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ABSTRACT
TheEthereum ecosystemhas created a prosperity of smart contract
applications in public blockchains, with transparent, traceable and
programmable transactions. However, the flexibility that every-
body can write and deploy smart contracts on Ethereum causes
a large collection of similar contracts, i.e., clones. In practice, smart
contract clones may amplify severe threats like security attacks,
resource waste etc..

In this paper, we have developed EClone, a semantic clone de-
tector for Ethereum. The key insight of our clone detection is Sym-
bolic Transaction Sketch, i.e., a set of critical semantic properties
generated from symbolic transaction. Sketches of two smart con-
tracts will be normalized into numeric vectors with a same length.
Then, the clone detection problem is modeled as a similarity com-
putation process where sketches and other syntactic information
are combined. We have applied EClone in identifying semantic
clones of deployed Ethereum smart contracts and achieved an ac-
curacy of 93.27%.

A demo video of EClone is at https://youtu.be/IRasOVv6vyc.

CCS CONCEPTS
• Software and its engineering → Reusability; Software verifi-
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1 INTRODUCTION
Smart contracts, a special form of programs on blockchain, were
first introduced by Ethereum [16] in order to enable transparent,
traceable and programmable transactions. Using high-level pro-
gramming languages such as Solidity [5], developers can imple-
ment complex business logic in smart contracts. Figure 1 shows a
simple Solidity smart contract, which defines a cryptocurrency to-
ken called FSECoin. As traditional programs, this contract declares
a variable balances whose scope covers the whole contract. Spe-
cially, balances is called state variables and permanently stored on
blockchain. Furthermore, a transfer function is defined to transfer
tokens between two addresses. Particularly, smart contracts will
be compiled into Ethereum Virtual Machine (EVM) bytecode [16]
and assigned with specific blockchain addresses. Other Ethereum
accounts can call a smart contract by sending transactions to its
address, specifying which function is called and what argument
values are passed.

1 contract FSECoin ...

2 mapping (address=>uint) public balances;

3 function transfer (address recv, uint amount) {

4 if(balances[msg.sender] < amount) throw;

5 balances[msg.sender] -= amount;

6 balances[recv] += amount;

Figure 1: A simple Solidity smart contract
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sload swap1
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swap2

(a) --optimize

dup3 swap3 swap1

dup3 pop sstore

sload pop pop

add dup2

(b) No --optimize

Figure 2: Smart contract clones of Figure 1

As other types of programs, smart contracts tend to follow the
programming naturalness [8], whichmay lead tomany similar con-
tract code, i.e., clones. Figure 2 displays a pair of clones (disassem-
bled into opcodes) of line 6 in Figure 1, which are compiled with
andwithout optimization option of the 0.4.18 solc compiler [5] re-
spectively. While both code perform a state variable addition, the
optimized code is shorter by removing several instructions (e.g.,
DUP, POP). In the context of blockchain, while clone detection of
smart contracts can enable important applications such as vulner-
ability discovery (find clones of known vulnerable contracts) and
deployment optimization (reduce contract size), it is relatively lit-
tle discussed.Themain challenges of detecting semantic smart con-
tract clones in Ethereum are summarized below.
Challenge 1:Handle SyntacticDiversity. Ethereumuses “gas”
(i.e., a form of fee) to charge the deployment and execution of smart
contracts. Consequently, smart contracts become more syntacti-
cally diverse due to the tradeoff between reducing deployment gas
and runtime gas respectively.
Challenge 2: Understand High-level Semantics. Detecting
clones requires understanding the programming intents of smart
contracts, e.g., what kinds of transaction a contract is programmed
to process. However, such high-level semantics is hard to analyze.
Our Insight. To address these challenges, we have proposed
symbolic transaction sketch (STS) in this paper to effectively en-
capsulate high-level semantics of a smart contract and enable ef-
ficient clone detection as well. Generally, STS is a set of critical
semantic properties (e.g., path condition of money transfer, access
patterns of permanent storage etc.) generated from symbolic trans-
action, i.e., executing a smart contract with symbolic transaction
input. STS is then normalized into a numeric vector and combined
with other syntactic information for similarity computation. Sim-
ilar contracts will be labeled as semantic clones. We have imple-
mented STS for Ethereum, which showed its potential in effec-
tively finding real clones.

2 SYMBOLIC TRANSACTION SKETCH
Figure 3 shows the general work flow of the proposed clone de-
tection process based on symbolic transaction sketch (STS). Given
the EVM bytecode of two Ethereum smart contracts A and B, STS
first performs semantic generation to model semantics of A and
B as numeric sketch and feature vectors. Specifically, the genera-
tion involves two steps, i.e., symbolic transaction where contracts
are symbolically executed with symbolic values and syntactic fea-
ture extraction where specific syntactic information (e.g., type and

number of instructions) is extracted. With sketch and feature vec-
tors combined, STS enforces a similarity computation process on
A and B and identifies clones (§2.2).

Contract A

Contract B

Symbolic 
Transaction

Syntactic Feature 
Extraction

Similarity 
Computation

Sketch Vector A

Sketch Vector B

Feature Vector A

Feature Vector B

Clone 
Detection
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NO

Parameters

Score

Semantic Generation Clone Detection

Figure 3: The semantic clone detection framework.

