analyze the reliability of FUs under three
benchmark datasets and compare with GLS.

A. Hardware Characterization
We use the DTEs Extraction described in Section III-A to

investigate the timing characteristics of four FUs under the
1M random input stimuli. Fig. 2 presents five different CPRs
that would lead to the timing error rates (TERs) of FUs at
5%, 10%, 15%, 20% and 25% respectively, where TER is
calculated as #erroneous cycles/#total cycles. From now
on, we refer the CPR pairs which lead to such five TERs
as {CPR1, CPR2,...CPR5}. Note that such CPR pairs are
different for each FUs. We observe several important facts
from Fig. 2.
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Fig. 2. The clock period reduction (CPR) and corresponding timing error rate
(TER) under 1M random data.

First, for INT ADD, 5% TER is caused by 41% CPR,
meaning that 41% timing margin is used to protect 5% timing
violations. This suggests a large timing margin has been
used for worst-case scenarios. Second, TER increases rapidly
after then: TER increases from 5% to 20% when CPR only
increases 5%: from 41% to 46%. This suggests that there
are many paths of similar lengths are sensitized in this delay
range and this is consistent with the timing wall phenomenon
[10]. When we compare FP ADD timing characteristics with
INT ADD, we found there is difference and similarity. The
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Fig. 3. The number of failed path of INT ADD under different clock period
reductions.

difference is that, for FP ADD, 5% TER is caused by 24%
CPR, meaning that the timing margin ‘wasted’ to protect the
worst-case scenarios are less than that of INT ADD. The
similarity is that, the TER also rapidly increases after then:
TER increases from 5% to 20% when CPR only increases
6%: from 24% to 30%. This is also consistent with the timing
wall phenomenon. Both designs suggest that there are a large
timing margin used to protect worst-case timing violation (5%)
and emphasizes the need for accurate timing error model.

We also compute the number of paths with negative slack
under such CPRs for INT ADD. As illustrated in Fig.3, the
number of failed paths increases with the CPR. We note that,
for every CPR point, there are more than 5K failed paths.
This means that, once any path in this set fails, then the
whole design faces timing violation. This corresponds to the
challenge 2 in the Section I where multiple timing paths failure
can lead to a timing violation but we need to learn whether
any member of these failed paths will be sensitized. For the
FP ADD, even for the slightest TER at 5%, we observed
more than 30K failed paths. SLoT needs to predict the timing
violation given that even if there is only one path failure,
which makes it a extremely difficult task to learn such path
sensitization behaviors.

B. Model Accuracy

We run our experiments at the {CPR1, CPR2,...CPR5}.
Table. II and Table. III presents the prediction accuracy of
SLoT for INT ADD and FP ADD under random data, where
we can see SLoT exhibits the prediction accuracy ranging
between 91-99% and achieves average prediction accuracy at
95%. INST-level model achieves on average 15% prediction
accuracy: it predicts Ce for all cycles because examined clock
periods are all smaller than instruction-level timing delay. It
only considers the worst-case scenario to set its instruction-
level timing delay, that overlooks the effect of input operands
on dynamic path sensitization hence dynamic timing delay.
The SLoT-NH model achieves average prediction accuracy
at 85% while SLoT-NT can achieve 90% on average. We
found SLoT-NH achieves same accuracy as a naive classifier

whose predictions are always Cc. This suggests that without
considering history input workload, the classifiers does not
learn anything useful. SLoT-NT achieves good accuracy,
meaning that the effect of circuit toggling activity is not as
important as history input workload. Thus, compared to these
baseline classifiers, SLoT achieves 6.3X, 12% and 5% higher
accuracy respectively.

TABLE II
PREDICTION ACCURACY FOR INT ADD UNDER RANDOM DATA.

CPR CPR1 CPR2 CPR3 CPR4 CPR5
INST-level 5% 10% 15% 20% 25%
SLoT-NH 95% 90% 85% 80% 75%
SLoT-NT 96% 92% 88% 85% 83%
SLoT 99% 96% 94% 92% 91%

TABLE III
PREDICTION ACCURACY FOR FP ADD UNDER RANDOM DATA.

CPR CPR1 CPR2 CPR3 CPR4 CPR5
INST-level 5% 10% 15% 20% 25%
SLoT-NH 95% 90% 85% 80% 75%
SLoT-NT 97% 96% 95% 93% 93%
SLoT 97% 96% 95% 93% 94%

