
Industry Practice of Coverage-Guided Enterprise Linux Kernel
Fuzzing

Heyuan Shi
KLISS, BNRist, Tsinghua University

China

Runzhe Wang
KLISS, BNRist, Tsinghua University

China

Ying Fu
KLISS, BNRist, Tsinghua University

China

Mingzhe Wang
KLISS, BNRist, Tsinghua University

China

Xiaohai Shi
Operating System Group, Alibaba Inc

China

Xun Jiao
Villanova University

USA

Houbing Song
Embry-Riddle Aeronautical

University
USA

Yu Jiang∗
KLISS, BNRist, Tsinghua University

China

Jiaguang Sun
KLISS, BNRist, Tsinghua University

China

ABSTRACT
Coverage-guided kernel fuzzing is a widely-used technique that
has helped kernel developers and testers discover numerous vulner-
abilities. However, due to the high complexity of application and
hardware environment, there is little study on deploying fuzzing to
the enterprise-level Linux kernel. In this paper, collaborating with
the enterprise developers, we present the industry practice to de-
ploy kernel fuzzing on four different enterprise Linux distributions
that are responsible for internal business and external services of
the company. We have addressed the following outstanding chal-
lenges when deploying a popular kernel fuzzer, syzkaller, to these
enterprise Linux distributions: coverage support absence, kernel
configuration inconsistency, bugs in shallow paths, and continuous
fuzzing complexity. This leads to a vulnerability detection of 41
reproducible bugs which are previous unknown in these enterprise
Linux kernel and 6 bugs with CVE IDs in U.S. National Vulnerabil-
ity Database, including flaws that cause general protection fault,
deadlock, and use-after-free.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Kernel fuzzing, enterprise Linux, bug detection
ACM Reference Format:
Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang, Xiaohai Shi, Xun
Jiao, Houbing Song, Yu Jiang, and Jiaguang Sun. 2019. Industry Practice of

∗Yu Jiang is the correspondence author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3340460

Coverage-Guided Enterprise Linux Kernel Fuzzing. In Proceedings of the
27th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’19), August 26–30,
2019, Tallinn, Estonia. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3338906.3340460

1 INTRODUCTION
Coverage-guided kernel fuzzing is awidely-used approach to ensure
the correctness of the operating system (OS), which exploits cover-
age information to guide the generation and mutation of system call
(syscall) series with their input parameters, and catch the abnormal
kernel behavior during the execution. A number of kernel fuzzing
tools have been released, e.g., TriforceLinuxSyscallFuzzer [2, 4],
kAFL[31] and syzkaller [33]. As for academic research, many re-
searchers focus on improving the efficiency of kernel fuzzing on
specific fuzzing targets, e.g., file systems [37] and drivers [17, 32],
with domain knowledge. Moreover, many other validation tech-
niques are also integrated into the fuzzing process, such as symbolic
execution [21, 36] and static analysis [19, 29].

The effectiveness of kernel fuzzers has attracted many industrial
users for real practice. Unfortunately, it is challenging and very
difficult to apply kernel fuzzing on enterprise Linux distributions.
The gap mainly locates in two aspects. First, most academic kernel
fuzzers are implemented as a prototype without the support for
complex industrial applications and hardware environment, which
is not acceptable for enterprise uses. Moreover, the current kernel
fuzzing tools such as syzkaller in industry try to keep up with
the latest mainline Linux, without considering the adaptation of
enterprise Linux kernel, which usually consists of many customized
features or inconsistent configurations.

In particular, for most industrial users, they usually maintain
their own Linux distribution (distro) based on a long-term support
(LTS) version of Linux kernel, which is stable but old. However,
the old versions of kernel lead to the absence of some features
and components required by the state-of-the-art kernel fuzzers.
For example, the feature of coverage support is missed in many
enterprise Linux distributions based on old version of kernel, e.g.,
Linux-3.10 used in CentOS 7. As a result, even with those kernel
fuzzers in hand, they may still fail to fuzz enterprise Linux kernel

https://doi.org/10.1145/3338906.3340460
https://doi.org/10.1145/3338906.3340460
https://doi.org/10.1145/3338906.3340460

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia H. Shi, R. Wang, Y. Fu, M. Wang, X. Shi, X. Jiao, H. Song, Y. Jiang, and J. Sun

with the guidance of coverage. Besides that, the continuous kernel
fuzzing integrated into existing continuous integration (CI) system
is highly appreciated by engineers in practice, but it is difficult to
implement, with the increasing complexity in kernel updates and
host environment.

In this paper, we adapt the syzkaller, one of the widely-used
kernel fuzzers, to the enterprise Linux kernel used in various real
business services, and address several main challenges, including
the absence of coverage support, kernel boot fails in VM, shallow
bugs in running syzkaller, and continuous fuzzing complexity. For
each challenge, we provide corresponding solutions and develop
supporting tools. For example, we implement a framework to miti-
gate the continuous fuzzing complexity. We also propose a method
to add coverage support in the old version of enterprise Linux ker-
nel by backporting the KCOV module in the latest Linux kernel. By
successfully using the syzkaller on the development of enterprise
Linux kernel and the accompanied patches to the existing test plat-
form in companies, we detect 41 reproducible bugs in the enterprise
Linux kernel, e.g., memory leak, general protection fault, task hung
or kernel panic. We also detect 6 vulnerabilities that are assigned
with unique common vulnerabilities and exposures (CVE) IDs in
U.S. National Vulnerability Database (NVD). The contributions are
summarized as follows.

• We identify the typical challenges in deploying kernel fuzzing
tools on four enterprise Linux distributions with different
business scenarios, i.e., Linux-3.10, Linux-4.9, Linux-4.14-rt
and Linux-4.19.

• We address these challenges by developing corresponding
solutions including backporting kernel modules, configura-
tions adaption in kernel and virtualization tool, shallow bugs
repair, and continuous fuzzing implementation.

• Experimental results show that our proposed solutions can
lead to the vulnerability detection of 41 unknown bugs in
the enterprise Linux kernel and 6 bugs with CVE IDs in U.S.
National Vulnerability Database, including flaws that cause
general protection fault, deadlock, and use-after-free.

The rest of this paper is organized as follows. The background
of coverage-guided kernel fuzzing and the selected kernel fuzzer
are first introduced in Section 2. The fuzzing procedures and the to-
be-fuzzed enterprise Linux distributions are presented in Section 3.
We show the typical challenges and solutions for each stage of
kernel fuzzing in Section 4. Then, the testing results and the bug
statistics are given in Section 5. Finally, the discussions related to
the observation in kernel fuzzing deployment and conclusion are
presented in Section 6 and Section 7, respectively.

2 BACKGROUND
In this section, we first give a brief introduction to coverage-guided
kernel fuzzing techniques. Then, we introduce syzkaller, a widely-
used kernel fuzzing tool in industry practice.

2.1 Coverage-Guided Kernel Fuzzing
Generally, OS kernels are fuzzed by executing the sequences of
syscalls with randomly generated parameter values [18, 24, 25, 28].
Though the basic methodologies of kernel fuzzing are similar, an
increasing number of enhanced mechanisms are proposed. For

example, the coverage-guided kernel fuzzers integrate coverage
feedback to guide the process of fuzzing. In this way, we can reserve
test cases which can maximize the code coverage, which shows the
superior performance than non-coverage-guided random fuzzers
in practice.