2.1 Semantic Generation
Assuming σ = s1s2 · · · sn is a runtime trace of a transaction, where
si (1 ≤ i ≤ n) is a specific instruction, STS is a set P of critical
semantic properties generated from σ . Particularly, we consider
a smart contract as a control flow graph (CFG) and each node in
CFG is a basic block consisting of a sequence of instructions. The
semantics properties are collected at basic block level. Letb be a ba-
sic block, we consider three types of properties, i.e., path condition
to reach b, storage accesses in b and message calls in b.

To generate the aforementioned properties from a smart con-
tract c , we perform symbolic transaction on c , which is realized via
symbolic execution with symbolic values, i.e., nonce, gas price, gas
limit, receiver address, money value attached, signature of sender
and call data [16]. The call data specifies a function to call and the
argument values passed to that function. At runtime, EVM instruc-
tions in c are interpreted as common symbolic execution engines
like CUTE [15] and Klee [1]. When stepping into a basic block b,
we compute the path conditions (PC) of b by collecting constraints
on JUMP and JUMPI instructions in the path before b. As for the ex-
ecution of b, we focus on three types of instructions, i.e., SLOAD
(load state variable values), SSTORE (store values to state variables)
and CALL (send messages to an address). Specifically, we consider
eight semantic properties (given v is a state variable): L, S and C
for single SLOAD, SSTORE and CALL; DU for SSTORE v; SLOAD v; UU
for SLOAD v; SSTORE v; UpC for SSTORE v; CALL; UsC for SLOAD v;
CALL; CF for CALL; SSTORE v.

Formally, the critical semantic properties of an STS is defined
as P = {PC, L, S,C,DU,UU,UpC,UsC,CF}. Furthermore, we gen-
erate a numeric vector P̄ for P. For PC , L, S and C in P, we count
the number of constraints and operations during symbolic transac-
tion. In terms of the patterns, we calculate the maximal number of
patterns on a single state variable and record the total number of
patterns as well. Then we use cantor pairing function1 to encode
these two values (count and maximum) into a single value. On the
other hand, we extract syntactic information fromb as well. Specif-
ically, we categorize instructions into six classes based on [16], i.e.,
arithmetic, logic, environment, blockchain, stack and memory op-
erations. Similarly, we generate a numeric vector F̄ for the basic
block b by counting the number of operations in each class.

1https://en.wikipedia.org/wiki/Pairing_function
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2.2 Clone Detection
Based on the generated semantic vectors, i.e., P̄ and F̄ , clone de-
tection of Ethereum smart contracts is modeled as similarity com-
putation problem over the vectors. Given two vectors P andQ , we
define their distance ∥PQ ∥ as in Equation Vector Distance.

∥PQ ∥ =
∑
αi |Pi −Qi |∑

αi max(Pi ,Qi )
(Vector Distance)

We adopt the definition as in [4]. Specifically, larger distance in-
dicates lower similarity between two vectors. Distances between
sketch (∥∥S ) and feature (∥∥F ) vectors can be calculated using this
formula. Furthermore, for two basic blocks b1 and b2, their simi-
larity ∥b1b2∥ is calculated in Block Similarity.

∥b1b2∥ =
1 − ∥P̄1P̄2∥S

1 + ∥P̄1P̄2∥S + ω · ∥F̄1F̄2∥F
(Block Similarity)

Based on the block similarity, we denote P(b1;b2) to be the prob-
ability measurement that b1 and b2 are semantic clones, i.e., b1 is
semantically equivalent or similar to b2. The probability is com-
puted as in Clone Blocks.

P(b1;b2) = 1/(1 + e−k ·(∥b1b2 ∥−0.5)) (Clone Blocks)

The probability is estimated by applying a sigmoid function with a
midpoint to be 0.5 as ∥b1b2∥ ∈ [0, 1] [3]. Given two CFGs G1 and
G2 from a pair of smart contracts, the similarity computation is
realized by finding the best match inG2 for each of the basic block
of G1 and vice versa. Moreover, searching for the best match is
done by finding a pair of basic blocks with the smallest sketch vec-
tor distance. When two blocks are found, we compute their clone
probability (with feature vector distance involved). Lastly, we de-
fine the semantic similarity Sim(C1,C2) of two smart contractsC1

and C2 via the Clone Contracts function.

Sim(C1,C2) =
∑

bi ∈C1

log
P(bi ;b

∗)
P(bi ;H0)

(Clone Contracts)

In particular, given a specific basic blockbi ∈ C1,b∗ ∈ C2 andb∗ =
argmax∥bibj ∥S . P(bi ;H0) represents a probability estimation of
clones between bi and a random basic block H0. Lastly, by specify-
ing a threshold value of (Sim(C1,C1)− Sim(C1,C2))/Sim(C1,C1),
we can filter clone contracts out of unrelated ones.

