978-1-5386-3093-8/17/$31.00 ©2017 IEEE

Dependable Integrated Clinical System
Architecture with Runtime Verification

Yu Jiang!, Mingzhe Wang?, Han Liu', Mohammad Hosseini®, Jiaguang Sun'

School of Software, Tsinghua University, China!
School of Software, Beijing University of Post and Telecommunication, China?
Department of Computer Science, University of Illinois at Urbana-Champaign, USA?

Abstract—Medical devices are essential for the practice
of modern medicine, and the standard open-source inte-
grated clinical environment (OpenICE) has been well designed
and widely adopted to improve their interoperability. With
OpenICE, it is easy to connect individual devices into the
integrated clinical system to provide a coherent patient care.

In this paper, we present ICERV, the first online verification
approach for the OpenICE, to ensure the dependability
(mainly for the safety and security) of the integrated system
and the involved patient and clinician. The key idea is
to customize runtime verification technique to provide a
transparent verifying infrastructure to continually intercept
the communication commands and messages of those devices,
based on which, we can formalize the safety and security
requirements as past time linear temporal logic expressions
for verifier generation and online formal verification. If
any requirements violate, predefined warnings or exception
handling actions will be triggered timely to prevent hazards
and threats. We have implemented and seamlessly integrated
the approach without any changes to the source code of
OpenICE nor the code of the upper-level applications or
supervision, and the real device is used for evaluation to
demonstrate the effectiveness.

Index Terms—Dependability, Runtime Verification, Safety
and Security, Medical CPS, Integrated Clinical Environment.

I. INTRODUCTION

Traditionally, clinicians need to continuously monitor
and operate all separate devices. A large number of devices
and medical information makes the job very stressful and
error-prone. In order to reduce the burden on the clinician
and avoid the possibility of human errors, the standard
open-source integrated clinical environment (OpenICE)
[15], has been well designed and widely adopted to improve
their interconnectedness. OpenICE is a distributed system
platform for connecting network nodes (e.g., medical de-
vices, decision support system) together, and supports the
open standard ASTM F2761 [1], With OpenICE, it is
easy to connect individual medical device with network
interfaces into the integrated clinical system through the
network to obtain comprehensive data to personalize care.

With the wide adoption of OpenICE, its dependability
is more and more important. Potential hazards will lead
to irreversible dangerous scenarios of the patient (e.g.,
mistakenly or viciously sending a command to emit the
laser when the oxygen ventilator is still working will trigger
fire on the trachea of the patient). Unlikely, such hazards are
common during the medical practice and have been docu-
mented in many kinds of clinical literature. For example,
an emergency may disperse the attention of the clinician,
then some information presented on the supervisor of
OpenICE may be ignored and some operation commands
to the medical device may be sent by mistake. Also,

information produced by the connected medical devices
and commands issued by the supervisor may be lost and
distorted due to network failure or attack. Hence, it is
highly needed to rigorously ensure the dependability and
prevent potential safety hazards and security threats, which
is challenging due to the dynamic and distributed features
of OpenICE, and the increasing number and complexity
of the integrated medical devices.

More specially, it is not easy to verify those hazards

and threats in advance because of the dynamic feature
that medical devices can plug-and-play and leave at any
time, and the patient reactions to treatment of medical
devices are uncertain and irreversible. For example, when
the laser scalpel is registered in the system, additional
on fire safety hazards with existing ventilator should be
dynamically added and verified. The distributed feature
of OpenICE that any medical device can send arbitrary
information to supervisor increases the difficulty of stat-
ically analysis, and can be easily abused by attackers.
For example, the command to stop the ventilator before
emitting the laser may be distorted easily.
Proposed Approach: We present an online runtime verifi-
cation approach ICERV, to prevent the safety hazards and
security threats of the OpenICE . The key idea is to provide
a transparent runtime verifying infrastructure to continu-
ally intercept the communication commands and messages
among those integrated devices and applications, based on
which, safety requirements and security requirements are
formalized as past time linear temporal logic expressions
and further automatically implemented as verifiers. Those
verifiers are lightweight and transparent, which can be inte-
grated without changes to the OpenICE and the application
and device adaptors integrated on OpenICE. Real devices
and applications based evaluation are conducted to test the
efficiency, the false negative rate for detection of typical
safety hazards is about 20%-30% better than the clinical
environment with traditional decision support systems.

