
PAFL: Extend Fuzzing Optimizations of Single Mode to
Industrial Parallel Mode

Jie Liang
KLISS, BNRist, School of Software,

Tsinghua University, China
liangjie.mailbox.cn@gmail.com

Yu Jiang∗
KLISS, BNRist, School of Software,

Tsinghua University, China
jiangyu198964@126.com

Yuanliang Chen
KLISS, BNRist, School of Software,

Tsinghua University, China
chenyuan17@mails.tsinghua.edu.cn

Mingzhe Wang
KLISS, BNRist, School of Software,

Tsinghua University, China
wmzhere@gmail.com

Chijin Zhou
KLISS, BNRist, School of Software,

Tsinghua University, China
tlock.chijin@gmail.com

Jiaguang Sun
KLISS, BNRist, School of Software,

Tsinghua University, China
sunjg@tsinghua.edu.cn

ABSTRACT
Researchers have proposed many optimizations to improve the effi-
ciency of fuzzing, and most optimized strategies work very well on
their targets when running in single mode with instantiating one
fuzzer instance. However, in real industrial practice, most fuzzers
run in parallel mode with instantiating multiple fuzzer instances,
and those optimizations unfortunately fail to maintain the effi-
ciency improvements.

In this paper, we present PAFL, a framework that utilizes ef-
ficient guiding information synchronization and task division to
extend those existing fuzzing optimizations of single mode to in-
dustrial parallel mode. With an additional data structure to store
the guiding information, the synchronization ensures the informa-
tion is shared and updated among different fuzzer instances timely.
Then, the task division promotes the diversity of fuzzer instances
by splitting the fuzzing task into several sub-tasks based on branch
bitmap. We first evaluate PAFL using 12 different real-world pro-
grams from Google fuzzer-test-suite. Results show that in parallel
mode, two AFL improvers–AFLFast and FairFuzz do not outperform
AFL, which is different from the case in singlemode. However, when
augmented with PAFL, the performance of AFLFast and FairFuzz
in parallel mode improves. They cover 8% and 17% more branches,
trigger 79% and 52% more unique crashes. For further evaluation
on more widely-used software systems from GitHub, optimized
fuzzers augmented with PAFL find more real bugs, and 25 of which
are security-critical vulnerabilities registered as CVEs in the US
National Vulnerability Database.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

∗Yu Jiang is the correspondence author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275525

KEYWORDS
Software testing, Parallel, Fuzzing
ACM Reference Format:
Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Ji-
aguang Sun. 2018. PAFL: Extend Fuzzing Optimizations of Single Mode to
Industrial Parallel Mode. In Proceedings of the 26th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3236024.3275525

1 INTRODUCTION
Despite the prudent software developing and testing process, vul-
nerabilities are still common in software [11–13]. To find these
vulnerabilities and ensure security, researchers have made a lot of
efforts and proposedmany techniques in software testing. Mutation-
based fuzzing relies on repeatedly feeding the program with mod-
ified inputs and monitoring the abnormal behaviours [16]. Com-
pared with other vulnerabilities detecting techniques, better scala-
bility and less manual efforts contribute to its popularity in industry
[1–4, 10, 15, 21]. However, as the continuous growth of software
complexity, trivial mutation-based fuzzers are hard to ensure the
code coverage. For example, they may be blocked by input format
checks and ignore vulnerabilities which hide in hard-to-reach areas.

One popular idea to improve mutation-based fuzzing is getting
more program information to guide deliberate input modifications.
For example, only modify critical bytes which determine branches.
There are mainly two ways to gather information. The first way
collects information from past fuzzing runs. For example, AFLFast
[6] and FairFuzz [14] are two successful improvers of AFL. AFLFast
models the fuzzing process as a Markov chain and assigns modifi-
cation times to input seeds according to path frequency. FairFuzz
collects branch hit count and only modifies inputs which can hit
branches whose hit count is small enough. The second way utilizes
program analysis techniques. For example, CollAFL [9] and Vuzzer
[17] guide fuzzing by control- and data-flow gathered from static
analysis. Others integrate symbolic execution to help fuzzing pass
the complicated checks [7, 19].