Many coverage-guided kernel fuzzers are implemented by port-
ing the AFL [16, 26, 27, 36], a fuzzer for user-space applications, to
the kernel-space. Typical coverage-guided kernel fuzzer includes
TriforceLinuxSyscallFuzzer [4], which was presented by the ncc-
group to perform fuzzing on Linux x86_64 kernels. It is based on
TriforceAFL [2], which is a patched version of AFL that supports
full-system fuzzing using the virtualization tool of QEMU. The
engineers in Oracle also proposed a similar kernel fuzzer based
on QEMU and AFL called kernel-fuzzing [3]. Moreover, benefit-
ing from the hardware feature of Intel processor trace, kAFL [31]
was proposed to fuzz OS kernels which can trace the execution
accurately with low overhead. Xu et. al. [37] presented a feedback-
driven fuzzer called JANUS specific to file systems, which explores
the two-dimensional input space by mutating meta-data on a large
image.

Another widely used coverage-guided kernel fuzzers is syzkaller
[33], which is an unsupervised fuzzer developed by Google. Besides
collecting code coverage information as the feedback, syzkaller
exploits predefined templates to manipulate sequences of syscall
based on the syntax of syscall interfaces [14, 15]. Syzkaller has
detected thousands of bugs in the Linux kernel [1], and shows the
potential to find more kernel bugs along with the mainline Linux
kernel development.

Moreover, many academic researchers try to integrate other
kernel validation techniques and optimizations with syzkaller, e.g.,
static analysis and dynamic testing approaches, to further improve
the fuzzing performance. For example, Pailoor et. al. [29] proposed a
tool integrating static analysis called MoonShine to distill the initial
seeds of syzkaller and make corpus close to the practical testing
scenario at the beginning of fuzzing. In this way, both explicit and
implicit dependencies between sequences of syscall are explored
in real-world programs in many Linux test suites, based on the
modified kernel syscall trace tool of strace and the static analysis
framework of smatch. By the seed distillation, the achieved code
coverage for the Linux kernel was improved and several unknown
bugs were found. Kim et. al. [21] introduced ALEXKIDD-FUZZER,
which integrates syzkaller with concolic analysis and uses symbolic
information to guide the fuzzing process. Jeong et. al. [19] proposed
RAZZER to detect race bugs in kernels by guiding fuzzing to focus
on the potential data race spots. In particular, static analysis is
exploited to find the over-approximated potential data race spots,
which are implemented by LLVM and the modified version of the
points-to analysis framework of SVF. Then, both the single- and
multi- thread dynamic analysis are performed to trigger a race bug,
by syzkaller and deterministic thread interleaving implemented on
the hypervisor in QEMU.

Besides the traditional validation techniques, other popular tech-
niques such as machine learning are also integrated to improve
the performance of kernel fuzzing. For example, You et. al. [38]
proposed a semantics-based fuzzer called SemFuzz to generate
Proof-of-Concept Exploits automatically, which integrates the nat-
ural language processing (NLP) and syzkaller. In this way, the NLP

Industry Practice of Coverage-Guided Enterprise Linux Kernel Fuzzing ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Figure 1: The architecture of syzkaller.

approach is first exploited to retrieve the semantic information
from vulnerability-related patches and text sources. Then, the seed
generation and mutation of syzkaller can be guided by the col-
lected semantic information. As a result, it enhances the ability of
syzkaller to trigger the known flaws.

2.2 Why Syzkaller?
As shown above, there are many related kernel fuzzers proposed,
and their performance seems to be attractive. However, when de-
ploying a kernel fuzzer on enterprise Linux used in the industry
scenario, the components required by each fuzzer are not at all
satisfied. In the following, we introduce the design of syzkaller,
which is supposed to be one of the most industry-friendly kernel
fuzzer, and reasons for selecting it as our kernel fuzzer.

The design of syzkaller is presented in Fig. 1. There are mainly
three components in syzkaller: syz-manager, syz-fuzzer, and syz-
executor. syz-manager is running on the host machine with a stable
kernel. It starts, monitors and restarts several virtual machine(VM)
instances, and starts a syz-fuzzer process inside of the VMs. More-
over, it is responsible for updating corpus and crashes. The syz-
fuzzer process runs inside of presumably unstable VMs. It guides
the fuzzing process in each VM instance, in charge of input genera-
tion, mutation, minimization, and sending input corpus that trigger
new coverage back to the syz-manager process. The syz-fuzzer also
starts transient syz-executor processes, and each syz-executor pro-
cess executes a single test case from the syz-fuzzer, i.e., a sequence
of syscalls, and sends the result back.

Syzkaller is selected as the fuzzer to fuzz enterprise Linux kernel
based on the following reasons.

• Availability: Syzkaller is an open-source software without
the restriction for enterprise use, which can reduce the risk
as well as the costs of kernel fuzzing in practice. Indeed,
syzkaller is released on GitHub with the Apache License
2.0 [33], which is suitable for the commercial use, distribu-
tion, and modification.

• Efficiency: The performance of syzkaller is considerable
and bugs have been found not only on the experimental
scenario with the recommended configurations but also in
the industry practice. In particular, syzkaller has detected
thousands of kernel bugs and over 1200 bugs are fixed by

Figure 2: Steps of kernel fuzzing plan.

developers while hundreds of bugs are under open, mod-
eration or fix pending status, according to the statistics on
syzbot [1].

• Portability: Syzkaller is easy to deploy on enterprise test
machine. Specifically, syzkaller can perform kernel fuzzing
on VM of QEMU or GCE [5], without any extra hardware
feature requirements, e.g., Intel-PT needed by kAFL.

• Maintenance: Syzkaller is under good maintenance and is
updated regularly, to follow the developments of Linux ker-
nel branches and learn from other vulnerability detection
tools. In particular, syzkaller performs fuzzing on the main-
line Linux kernel branch with the latest compiler [12], e.g.,
Linux 4.19 with gcc 7.3, Linux 4.20 with clang 8.0 and Linux
5.0 with gcc 9.0, while other fuzzers were last updated in
several years ago, e.g., TriforceLinuxSyscallFuzzer.

Besides the advantages above, there are two additional features
making syzkaller attractive in industry practice: troubleshooting
support and academic future. The chosen fuzzer is expected to
have troubleshooting support. Actually, syzkaller owns an active
community of Google group that can provide technical help for en-
terprise engineers. Moreover, it would greatly benefit the research
community because there are active research works around it, and
industrial users may reduce the potential costs for maintaining the
modified version of syzkaller with those academic optimizations.

3 FUZZING PROCEDURES AND TARGETS
In this section, the procedures of deploying syzkaller on fuzz enter-
prise Linux kernel and the target versions of kernel are introduced.

3.1 Fuzzing Procedures
The traditional kernel fuzzing procedure of syzkaller is presented
in Fig. 2. There are 3 steps to deploy syzkaller to fuzz the target
enterprise Linux: (1) Environment preparation; (2) Booting kernel
in VM; and (3) Syzkaller fuzzing.