II. CLINICAL ENVIRONMENT

Open-source integrated clinical environment (OpenICE)
is an open clinical platform for medical device and applica-
tions integration. It implements the standard ASTM 2761-
09, which regulates the essential principles of safe and reli-
able integration equipment. More specifically, OpenICE is
a distributed system platform for connecting network nodes:
(1) medical devices, (2) recording applications, (3) clinical
decision support systems, and (4) other health care systems.
The current version of OpenICE enables users to convert
heterogeneous medical device data from supported devices

951

into a common structure and protocol, and to exchange
that data with clinical applications on a different machine.
Furthermore, OpenICE automates peer-to-peer node dis-
covery, data publishing and subscribing between nodes, as
well as proprietary medical device protocol translation. In-
stead of stand-alone devices that can be certified, and used
to treat patients alone, integrated medical clinical systems
based on OpenICE are increasingly used in hospitals.

The overall structure of OpenICE is demonstrated in
the figure of the appendix, from which, we can see that
it has two main components: OpenICE Supervisor
and OpenICE Device-Adapter. The device-adapter
software acts as a bridge that will connect both real and
simulated medical devices into the network. It translates
the proprietary device communication protocols into the
standard OpenICE data structures and communication
protocol. The supervisor software runs clinical applications
and subscribes to all medical devices.

III. DEPENDABILITY OF OPENICE

For the dependability of OpenICE, we mainly address
the safety and security, others aspects of dependability such
as reliability are not addressed within this framework.
Security Threats and Requirements Extraction: Security
of the general system can be defined as the ability to
ensure that both data and operational capabilities can only
be accessed when authorized [16]. The need for security
in OpenICE based medical clinical system is manifold
because of the following features: (1) It is mission critical
and any security compromise of either the supervision or
the integrated medical devices can have profound conse-
quences to the involved patient. A case in point is the
attack on ventilators that force it to open when the laser is
emitted, which will lead to fire disaster of the patient. (2)
The patient information is sensitivity and privacy, and it can
be easily exploited by malicious entities leading to abuse,
discrimination, and even misdiagnosis. Examples include
intercepting and distorting the psychiatric records, genetic
information, and real-time vital signs.

Based on the OpenICE security models [4] and the
above features of OpenICE based medical clinical system,
some of the most common security threats and requirements
are chosen and classified as below:

1. Threats of Application Tracking. The requirement for
the prevention of registration of unauthorized appli-
cations, which disturb the functions of the integrated
system. For example, an application to deliberate gen-
eration of false alarms or suppression of real alarms
raised by the system in case of emergencies.

2. Threats of Device Tracking. The requirement for the
prevention of registration of unauthorized medical
devices, the unauthorized fadeout of existing medical
devices, virtual backup copy of existing medical de-
vices and unauthorized actuation of existing medical
devices, which destroy the functions of the integrated
system. For example, fadeout of an existing medical
device and then create a virtual backup copy wold lead
to system crash and operation failure.

Also, there are some other general security requirements
for health information system such as requirements for
implantable medical devices such as the device setting

security that the system should enable authorized update of
the software. They can be addressed by the existing work
[19], and we mainly focus on the two categorizations and
address them with the proposed approach.

Safety Hazards and Requirements Extraction: The safety
requirements of OpenICE based medical clinical system
can be defined as the avoidance of hazards due to the
operation of medical devices and applications under fault
conditions [2]. It is more important in OpenICE because
(1) The medical device is directly working on the real
patient, and hazards of the device may result in failure of
the treatment and even leading to patient death. (2) The
integration of multiple devices through the network enables
parallel automatic or semi-automatic operation, which leads
to more complex hazards combination and error-prone sit-
uation. Besides, safety requirements are highly application
dependent. Based on the OpenICE safety rules of the stan-
dard ASTM F2761 and standard ISO 60601 [18], accom-
panied with some hazard analysis of real OpenICE based
applications, some of the most common safety hazards and
requirements are chosen and classified as below:

1. Hazards among different medical devices. The require-
ment for the prevention of dangerous combination
status of integrated medical devices. For example,
both ventilator and laser scalpel should not be in-
operation at the same time, if not, a surgical fire would
be caused. Another case is that the electromagnetic
interaction of the headphone with the patients’ body
gets coupled with the electromagnetism induced by the
pacemaker on the patients’ heart and deactivates it.