These optimizations are effective and acquire huge performance
improvements to the original AFL in single mode1. In industry prac-
tice, parallel mode of mutation based fuzzers are adopted for higher
1The single mode means testing the program with instantiating only one fuzzer
instance, while the parallel mode means instantiating multiple fuzzer instances at the
same time.

809

https://doi.org/10.1145/3236024.3275525
https://doi.org/10.1145/3236024.3275525

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J. Liang, Y. Jiang, Y. Chen, M. Wang, C. Zhou and J. Sun

efficiency. However, evaluation of those optimizations in parallel
mode is hardly observed in empirical statistics or experiment results
in literature studies. Hence, we evaluate the performance of AFL,
AFLFast and FairFuzz in parallel mode with four fuzzer instances
on 12 real-world programs2.

To our surprise, in parallel mode AFLFast and FairFuzz
cover only 97% and 96% branches, and trigger only 57% and
89% unique crashes of AFL. The performance degradation of
these optimizations in parallel mode is because these studies lack
the consideration for synchronizing their additional guiding infor-
mation. Thus running multiple instances of those optimized fuzzers
in parallel mode yields little performance gain, and sometimes they
perform even worse than the original fuzzer. To extend fuzzing
optimizations of single mode to industrial parallel mode, we have
to face two main challenges:

(1) Information synchronizationmechanism.Optimized ap-
proaches always have additional guiding information, which
should be synchronized in parallel mode. A good mechanism
needs to spend little resources to synchronize information
and make fuzzer instances focus on fuzzing itself.

(2) Task division mechanism. Different fuzzer instances in
parallel mode tend to perform the similar actions because of
the similar guiding information. Dividing the fuzzing task
and allocating them to different fuzzer instances promotes
the diversity and reduces the waste of resources.

In this paper, we present PAFL, a framework which can extend
those existing fuzzing optimizations of single mode to industrial
parallel mode. First, we design a synchronization mechanism for
additional information synchronization among different fuzzer in-
stances based on a global-and-local data structure. We implement
this mechanism with shared-memory and semaphores. Second, we
divide the fuzzing task by grouping branches into different parts
according to their locations in branch bitmap. Different fuzzer in-
stances are guided to fuzz different parts. We conduct repeated
benchmark evaluation using different real-world programs from
Google fuzzer-test-suite. Results demonstrate that successful im-
provers of AFL in single mode such as AFLFast and FairFuzz do not
perform as well as original AFL in parallel mode. Augmented with
PAFL, the performance of AFLFast and FairFuzz in parallel mode
improves, namely covering 8% and 17% more branches, triggering
79% and 52% more unique crashes. For the further evaluation on
more real projects from GitHub, optimized fuzzers augmented with
PAFL find more real bugs within which 25 have been successfully
registered as CVEs in the US National Vulnerability Database.

2 BACKGROUND
Typical Mutation-based Fuzzer: AFL, AFLFast and FairFuzz.
Figure 1 illustrates the general workflow of AFL [21]. It maintains
an input seed queue built on initial seeds and runs a continuous
fuzzing loop. It has four steps: (1) Select input seeds from the queue,
(2) mutate the selected input seeds to generate new candidate seeds,
(3) run the target program with the candidate seeds, track the
coverage and report vulnerabilities (4) add interesting candidate
seeds which have new coverage to the seed queue, then go to step
1. Following the continuous fuzzing loop, AFL improves coverage
2Google fuzzer-test-suite: https://github.com/google/fuzzer-test-suite/

systematically. AFLFast [6] and FairFuzz [14] are two extensions of
AFL which collect program running information in step 3 to guide
fuzzing to explore more areas. Their improvements focus on step 1
and step 2, namely input seed selection and input seed mutation.

