
Making Smart Contract Development More Secure and Easier

Meng Ren
Tsinghua University

Beijing, China

Fuchen Ma∗

Tsinghua University
Beijing, China

Zijing Yin
Tsinghua University

Beijing, China

Ying Fu
Ant Financial
Beijing, China

Huizhong Li
WeBank

Shenzhen, China

Wanli Chang
University of York

York, UK

Yu Jiang†

Tsinghua University
Beijing, China

jiangyu198964@126.com

ABSTRACT

With the rapid development of distributed applications, smart con-

tracts have attracted more and more developers’ attentions. How-

ever, developers or domain experts have different levels of familiar-

ity with specific programming languages, like Solidity, and those

vulnerabilities hidden in the code would be exploited and result in

huge property losses. Existing auxiliary tools lack security consider-

ations. Most of them only provide word completion based on fuzzy

search and detection services for limited types of vulnerabilities,

which results in the manpower waste during coding and potential

vulnerability threats after deployment.

In this work, we propose an integrated framework to enhance

security in the two stages of recommendation and validation, assist-

ing developers to implement more secure contracts more quickly.

First, we reinforce original smart contracts with general patch pat-

terns and secure programming standards for training, and design

a real-time code suggestion algorithm to predict secure words for

selection. Then, we integrate multiple widely-used testing tools

to provide validation services. For evaluation, we collected 47,398

real-world contracts, and the result shows that it outperforms ex-

isting platforms and tools, improving the average word suggestion

accuracy by 30%-60% and helping detect about 25%-61% more vul-

nerabilities. In most cases, our framework can correctly predict next

words with the probability up to 82%-97% within top ten candidates.

Compared with professional vulnerability mining tools, it can find

more vulnerabilities and provide targeted modification suggestions

without frivolous configurations. Currently, this framework has

been used as the official development tool ofWeBank and integrated

as the recommended platform by FISCO-BCOS community.

∗Fuchen Ma have contributed equally to this work.
†Yu Jiang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3473929

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Smart Contract Development; Domain-specific Reinforcement; In-

tegrated Testing

ACM Reference Format:

Meng Ren, Fuchen Ma, Zijing Yin, Ying Fu, Huizhong Li, Wanli Chang,

and Yu Jiang. 2021. Making Smart Contract Development More Secure and

Easier. In Proceedings of the 29th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ES-

EC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3468264.3473929

1 INTRODUCTION

With the increase of application scenarios, smart contracts are at-

tractingmore andmore users [2, 5, 17, 36]. Different from traditional

applications implemented by programming languages such as C

and Java, smart contracts written in Solidity often have complex

domain-specific business logic and numerous distinctive features,

such as the gas system. Due to the distributed execution environ-

ment, the complexity and limitations of programming languages,

developing secure smart contracts can be challenging for most de-

velopers, even the experienced ones [10]. For convenience, lots of

assistance tools have been developed. Editors such as Remix [13],

solidity-plugin [22] and YAKINDU [46] are applied for contract

coding, which supports highlighting, compiling, and debugging.

Professional analyzers such as SmartCheck [40] and ContractFuzzer

[21] check the code logic based on static analysis or dynamic testing

to avoid vulnerability attacks after deployment.

Those existing works have done well to help engineers in smart

contract development, but there are still many limitations for real

industrial practice. First, for most existing coding platforms such as

Remix, they only support auto-completion based on fuzzy match,

which relies on static analysis of libraries and referred files to pro-

vide suggestions about tokens such as keyword names or API list.

They are not able to deal with the contextual relevance and data

dependency between current location and previous text, therefore

fail to capture deeper semantic association or provide more targeted

1360

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece M. Ren, F. Ma, Z. Yin, Y. Fu, H. Li, W. Chang, and Y. Jiang

suggestions with security reinforcement. Second, those existing

platforms usually integrated little or no validation tools, and need

extra configurations of different analyzers for vulnerability detec-

tion. Furthermore, since those validation tools are also independent

with each other, there would be high number of false negatives

when running separately. Due to the immutability of block-chain

data, the owner cannot apply any patch to the original contract

and the hidden vulnerabilities may be exploited and lead to unpre-

dictable loss. Though the author can remedy it by deploying a new

contract, this process is far more complicated and may yield higher

transaction costs. Therefore, it is great urgent to develop a unified

platform to help engineers during coding and testing.

To further improve the programming efficiency and ensure the

security of code, we need to solve two challenges:

• How to recommend not only legal but also secure words

for selection? First, we need to build a language model to cap-

ture the semantic dependencies between contexts. Existing Solid-

ity editors use either static analysis or word matching to suggest

tokens such as keyword names or API, they can not handle seman-

tic association and are short of accuracy. Although traditional C

or Java code completion techniques apply language model and

deep learning to predict more suitable tokens, how to transfer

them into programming language of Solidity still needs metic-

ulous design. Furthermore, the completion should also ensure

security. Unlike the traditional code completion technology that

mainly focuses on the correctness, Solidity code needs to pay

extraordinary attention to security. Since a contract cannot be

revised once deployed, the crawled contracts for training may

violate secure programming standards and contain vulnerable op-

erations. Therefore, we need to define a series of security patches

to reinforce them and try to learn and recommend those safe

operations, such as APIs in SafeMath libraries [31].

• How to conduct a comprehensive security analysis of smart

contracts effectively and quickly? Currently, there are lots of

tools used for smart contract testing, but each tool only supports

the detection of limited types of vulnerabilities. Furthermore,

most of them are separated with the coding editors, and need

frivolous configurations for execution. If the user wants to per-

form a more comprehensive inspection of the contract, he must

use different interfaces and sort out the inspection results by

himself, which is very inefficient and user-unfriendly.

To address the above challenges, we propose an integrated frame-

work, which provides safety-related assistance throughout the de-

velopment process. It mainly consists of two components, security-

reinforced code suggestion and security-oriented code validation.

For security-oriented code suggestion, we first perform security

reinforcement on original contracts crawled from block-chain net-

work. Then, we locate and fix pre-defined security issues based on

AST and Datalog. After preparation, we build a language model

and a context-based word-selection algorithm to provide reason-

able words for users. For security-oriented validation, in order to

make up for the limitation of separate analysis tools and fuse them

with the implementation smoothly, we integrate five free and open-

source vulnerability detection tools and organize their output from

a global perspective.

For evaluation, we implemented the user interaction logic based

on VS Code, and collected 47,398 real-world deployed smart con-

tracts for training and verifying. The results show that our frame-

work outperforms existing auxiliary tools. For example, compared

with Remix, it improves the average word suggestion accuracy by

30%-60%, and detects about 25% more vulnerabilities. Furthermore,

it can correctly predict the next security-reinforced token with

the probability up to 82%-97% within top ten candidates and 74%-

91% within top five candidates. Compared with other professional

bug finders, our framework is able to detect more vulnerabilities,

with about 54 types, and provide targeted modification suggestions,

while other tools only support 10-20 types when running alone.