2. Hazards from device and application to patient. The
requirement for the prevention of dangerous operations
of the medical device on patients. For example, the
ventilator should only remain at in-operation status
after surgery, if not, the patient will have brain damage
due to hypoxia. Another example is that the insulin
infusion pump should stop operation immediately once
the patient is detected in severe hypoglycemia.

From the categorizations, we can see that different clin-
ical applications and medical care practices will lead to
very different safety requirements. Also, there are some
other safety requirements from the patient to device that
the tissue growth around the implanted sensors can hamper
sensing and communication capabilities, and some safety
requirements from the supervision to the device that the
communication is broken and the command is lost. These
kinds of safety hazards can be addressed by improving the
quality of the medical devices or network, and we will
mainly focus on the two categorizations above.

IV. ONLINE VERIFICATION OF OPENICE

The architectural overview of the proposed online
verification approach is presented in Figure 1. The
main difference from the original OpenICE is the
additional component verifier supervisor and
safety verifier, which act as both a secure and
functional layer for protecting the original components
OpenICE supervisor, application, and device.
Then, all devices and applications’ communication with
the OpenICE supervisor can be intercepted by the
additional layers, and thus the desirable safety and security

952

policies are enforced through the verification on the mes-
sage. Also, the additional layer does not require any change
to OpenICE. The only requirement is to configure the
supervisor verifier to listen at the standard port
and the OpenICE supervisor to listen at the hidden
port. In this way, all the applications and device interface
in the system remain the same (sending requests to the
default port, sending and receiving messages), and are not
even aware of being verified.

OpenlCE
Application

Verifier
Supervisor

Safety Verifier

Fm——————=

OpenlCE Device
interface

OpenlCE Device
interface

OpenlCE Device
interface

Patient
ol evice W2l
Medical Device >

Fig. 1. Architecture of the proposed online verification approach, where
we add the verifier layer into the original OpenICE architecture.

Medical Device Medical Device

Verifier Supervisor: We have designed an IP address-
based device access control specification and an identifier-
based application access control specification that allows
the security policies to be enforced within verifier
supervisor. For example, access control policies such
as allowing certain applications to request messages or
send commands of certain types or in certain situations
can be enforced by checking the application identifier in
the request, and the verifier supervisor rejects the
communication establishment if the policy is violated. Be-
sides the secure verification of access and communication,
the verifier supervisor also takes the responsibil-
ity of generating the safety verifier dynamically
according to the changing configurations and situations
of the environment. They are generated from the safety
requirements and implemented as virtual applications that
can receive and send messages, and verify the property orig-
inated from the requirement. The generated verifier contains
four java components: message parser, event generator,
property verifier, and response action.

Safety Verifier: There are two types of safety
verifier. If the safety requirement is not related to the
communication between two devices or two applications,
the generated safety verifier does not need to han-
dle the communication, and just intercepts the transmitted
message between the device interface (or application) and
the OpenICE Supervisor, and verify the related safety
property. Another type is for the safety requirement that is
related to the communication between two devices or two

applications. In this case, the verifier supervisor
needs to keep track of all communication connections of
the devices and applications, and manipulates the point-
to-point communication addresses so that the generated
safety verifier acts as a transparent inspector be-
tween the communicated applications or devices. When
the verification detects some dangerous situations, timely
actions would be adopted to ensure safety. For example,
when the OpenICE Supervisor sends a command to
the laser scalpel to emit laser, the safety verifier
would check the status of the ventilator. If the value of the
device status is true, the conflict event would be true, the
property is violated, and the violation action that drops the
command and sends warning would be taken immediately.

A. Safety Requirements Formalization

Based on the extraction of safety requirements presented
in Section III, we now show how to describe and formalize
the requirements into a verifiable property based on the
message, event, and action mentioned above. Details of the
input format are presented in the appendix and we use a
simple example presented in Figure.2 to demonstrate the
formalization.

Safety Specification: TypeOne: laserOnFire
{
bool statusVentilator;
bool commandLaserScalpel;
float status02;

event onlLaserScalpel = commandLaserScalpel == True;
event safeSurgery = (commandLaserScalpel == True

&& StatusVentilator == False && statusO2 < fireThreshold);
event dangerousSurgery = (onLaserScalpel

&& (StatusVentilator == True || statusO2 >= fireThreshold));

property patientSafety = [] (safeSurgery /\ ™ 'dangerousSurgery);
@violation{
System.out.printin("property violated!");
commandLaserScalpel = false;

}

Fig. 2. Safety requirement specification for laser surgery on-fire.