AFLFast collects path frequency and utilizes it in step 1 to pri-
oritize seeds exercising low-frequency paths. It also calculates the
number of mutation times based on path frequency in step 2, which
assigns more mutation times to seeds exercising low-frequency
paths. These improvements avoid wasting energy on hot paths.
FairFuzz gathers a more fine-grained information, namely branch
hit count. Branch represents a block transition, the fundamental
elements of a path. In step 1, it only selects seeds covering branches
whose hit count is small. The branch which has the smallest count
among covered branches is defined as the target branch. FairFuzz
mutates input seeds in a restrict way to ensure the generated seeds
still hit the target branch in step 2. AFLFast and FairFuzz perform
better than AFL in single mode. However, they lose their advantages
in parallel mode, because they lack considerations for synchroniz-
ing their necessary guiding information in parallel mode.

Initial Seeds Vulnerabilities

Seed Queue

Seed Selection

Interesting
Seeds

Seed Mutation

Test

Seeds

Candidate
Seeds

Figure 1: The workflow of AFL.

Parallel Fuzzing. Running fuzzers in parallel mode is common
to test the real-world programs. Many widely used industry fuzzers
support parallel mode. Most of them, such as AFL [21], libFuzzer
[4], honggfuzz [3] coordinate different fuzzing processes by sharing
input seeds. Xu et al. propose several new primitives to speed up
AFL in parallel mode [20]. They try to shorten the execution time
of each iteration of fuzzing. EnFuzz [8] ensembles diverse fuzzers
to increase generalization ability. Different from them, we focus on
adapting the augmented approaches into parallel fuzzing.In recent
years, parallel fuzzing has become a common sense in industry
practice. To prevent security incidents, companies and organiza-
tions spend lots of resources on fuzzing their products and open
source projects. Google’s OSS-Fuzz [5], a fuzzing platform, found
over one thousand bugs in five months. Besides, Microsoft starts
Project Springfield [1], a fuzzing cloud service for developers to
test their own works.

3 PAFL DESIGN
To address the challenges and extend single enhanced fuzzing ap-
proaches to parallel mode, we propose a parallel fuzzing framework,

810

https://github.com/google/fuzzer-test-suite/

PAFL: Extend Fuzzing Optimizations of Single Mode to Industrial ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

namely PAFL . Figure 2 presents the structure of PAFL. Fuzzers run
in parallel and synchronize guiding information as well as input
seeds regularly. PAFL maintains the global and local guiding infor-
mation for synchronizing. It also divides the whole fuzzing task
into several parts based on branch bitmap. With the guidance, each
instance focuses on their own parts and utilizes enhanced fuzzing
approaches to improve testing coverage and report bugs efficiently.

Fuzzer 1

Global Guiding Information

Fuzzer 2 Fuzzer n...

Target App

Crashes

Local Guiding
Information

Local Guiding
Information

Local Guiding
Information

...

...

Branch Bitmap

Figure 2: PAFL design.

3.1 Information Synchronization Mechanism
The synchronization mechanism employs a global-local style data
structure as shown in Figure 2. The local guiding information is
maintained by each fuzzer instance, while the global guiding in-
formation is maintained by all fuzzer instances. Each instance has
its own local information, so they do not need to synchronize real
time. Because fuzzing executes the target program very quickly and
the guiding information such as branch hit count may vary rapidly
at the early stage, using only one shared global information is also
unrealistic. PAFL synchronizes the guiding information and input
seeds simultaneously. The synchronization operation consists of
three steps:

(1) Upload step.Upload local guiding information of each fuzzer
instance to global.

(2) Update step. Update the global information with the local
guiding information.

(3) Pull step. Pull the new global guiding information as new
local information for each fuzzer instance.