Contributions We mainly make the following contributions:

• We designed a security-reinforced code suggestion module based

on bidirectional LSTM network, and conducted contract rein-

forcement before training for potential risks such as integer over-

flow and out-of-gas error, based on AST and Datalog.

• We built a security-oriented code validation module based on

five widely-used analyzers to detect vulnerabilities and backdoor

threats hidden in smart contracts. It can not only support 54

types of security problems, but provide detailed description and

revise suggestions as well.

• The framework has been used as the official development tool of

WeBank and integrated as the recommended platform by FISCO-

BCOS community1, which is a famous financial block-chain co-

operation alliance.

2 BACKGROUND ON SMART CONTRACT

1 pragma solidity >=0.4.22;

2

3 contract Storage {

4 uint storeData;

5 function addData(uint x) returns (uint) {

6 return storeData + x;

7 }

8 }

9

10 contract Owned {

11 constructor () public { owner = msg.sender; }

12 address owner;

13 function setOwner(address newer) public {

14 require(msg.sender == owner);

15 owner = newer;

16 }

17 }

18

19 contract BigStore is Storage , Owned {

20 uint nowStore;

21 function get() view public {

22 return storeData;

23 }

24 function bigStore(uint a, uint b) public {

25 if (a > b) { nowStore = addData(a); }

26 else { nowStore = addData(b); }

27 }

28 }

Listing 1: The source code of BigStore contract.

1https://github.com/FISCO-BCOS/SCStudio

1361

Making Smart Contract Development More Secure and Easier ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

In block-chain system, smart contracts are tiny programs de-

ployed on the chain. They are a set of promises defined in digital

form, which control the digital assets and contain the rights and

obligations agreed by the contract participants. They are immutable

and run in a distributed way, automatically execute the code logic

and maintain tEffectivenesshe credibility.

Instead of directly writing bytecode, developers will choose other

high level languages for development. There are many program-

ming languages for writing smart contracts: Serpent, Solidity, Viper,

and so on. The most widely used one is Solidity [44] developed

by Ethereum project’s Solidity team, which is an ECMAScript-like

language with enhanced static types, contract-related features, and

many other functionalities. The Solidity code will be compiled into

bytecode and run on the Ethereum Virtual Machine, which is a

stack machine that natively supports an Ethereum-specific byte-

code with an instruction set. Each contract will be allocated with a

unique address. After deploying onto the block-chain, the user can

run a specific function by invoking a transaction to the associated

address of the contract.

Listing 1 is an example of smart contracts implemented by So-

lidity. Contract Storage is used to record the value of stored data

and provides some modification methods, such as adding. Contract

Owned stores the owner, defines a setOwner method to modify the

owner. BigStore inherits these two contracts and realizes further

functions, like storing the bigger object.

3 METHODOLOGY

In this section, we introduce the overall workflow of our framework

and each component in detail. As shown in Fig. 1, the front-end is

mainly responsible for monitoring the user status and displaying

the information, and the back-end is responsible for code suggestion

and validation. While the user is coding, it will monitor the current

status in real time. When it receives a “Space”, all the previous text

will be packaged and sent to the back-end through a POST request.

Then the code suggestion module will call the language model to

generate a list of possible next-words, then package them into a

JSON file to return. When the user has finished coding or imported

existing smart contracts, he can perform validation by invoking

the security analysis command. At this time, the front-end will

package all the codes in current editing interface and send them to

the server. After executing the built-in detection tools in parallel

and integrating their output information, a detailed bug report will

be generated and sent back to the front-end.

3.1 Security-Reinforced Code Suggestion

Smart contracts have strict requirements on the logic of the code.

Reasonable code recommendations with security constraints can

effectively prevent embedded vulnerabilities, thereby reducing the

workload of code review and modification. In order to ensure the

safety of the recommended code, we must first build a dataset

that contains hardened contracts without security risks, and then

feed them into the language model. First, we need to strengthen

the crawled contracts based on general patch patterns for vulner-

abilities and secure programming standards, such as the use of

SafeMath library. Then, we performed symbol substitution on user-

defined information, such as variable names, function names and

contract names. Next, we used these data to train a bidirectional

LSTM network with attention mechanism. Finally, we performed

a context-based word selection algorithm to replace these special

symbols with the possible valid words. Details are as below.

3.1.1 Contract Reinforcement. Unlike the traditional C and Java

code that we can collect the correct code for training, smart con-

tracts deployed on the chain cannot be revised due to the immutabil-

ity. According to [12, 30, 34], 97% of deployed contracts on Etherscan

[14] is vulnerable. Hence, we should do the reinforcement to add

security constraints and general patches to the original contracts

before model training for a secure prediction.

Compared with modifying the source code directly, tree struc-

ture is more convenient for addition, deletion and modification of

modules, such as replacing the binary operation with a safe func-

tion call. As a supplement, Datalog is suitable for checking internal

logic and can quickly locate corresponding statements. Therefore,

we performed reinforcement based on Abstract Syntax Tree (AST)

and Datalog in turn.

Based on AST, we developed an automatic alteration tool to

strengthen the original Solidity codes with unified standards. It

takes AST information and text formats generated by solc compiler

[39] as an input, and traverses all the AST nodes to check the type,

then apply different modification to each type of nodes. Taking the

reinforcement of integer overflow threat as an example, we will

replace all arithmetic operations with safe functions encapsulated

in the SafeMath library and use the modified AST to generate a

new piece of code, as shown in Table 1.

Table 1: Examples of reinforcement based on AST

Original Solidity Code After Reinforcement

... a + b a.add(b) ...

... a - b a.sub(b) ...

... a * b a.mul(b) ...

... a / b a.div(b) ...

After the reinforcement of secure programming standards, we

are able to further strengthen the original Solidity codes with gen-

eral patch patterns for other existing vulnerabilities such as out-of-

gas errors.We use Datalog to define rules and related data structures

for the semantic facts extraction, based on which, we can perform

pattern matching to find vulnerable structures or calling sequences,

and accomplish the reinforcement through modifying statements

in static single assignment form. Take the patch to out-of-gas error

as an example. As defined in MadMax [15], there are three common

patterns of gas-focused vulnerabilities:

(1) Unbounded Mass Operations: Loops whose behavior is deter-

mined by user input could iterate too many times, becoming

too economically expensive.

(2) Non-Isolated External Calls (Wallet Griefing): Using 𝑠𝑒𝑛𝑑 with-

out a check of the result in a loop, which will execute the call-

back function of caller and the attacker can provide a callback

function that runs out of gas.