In the first step, we need to prepare the following components
required by syzkaller, based on which, we can compile the to-be-
fuzzed kernel and derive the kernel image, i.e., bzImage. [5]:

• C compiler with coverage support. syzkaller is a coverage-
guided fuzzer and therefore it needs the kernel to be built
with coverage support, which requires a recent gcc version.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia H. Shi, R. Wang, Y. Fu, M. Wang, X. Shi, X. Jiao, H. Song, Y. Jiang, and J. Sun

Table 1: Summary of target enterprise Linux distributions.

Distros Kernel Provider Targeted Services

CentOS 7 Linux-3.10 RedHat General businesses
services

D-Linux-
4.9 Linux-4.9 Alibaba Internal enterprise

services

RTLinux Linux-4.14-rt CRRC Real-time Ethernet data
services on railway

D-Linux-
4.19 Linux-4.19 Alibaba

Cloud
Cloud elastic compute

service

• Linux kernel with coverage additions. Besides coverage sup-
port in gcc, it also requires the coverage support on the
kernel side.

• Virtual environments. Syzkaller performs kernel fuzzing on
several slave VMs and therefore it needs enterprise Linux
image and virtualization tools such as KVM and QEMU.

• Go toolchain. Syzkaller is written in Go, so the recent Go
toolchain is required to build syzkaller.

In the second step, the to-be-fuzzed kernel is booted with pre-
pared distro image in the VM to validate the usability of VM instance
prepared for syzkaller. Finally, in the third step of syzkaller fuzzing,
syzkaller is deployed on a test machine and performs kernel fuzzing,
which outputs crash reports and the corresponding corpus. In sum-
mary, step 1 is to prepare the required components, step 2 is to
validate the usability of VM instance, and step 3 is to run syzkaller
and detect bugs in enterprise Linux kernel.

3.2 Fuzzing Targets
Collaborated with our industrial partners, we deploy syzkaller to
fuzz the following enterprise Linux distributions which use the LTS
Linux version of 3.10, 4.9, 4.14 and 4.19, as summarized in Table 1.

CentOS [11] is a community supported Linux distribution de-
rived from the Red Hat Enterprise Linux (RHEL), whose current
version is CentOS 7. As such, CentOS Linux is a compatible rebuild
of the Red Hat Enterprise Linux, in functional compliance with Red
Hat’s redistribution requirements. CentOS 7 uses the Linux-3.10 as
its kernel, and because of its stable, predictable, manageable and
reproducible feature, CentOS Linux is widely popular among Linux
users for web hosts and small businesses.

D-Linux-4.9 is the enterprise Linux distribution provided by Al-
ibaba, which is responsible for millions of business applications
with a very strict requirement on reliability, e.g., search services,
running on thousands of servers in Alibaba. Its default kernel is
based on the LTS version of Linux-4.9 [7], which adds some en-
hanced features and optimization.

RTLinux is one of the enterprise Linux distributions used in
CRRC Corp. Ltd. (CRRC). The used kernel Linux-4.14-rt in RTLinux
is based on the Linux-4.14 with the PREEMPT_RT patches, which
is to fulfill the requirements of a real-time system and minimize
the amount of kernel code that is non-preemptive [13]. RTLinux is
deployed on the embedded devices of real-time railway Ethernet

Table 2: Challenges overall.

Step Challenge Linux kernel version
3.10 4.9 4.14-rt 4.19

1 No support for code
coverage in compiler x

1 No support for code
coverage in kernel x

2 Improper configurations
of kernel and VM x x x x

3 Shallow bugs x x x x
3 Continuous fuzzing x x x x

switches provided by CRRC. In this way, there are many safety-
critical applications, e.g., critical data transmission of railways,
running on the RTLinux with kernel Linux-4.14-rt.

D-Linux-4.19 is an open-source Linux distribution originated by
Alibaba operating system team, aiming to deliver OS services with
various functionality, high performance and stability to numerous
cloud elastic compute service (ECS) customers [10]. Its default
kernel is based on the LTS version of Linux-4.19 [9], which adds
the features and enhancements specific to the cloud infrastructure
and products.

We select these enterprise Linux distributions because of the fol-
lowing reasons. Firstly, they are responsible for the core business of
the industrial partners, e.g., real-time data transmission and search
services. Secondly, they are widely used on the enterprise devices
in practical industrial environments, e.g., thousands of servers run-
ning enterprise services and hundreds of switches running railway
applications. Thirdly, the running environment of these enterprise
Linux distributions is typical and various, e.g., physical machines,
virtual machines on the cloud and embedded devices.

4 TYPICAL CHALLENGES AND SOLUTIONS
Though enterprise Linux distributions are all based on the Linux
LTS version and syzkaller is one of the most widely used and
industry-friendly kernel fuzzer maintained by Google, several chal-
lenges appear when we try to perform kernel fuzzing on the target
enterprise Linux kernel, as summarized in Table 2. In the following,
we present the details of challenges as well as solutions in each step
of kernel fuzzing deployment.

4.1 Environment Preparation
In this step, the components of kernel image, i.e., bzImage, distri-
bution image, and virtualization tools are prepared. To derive the
kernel image, we initially try to compile the to-be-fuzzed kernel
by the default compiler and the kernel configuration file. However,
the enterprise Linux providers and users heavily customized enter-
prise Linux distributions to ensure the stability of applications and
services in both domain-specific production environment and de-
velopment process, e.g., specific gcc compiler, kernel configurations,
and software collections. Furthermore, the standard components
provided by enterprise Linux are usually stable but outdated, will
not satisfy the requirements of syzkaller.

Industry Practice of Coverage-Guided Enterprise Linux Kernel Fuzzing ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Challenge 1: No support for code coverage in compiler.
Syzkaller is a coverage-guided fuzzer which requires the cover-
age support on the compiler side. However, the default compiler
for building enterprise Linux kernel is too old to support coverage
feature. Specifically, the feature of code coverage in compiler is sup-
ported by gcc 6.1.0 or later [35], via its “-fsanitize-coverage=trace-
pc” flag. Though the default compiler supports code coverage for
the Linux-4.9, Linux-4.14-rt, and Linux-4.19, the provided compiler
in the software repository, i.e., redhat gcc-4.8.5, are too old to sup-
port the code coverage for Linux-3.10 used as the default kernel in
CentOS 7.

Solution 1: Update gcc to add coverage support. We make
gcc support coverage feature by updating its version later than
6.1.0. In particular, gcc is updated from 4.8.5 to 8.2, to compile
Linux-3.10. It seems relatively easy but we should notice that the
version of compiler cannot be changed in reality due to the stability
and maintenance consideration. In this case, we use the currently
used gcc (version from 4.8 to 6.0) with the sancov plugin to achieve
coverage tracking [34], which inserts a tracing call at the beginning
of each basic block of code.

Challenge 2: No support for code coverage in kernel. Be-
sides the compiler, code coverage support is also required on the
kernel side for syzkaller. More specifically, Linux kernel requires
KCOV module to provide the code coverage feature, which is com-
mitted by upstream in the Linux kernel version of 4.6. However,
the KCOV module is still absent in Linux-3.10. The same situation
appears when performing kernel fuzzing on other old versions of
enterprise Linux kernel, e.g., Linux-2.6.33 which is still used in
some embedded devices due to the historical burden.