In specific, we take FairFuzz as an example to illustrate the syn-
chronizationmechanism in detail. FairFuzz gathers branch hit count
to locate rare branches and targets them to increase testing cov-
erage. Because AFL maps branches with a fixed size memory, we
also build a fixed size local branch hit count map for each fuzzer

instance. Following the synchronizing structure, an equal sized
global map is also built to synchronize the hit count.

In the second step, PAFL goes through both the local and global
branch hit countmap to update the global hit countmap. Letblocal,i
be the hit count of branch i in the local map and bдlobal,i be the
corresponding hit count in the global map. The new value for
bдlobal,i is:

bдlobal,i = max(blocal,i ,bдlobal,i) (1)

The formula assigns the global branch hit count with the maximum
value for all fuzzer instances, which speeds PAFL to identify high
frequency blocks in a global scope. The synchronization structure
and max operation have following advantages: (1) Single fuzzer
instances do not need to synchronize at the same time. (2) The
global map is as small as local maps and themax operation is cheap,
so it is quick and efficient for synchronizing. (3) It is convenient to
implement this structure by shared-memory and semaphores. In a
similar way, we can customize AFLFast and other fuzzers to PAFL.

3.2 Task Division Mechanism
Different fuzzer instances share similar guiding information and
the same guided mutation algorithm, therefore they tend to per-
form similar actions. This similarity wastes resources and limits
the effect of parallel fuzzing. The key to solving this problem is in-
creasing the diversity among different fuzzers. We accomplish this
by driving different fuzzer instances focusing on different areas in
input seed selection step according to branch hit count. Algorithm
1 shows our solution. For all fuzzer instances numbered from 1 to
n, the input seeds assigned to fuzzerm are computed as follows:
First, we divide the branch bitmap into n intervals, and the range
of bitmap positions corresponding to fuzzerm is computed as line
1-3. Next, given a input seed s , we find its rarest branch which
has the smallest branch hit count, as shown in line 4 and 5. If the
rarest branch is not in the range, we skip it and try next input
seed. Otherwise, we execute normal fuzzing process. By dividing
branches and skipping the input seeds which are not in the corre-
sponding parts, different fuzzer instances focus on fuzzing different
areas, which promotes the diversity among them and enhances the
parallel fuzzing efficiency.

Algorithm 1: Fuzzing Task Division Algorithm
Input :The total number of fuzzer instances: n,

the index of the fuzzer instance:m,
input seed s ,
branch hit count map branch_hit_count .

1 interval = MAP_SIZE/n;
2 start = (m − 1) ∗ interval ;
3 end =m ∗ interval ;
4 branch_covered = FindCoveredBranch(s);
5 min_hit_id =

FindMinHitID(branch_covered,branch_hit_count);
6 if min_hit_id < start ormin_hit_id >= end then
7 Try next input seed;
8 end

811

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J. Liang, Y. Jiang, Y. Chen, M. Wang, C. Zhou and J. Sun

4 EVALUATION
We implement PAFL on AFLFast and FairFuzz. The synchronizing
mechanism is implemented by shared-memory and semaphores.
The fuzzing task division mechanism is integrated to the input
seed selection step. We evaluate PAFL using 12 different real-world
programs of Google fuzzer-test-suite and some other projects from
GitHub that have different code scale and application scenarios.
Results show that AFLFast and FairFuzz lose their advantage in
parallel mode. Augmented with PAFL, their performance recovers
as well as in single mode. For practical projects on GitHub, they
find much more real bugs, within which 25 are registered as CVEs
in the US National Vulnerability Database.

4.1 Google Benchmark Evaluation
We select 12 real-world programs to evaluate PAFL. These typi-
cal programs have different code scale and application scenarios,
including well-known tools (e.g. libarchive, pcre2, woff2), image
processing libraries (e.g. guetzli), communication protocol toolk-
its (e.g. openssl, boringssl, libssh), color management engines (e.g.
lcms), regular expression engines (e.g. proj4, re2), and document
processers (e.g. libxml2) etc. Each program is hardened by Google
AddressSanitizer (ASan) [18] when compiled.