C. Reliability Analysis
To further evaluate the robustness of SLoT, we vary the

input datasets and use two new FU types: INT MUL and
FP MUL. We present a case study that uses SLoT to analyze
the reliability of INT MUL and FP MUL under three different
input datasets: random and two image processing applications
selected from AMD APP SDK v2.5 [1]: Gaussian filter and
Sobel filter. We profile the input operands of INT MUL and
FP MUL using Multi2Sim with images from Caltech-UCSD
Birds 200 vision dataset [16]. Using these input datasets, we
analyze the reliability of the two FUs using two ways: GLS
and SLoT. The GLS-based analysis is used as ground truth.
Table.IV and Table.V present the reliability analysis based on
SLoT and GLS, where we observe several important facts.
First, on average across all datasets, SLoT-based analysis
is within 0.7-4.8% of detailed GLS and the average differ-
ence is around 2.5%. SLoT-based reliability analysis remains
small difference compared with ground truth when circuit
types changed from INT MUL to a more complex structure
FP MUL, which demonstrate the robustness of such model
across different circuit structures. Second, across all datasets,
SLoT-based analysis computes 21-4600X faster than GLS-
based analysis. The more complex of the circuit structure, the
slower speed is for simulation. But this might not apply to
SLoT, because it process input data according to its own rule
which might not scale up with the complexity of circuit struc-
ture. For previous instruction-level models [17], the authors
claim that the GLS is very time-consuming, that becomes a
bottleneck for research purpose. Thus, SLoT provides a faster
alternative way to examine reliability without performing time-
consuming conventional GLS.

V. RELATED WORK

Better-than-worst-case (BTWC) design methods have been
explored to overscale frequency while ensuring circuit reli-
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TABLE IV
SLOT-BASED RELIABILITY RESULT AND GLS-BASED RELIABILITY RESULT FOR INT MUL UNDER FIVE CPRS.

Dataset CPR1 CPR2 CPR3 CPR4 CPR5 Ave diff% Computing time
SLoT GLS SLoT GLS SLoT GLS SLoT GLS SLoT GLS SLoT GLS

random 94.2% 94.8% 89.0% 89.9% 84.1% 84.8% 78.8% 79.4% 73.7% 74.2% 0.7% 6.87s 213s
sobel 94.0% 92.8% 94.0% 91.6% 87.4% 85.0% 86.2% 84.4% 77.8% 74.2% 2.3% 0.01s 46s
gauss 95.1% 94.1% 90.4% 89.8% 85.2% 82.8% 84.7% 81.6% 73.8% 69.1% 2.4% 0.08s 47s

TABLE V
SLOT-BASED RELIABILITY RESULT AND GLS-BASED RELIABILITY RESULT FOR FP MUL UNDER FIVE CPRS.

Dataset CPR1 CPR2 CPR3 CPR4 CPR5 Ave diff% Computing time
SLoT GLS SLoT GLS SLoT GLS SLoT GLS SLoT GLS SLoT GLS

random 92.6% 94.9% 86.6% 89.9% 81.1% 84.9% 76.0% 79.9% 70.9% 74.5% 3.3% 3.9s 190s
sobel 93.8% 94.7% 90.1% 89.7% 88.0% 84.8% 84.0% 80.0% 74.7% 75.0% 1.8% 27.5s 579s
gauss 91.0% 94.9% 85.7% 89.9% 80.9% 84.7% 73.7% 79.5% 68.6% 74.8% 4.8% 3.8s 159s

ability [2]. It uses correction schemes to recover the DTEs
induced by frequency overscaling. A shadow flip-flop was
used in [6] to detect and correct any timing errors induced
by speculated voltage scaling. However, it could introduce
hardware overheads and performance penalty by using online
monitoring and correction schemes.

A less-intrusive way is to model the DTEs and adaptively
change the clock frequency to prevent DTEs’ occurrence.
This mechanism ensures error-free operation in a proactive
manner. A bit-level timing error rate prediction model for
floating point units has been proposed considering the impact
of workload, voltage and temperature on timing errors[9].
However, the scalability problem prevents its use because
it need to develop a binary classifier for each bit position.
Instruction-level models identifies critical instructions based
on their vulnerability to timing errors and measured maximum
delay [17] [4] and then perform an instruction-based dynamic
frequency scaling to improve performance. They consider a
worst-case scenario to set instruction-level timing delay. In
a similar vein, a model is developed for critical instruction
sequence, which considers the worst-case delay incurred by a
sequence of instructions [13]. Machine learning has been used
to predict the reliability of embedded system [8] [7]. In this
work, we use machine learning to predict reliability of digital
circuits.

In summary, our model is inspired by these early works
but with major differences. SLoT looks into the effects of
input operands on DTEs and incorporate them to the modeling.
SLoT can be used to assist the modeling at higher levels
by provide an accurate error model at lower circuit-level, to
enable a more robust and fine-grained optimization.

VI. CONCLUSIONS

SLoT is a supervised learning-based model to predict
dynamic timing errors of functional units. It considers the
impact of input operands on dynamic path sensitization and
hence timing errors, which is overlooked by previous models.
We perform gate-level simulation on a post-layout netlist to
extract timing errors and useful ’features’ from input data
and circuit activity. We then apply random forest classification
method to construct the model with extracted input features

and output labels. For a given input data and circuit parameter,
SLoT predicts the output to be one of two classes: {timing
correct, timing erroneous}. On average across several FUs and
CPRs, its prediction accuracy is 95%. SLoT-based reliability
estimation is within 0.7-4.8% of detailed gate-level simulation.
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