3 USING ECLONE
3.1 Architecture Design
We have implemented a clone detector called EClone, whose ar-
chitecture is shown in Figure 4. Specifically, EClone provides a
web service to interact with users as in Figure 5. Currently, both
Solidity source code and EVM bytecode contracts are allowed. In
the backend, EClone uses the solc compiler [5] to generate EVM
bytecode.The CFG Builder then creates a control flow graph (CFG).
Based on the CFG, Feature Extractor produces syntactic features
automatically. EClone reuses the Symbolic Execution Engine from
Oyente [13] to perform symbolic transaction and record semantic
metadata. Then, Semantic Vector Generator is responsible for gen-
erating semantic vectors, which are used by Analysis Core to com-
pute similarity and further check for clones.

Feature Extractor

Solidity Compiler

Symbolic Execution Engine

Analysis Core

Semantic Vector Generator

Training Core

EClone Backend

Web Service

EClone Frontend

Solidity Source Code EVM Bytecode

CFG Builder

Figure 4: The architecture of EClone.

Additionally, EClone also has a Training Core, which is lever-
aged to train and optimize the parameters used in the clone de-
tection, e.g., α , ω, k as mentioned above. To this end, we prepare
a corpus C of training inputs for EClone. Each input contains a
pair of EVM bytecode with a label from {−1, 1}, where −1 means
unrelated contracts and 1 means clones. Then, EClone employs
pyGAlib2 to optimize the Objective Function.

max
∑

(Sim(Ci ,Cj ) − Sim(Ci ,Uk )) (Objective Function)

Specifically,Ci andCj are labeled as 1 andCi andUk are labeled as
−1 in the training data (Ci ,Cj ,Uk ∈ C). Conceptually, the objective
function helps EClone separate clone and unrelated contracts as
much as possible.

3.2 Key Capabilities
Figure 5 shows a screenshot of EClone. The web service allows
users to input a pair of smart contracts, i.e., Query and Target. In
this case, we use two compiled versions of the BEC token contracts
as query and target respectively, as in Figure 6. Specifically, a mul-
tiplication overflow can cause incorrect token transfer. The clone
detection is enabled by clicking the analysis button at bottom.

Figure 5: The architecture of EClone.

2https://github.com/gorkazl/pyGAlib
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1 uint256 amount = uint256(cnt) * _value;

2 require(cnt > 0 && cnt <= 20);

Figure 6: A vulnerable fragment of BEC

Figure 5 shows the clone detection report of EClone for the
contracts given in Figure 5. Specifically, EClone identifies the two
smart contracts given as clones. In the Figure 5 case, the target
and query are from the same BEC contract thus are semantically
equivalent. Moreover, the report explains the detection details, i.e.,
the similarity score value generated by EClone for the given smart
contracts and statistics of both contracts. In this example, the query
bytecode has 49 basic blocks in CFG while the target bytecode has
46. In the future, we plan to refine the report to help users better
understand the contract in comparison.

4 PRELIMINARY EVALUATION
The evaluation dataset includes 2,117 Solidity smart contracts. For
each contract, we use the 0.4.18 solc compiler to compile the source
file with and without --optimize option. From the dataset, we ran-
domly pick 1,517 pairs for evaluation. Particularly, if two contacts
of a pair are from the same source file, it was marked as clone.
Otherwise, they were marked as unrelated. We compared EClone
with a baseline technique, i.e., using only numeric syntactic fea-
tures to detect clones. Figure 7 shows the clone detection results
in the evaluation.
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(a) Precision of clone detection (b) ROC curve of clone detection

Figure 7: Clone detection results

Specifically, wemainly investigate the detection accuracy in Fig-
ure 7a. Correct labeling on both the clone and unrelated groups are
considered as accurate detection. Others were counted as false la-
bels. For different values of threshold, EClone managed to achieve
a best accuracy of 93.27%, which is 12.09% better than the baseline.
Moreover, we compared the ROC curve of the two techniques, as
in Figure 7b. From the curves, we can tell that EClone reached a
better balance between true and false positives than the baseline.

5 RELATEDWORK
Clone detection has been a long-standing research problem at both
source-code level [7, 9, 10] and binary level [3, 4, 6, 14, 17]. Jiang
et al. proposed Deckard and highlighted an effective tree similar-
ity based technique to search for matched clone pairs [9]. Gabel
et al. further extended Deckard through mapping selected pro-
gram dependence graphs [7]. In the context of binary code, Sae-
bjornsen et al. extended the tree-based technique by normalizing

assembly instructions with structure information considered [14].
David et al. further involved input-output equivalence to check se-
mantic similarity [3]. On the other hand, machine learning tech-
niques are applied to infer a semantic embeddings of code and fur-
ther find clones [2, 17]. Smart contract analysis has been attracting
research interests across various topics [11–13]. We made the first
step in this area by proposing a semantic-aware clone detection
technique for Ethereum.

6 CONCLUSION
In this paper, we have presented the symbolic transaction sketch
technique and EClone tool for clone detection in Ethereum. The
key insight behind EClone is to sketch out semantics of smart con-
tracts as numeric vectors via symbolically executing a transaction.
The preliminary evaluation showed the potential of EClone in ac-
curately finding smart contract clones. A demo video is available
at https://youtu.be/IRasOVv6vyc.
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