The number of branches covered and unique crashes triggered
are used as metrics. The first metric evaluates the coverage of the
target program and the second metric indicates the probability of
finding vulnerabilities. It is noteworthy that some crashes may
triggered by an identical cause because fuzzers distinguish them by
execution paths. However, triggering crashes is the prerequisite for
detecting vulnerabilities. The more crashes we found, the higher
probability that more vulnerabilities could be identified.

We first evaluate the performance of AFLFast and FairFuzz in
parallel mode with four fuzzer instances in 24 hours. Then we aug-
ment them with PAFL and repeat the experiments. We collect input
seeds generated by all fuzzer instances as initial seeds and reuse
AFL in benchmarking-only mode to aggregate results. This mode
only feeds the programwith initial seeds without mutation to count
the metrics. Our experiments are conducted ten times in a 64-bit ma-
chine with 36 cores (Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz),
128GB of main memory, and Ubuntu 16.04 as the host OS.

Table 1: Number of branches in parallel mode

Project AFL AFLFast FairFuzz

boringssl 3836 3875 3638
c-ares 105 105 105
guetzli 1522 2324 1514
lcms 2507 2472 2495
libarchive 10582 9267 8646
libssh 604 604 604
libxml2 15269 14204 14351
openssl 4142 4067 4086
pcre2 35219 34725 35124
proj4 324 324 324
re2 16656 16498 16452
woff2 175 175 175

Total 90941 88640 87514

Table 2: Number of crashes in parallel mode

Project AFL AFLFast FairFuzz

boringssl 0 0 0
c-ares 17 12 19
guetzli 0 0 0
lcms 48 88 59
libarchive 0 0 0
libssh 0 0 0
libxml2 63 22 38
openssl 68 36 125
pcre2 3575 2001 3111
proj4 0 0 0
re2 0 0 0
woff2 0 0 0

Total 3771 2159 3352

Table 1 shows the number of branches covered by AFL, AFLFast
and FairFuzz in parallel mode. Compared with AFL, we find AFLFast
and FairFuzz lose their advantages. In detail, from the second and
third column, we observe AFLFast covers 97% branches of AFL in
total. Among the 12 programs, it performs better than AFL only in
2 programs. From the second column and the last column, FairFuzz
covers 96% branches of AFL in total. It does not perform better than
AFL in any programs. Table 2 shows the number of crashes triggered
by AFL, AFLFast and FairFuzz in parallel mode.We observe AFLFast
triggers 57% crashes of AFL in total, and FairFuzz triggers 89%
crashes of AFL in total.

The statistics demonstrate that AFLFast and FairFuzz perform
worse than AFL in parallel mode. This is because both AFLFast and
FairFuzz depend on additional guiding information to get improve-
ments, however, this information is not shared by fuzzer instances
in parallel mode. When they shared the input seeds like AFL, this
information is not consistent with other imported seeds. There-
fore, instead of augmenting fuzzing, their optimizations become
obstacles, which would hamper the performance.

Table 3: Number of branches augmented with PAFL

Project AFLFast AFLFast
with PAFL

FairFuzz FairFuzz
with PAFL

boringssl 3875 3901 3638 4077
c-ares 105 168 105 168
guetzli 2324 2440 1514 4217
lcms 2472 2677 2495 2706
libarchive 9267 10532 8646 10482
libssh 604 667 604 667
libxml2 14204 17216 14351 22803
openssl 4067 4145 4086 4143
pcre2 34725 37273 35124 36253
proj4 324 327 324 327
re2 16498 16520 16452 16670
woff2 175 177 175 175

Total 88640 96043 87514 102688

Table 3 shows the number of branches covered by AFLFast, Fair-
Fuzz and their PAFL augmented versions in parallel mode. From