1362

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece M. Ren, F. Ma, Z. Yin, Y. Fu, H. Li, W. Chang, and Y. Jiang

Map & Merge

Oyente

Mythril

Pied-Piper

BugList 1

BugList 2

BugList k
Security-oriented Code Validation

……

Bug
Report

User

Get User
State

HTTP
Request

HTTP
Response

Reinforce-
ment

Word
Selector

Synthe-
sizer

Language
Model

Security-reinforced Code Suggestion

Suggestion
List

Show
Information

Package
Context

Parse &
Locate

Front-end: VS Code Back-end: Server

Figure 1: The flowchart of our framework. The front-end will monitor the editing status of users in real time, package the

interface information to send a request, and parse the return file. The back-end will process the request, and call security-

oriented code validation module for testing or security-reinforced code suggestion module for recommendation.

(3) Integer Overflows: When using 𝑣𝑎𝑟 to declare the iteration

variable, a mere addition beyond the range of 𝑢𝑖𝑛𝑡8 can make

the loop unable to terminate.

Table 2: Examples of reinforcement based on Datalog

Original Solidity Code After Reinforcement

for (uint i = 0; i <ac-

counts.length; i++) { ...

}

for (uint i = 0; i <ac-

counts.length; i++) { if

(msg.gas <100000) break; ... }

for (...) { ... investors[i].

addr.send(val) ... }

for (...) { ... investors[i].

addr.transfer(val) ... }

for (var i = 0; i <condition;

i++) { ... }

for (uint i = 0; i <condition;

i++) { ... }

According to these definitions, we can define a for-loop struc-

ture in Datalog and further check whether it contains 𝑣𝑎𝑟 in the

header, or internally involves a 𝑠𝑒𝑛𝑑 operation that does not check

the returned result, etc. If yes, reinforcements are conducted. The

original solidity code and reinforced code are presented in Table 2.

We use the reinforcement of SafeMath library to avoid overflow

threats and pattern based patch to avoid out-of-gas error for demon-

stration, and other common smart contract issues can be reinforced

with similar operations. Training on these reinforced contracts will

enhance the security of recommended code.

3.1.2 Symbol Substitution. For the language model, some words

are of little learning value and may even have a negative impact

on training, such as the name of user-defined variables, functions,

parameters and contracts. A more reasonable process is to predict

a framework first, and then fill the frame based on user-defined

information in current context.

To quickly locate the position of different variables, we traverse

the child nodes of each statement based on the AST, and then

determine whether the type of each node belongs to a variable

name, a function name, a contract name or other type. For the first

three cases, if the node is a built-in type, it will not be modified.

Otherwise, it will be replaced by $VARIABLE$, $FUNCTION$ or

$CONTRACT$ automatically.

AssignStat

BuiltInVar

UserVar BinOp

UserFunc

FuncName Param

getMax

a Add

x y

msg.value

Figure 2: The AST of the sample code. The shaded part in

gray is the subtree where the built-in type is located, and

the shaded part in blue is the subtree where the user-defined

content is located, which should be substituted.

Take 𝑢𝑖𝑛𝑡 𝑎 = 𝑚𝑠𝑔.𝑣𝑎𝑙𝑢𝑒 + 𝑔𝑒𝑡𝑀𝑎𝑥 (𝑥,𝑦) as an example, Fig. 2

shows the corresponding abstract syntax tree. Since𝑚𝑠𝑔.𝑣𝑎𝑙𝑢𝑒 is
an embedded variable, 𝑎 is a user-defined variable, 𝑔𝑒𝑡𝑀𝑎𝑥 is a

user-defined function and 𝑥 , 𝑦 are its receiving parameters, 𝑎, 𝑥 ,
and𝑦 will be replaced by $VARIABLE$ and 𝑔𝑒𝑡𝑀𝑎𝑥 will be replaced

by $FUNCTION$, while𝑚𝑠𝑔.𝑣𝑎𝑙𝑢𝑒 remains unchanged.

3.1.3 Making Predictions. After building the training dataset, we

started to train our language model. Each sentence will be divided

into a series of word segmentation to form question-answer pairs,

making preparation for feeding into the deep learning network.

We used a tokenizer to realize the sub-word division and filter the

low-frequency words, such as some fixed addresses related to a

specific project.

In order to capture the context dependencies in a long distance,

we choose LSTM network as the basic language model. However,

sometimes the prediction of current token may need to consider

both the previous inputs and the subsequent inputs, which will

1363

Making Smart Contract Development More Secure and Easier ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 3: Summary of selected tools and their characteristics

Tool Name Environment Analysis Level Methods Description

Oyente [27] Python
source code and

byte code
Symbolic Execution

Oyente is a symbolic execution tool exclusively de-

signed to analyze Ethereum smart contracts.

Mythril [9] Python
source code and

byte code
Concolic Analysis

Mythril is a security analysis tool for Ethereum smart

contracts, which can detect a range of security issues.

Securify [41] Java
source code and

byte code
Datalog Analysis

Securify is a scalable analyzer for Ethereum smart con-

tracts, and is able to prove contract behaviors as safe/un-

safe with respect to a given property.

SmartCheck [40] Java source code Pattern Matching

SmartCheck is an extensible static analysis tool that

checks XML-based intermediate representation of So-

lidity source code against XPath patterns.

Pied-Piper [43] Java
source code and

byte code
Datalog Analysis

Pied-Piper is a static analysis tool that constructs CFG

based on bytecode and extracts semantic facts to detect

potential backdoors hidden in smart contracts.

make the result more accurate. Therefore, on top of the forward

network, we built another layer of reverse network. In the forward

layer, the calculation is performed from 𝑇1 to 𝑇𝑡 , then the output

of the forward hidden layer at each time is obtained and saved.

In the backward layer, the calculation is performed in the reverse

direction to obtain the output of each hidden layer. At last, the final

output is obtained by combining the results of the forward and

backward layers. This process is presented in equations 1 to 3.

𝑠𝑡 = 𝑓 (𝑈𝑥𝑡 +𝑊𝑠𝑡−1) (1)

𝑠 ′𝑡 = 𝑓 (𝑈 ′𝑥𝑡 +𝑊
′𝑠 ′𝑡+1) (2)

ℎ𝑡 = 𝑔(𝑉𝑠𝑡 +𝑉
′𝑠 ′𝑡) (3)

where 𝑥𝑡 is the input word, 𝑠𝑡 is the hidden state of each LSTM cell

in the forward direction, 𝑠 ′𝑡 represents the corresponding state in the
reverse direction,ℎ𝑡 is the hidden state output of bidirectional LSTM
network at time 𝑡 ,𝑈,𝑊 ,𝑉 ,𝑈 ′,𝑊 ′,𝑉 ′ are trainable parameters and

𝑓 , 𝑔 are activation functions.