Solution 2: Backporting KCOV to add coverage support.
As for the kernel side, the problem becomes relative complex. We
have to backport the entire KCOV module to add coverage support
into the Linux-3.10 correctly, by changing the related files, e.g., git
commits related to KCOV and Makefile, and fixing the conflicts
between the latest and old version of the kernel source. The details
of backporting the KCOV module to Linux-3.10 are introduced as
follows.

(1) The commits related to the KCOV module are backported. In
this way, all the commits related to KCOV are derived from
the git repository of the latest stable kernel by “git log –grep
kcov”, and merged into the git repository of Linux-3.10 by
using the command “git cherry-pick”.

(2) The parameters required to build KCOV module in Linux-
3.10 are backported. In this way, we add the parameter of
“KBUILD_CFLAGS += -fno-pic” in the file of MAKEFILE
to enable the default build option required by KCOV. We
add “ARCH_HAS_KCOV if X86_64” in the file of Kconfig to
enable the kernel option of “CONFIG_HAS_KCOV” when
configuring Linux-3.10. After that, the flags to support code
coverage in Makefile.lib are added, e.g., CFLAGS_KCOV =
-fsanitize-coverage=trace-pc.

(3) The data structures and the preprocessor directive in the
kernel headers required by KCOV are backported. In this way,
we first add kcov_mode, kcov_size, *kcov_area and *kcov,
which is defined in the latest kernel but not in Linux-3.10, to
the structure task_struct in the header of sched.h. We add the

static functions of __read_once_size and __write_once_size
to enable the macro of READ_ONCE() and WRITE_ONCE()
in the compiler.h.

(4) The new functions introduced by the KCOV commits which
are not usable for Linux-3.10 are backported or replaced. For
example, we replace the function of in_task() in the latest
kernel by the function of preempt_count() in the Linux-3.10
because their functionalities are identical.

(5) The coverage support is disabled in the architecture-specific
files and low-level components to boot the enterprise Linux
kernel with the coverage support successfully in our pre-
pared environment. More specifically, by adding the instruc-
tion “KCOV_INSTRUMENT := n” in the Makefile of these
kernel module, we disable the coverage support in the kernel
modules related to the architecture, e.g., cpu and ia32, and
the platform-specific files.

With the steps above, the coverage support is backported into the
Linux-3.10. Other enterprise Linux without coverage support can
also backport KCOV in terms of these steps. Finally, both compiler
and kernel with coverage support are derived by updating and
backport respectively.

4.2 Booting Kernel in the VM
In this step, we use the derived kernel bzImage and Linux image
to boot the enterprise Linux in QEMU, to test the usability of VM
instance of the target kernel. Unfortunately, for all the versions of
to-be-tested enterprise Linux kernel, the prepared kernel bzImage
using the initial default kernel configurations cannot boot correctly.

Table 3: Errors appear on kernel boot in the VM.

Type Logs

System reboot VFS: Unable to mount root fs on
unknown-block

Emergency mode Give root password for maintenance:
Service boot failed Failed to start Raise network interfaces

Service boot failed Failed to start LSB: Bring up/down
networking

Service boot failed Failed to start Crash recover kernel arming

Challenge 3: VM instance boot failure.Though syzkaller pro-
vides many recommended kernel configurations [8], the kernel is
still failed to boot with these recommended configurations. It is
because of the improper kernel configuration and QEMU boot com-
mand. As a result, the boot process in the VM instance ended with
the kernel panic, system reboot, emergency mode or abnormal
status of system service, and the corresponding failure logs is pre-
sented in Table 3. With manual analysis, we found that the main
reasons for kernel boot failed in VM is the absence of a number of
kernel configurations and QEMU boot parameters.

Solution 3: Adapt kernel and VM configurations. The en-
terprise Linux kernel must boot successfully in the VM before
performing the kernel fuzzing. We collaborate with distribution
image providers to fix the improper kernel configurations and VM
boot parameters, and enabling the additional kernel configurations.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia H. Shi, R. Wang, Y. Fu, M. Wang, X. Shi, X. Jiao, H. Song, Y. Jiang, and J. Sun

Table 4: Kernel configurations adaption for Linux-4.9.

Configuration Descriptions Enabled Configuration

Enabled additional options for
guest kernel support

CONFIG_IP_PNP
CONFIG_IP_PNP_DHCP
CONFIG_VIRTIO_BLK
CONFIG_SCSI_VIRTIO
CONFIG_VIRTIO_NET
CONFIG_VIRTIO_CONSOLE
CONFIG_VIRTIO
CONFIG_VIRTIO_PCI
CONFIG_VIRTIO_INPUT

SCSI disk support CONFIG_BLK_DEV_SD
Serial ATA and Parallel ATA

drivers CONFIG_ATA

The Extended 4 (ext4)
filesystem CONFIG_EXT4_FS

Intel(R) PRO/1000 Gigabit
Ethernet support CONFIG_E1000

Listing 1: QEMU command with additional parameters to
boot kernel in the VM.
qemu−system−x86_64 \
−d r i v e i f =none , f i l e = image / img . qcow2 , i d =hd \
−d ev i c e v i r t i o − s c s i −pc i , i d = s c s i \
−d ev i c e s c s i −hd , d r i v e =hd \
−ne t user , ho s t = 1 0 . 0 . 2 . 1 0 , host fwd= t cp : : 1 0 0 2 1 − : 2 2
−ne t n i c −nograph i c \
−k e rn e l a rch / x86 / boot / bzImage \
−append " c r a s h k e r n e l = auto ne t . i fnames =0 r oo t =/ dev /

sda1 kvm− i n t e l . n e s t ed =1 kvm− i n t e l .
u n r e s t r i c t e d _ g u e s t =1 kvm− i n t e l . ep t =1 kvm− i n t e l
. f l e x p r i o r i t y =1 kvm− i n t e l . vp id =1 kvm− i n t e l .
emu l a t e _ i n v a l i d _ g u e s t _ s t a t e =1 kvm− i n t e l . ep t ad
=1 kvm− i n t e l . enable_shadow_vmcs =1 kvm− i n t e l .
pml=1 kvm− i n t e l . e n a b l e _ a p i c v =1 con so l e = t t y S 0
rw e a r l y p r i n t k = s e r i a l s lub_debug=UZ v s y s c a l l =
n a t i v e r od a t a =n oops= pan i c panic_on_warn =1
pan i c =600 ima_po l i c y = t c b " \

−enab le −kvm −m 2G −smp 4 −cpu hos t −snapsho t

For the example of Linux-4.9, we enable the extra configurations
which are summarized in Table 4. In particular, we first enable
additional options for general support of KVM guest kernel by
“make kvmconfig”. It is noticed that there is no rule to target ‘kvm-
config’ for Linux-3.10, because kvmconfig was added into kernel
since Linux-3.11 [30]. In this case, we enable the configurations
appeared in the kvmconfig by manually editing the kernel con-
figuration file, i.e., .config. Then, we enable the drivers required
by the kernel boot in VM. In this way, we enable the SCSI disk
support, i.e., CONFIG_BLK_DEV_SD, to mount the root file system
which is located on a SCSI disk. Moreover, the file system used for
kernel is enabled, e.g., ext4. Finally, the network driver is enabled,
e.g., CONFIG_E1000, because the syzkaller requires the secure shell
(ssh) and secure copy (scp) services. What’s more, we follow the
syzkaller tutorial to add more kernel configurations [8] refer to

support coverage tracing, syzkaller features and bug detection abil-
ities. Besides the changes on the kernel configuration, the boot
parameters of QEMU are also updated to the specific enterprise
Linux distribution, e.g., mounted path of the root file system. As
shown in Listing 1, we need to change the QEMU command to boot
kernel in VM successfully.