This is a safety requirement specification for the safety
verifier of type one, where the laser scalpel should not
be operated when the ventilator is in operation. If not, the
surgical fire would be caused. There are three variables
defined in this specification, the status of the ventilator,
the command operation of the laser scalpel, and the cor-
responding oxygen level. Their values are available in the
OpenICE supervisor and could be abstracted by the
component message parser from the configured communi-
cation interface. Based on these variables, we define three
events, onLaserScalpel, safeSurgery, and dangerousSurgery.
The simple event can be defined as boolean evaluations of
variables, and complex event such as dangerousSurgery can
be defined on both simple event and variables. For example,
an complex event dangerousSurgery will be triggered when
an onLaserScalpel event happens and the status of the
ventilator is on or the oxygen level crosses the threshold at
the same time. The definition and the evaluation of event
are implemented in the component event generator.

Then, we can specify safety properties based on those
events. The property patientSafety means that under any
condition, when the event onLaserScalpel happens, it must

953

also be a safe surgery indicated by the event safeSurgery.
We make use of logic plugins of monitoring oriented
programming(MOP [3]) to specify temporal properties over
events, such as finite state machine, linear temporal logics,
and past time linear temporal logics(ptLTL), etc. Further-
more, predefined additional actions and warnings can be
adopted in case of property violation, as implemented in
the component response action. For example, in the laser
surgery case, when the property of patientSafety is not
violated, we would revise the value of the commandLaser-
Scalpel to be false, and the revised value will be sent to
the device to avoid the hazard of laser surgery on-fire.

B. Security Requirements Configuration

Based on the extraction of security requirements pre-
sented in Section III, we now show how to describe and
enforce the access security policies to acquire a secure de-
vice tracking and application tracking. The tracking policies
are currently described into two segments: sending policy
and receiving policy, where each access rule is written as
a key with an assignment to the key.

1. Sending access rule. the key means the message or
command type, and the assignment includes the iden-
tifier that is allowed to send the message.

2. Receiving access rule. the key means the message
or command type, and the assignment includes the
identifier that is allowed to receive the message.

The identifier is at a host level, with IP address accompa-
nied with the optional device name or application name.
Because there are multiple devices, IP address group is
also supported in the specification. We use the example
presented in Figure 3 to illustrate the configuration.

Security Specification: medicalDeviceAccess

{
IP address ventilator =73.45.141.184;

IP address laserScalpel =73.45.141.185;
IP address supervisor =127.0.0.1;
IPgroup medicalDevice = ventilator, laserScalpel;
sending getDeviceStatus = supervisor;
@violation {
System.out.printIn(”Security threats!");
}
sending removeDevice = supervisor;
sending sendDeviceStatus = medicalDevice;
receiving onVentilator = ventilator;

Fig. 3. Security requirement specification for access of medical device.

In the security requirement specification, the IP address
aliases are defined for the ventilator, laser scalpel, and
supervisor. The IP group medicalDevice contains the first
two IP addresses. Then, sending and receiving access rules
are defined. The first rule means that the message type of
getDeviceStatus can only be issued by the supervisor. If
not, security threats would be reported, as defined in the
violation action. The second rule means that an existing
medical device can only be removed by the supervisor. The
last rule means that the message type of onVentilator can
only be accepted by the ventilator. For example, if the X-
Ray Ventilator Sync application tries to send the message
type of onVentilator to the laserScalpel, threats may be

reported. All rules are implemented in the verifier
supervisor, to decide whether a communication request
should be handled by the OpenICE supervisor or not.

V. EVALUATION

We have implemented and integrated the approach with
OpenICE, and experimented them on popular clinical
system integration scenarios with injecting typical safety
hazards and security threats. We include the comparisons
with traditional decision support systems such as Spock
[21]. The intentionally injected 42 safety hazards [11],
[14] and 13 security threats [4] can all be detected and
mitigated well with TCERV approach, while only 12 safety
hazards can be detected by Spock. This section presents the
evaluation and answers the following two questions.

Q1. Can ICERV approach effectively detect and avoid real-
time safety hazards of OpenICE ?

Q2. Can ICERV approach effectively detect and avoid real-
time security threats of OpenICE ?

A. Experimental Setup

Implementation and integration. We setup a full-featured
OpenICE integrated clinical system with the help of Carle
hospital. In the integration, the following hardware should
be used: (1) Desktop or laptop computer running device-
adapter software, (2) Desktop or laptop computer running
the OpenICE Supervisor with TCERV and Spock, and (3)
WiFi router connecting every device.