Inspired by [26, 47], we further introduced the attention mecha-

nism to capture the most important semantic information within

all context. Firstly, we calculated the attention weight matrix 𝛼𝑡
and built a global context vector 𝑐𝑡 by weighted averaging all the

hidden states [ℎ1, ℎ2, ..., ℎ𝑡]. Subsequently, we obtained the output

vector 𝑜𝑡 by concatenating 𝑐𝑡 and current hidden state ℎ𝑡 , which
encodes the next-word distribution and is projected to the size of

the vocabulary. Finally, we applied a 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 layer to get the final

probability distribution 𝑦𝑡 . All steps are performed according to

equations 4 to 8, where𝑊𝑎,𝑊𝑐 ,𝑊𝑠 are trainable parameters. After

training, the language model can predict top-k candidate words

according to the last sentence and scenario context.

𝐻 = [ℎ1, ℎ2, ..., ℎ𝑡] (4)

𝛼𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑎ℎ𝑡) (5)

𝑐𝑡 = 𝐻𝛼𝑇𝑡 (6)

𝑜𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 [𝑐𝑡 ;ℎ𝑡]) (7)

𝑦𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑠𝑜𝑡) (8)

3.1.4 Symbol Recovery. Sometimes, the word list provided by the

language model is not complete, it may contain some substituted

symbols, such as $VARIABLE$, $FUNCTION$ and $CONTRACT$.

So we need to design a word selection algorithm to fill these vacant

parts.

There are two forms of a vacant word, one is a newly defined

object, and the other is a reference object that has appeared in the

context. To meet the first requirement, we need to build a default

database. Since the data we used are real contracts crawled from

the engineering projects, we directly extracted the variable names,

function names and contract names from them, and recorded the

number of their occurrences in the entire dataset. For the second

case, a father tree structure will be constructed based on the cursor

position and accessible relations in the context. Then, the defined

variables, functions and contracts of all the father nodes will form

a user-defined information library, and the relevant distance infor-

mation will also be recorded.

After the preparation, word selection algorithm starts. The first

step is to judge the character of the vacant word based on sentence

pattern. If the symbol to be replaced is in a declaration statement

and is a declared object, the candidate word will be selected from the

default dataset based on the occurrence frequency. Otherwise, the

candidate word will be selected from the user-defined information

library based on semantic distance.

3.2 Security-Oriented Code Validation

When the programming work is completed, the code validation

module will conduct a comprehensive testing of current contract

against common security risks. Though there has been many ef-

forts from the research community to develop automated analysis

tools, each of them supports different range of vulnerability types

and depends on different environment configurations. If developers

want to scan the contract comprehensively, they need to run each

analysis tool separately and screen its output manually. During

this process, they will face the following problems: (1) Each tool

has different naming and locating methods for the same kind of

vulnerability. Users need to understand the meaning of each defini-

tion first, and then judge the repeated warnings in each report file

1364

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece M. Ren, F. Ma, Z. Yin, Y. Fu, H. Li, W. Chang, and Y. Jiang

Table 4: Categories of high-risk smart contract vulnerabilities and the level where the attack can be mitigated.

Category Description Level

Access Control Failure to use function modifiers or use of tx.origin. Solidity

Arithmetic Integer overflow/underflow. Solidity

Backdoor Threats High-privilege functions, which can only be invoked by certain group of accounts. Solidity

Front Running Two dependent transactions that invoke the same contract are included in one block. Blockchain

Locked Ether The withdraw function of a transferable contract becomes unable to send tokens. Solidity

Reentrancy Reentrant function calls to another untrusted contract before resolving any effects. Solidity

Timestamp Dependency The timestamp of the block is manipulated by the miner. Blockchain

Unchecked Low Calls call(), callcode() or delegatecall() fails and it is not checked. Solidity

Unhandled Exception Uncaught exceptions. Solidity

through independent analysis; (2) When one tool reports an error

but another tool does not, developers can not believe the testing

result of any of them, so they need further manual analysis or seek

the help of more detection tools. Therefore, integrated security

testing can greatly speed up the development efficiency and reduce

unnecessary workload of developers.

With an empirical analysis of public smart contract testing tools,

we decided to integrate five free and open-source tools to build

a comprehensive testing platform. They are implemented based

on different technologies and meet the requirements of covering

all common security issues of smart contracts with the smallest

number of integrations. Table 3 shows the summary of the selected

tools and their main properties. The selected tools are based on

different detection methods and guarantee the security of contract

in different aspects. Combining with static and dynamic analysis,

they can cover themost types of smart contract vulnerabilities. They

also meet the requirement of open-source, available command line

interface and supporting source code level analysis and location.

Oyente [27] is based upon symbolic execution, which uses sym-

bolic value instead of specific variables to simulate each path to

generate the possibility of each execution. It first decompiles the

bytecode to construct the control flow graph, and then symbolically

executes the contract based on the current Ethereum global state

to produce a set of symbolic traces. Finally, it uses the pre-defined

logic to check whether there exists a vulnerability.

Mythril [9] uses static analysis, taint analysis and concolic exe-

cution to discover real-world issues. It draws the control flow graph

first, and simulates the execution of each path with symbols. It

also uses the control flow to prove certain properties of contracts,

determining reachability of error states.

Securify [41] analyzes eachmodule of contract after decoupling.

It first converts contract bytecode to Datalog and extracts semantic

facts. Then it transforms the vulnerabilities into a series of com-

pliance and violation patterns and defines related data structures.

Finally, it traverses the facts to search for unsafe patterns.

SmartCheck [40] also constructs an internal representation to

check the contract. It runs lexical and syntactic analysis on reliable

source code. It uses ANTLR [32] and a set of Solidity syntax to

generate an XML parsing tree, then detects vulnerability patterns

by using XPath queries on IR.

Pied-Piper [43], which aims to detect a set of high-privilege

functions named backdoors instead of common security issues, first

collects semantic facts through control flow graph and then builds

high-level data structures and relations. For each type of backdoor,

Pied-Piper decomposes it into a series of semantic units and uses

logical operation like “AND” or “OR” to connect them. After that,

it performs a domain-specific Datalog analysis based on a Datalog

engine named Vandal [7] to identify each threat.

In the process of integration, we first configured the environment

that each tool depends on and deployed it on the server. Then, with

the help of command-line based call interface, we implemented

a script to call each tool in parallel. When all tools have finished

execution or reached the preset time, we extracted the vulnerability

type, location and other information from the output file to form

the final report. According to the documents of each tool, we sum-

marized the characteristics of each vulnerability and mapped them

to the objects defined in our vulnerability library with unique IDs.

For the same object reported by different tools on the same line,

we considered it as a duplicate warning. To further reduce false

positives, we set a judgment threshold 𝑘 for the vulnerabilities that

are supported by more than one tool. That is, only when there are

more than 𝑘 tools confirm the existence of this vulnerability, we will

consider it as a real warning. In practice, 𝑘 is set to �𝑁 /2�, where 𝑁
is the number of tools that can detect this kind of bug. With unified

execution, it frees the engineers from frivolous configurations and

improves the efficiency.

4 IMPLEMENTATION

Model Training. We first utilized SIF [33] to perform symbol

substitution on the training contracts, and then divided each sen-

tence into a series of tokens. Using training settings consistent

with traditional language models, we selected 20 consecutive to-

kens as the “question”, and the following token as the “answer”.