812

PAFL: Extend Fuzzing Optimizations of Single Mode to Industrial ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

the second column and third column, we observe that AFLFast aug-
mented with PAFL covers 8% more branches than the original one.
From the forth column and last column, we observe that FairFuzz
augmented with PAFL finds 17% more branches than original one.
When augmented with PAFL, AFLFast and FairFuzz synchronize
guiding information among fuzzer instances, which is statistic-
based and fits every single fuzzer instance well. Furthermore, PAFL
divides the whole fuzzing task into different parts and assigns them
to different fuzzer instances. The division increases the diversity
among fuzzer instances and make better effects. Synchronizing
guiding information and dividing fuzzing task help AFLFast and
FairFuzz to cover more branches.

Table 4: Number of unique crashes augmented with PAFL

Project AFLFast AFLFast
with PAFL

FairFuzz FairFuzz
with PAFL

boringssl 0 0 0 0
c-ares 12 17 19 19
guetzli 0 0 0 0
lcms 88 92 59 97
libarchive 0 79 0 60
libssh 0 0 0 0
libxml2 22 51 38 40
openssl 36 102 125 137
pcre2 2001 3524 3111 4736
proj4 0 0 0 0
re2 0 0 0 0
woff2 0 0 0 0

Total 2159 3865 3352 5089

Table 4 shows the number of unique crashes found by AFLFast,
FairFuzz and their PAFL augmented versions in parallel mode. As
mentioned earlier, several unique crashes with different triggered
paths may have the same cause, but this metric still reflects the
probability to detect bugs. For AFLFast in the second column and the
third column, after being augmented with PAFL, the bug detection
probability increases 79% in total. From the forth column and fifth
column, we observe PAFL helps FairFuzz increase 52% bug detection
in total. From these comparisons and statistics, we conclude that
synchronizing mechanism and fuzzing task division mechanism
help AFLFast and FairFuzz hunt more bugs and trigger each bug
with a higher probability.

4.2 GitHub CVE Mining
We apply AFLFast and FairFuzz augmented with PAFL to fuzz more
realistic projects from GitHub that have been fuzzed before, and
they also have a good performance. Besides the coverage improve-
ments, they find more unknown real bugs including 25 successfully
registered as CVEs, as shown in Table 5.

We give an analysis of the project libjpeg for a more detailed
illustration. libjpeg is awidely used C library for reading andwriting
JPEG image files. Four previous unknown CVE vulnerabilities in
libjpeg contain two segmentation fault, one division by zero error
and one logic error. In particular, CVE-2018-11213 allows remote
attackers to cause segmentation fault via a crafted file. We analyze
the vulnerability with gdb and find it is caused by a memory access

Table 5: The CVE vulnerabilities found by augmented
AFLFast and FairFuzz

Project Count CVE-Number

cstring 1 CVE-2018-11097
discount 3 CVE-2018-11468, CVE-2018-11503, CVE-2018-

11504
lepton 2 CVE-2018-12108, CVE-2018-12109
libjpeg 4 CVE-2018-11212, CVE-2018-11213, CVE-2018-

11214, CVE-2018-11813
md4c 4 CVE-2018-11536, CVE-2018-11545, CVE-2018-

11546, CVE-2018-11547
PDFGen 1 CVE-2018-11363
ReadStat 2 CVE-2018-11364, CVE-2018-11365
tinyexr 7 CVE-2018-12064, CVE-2018-12092, CVE-2018-

12093, CVE-2018-12503, CVE-2018-12504, CVE-
2018-12687, CVE-2018-12688

ICMS 1 CVE-2018-12498

Listing 1: CVE-2018-11213
Program received signal SIGSEGV ,

Segmentation fault.