In summary, the kernel configurations related to KVM, drivers
for mounting the root file system and network driver have to be
enabled firstly. The other configurations referred to kernel hacking
are expected to be enabled for the kernel fuzzing, e.g., KASAN.
During the configuration adaption process, a powerful machine is
helpful, since we need to recompile the kernel for each change on
kernel configuration, and boot the updated bzImage in the VM to
verify whether the kernel configuration is proper or not. By the
iterative adaption of kernel configuration, the kernel finally boots
in the VM successfully, and a usable VM instance specific to the
enterprise Linux is prepared for syzkaller.

4.3 Syzkaller Fuzzing
After the verification of VM boot, we build syzkaller by the Go
compiler and a test run of syzkaller is required. We should ensure
the correct and stable operations of kernel fuzzing process. For
this purpose, syzkaller is deployed on a test machine and perform
kernel fuzzing, to verify whether syzkaller can work correctly and
generate the initial corpus. However, several detected bugs interrupt
the syzkaller test run and limit the performance of kernel fuzzing.
And the practical requirement of continuous fuzzing increases the
deployment complexity of syzkaller.

Table 5: Part of the shallow bugs in enterprise Linux kernel
found by syzkaller.

ID Shallow bug descriptions Count
1 WARNING: kmalloc bug in vga_arb_write 100

2 BUG: unable to handle kernel NULL pointer
dereference in sidtab_search_core 100

3 WARNING: kmalloc bug in relay_open_buf 22
4 general protection fault in tcp_sk_exit 12

Challenge 4: Shallow bugs in target enterprise Linux ker-
nel limit the fuzzing of deep path.When we start the syzkaller
for several hours, it succeeds to detect some bugs in the target
enterprise Linux kernel. However, there are several bugs detected
appearing quickly and too frequently, and a part of them as sum-
marized in Table 5. For example, bug 1 and 2 appear more than
100 times when we fuzz Linux-3.10 for the first time, which causes
wastes of resource. It is quite common for syzkaller to detect many
shallow bugs when performing fuzzing on target enterprise Linux
kernel for the first time, which prevents syzkaller to reach the deep
path of the kernel effectively.

Solution 4: Patches for shallow bugs repair with develop-
ers. The shallow bugs must be fixed or worked around to enable
syzkaller to reach deep paths of the kernel before long-time fuzzing.
Therefore, the shallow bugs which appear too frequently are fixed

Industry Practice of Coverage-Guided Enterprise Linux Kernel Fuzzing ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Listing 2: Patch snippnets of shallow bug in Linux-4.19.
s t a t i c vo id _ _ n e t _ e x i t t c p _ s k _ e x i t (s t r u c t ne t ∗ ne t

) {
. . .
− module_put (net −> ipv4 . t c p _ c ong e s t i o n _ c on t r o l −>

owner) ;
+ i f (net −> ipv4 . t c p _ c o n g e s t i o n _ c o n t r o l)
+ module_put (net −> ipv4 . t c p _ c ong e s t i o n _ c on t r o l −>

owner) ;
. . .
}

by the related patches. For example, the bug 4 is fixed with the col-
laboration of developers in Alibaba Inc., as shown in Listing 2. In par-
ticular, this bug is caused by the function of tcp_sk_exit(). If the ini-
tialization function tcp_sk_init() failed in inet_ctl_sock_create(), the
parameter ‘net->ipv4.tcp_congestion_control’ will be left uninitial-
ized. However, there is no check for that in the function tcp_sk_exit()
when invoking module_put() to remove the usage count. This bug
leads to a NULL pointer dereference in the end. Moreover, the bug
also exists in the upstream of the latest Linux kernel and is not fixed
when we found this bug. We fix this bug by adding a judgment be-
foremodule_put() to checkwhether net->ipv4.tcp_congestion_control
has been initialized, and thus prevent the NULL pointer derefer-
ence [23].

In general, the shallow bugs in the enterprise Linux kernel can
be fixed not only by the enterprise developers theirselves, but also
can utilize the upstream patches because syzbot or other syzkaller
users may find the same bug in the main Linux kernel branches,
e.g., the bug 3 is fixed by the patch from the community [20]. As
a result, the patches are used to fix shallow bugs in the enterprise
Linux kernel, which enable syzkaller to reach the deeper path in
the kernel.

Challenge 5: Requirements of continuous fuzzing and its
complexity. It is quite common for industrial users to adapt the
continuous test framework in their daily developments. For exam-
ple, Alibaba Inc. has developed a kernel test system (KTS) integrat-
ing many open source test suites specific to the Linux kernel, as a
part of continuous integration (CI) when a new version of enterprise
Linux is released. In this case, we need to integrate kernel fuzzing
in the continuous integration. Furthermore, testers also want to
deploy syzkaller on any free test machine in the test pool and fuzz
the latest built enterprise Linux kernel automatically, which brings
more challenges to the deployment of syzkaller due to the environ-
ment complexity and frequent enterprise Linux updates. Because of
the historical burden, the environment of test machines in the test
pool is complex, which is different from the predefined environ-
ment of the machine in syzkaller test run. Therefore, the problem of
packages missing still happens. Moreover, the continuous fuzzing
should follow the updates on the enterprise Linux kernel, e.g., ker-
nel configurations. The enterprise developers usually just maintain
a standard enterprise Linux configuration, but no more kernel con-
figuration files specific to fuzzing. This situation is quite common
in real industry projects, and reduces the usability and acceptance
of fuzzing techniques in practice, because it is tedious to manually
update kernel configuration and other required packages.

Figure 3: Continuous fuzzing framework.

Listing 3: Scripts snippets to update kernel configurations
for continuous fuzzing.
bash $KERNEL_PATH/ s c r i p t s / c o n f i g \
−e CONFIG_VIRTIO \ # KVM
−e CONFIG_BLK_DEV_SD \ # Device d r i v e r s
−e CONFIG_KCOV \ # Coverage c o l l e c t i o n
−e CONFIG_KALLSYMS \ # S y s c a l l s d e t e c t i o n
−e CONFIG_KASAN \ # Bug d e t e c t i o n t o o l s
. . .
make o l d d e f c o n f i g

Solution 5: Develop continuous fuzzing framework with
automatic scripts for syzkaller deployment. To solve the prob-
lems in continuous fuzzing, we design the supporting modules to
integrate the syzkaller with the existing continuous testing system,
including corpus updates and bug information reporting. As shown
in Fig. 3, there are two types of test machines in the proposed
framework: one manager and many testers. The manager builds
the required components and derives the latest syzkaller binary for
kernel fuzzing. It is also responsible for the management of corpus
and providing the final bug reports for bug fixing to developers.
The testers in the test pool are responsible for performing kernel
fuzzing. In this way, the required kernel and packages are firstly
installed on the tester, to ensure a usable environment of host OS.
Components required by syzkaller are downloaded and compiled
by the manager, e.g., the latest version of enterprise Linux kernel
source and syzkaller from the code repository. It is noted that the
kernel configuration specific to fuzzing is updated based on the
standard enterprise kernel configuration in this phase. The script of
updating kernel configuration is based on the script to manipulate
.config files on the command line [22], as shown in Listing 3.