After making the question-answer pairs, we respectively built two

dictionaries to store unique tokens in the question and answer

part. According to the dictionary index, we converted each ques-

tion sequence into an integer vector with a maximum length of

20, and encoded the answer token into a one-hot vector with a

length of 14614. For further compression, we added an embedding

layer in front of the network to convert the integer vector into a

low-dimension vector with a length of 300, then fed them to the

LSTM layer.

The neural language model was developed in Tensorflow [1]

and Keras [8], and trained using cross-entropy loss and mini-batch

SGD with a batch size of 2048. Since the memory space could not

1365

Making Smart Contract Development More Secure and Easier ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 5: Accuracy of security-reinforced code suggestion. Remix only supports token level suggestion with the first prefix

character, while our framework accomplishes the suggestion without the need of any prefix character information.

Project #Contracts LoC #Tokens
Top-1 Top-3 Top-5 Top-10

Remix Ours Remix Ours Remix Ours Remix Ours

Airdrop 4 96 745 9.52% 63.64% 17.32% 73.24% 42.86% 77.62% 57.14% 86.52%

ARIYAX 2 138 812 14.29% 77.27% 14.29% 83.37% 28.57% 88.64% 38.10% 93.77%

CrystalDeposit 14 692 3084 4.76% 70.68% 33.33% 75.41% 33.33% 79.50% 33.33% 85.88%

EthVentures4 8 394 3419 9.09% 53.99% 15.60% 72.19% 22.73% 74.44% 40.91% 81.96%

Eximchain 22 1016 5217 13.64% 69.57% 45.45% 81.28% 45.45% 84.01% 54.55% 91.87%

GasManager 10 66 237 21.74% 73.97% 41.27% 79.34% 43.48% 82.19% 60.87% 89.56%

Ipsx 16 738 4022 8.70% 78.15% 10.36% 84.53% 34.78% 88.74% 52.17% 94.92%

KyberNetwork 8 342 1818 19.05% 80.87% 19.05% 87.97% 23.81% 91.28% 42.86% 96.62%

OneEight 6 286 1405 22.73% 75.98% 25.00% 81.73% 36.36% 84.08% 50.00% 93.11%

UpgradeProxy 18 416 1903 18.18% 68.46% 50.00% 74.21% 50.00% 82.08% 63.64% 88.95%

Average 14.17% 71.26% 27.17% 79.34% 36.14% 83.26% 49.36% 90.32%

support loading such a big dataset at one time, we divided the data

into 9529 groups and loaded them in turn. The initial learning rate

is set to 0.01 and will decay by half after several epochs. All models

use a hidden size of 128, and gradient norm clipping of 15. For

attention layer, the size of fixed-window attention memory is set

to 20 tokens. As regularizer, we also used a dropout of 0.2 on the

linear transformation of the inputs.

Unified Execution. Each tool depends on different environ-

ments and software versions. In order to avoid conflicts, we chose

to run each tool in Docker [11] container and save the output in-

formation locally. After collecting and analyzing the vulnerability

types supported by each tool, we built our own library and con-

structed a mapping between the vulnerability name defined in each

tool and the index number in our library. Before calling the tools,

we defined a global vulnerability list, which represents the security

issues hidden in the tested contract. Then, we created 5 threads

to call different detection tools concurrently. After execution, we

extracted and merged the vulnerability types from their output

files, and filled the corresponding index number into the global list.

After completing the name, description, location (corresponding

line number), warning level and modification suggestion of each

vulnerability, the final report is generated.

Taking full advantage of each tool, our framework can detect 54

common security vulnerabilities, including Top-9 categories of high-

risk security issues, such as reentrancy, integer overflow, unhandled

exception, and 5 kinds of backdoor threats. Among all supported

vulnerabilities, 19 of them are included in the SWC registry [29],

which reaches a coverage rate of 52.8%.

Table 6: Smart contracts corpus statistics.

Train Dev Test Total

#Files 28438 9480 9570 47398

#Lines 3230919 1239021 1223517 5693457

#Unique tokens 93985 38265 35076 157760

#tokens per line 18.26 18.32 17.21 18.07

5 EVALUATION

5.1 Dataset and Environment Setup

All experiments were performed atop a machine with 8 cores (Intel

i7-7700HQ @3.6GHz), 24GB of memory, and Ubuntu 16.04.6 as

the host operating system. We built a corpus by collecting 47,398

unique real-world smart contracts crawled from Ethereum network

[14]. For model training, we divided the large dataset into three

parts: training set, verification set and test set. The division ratio is

6:2:2. After compiling and tokenizing, the total size of vocabulary

is 93,985 and the number of question-answer pairs is 19,517,495.

Table 6 shows the corpus statistics.

In order to test the effectiveness of code validation module, we

built a test contract set of size 181 with clear annotations, which

consists of 131 vulnerable contracts with 176 tagged vulnerability

labels collected by SmartBugs [37] and 50 vulnerable contracts with

backdoor labels collected by Pied-Piper [43]. All vulnerabilities are

divided into nine different categories (see Table 4), and we ran each

tool in turn on each category to make statistics of bug detection.

5.2 Necessity of Oriented Reinforcement

Most developers are unable to ensure that the code is free-of-bug,

especially for projects that have been uploaded earlier. As reported

in [12], 79% of contracts are flagged as having an arithmetic vulnera-

bility, which means that, in our original dataset, most contracts also

have problems related to arithmetic operation. In order to improve

code quality, we should reinforce the training dataset first to help

our language model recommend as many code pieces with security

constraints as possible.

We trained the language model based on the original dataset

and the reinforced dataset respectively until the loss converged.

Then, following the same process as in the previous paragraph,

we counted the occurrences that the two models recommended

SafeMath functions instead of vulnerable arithmetic operations

at each test point. As shown in Table 7, the model trained with

reinforced contracts was able to recommend security functions

more frequently, which reveals that the benefit of using security-

aware training sets is significant.

1366

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece M. Ren, F. Ma, Z. Yin, Y. Fu, H. Li, W. Chang, and Y. Jiang

Table 7: Frequency statistics of recommended SafeMath

functions using models trained with different datasets.

Project Ori-Dataset Re-Dataset Improved By

Airdrop 33 48 45.45%

ARIYAX 35 58 65.71%

CrystalDeposit 151 274 81.46%

EthVentures4 67 163 143.28%

Eximchain 120 185 54.17%

GasManager 14 22 57.14%

Ipsx 82 168 104.88%

KyberNetwork 49 70 42.86%

OneEight 71 97 36.62%

UpgradeProxy 35 71 102.86%

Table 8: Detection of integer over/underflow vulnerabilities.