0x00000000004f7178 in get_text_gray_row (

cinfo=0 x7fffffffdd80 ,

sinfo=0 x628000008118) at rdppm.c:153

153 *ptr++ = rescale[read_pbm_integer(

cinfo , infile)];

violation. As the listing 1 shows, the problem is that *ptr attempting
to access a restricted area of memory in line 153 of rdppm.c.

101 102 103 104 105

Time(s)

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f b
ra

nc
he

s

AFLFast with PAFL
AFLFast

Figure 3: Number of branches over time for AFLFast and its
augmented version for fuzzing libjpeg.

We also fuzz libjpeg with original AFLFast and FairFuzz, but
they do not find these vulnerabilities. We draw the number of
branches covered varying with time for fuzzing libjpeg 24 hours
withAFLFast, FairFuzz and their augmented versions in Figure 3 and
Figure 4. In Figure 3, PAFL helps AFLFast find more branches with
a higher speed than the original one. Figure 4 demonstrates that
PAFL augmented FairFuzz covers more branches then the original
version. The improved versions all take lead from the beginning
to the end. Besides libjpeg, when augmented with PAFL, AFLFast

813

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J. Liang, Y. Jiang, Y. Chen, M. Wang, C. Zhou and J. Sun

101 102 103 104 105

Time(s)

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f b
ra

nc
he

s

FairFuzz with PAFL
FairFuzz

Figure 4: Number of branches over time for FairFuzz and its
augmented version for fuzzing libjpeg.

and FairFuzz also perform well on other real-world programs in
parallel mode. From these comparisons and analysis, we conclude
PAFL extends optimizations of fuzzing approaches in single mode
into parallel mode successfully.

5 DISCUSSION
In the developing and practicing of PAFL, we get the following
lessons.

(1) The optimizations in single mode are not easy to take
effect in parallel mode directly. It may turn into ob-
stacles in some industrial practice. The key to improve
fuzzing is utilizing additional information to restrict its ran-
domness and guide fuzzing to increase the coverage, as well
as the probability to trigger more crashes. If we do not ex-
change this information between parallel fuzzing instances,
only synchronizing input seeds cannot bring the single im-
provements into global. To reduce the cost of synchronizing,
only simple but necessary information is accepted.

(2) Running parallel fuzzing with input seeds and guid-
ing information synchronizing improves the fuzzing
coverage. In industry environment, companies always have
sufficient resources to fuzzing their products. Running par-
allel fuzzing with input seeds synchronizing is a convenient
and scalable way to improve fuzzing.

(3) The enhanced approaches which extended to parallel
fuzzing take effect when different fuzzing instances
process different tasks. When each fuzzer instance gets
the synchronized guiding information, they tend to perform
similar actions caused by the guided fuzzing algorithm. The
similar actions cause several fuzzers running like only one
fuzzer. Task division and results merging are two key points a
general parallel task focuses on. To take single optimizations
take effect in parallel mode, we also need to divide the fuzzing
task and assign each to a single fuzzing instance.

6 CONCLUSION
Weobserve thatmany optimizationswhich target to improve fuzzing
work well in single mode, but in parallel mode, they fail to maintain
the efficiency improvements. In this paper, we propose a framework
PAFL which utilizes an information synchronization mechanism

and task division mechanism to extend these optimizations to par-
allel mode. We augment AFLFast and FairFuzz with PAFL and eval-
uate them on real-world programs from Google fuzzer-test-suite
and real projects from GitHub repeatedly. After being augmented,
AFLFast and FairFuzz cover more branches and expose more unique
crashes in parallel mode than before. They find more real bugs in-
cluding 25 successfully registered as CVEs. Our future work will
focus on developing more efficient synchronization mechanism and
adapting parallel fuzzing to distributed programs.

REFERENCES
[1] 2015. Microsoft Security Risk Detection ("Project Springfield"). https://www.

microsoft.com/en-us/research/project/project-springfield/. (2015). [Online; ac-
cessed 26-January-2018].

[2] 2016. Continuous fuzzing for open source software. https://opensource.
googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html. (2016).
[Online; accessed 26-January-2018].