Then, syzkaller deployed on testers starts kernel fuzzing. When
the daily fuzzing is over, the corpus and crashes on each tester
are integrated by the manager. After that, the possible patches
and discussions related to bugs are searched and provided to the
enterprise developers, as presented in the bug fix module. Moreover,
the VM instance with the vulnerable kernel for bug reproduction
are also prepared for developers to fix bugs. With these modules,

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia H. Shi, R. Wang, Y. Fu, M. Wang, X. Shi, X. Jiao, H. Song, Y. Jiang, and J. Sun

Table 6: Summary of bugs in enterprise Linux distributions.

Kernel # Found Bugs # Reproducible Bugs
Linux-3.10 28 6
Linux-4.9 27 7

Linux-4.14-rt 46 18
Linux-4.19 31 10

kernel fuzzing can be efficiently integrated into the daily continuous
testing architecture. With the help of the C reproduce code, VM
instance, core dump and relevant patches from the Linux mainline
branches, enterprise developers can detect and fix the bugs with
syzkaller more easily.

5 RESULTS
After overcoming the challenges, we successfully perform fuzzing
on enterprise Linux kernel distributions, and integrate syzkaller
into existing CI system of our industrial partners. After running ker-
nel fuzzing for several weeks, a number of bugs have been detected
in the test version of enterprise Linux kernel, and a part of them can
be reproduced based on the C code generated by syzkaller. Table 6
summarizes the number of bugs which are detected and reproduced
by syzkaller in each enterprise Linux kernel. The results indicate
that syzkaller is able to detect a number of kernel bugs. In particular,
we detect 6, 7, 18, 10 reproducible bugs in Linux-3.10, Linux-4.9,
Linux-4.14-rt and Linux-4.19, respectively. The number of repro-
ducible bugs show the considerable performance of syzkaller in
bug reproduction which can help developers to fix bugs. In general,
without considering the cost and risk to overcome the challenges,
kernel fuzzing is a powerful approach to find bugs in enterprise
Linux kernel.

To show the effectiveness of kernel fuzzing with more details, we
conduct a case study of kernel fuzzing on the Linux-4.19. Firstly, we
summarize the reproduced bugs of Linux-4.19 found by syzkaller
and their status, as shown in Table 7, where “en.” and “up.” denotes
a bug is fixed by enterprise developers and upstream, respectively.
There are 10 bugs have been reproduced in Linux-4.19, which are
the previous unknown bugs for enterprise developers, and 5 bugs
have been fixed by patches of upstream while developers are fixing
other bugs. As for the approach of bug fixing, 2 bugs are fixed by the
patches from upstream, while 3 bugs are fixed by the patches pro-
vided by enterprise developers based on the provided VM instance
and the C reproducer for bug reproduce. For the example of “use-
after-free Write in sanitize_ptr_alu”, we give the trace of fault injec-
tion and the patch in Listing 4 and Listing 5, respectively. From the
trace, we can observe that, when kzalloc() fails in push_stack(), the
current verifier state will be released by free_verifier_state(). When
push_stack() returns, dst_reg will be restored if ptr_is_dst_reg is
false. However, in this case, dst_reg is also free as a member of
cur_state. Therefore, the error of use after free occurs when dst_reg
is de-referenced. Based on the provided VM instance with debug
information, the enterprise developers fix it by checking the return
value of push_stack() before restoring dst_reg. The patches related
to bugs in the enterprise Linux kernel are also submitted to the

Table 7: Status of reproduced bugs found by syzkaller in
Linux-4.19.

Bug Status
general protection fault in tcp_sk_exit en.
divide error in fb_var_to_videomode fixing
possible deadlock in fifo_open up.
possible deadlock in lock_trace up.
possible deadlock in console_unlock fixing
KASAN: use-after-free write in sanitize_ptr_alu en.
INFO: task hung in exit_aio fixing
WARNING in __alloc_pages_nodemask en.
WARNING in __device_add_disk fixing
unregister_netdevice: waiting for DEV to become free fixing

Listing 4: Fault injection trace for KASAN: use-after-free
Write in sanitize_ptr_alu.
F a u l t i n j e c t i o n t r a c e :
k f r e e +0 xea / 0 x290
f r e e _ f u n c _ s t a t e +0 x4a / 0 x60
f r e e _ v e r i f i e r _ s t a t e +0 x61 / 0 xe0
push_s t a ck +0 x216 / 0 x2 f 0 <− i n j e c t f a i l s l a b
s a n i t i z e _ p t r _ a l u +0 x2b1 / 0 x8d0
. . .

Listing 5: Code snippets of kernel/bpf/verifier.c for KASAN:
use-after-free write in sanitize_ptr_alu.
s t a t i c i n t s a n i t i z e _ p t r _ a l u () {
. . .
r e t = push_s t a ck (env , env−> i n sn_ i d x + 1 , env−>

in sn_ idx , t r u e) ;
− i f (! p t r _ i s _ d s t _ r e g)
+ i f (! p t r _ i s _ d s t _ r e g && r e t)
∗ d s t _ r e g = tmp ;
r e t u r n ! r e t ? −EFAULT : 0 ;
}

Linux upstream [39]. In summary, the deployment of kernel fuzzing
can truly find the enterprise concerned bugs in industry practice.

Moreover, we compare the types of bugs detected by syzkaller
and current test framework, to show the benefits of overcoming
those challenges and deploying syzkaller on the current testing
framework. In industry practice, most companies maintain a con-
tinuous integration system including their test suites. In the case
of Linux-4.19, engineers use the kernel test system (KTS) as the
continuous testing framework for Linux-4.19. We record the bugs
found by fuzzing and KTS on the same daily testing period, and the
results are summarized in Table 8. From the results we observed
that the bugs detected by fuzzing is different from KTS, that the
bugs found by fuzzing are related to the safety and security of

Industry Practice of Coverage-Guided Enterprise Linux Kernel Fuzzing ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 8: Types of bugs found by fuzzing and KTS in Linux-
4.19.

Type Fuzzing KTS
Soft lockup 8 0
Deadlock 6 0
WARNING 6 0
Task hung 3 0

Rcu detected stall 2 0
Divide error 1 0

General protection fault 1 0
Stack out of bounds 1 0

Use-after-free 1 0
Performance 0 14

Services usability 0 3
Others 2 0
Total 31 17

the enterprise Linux kernel, e.g., soft lockup, deadlock, hung and
stall, while the current kernel testing framework mainly focus on
performance and services usability. Therefore, combining kernel
fuzzing tools with the existing testing frameworks are expected
to find more previously unknown bugs in enterprise Linux kernel,
and beneficial to ensure the correctness by integrating syzkaller
into the current continuous integration framework.