Ori-Dataset Re-Dataset

Contracts 10191 259

Reported Bugs 64115 2176

True Positive Samples 61939 0

We also used Oyente [27], which is a professional analyzer based

on dynamic symbol execution and has a high detection accuracy,

to demonstrate the integer security of reinforced contracts. Take

integer vulnerabilities as an example, Table 8 shows the results on

each dataset. For the original contract set, it labeled 10,191 contracts

as vulnerable. Since Oyente has difficulty in distinguishing dynamic

array and binary operation, for example, it will mistakenly marks

“string public user_name = ‘Dola’" as an integer underflow problem.

Therefore, we set a review principle to filter out statements that do

not contain arithmetic operations. After filtering, there are 61,939

bugs left. We randomly selected 100 of them for checking, and found

all of them are true positive samples. For reinforced contract set,

only 259 contracts are suspected to contain arithmetic problems,

and after manual checking, all of them are false positive samples.

In other words, the reinforced contracts are free of integer bugs.

5.3 Accuracy of Code Suggestion

To verify the performance on code suggestion, we built a small

corpus by randomly selecting 10 real-world Ethereum projects (108

contracts) and carried out experiments compared with Remix. For

each file in project, we called the framework to recommend the next

word in turn using the previous context with a length of 20, and

calculated the average accuracy. Since Remix can only generate the

candidate list after the first prefix character is given, we additionally

provided the first letter of the next word for it at each test point,

then counted the hits in the candidate list.

As shown in Table 5, the first four columns respectively repre-

sent the name of each project, the number of contracts, and total

lines of code and tokens contained in them. Top-K means the pre-

diction matches the expected answer in K candidates. Consider

Top-1 accuracy, in about 71.26% cases, users can find their expected

next-word on the top of our suggestion list, that is 5X higher than

Remix’s. For Top-5 accuracy, the performance can be improved

by 47.12% and achieves an average accuracy of 83.26%. When we

expand the number of candidates to 10, the accuracy will rise up to

81.96%-96.62%, which is 41% higher than Remix.

There are two key reasons for Remix’s low accuracy even under

the circumstances when the first character of the token to be com-

pleted is given. First, Remix searches context information and the

Solidity keyword library to get the recommended list, so it can only

recommend the words contained in the library or have appeared in

the context. For the newly defined variables, its accuracy is as low

as zero. Second, the ranking of candidate words is completely based

on the distance. Without the capturing of long-term dependence in

context, it has low accuracy for earlier defined variables.

5.4 Effectiveness of Integrated Validation

For code validation, we compared our framework with other con-

tract auditing tools and Remix, whose core is Mythril. There are

nine categories of vulnerabilities annotated in the dataset. When a

tool reported a vulnerability, we will verify its category and location

manually. If both the category and specific line are consistent with

the annotation, we will mark that the tool has successfully detected

this vulnerability.

Table 9 summarizes the results of each tool. The first column

represents the category of vulnerabilities, the next two columns,

Files and Vulns, represent the number of contracts and bug annota-

tions contained in each category respectively, and the subsequent

columns present the number of vulnerabilities detected by each

tool in each category. When developers only use one tool, at most

56.6% of hidden vulnerabilities can be detected. In order to avoid

huge losses in the future, they have to constantly use different

tools for validation, which not only causes a waste of time, but

also brings difficulties for developers to eliminate repeated alarms

with similar meanings reported by different tools. With integrated

testing, we can cover all categories of vulnerabilities in the dataset,

and successfully exposed 81.9% of hidden security issues. That is,

developers do not need to perform unnecessary operations, such as

tool switching, environment configuration and manual screening.

Furthermore, referring to the detailed report, they can clearly find

most of the security vulnerabilities hidden in the contract and fix

them according to the modification suggestions.

In addition to the nine types of vulnerabilities listed in the table,

our framework also supports the detection of other 45 common

security issues, such as untrusted delegatecall, weak sources of

randomness, etc., which basically covers almost all the vulnerability

types supported by the state-of-the-art smart contract security

testing tools. We can also integrate more advanced detection tools

in the future.

5.5 Real Case Studies

5.5.1 Security-Reinforced Code Suggestion. When we type “Space”,

there will be a list of possible next-words shown on the screen.

In order to fit the thinking mode of developers, our model needs

to recommend a series of legal code pieces with various types or

structures for selection. Take Fig. 3 as an example, it will display

a list of possible tokens based on current context and sentence

structure. When the length of a single candidate word is long and

pre-defined variables have multiple common prefixes, this kind of

suggestion can save a lot of time.

1367

Making Smart Contract Development More Secure and Easier ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 9: Vulnerabilities detected by each tool. Our framework integrates those tools to facilitate the detection capability.

Category Files Vulns Oyente Securify SmartCheck Pied-Piper Remix(Mythril) Ours

Access Control 17 19 0 (0%) 0 (0%) 2 (11%) 0 (0%) 4 (21%) 4 (21%)

Arithmetic 15 24 17 (70.8%) 0 (0%) 3 (12.5%) 0 (0%) 14 (58.3%) 17 (70.8%)

Backdoor Threats 50 50 0 (0%) 0 (0%) 0 (0%) 48 (96%) 0 (0%) 48 (96%)

Front Running 4 7 0 (0%) 4 (57.1%) 0 (0%) 0 (0%) 4 (57.1%) 4 (57.1%)

Locked Ether 2 2 0 (0%) 0 (0%) 2 (100%) 0 (0%) 1 (50%) 2 (100%)

Reentrancy 31 32 29 (90.6%) 29 (90.6%) 29 (90.6%) 0 (0%) 29 (90.6%) 29 (90.6%)

Timestamp Dependency 5 7 0 (0%) 0 (0%) 2 (28.6%) 0 (0%) 0 (0%) 2 (28.6%)

Unchecked Low Calls 53 78 0 (0%) 69 (88.4%) 70 (89.7%) 0 (0%) 72 (92.3%) 72 (92.3%)

Unhandled Exception 4 7 7 (100%) 0 (0%) 0 (0%) 0 (0%) 4 (57.1%) 7 (100%)

Total 181 226 53 (23.5%) 102 (45.1%) 108 (47.8%) 48 (21.2%) 128 (56.6%) 185 (81.9%)

Figure 3: Code example of predictions for next-words.

Different from other programming languages, smart contracts

have more strict requirements on security. Therefore, ensuring

the correctness and rigour of internal logic is an important part

during code completion. Due to the limited space, we merely take

arithmetic operation as an example to illustrate the advantages

and necessity of security-reinforced code recommendation. Con-

sidering the situation in Fig. 4, when the developer declares two

variables, one of his next possible operations is to get the sum. In

the list of recommended tokens, the corresponding one is 𝑥 .𝑎𝑑𝑑 (𝑦).
Our framework calls the 𝑎𝑑𝑑 function in the SafeMath library to

implement the sum operation, avoiding the integer overflow vul-

nerability. Without reinforcement, the following prediction list may

contain a simple “+” operation, which lacks the legitimacy check of

result, and will lead to an overflow bug when operands are large.