[3] 2016. Google. Honggfuzz. http://honggfuzz.com/. (2016).
[4] 2017. libFuzzer in Chrome. https://chromium.googlesource.com/chromium/src/

+/master/testing/libfuzzer/README.md. (2017). [Online; accessed 12-November-
2017].

[5] 2017. OSS-Fuzz: Five months later, and rewarding projects. https://security.
googleblog.com/2017/05/oss-fuzz-five-months-later-and.html. (2017). [Online;
accessed 16-May-2018].

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1032–1043.

[7] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing mayhem on binary code. In Security and Privacy (SP), 2012 IEEE
Symposium on. IEEE, 380–394.

[8] Yuanliang Chen, Yu Jiang, Jie Liang, Mingzhe Wang, and Xun Jiao. 2018. EnFuzz:
From Ensemble Learning to Ensemble Fuzzing. arXiv preprint arXiv:1807.00182
(2018).

[9] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. [n. d.]. CollAFL: Path Sensitive Fuzzing. In CollAFL: Path Sensitive
Fuzzing. IEEE, 0.

[10] Sam Hocevar. 2007. zzuf - multi-purpose fuzzer. http://caca.zoy.org/wiki/zzuf.
(2007). [Online; accessed 26-January-2018].

[11] Rahul Johari and Pankaj Sharma. 2012. A survey on web application vulner-
abilities (SQLIA, XSS) exploitation and security engine for SQL injection. In
Communication Systems and Network Technologies (CSNT), 2012 International
Conference on. IEEE, 453–458.

[12] T Kavitha and D Sridharan. 2010. Security vulnerabilities in wireless sensor
networks: A survey. Journal of information Assurance and Security 5, 1 (2010),
31–44.

[13] Diallo Abdoulaye Kindy and Al-Sakib Khan Pathan. 2011. A survey on SQL injec-
tion: Vulnerabilities, attacks, and prevention techniques. In Consumer Electronics
(ISCE), 2011 IEEE 15th International Symposium on. IEEE, 468–471.

[14] Caroline Lemieux and Koushik Sen. 2017. FairFuzz: Targeting Rare Branches to
Rapidly Increase Greybox Fuzz Testing Coverage. arXiv preprint arXiv:1709.07101
(2017).

[15] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei Zhang. 2018.
Fuzz testing in practice: Obstacles and solutions. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
562–566.

[16] Charlie Miller, Zachary NJ Peterson, et al. 2007. Analysis of mutation and
generation-based fuzzing. Independent Security Evaluators, Tech. Rep 4 (2007).

[17] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. Vuzzer: Application-aware evolutionary fuzzing. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).

[18] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.. In USENIX
Annual Technical Conference. 309–318.

[19] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin
Zhao, and Jiaguang Sun. 2018. SAFL: increasing and accelerating testing cov-
erage with symbolic execution and guided fuzzing. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings. ACM,
61–64.

[20] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing
New Operating Primitives to Improve Fuzzing Performance. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. ACM,
2313–2328.

[21] Michal Zalewski. 2015. American fuzzy lop. (2015).

814

https://www.microsoft.com/en-us/research/project/project-springfield/
https://www.microsoft.com/en-us/research/project/project-springfield/
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
http://honggfuzz.com/
https://chromium.googlesource.com/chromium/src/+/master/testing/libfuzzer/README.md
https://chromium.googlesource.com/chromium/src/+/master/testing/libfuzzer/README.md
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
http://caca.zoy.org/wiki/zzuf

	Abstract
	1 Introduction
	2 BACKGROUND
	3 PAFL Design
	3.1 Information Synchronization Mechanism
	3.2 Task Division Mechanism

	4 Evaluation
	4.1 Google Benchmark Evaluation
	4.2 GitHub CVE Mining

	5 Discussion
	6 Conclusion
	References