6 LESSON AND LEARNED
In this section, we introduce some lessons learned on kernel fuzzing
deployment, the analysis of detected bugs, and the process of fixing
them in industry practice.

More efforts should bemade to bridge the gap between the
academic kernel fuzzers and the complex enterprise Linux
kernel distributions.Most of the kernels used in enterprise Linux
distributions are different from the latest Linux kernel. Specifically,
enterprise Linux kernels may not satisfy the prerequisites for kernel
fuzzing tools, e.g., the absence of kernel coverage support leads to
the failure of syzkaller deployment on Linux-3.10. The support for
fuzzing and bug detection features in enterprise Linux kernel is
also insufficient and highly needed. More specifically, the fuzzing
performance degradation appears when the useful kernel features
related to bug detection in latest mainline Linux kernel are not all
usable in enterprise Linux kernel, e.g., systematic fault injection
support. Those features should be back-ported in industry practice.

Fuzzing on mainline kernel maybe not enough, and bugs
detected in local enterprise Linux kernel distributions may
also exist in the upstream. Though the syzbot system continu-
ously fuzzes main Linux kernel branches, we still found bugs which
are previously unknown in both main Linux kernel branches and
enterprise Linux kernel, as presented in Fig. 4. For example, there
are 10 bugs reproduced in Linux-4.19, but we reproduce all of them

Figure 4: Bug reproduce in different kernel version.

in its base version of Linux-4.19.24, 9 of them in its LTS version of
Linux-4.19.y, and 5 of them in the latest mainline branch of Linux-
5.1-rc3. The reason is that the kernel configurations of enterprise
Linux are different from that used for syzbot, which may trigger
different paths during kernel fuzzing. Moreover, we focus on one
enterprise Linux kernel specific to the particular version with all
the computing power of the testing machine, while syzbot follows
the daily development of mainline Linux kernel branches.

Patches from the upstream should be monitored and up-
dated timely to the enterprise Linux kernel. During the exper-
iments, we found there are many bug forks in the enterprise Linux
kernel. We found many bugs which have been fixed in main Linux
kernel branches but still appear in enterprise Linux kernel. For
example, there are 5 bugs reproduced in Linux-4.19 but have been
fixed in mainline branch of Linux-5.1-rc3. In this case, each bug
fixed in mainline is still a new bug for the enterprise Linux kernel.
Though it is not always possible for distributions, e.g., enterprise
Linux, to track or fully monitor the commits of the upstream [6],
it is expected to fix bugs caused by forking as soon as possible.
Moreover, we also found that part of fixed bugs in mainline Linux
kernel also exists in the LTS version of Linux. For example, there
are 4 bugs reproduced in the LTS version of Linux-4.19.y which
have been fixed in mainline branch of Linux-5.1-rc3. The results
show that the work to the backport of bug fixes is still not enough,
for both enterprise Linux kernel and LTS version.

More bug information should be provided to developers
for bug fixing. Enterprise developers prefer fixing the bugs which
can be reproduced. In the case of Linux-4.19, all bugs with C re-
producer are fixed or fixing by the enterprise developers. However,
though there are logs for bug location provided by bug detection
tools, e.g., KASAN and KMEMLEAK, it is difficult to locate the
buggy code and verify the patch, especially to reproduce bugs in
the physical machine. Moreover, there are lots of crashes that are
just reported but not reproduced. For these bugs, developers not
only need the logs such as call stack, but also more debug informa-
tion, e.g., vmcore. In practice, developers first evaluate the relevance
between crash and kernel and the possibility of bug reproduction
in physical machines. If a bug is not caused by kernel, rarely trig-
gered or can only be triggered under an extremely unreasonable
condition, engineers will reduce the priority to fix it.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia H. Shi, R. Wang, Y. Fu, M. Wang, X. Shi, X. Jiao, H. Song, Y. Jiang, and J. Sun

7 CONCLUSION
In this paper, we conduct an industry practice of coverage-guided
kernel fuzzing on four enterprise Linux distributions. We identify
the main challenges in deploying the kernel fuzzer of syzkaller in
the enterprise Linux kernel and develop corresponding solutions
to address these challenges. In particular, we backport the kernel
module of KCOV to support coverage collection. We perform the
adaption on both kernel configurations and QEMU instruction to
ensure the correct kernel booting in the VM. Then, we fix the
bugs on the shallow paths as well as implementing the continuous
fuzzing specific to the enterprise Linux kernel. The experimental
results demonstrate the effectiveness of our proposed solutions,
which have been integrated in the continuous integration system
of our industrial partners.

This paper aims to bring more attention of researchers and de-
velopers to bridge the gap between the academic optimizations and
the complex industrial environment in kernel fuzzing. Our future
work mainly includes the following three aspects: 1) Customize
the domain knowledge of different enterprise Linux kernel distri-
butions such as configuration into the fuzzing of mainline kernel
to help uncover more application related bugs. 2) Try to produce
more debug information automatically to help developers facilitate
the localization of kernel bugs. 3) Try to monitor and analyze those
patches from the mainline kernels and automatically update those
changes into the local enterprise Linux kernel distributions.

REFERENCES
[1] 2015. Syzbot dashboard. https://syzkaller.appspot.com/. Accessed April 26, 2019.
[2] 2016. AFL/QEMU fuzzing with full-system emulation. https://github.com/

nccgroup/TriforceAFL. Accessed April 26, 2019.
[3] 2016. kernel-fuzzing: Fuzzers for the Linux kernel. https://github.com/oracle/

kernel-fuzzing. Accessed April 26, 2019.
[4] 2016. TriforceLinuxSyscallFuzzer: A linux system call fuzzer using TriforceAFL.

https://github.com/nccgroup/TriforceLinuxSyscallFuzzer. Accessed April 26,
2019.

[5] 2017. How to set up syzkaller. https://github.com/google/syzkaller/blob/master/
docs/linux/setup.md. Accessed April 26, 2019.

[6] 2017. Syzbot and the tale of thousand kernel bugs. https://events.linuxfoundation.
org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-
Bugs-Dmitry-Vyukov-Google.pdf. Accessed April 26, 2019.

[7] 2018. Alibaba Linux kernel tree. https://github.com/alibaba/alikernel. Accessed
April 26, 2019.

[8] 2018. Linux kernel configs. https://github.com/google/syzkaller/blob/master/
docs/linux/kernel_configs.md. Accessed April 26, 2019.

[9] 2019. Alibaba Cloud Linux Kernel - an open-source Linux kernel originated
by Alibaba Operating System Team. https://github.com/alibaba/cloud-kernel.
Accessed April 26, 2019.

[10] 2019. Alibaba Cloud Linux OS - An open-source Linux distribution powered by
Alibaba Cloud. https://alibaba.github.io/cloud-kernel/os.html. Accessed April
26, 2019.