Figure 4: Code example of predictions using safe functions.

5.5.2 Security-Oriented Code Validation. We choose two cases to

demonstrate the security validation function. The first one is a

smart contract with reentrancy vulnerability. The source code is

shown in Fig. 5. It gives two security suggestions for this contract.

At line 5 of the contract, the function makes an external call which

is dangerous because the malicious contract can call back into this

function and causes the different invocations of the function to

interact in undesirable ways. This kind of vulnerability leads to The

DAO event. As shown in line 7, there is also a low-level warning

which indicates the keyword throw has been deprecated in the

current version.

Figure 5: An contract example with reentrancy threats.

The next case is taken from the source code of Soarcoin [38]

contract, as shown in Fig. 6. Function zero_fee_transaction has been

considered as a backdoor that can transfer out other account’s

balances arbitrarily. Although this kind of bug is not included in

the SWC list, it has already been assigned with a CVE-ID: CVE-

2018-1000203. Therefore, we set the severity level to “Error” to

make developers pay attention to this high-privilege function.

Figure 6: Snippets taken from Soarcoin contract. Function

zero_fee_transaction is an Arbitrary Transfer backdoor.

In summary, compared with Remix, the most widely used smart

contract development platform, our framework achieves a higher

accuracy in security-reinforced next-word recommendation, espe-

cially in the case of long context dependence, and does not need

to input any prefix for recommendation. As for security analysis,

1368

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece M. Ren, F. Ma, Z. Yin, Y. Fu, H. Li, W. Chang, and Y. Jiang

Remix depends on the MythX plug-in, whose core is Mythril, while

our framework integrates five advanced contract analysis tools

with unified execution and supports interactive debugging. It uses

a variety of technologies to comprehensively analyze contracts and

can expose common threats.

6 LESSONS LEARNED

During the design and implementation of the framework, we found

out the following lessons worthy to be discussed:

The industry urgently needs an integrated development

environment for smart contracts. In practice, we found that,

unlike traditional software, which has specific development envi-

ronments such as PyCharm, Visual C++ and Eclipse, there are only

some simple editors for smart contracts, and they only support

basic functions such as highlighting, word completion based on

fuzzy search, etc. With the wide application of smart contract, a

more intelligent and user-friendly development environment is

needed to assist domain experts and engineers to implement the

requirements more efficiently.

Security is an important indicator of smart contract, and

the development environment needs targeted support. Due

to the immutability of block-chain data, the smart contract cannot

be modified after deployment. In other words, no patches can be

applied to security issues in deployed contracts. In order to avoid

property damage, developers need to keep paying attention to the

security of the written words during the coding process, and have to

use a variety of tools for bug finding. At present, code completion for

smart contracts is based on fuzzy search, so that the security of code

is not considered in the recommendation process. Although there

are many security auditing tools for smart contracts, they support

different types of vulnerabilities and require a lot of configurations

before running. Therefore, a unified security-oriented coding and

testing platform is urgently needed.

The degree of similarity between the training dataset and

real-world usage scenarioswill greatly affect the performance

of code suggestion. Users of smart contracts are from all profes-

sions and trades, and engineers need to write various types of

contracts, such as games, protocols or crowdfunding. In order to

provide more reasonable code recommendation in different situa-

tions, the training dataset needs to be diverse enough and similar to

the actual engineering code. Our model takes real-world contracts

deployed on Ethereum as the samples, collects domain specific in-

formation and learns the general mode after reinforcement, which

performs well in different scenarios.

7 RELATEDWORK

Code Completion. Code completion technology is the most

common program automation technology and is an important part

of modern IDEs. Many works that explore the application of statis-

tical learning and sequence models focus on the code completion

task. Hindle et al. [18] first proposed probabilistic modeling of code

token sequences in 2012. In 2014, on the basis of Hindle’s research,

Tu et al. [42] added a “cache” mechanism to maintain the program’s

locality based on the language model. There are also some works

apply probabilistic grammars [3, 6] to the code completion task.

Using structural information can improve the accuracy of code

completion. Researchers usually conduct research in two directions:

transforming the tree structure into sequences or directly model-

ing the tree structure. Li et al. [24] and Liu et al. [25] use the AST

sequence to predict the terminal and non-terminal nodes of the pro-

gram. This method of predicting the next tokens based on the AST

sequence can not only predict the next terminal node, but also the

structural information of the code, that is, the non-terminal node.

Recently, Li et al. [20, 45] proposed Deep-AutoCoder to deal with

the massive identifiers and another dual training framework to ex-

ploit the duality between code summarization and code generation

tasks, improving the precision and efficiency greatly.

Smart Contract Vulnerability Detection. Smart contracts ha-

ve been shown to be exposed to severe vulnerabilities [4, 19], and

many efforts have been devoted to ensuring the correctness. There

are many studies that provide security assurance for smart con-

tracts in different ways. Some of them analyzed the EVM bytecode

to check possible vulnerabilities during execution. For example, Luu

et al. [27] designed Oyente, which builds the control-flow graph

from the EVM bytecode and then performs symbolic execution

and checks whether there exist potential vulnerable patterns. Static

analysis tools often convert the contract code into a specific in-

termediate expression, and then perform pattern matching to find

potential loopholes. For example, SmartCheck [40] uses XML-based

intermediate representation to match vulnerabilities’ patterns. Zeus

[23] is another sound analyzer that translates smart contracts to

the LLVM framework and uses XACML as a language to write prop-

erties. There are also some dynamic tools focus on smart contract

vulnerability detection, like ContractFuzzer [21] and Echidna [16],

which generate fuzzing inputs to trigger security vulnerabilities.

Others carried out researches from the perspective of contract exe-

cution. Malicious behavior will be blocked from EVM layer through

analyzing opcode sequences, like EVM* [28] and Sereum [35].

8 CONCLUSION

In this paper, we proposed an integrated framework which aims to

make smart contract development more secure and easier. First, we

implemented contract reinforcement based on AST and Datalog,

and designed security-reinforcement code suggestion for Solidity

language. Then, we integrated the security-oriented code validation

with five free and open-source vulnerability detection tools, so that

it can conduct a comprehensive analysis of the contract from differ-

ent perspectives and cover Top-9 categories of high-risk security

issues. During evaluation, our framework outperforms the most

widely used platform and other professional vulnerability detection

tools, which better guarantees the security of the entire process of

contract development.

ACKNOWLEDGEMENT

We would also like to thank the anonymous reviewers for their

valuable comments and input to improve our paper. This research

is sponsored in part by the NSFC Program (No. 62022046), National

Key Research andDevelopment Project (Grant No. 2019YFB1706203),

and the Webank-Tsinghua Smart Contract Security-Assured Plat-

form Research Project (No. 20202000347).