[11] 2019. The CentOS Project. https://www.centos.org. Accessed April 26, 2019.
[12] 2019. Kernel configs used by syzbot. https://github.com/google/syzkaller/blob/

master/dashboard/config. Accessed April 26, 2019.
[13] 2019. The Real Time Linux collaborative project. https://wiki.linuxfoundation.

org/realtime/start. Accessed April 26, 2019.
[14] Shuai Bai, Dan Li, Minhuan Huang, and Hua Chen. 2017. Synthesis of Linux

Kernel Fuzzing Tools Based on Syscall. DEStech Transactions on Computer Science
and Engineering (2017).

[15] Costin Carabas and Mihai Carabas. 2017. Fuzzing the Linux kernel. 2017 Com-
puting Conference (2017), 839–843.

[16] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou,
Zhuo Su, and Xun Jiao. 2018. EnFuzz: Ensemble Fuzzing with Seed Synchroniza-
tion among Diverse Fuzzers.

[17] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang
Hao, Christopher Krügel, and Giovanni Vigna. 2017. DIFUZE: Interface Aware
Fuzzing for Kernel Drivers. In ACM Conference on Computer and Communications
Security.

[18] HyungSeok Han and Sang Kil Cha. 2017. IMF: Inferred Model-based Fuzzer. In
ACM Conference on Computer and Communications Security.

[19] Dae R. Jeong, Kyung Tae Kim, Basavesh Shivakumar, Byoungyoung Lee, and
Insik Shin. 2018. RAZZER : Finding Kernel Race Bugs through Fuzzing.

[20] Dave Jiang. 2018. Kernel/relay.c: limit kmalloc size to KMALLOC_MAX_SIZE.
https://lkml.org/lkml/2018/2/6/842. Accessed April 26, 2019.

[21] Kyungtae Kim and Byoungyoung Lee. 2018. ALEXKIDD-FUZZER: Kernel
Fuzzing Guided by Symbolic Information. https://www.cerias.purdue.edu/assets/
symposium/2018-posters/829-D1B.pdf. Accessed April 26, 2019.

[22] Andi Kleen. 2018. Manipulate options in a .config file from the command line.
https://github.com/torvalds/linux/blob/master/scripts/config. Accessed April 26,
2019.

[23] Dust Li. 2019. Tcp: fix potential NULL pointer dereference in tcp_sk_exit.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
b506bc975f60f06e13e74adb35e708a23dc4e87c. Accessed April 26, 2019.

[24] Jun Li, Bodong Zhao, and Chao Zhang. 2018. Fuzzing: a survey. Cybersecurity 1
(2018), 6.

[25] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Guang
Zhang. 2018. Fuzzing: State of the Art. IEEE Transactions on Reliability 67 (2018),
1199–1218.

[26] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang
Sun. 2018. Pafl: extend fuzzing optimizations of single mode to industrial parallel
mode. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM, 809–814.

[27] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei Zhang. 2018.
Fuzz testing in practice: Obstacles and solutions. 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER) (2018),
562–566.

[28] Valentin J. M. Manès, H. Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,
Edward J. Schwartz, and Maverick Woo. 2018. Fuzzing: Art, Science, and Engi-
neering. CoRR abs/1812.00140 (2018).

[29] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimizing
OS Fuzzer Seed Selection with Trace Distillation. In USENIX Security Symposium.

[30] Borislav Petkov. 2013. X86, platform, kvm, kconfig: Turn existing .config’s into
KVM-capable configs. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=46ff53874bd935ab9955dee56d60212857e89bf3. Accessed
April 26, 2019.

[31] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In USENIX Security Symposium.

[32] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang, Zheng
Zhang, Ardalan Amiri Sani, and Zhiyun Qian. 2018. Charm: Facilitating Dynamic
Analysis of Device Drivers of Mobile Systems. In USENIX Security Symposium.

[33] Dmitry Vyukov. 2015. Syzkaller: an unsupervised, coverage-guided kernel fuzzer.
https://github.com/google/syzkaller. Accessed April 26, 2019.

[34] Dmitry Vyukov. 2016. Documentation: note that KCOV is supported since gcc
4.5. https://lkml.org/lkml/2016/12/13/373. Accessed April 26, 2019.

[35] Dmitry Vyukov. 2019. kcov: code coverage for fuzzing. https://www.kernel.org/
doc/html/latest/dev-tools/kcov.html. Accessed April 26, 2019.

[36] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin
Zhao, and Jiaguang Sun. 2018. SAFL: increasing and accelerating testing cov-
erage with symbolic execution and guided fuzzing. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings. ACM,
61–64.

[37] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.
2019. Fuzzing File Systems via Two-Dimensional Input Space Exploration. In
IEEE Symposium on Security and Privacy (SP).

[38] Wei You, Peiyuan Zong, Kai Chen, Xiaofeng Wang, Xiaojing Liao, Pan Bian, and
Bin Liang. 2017. SemFuzz: Semantics-based Automatic Generation of Proof-of-
Concept Exploits. In ACM Conference on Computer and Communications Security.

[39] Xu Yu. 2019. Bpf: do not restore dst_reg when cur_state is freed. https://lkml.
org/lkml/2019/3/21/202. Accessed April 26, 2019.

https://syzkaller.appspot.com/
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://github.com/oracle/kernel-fuzzing
https://github.com/oracle/kernel-fuzzing
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/google/syzkaller/blob/master/docs/linux/setup.md
https://github.com/google/syzkaller/blob/master/docs/linux/setup.md
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf
https://github.com/alibaba/alikernel
https://github.com/google/syzkaller/blob/master/docs/linux/kernel_configs.md
https://github.com/google/syzkaller/blob/master/docs/linux/kernel_configs.md
https://github.com/alibaba/cloud-kernel
https://alibaba.github.io/cloud-kernel/os.html
https://www.centos.org
https://github.com/google/syzkaller/blob/master/dashboard/config
https://github.com/google/syzkaller/blob/master/dashboard/config
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://lkml.org/lkml/2018/2/6/842
https://www.cerias.purdue.edu/assets/symposium/2018-posters/829-D1B.pdf
https://www.cerias.purdue.edu/assets/symposium/2018-posters/829-D1B.pdf
https://github.com/torvalds/linux/blob/master/scripts/config
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b506bc975f60f06e13e74adb35e708a23dc4e87c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b506bc975f60f06e13e74adb35e708a23dc4e87c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=46ff53874bd935ab9955dee56d60212857e89bf3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=46ff53874bd935ab9955dee56d60212857e89bf3
https://github.com/google/syzkaller
https://lkml.org/lkml/2016/12/13/373
https://www.kernel.org/doc/html/latest/dev-tools/kcov.html
https://www.kernel.org/doc/html/latest/dev-tools/kcov.html
https://lkml.org/lkml/2019/3/21/202
https://lkml.org/lkml/2019/3/21/202

	Abstract
	1 Introduction
	2 Background
	2.1 Coverage-Guided Kernel Fuzzing
	2.2 Why Syzkaller?

	3 Fuzzing Procedures and targets
	3.1 Fuzzing Procedures
	3.2 Fuzzing Targets

	4 Typical Challenges and Solutions
	4.1 Environment Preparation
	4.2 Booting Kernel in the VM
	4.3 Syzkaller Fuzzing

	5 Results
	6 Lesson and Learned
	7 Conclusion
	References