1369

Making Smart Contract Development More Secure and Easier ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon
Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zhang. 2016. TensorFlow: A system for
large-scale machine learning. CoRR abs/1605.08695 (2016). arXiv:1605.08695
http://arxiv.org/abs/1605.08695

[2] Maher Alharby and Aad Van Moorsel. 2017. Blockchain-based smart contracts:
A systematic mapping study. arXiv preprint arXiv:1710.06372 (2017).

[3] Miltiadis Allamanis and Charles A. Sutton. 2014. Mining idioms from source
code. ArXiv abs/1404.0417 (2014).

[4] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2016. A survey of attacks
on Ethereum smart contracts. IACR Cryptology ePrint Archive 2016 (2016), 1007.

[5] Massimo Bartoletti and Livio Pompianu. 2017. An empirical analysis of smart
contracts: platforms, applications, and design patterns. In International conference
on financial cryptography and data security. Springer, 494–509.

[6] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2016. PHOG: Probabilistic
Model for Code. In ICML.

[7] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Security
Analysis Framework for Smart Contracts. ArXiv abs/1809.03981 (2018).

[8] François Chollet. 2019. Keras. https://keras.io/. Accessed November 4, 2019.
[9] ConsenSys. 2019. Mythril. https://github.com/ConsenSys/mythril-classic.
[10] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.

2015. Lab: Step by Step towards Programming a Safe Smart Contract. (2015).
[11] Docker. 2013. Empowering App Development for Developers. www.docker.com/.
[12] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2019. Empiri-

cal Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts.
arXiv:1910.10601 [cs.SE]

[13] ethereum. 2019. Remix. http://remix.ethereum.org.
[14] Etherscan. 2019. Etherscan. https://etherscan.io/.
[15] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and

Yannis Smaragdakis. 2018. MadMax: surviving out-of-gas conditions in Ethereum
smart contracts. PACMPL 2 (2018), 116:1–116:27.

[16] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. 2020.
Echidna: effective, usable, and fast fuzzing for smart contracts. In Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
557–560.

[17] Erik Hillbom and Tobias Tillström. 2016. Applications of smart-contracts and
smart-property utilizing blockchains. Master’s thesis.

[18] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. De-
vanbu. 2012. On the naturalness of software. In ICSE 2012.

[19] Yoichi Hirai. 2016. Formal verification of Deed contract in Ethereum name service.
November-2016.[Online]. Available: https://yoichihirai. com/deed. pdf (2016).

[20] Xing Hu, Rui Men, Ge Li, and Zhi Jin. 2019. Deep-AutoCoder: Learning to
Complete Code Precisely with Induced Code Tokens. In 43rd IEEE Annual Com-
puter Software and Applications Conference, COMPSAC 2019, Milwaukee, WI, USA,
July 15a-19, 2019, Volume 1, Vladimir Getov, Jean-Luc Gaudiot, Nariyoshi Ya-
mai, Stelvio Cimato, J. Morris Chang, Yuuichi Teranishi, Ji-Jiang Yang, Hong Va
Leong, Hossain Shahriar, Michiharu Takemoto, Dave Towey, Hiroki Takakura,
Atilla Elçi, Susumu Takeuchi, and Satish Puri (Eds.). IEEE, 159–168. https:
//doi.org/10.1109/COMPSAC.2019.00030

[21] Bo Jiang, Ye Liu, andW. K. Chan. 2018. ContractFuzzer: fuzzing smart contracts for
vulnerability detection. Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering - ASE 2018 (2018). https://doi.org/10.1145/
3238147.3238177

[22] juanfranblanco. 2019. vscode-solidity. https://github.com/juanfranblanco/vscode-
solidity.

[23] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In NDSS.

[24] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code Completion with
Neural Attention and Pointer Networks. ArXiv abs/1711.09573 (2018).

[25] Chang Liu, Xin Wang, Richard Shin, Joseph E. Gonzalez, and Dawn Song. 2017.
Neural Code Completion.

[26] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[27] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.
Making Smart Contracts Smarter. IACR Cryptology ePrint Archive 2016 (2016),
633.

[28] F. Ma, Y. Fu, M. Ren, M. Wang, Y. Jiang, K. Zhang, H. Li, and X. Shi. 2019. EVM*:
From Offline Detection to Online Reinforcement for Ethereum Virtual Machine.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 554–558.

[29] MythX. 2019. Smart Contract Weakness Classification and Test Cases. https:
//swcregistry.io/. Accessed November 4, 2019.

[30] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018).

[31] OpenZeppelin. 2019. SafeMath. https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/math/SafeMath.sol.

[32] Terence Parr. 2017. ANTLR. https://www.antlr.org/. Accessed November 4, 2017.
[33] Chao Peng, Sefa Akca, and Ajitha Rajan. 2019. SIF: A Framework for Solidity Con-

tract Instrumentation and Analysis. 2019 26th Asia-Pacific Software Engineering
Conference (APSEC) (2019), 466–473.

[34] Daniel Perez and Benjamin Livshits. 2019. Smart Contract Vulnerabilities: Does
Anyone Care? arXiv:1902.06710 [cs.CR]

[35] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2018. Sereum:
Protecting Existing Smart Contracts Against Re-Entrancy Attacks. (2018).

[36] Sara Rouhani and Ralph Deters. 2019. Security, performance, and applications of
smart contracts: A systematic survey. IEEE Access 7 (2019), 50759–50779.

[37] smartbugs. 2020. smart contracts dataset. https://github.com/smartbugs/
smartbugs-wild.

[38] SoarLab. 2019. SoarCoin. https://etherscan.io/address/
0xD65960FAcb8E4a2dFcb2C2212cb2e44a02e2a57E#code. Accessed November 4,
2019.

[39] Solidity. 2018. Solidity Programming Language. https://git.io/vFA47/.
[40] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,

and Yaroslav Alexandrov. 2018. SmartCheck: static analysis of ethereum smart
contracts. In the 1st International Workshop.

[41] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Flo-
rian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis of
Smart Contracts. In ACM Conference on Computer and Communications Security.

[42] Zhaopeng Tu, Zhendong Su, and Premkumar T. Devanbu. 2014. On the localness
of software. In FSE 2014.

[43] Tsinghua University. 2019. Pied-Piper: Revealing the Backdoor Threats in Smart
Contracts. https://github.com/renardbebe/BackdoorDetector.

[44] Various. 2018. GitHub - ethereum/solidity: The Solidity Contract-Oriented Pro-
gramming Language. https://github.com/ethereum/solidity.

[45] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code Generation as
a Dual Task of Code Summarization. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett (Eds.). 6559–6569. http://papers.nips.cc/paper/8883-code-
generation-as-a-dual-task-of-code-summarization

[46] yakindu. 2019. solidity-ide. https://yakindu.github.io/solidity-ide/.
[47] Shu Zhang, Dequan Zheng, Xinchen Hu, and Ming Yang. 2015. Bidirectional

long short-term memory networks for relation classification. In Proceedings of
the 29th Pacific Asia conference on language, information and computation. 73–78.

1370