~Computer running
OpenlCE Supervisor,
application and ICERV.

Computer running
device adaptor

Fig. 4. Integration of ICERV and OpenICE based medical CPS.

The OpenICE system’s discovery mechanism and pub-

/sub functionality allow us to run a device simulator any-
where within the network. This simulator will be visible to
any OpenICE supervisor on the same local network
segment, and we can use the simulator to simulate the
medical device such as infusion pump, in case of the
situation that real devices are not available. Currently, we
have access to a real device of ventilator Drger Evita 4 and
Philips MP70 Intellivue, and other devices are configured
as a simulator in our experiments.
Safety hazards and security threats. Based on the
hardware platform, we initialize the safety hazards and
security threats related to two existing applications within
OpenICE, the first is for the application named infusion
safety and the second is for the application named X-Ray
ventilator sync. These two applications are chosen because
they are widely used. For example,the infusion pump is
adopted in delivering medicine such as antibiotics or pain
relievers, and the ventilator is adopted in most airway laser
surgery. Also, there are many existing safety hazards [11],
[12], [14] and security threats [4] documented on the two
applications, which can be used for injection directly.

954

B. Results and Statics

Safety hazards. Let us see the evaluation on the safety
hazards first. In the table I, we present the results of the 42
safety hazards described in [11], [14]. As the table shows,
the TICERV approach detects 39 out of the 42 intentionally
injected safety hazards and can take the corresponding
response actions to avoid further disaster. Besides, there are
three specifications not being detected because of the lack
of additional information, leading to the result of the safety
verifier unknown. The Spock can only detect 12 hazards of
the type that value crosses the threshold.

TABLE 1
SAFETY HAZARDS INTENTIONALLY INJECTED AND DETECTED
Property Injected | ICERV | Spock Time
Infusion Pump 28 26 8 6.8(ms)
Ventilator 14 13 4 7.6(ms)

An example for the infusion pump is demonstrated as an
illustrative evidence. For a stroke patient, rt-PA is delivered
through the infusion pump. During the infusion procedure,
if blood pressure and blood glucose level cannot be con-
trolled under acceptable ranges (BP>180——BP<90)& &
(HR>120——HR<60)), or signs of brain hemorrhage ap-
pear, the stroke team should stop the rt-PA infusion. Timely
response based on the online verification is highly desirable,
because every second the huge number of brain cells die,
for example, 32000 brain cells will die within every second
a clot blocks blood flow to the brain. We inject the hazard
as below: (1) set the BP and HR through the patient
monitoring under control, and infusion safety application
keeps driving the simulator of the infusion pump, (2)
intentionally set the BP and HR to cross the threshold,
and still keeps the infusion safety application driving the
simulator. With TCERV approach, the command sending to
the simulated infusion pump will be revised in an average
of 6.8 milliseconds to avoid the hazards.

For the ventilator, we can also inject similar hazards as
below: (1) set the blood oxygen level to low level, and the
ventilator is off. (2) the sync ventilator application opens
the ventilator Drger Evita 4. With Spock, the ventilator will
be opened immediately. While with ICERV approach, the
status of laser scalpel will be acquired for verification first,
and the response action would change the command to stop
in case of laser emitting. Others can be injected in a similar
way, and the performance keeps the same. Based on the
results, the answer to the question Q1 is in affirmative.

Security threats. Let us see the evaluation on the security
threats. In table II, we present the results of the 13 security
threats [4], initialized according to the description of section
IV. As the table shows, the ICERV detects 13 out of
the 13 intentionally injected security threats and takes the
corresponding actions to avoid further violations, while the
traditional decision support systems have no support.

TABLE II
SECURITY THREATS INTENTIONALLY INJECTED AND DETECTED
Property Injected | ICERV | Spock Time
Infusion Pump 5 5 0 2.8(ms)
Ventilator Sync 6 6 0 3.1(ms)
HL7 Exporter 2 2 0 1.7(ms)

A simple example about the security threats injection
for Health Level Seven International (HL7) application is
illustrated as follow. The HL7 Exporter application exports
data to Health Level Seven International database. The host
field and port number are the net address of the HL7
export. Other address or other applications would be not
allowed. Then we can intentionally change the address of
the application. The access will be forbidden within 1.7
milliseconds. Based on the result, we can also respond to
the question Q2 positively.

Furthermore, we do some real verifications in SimMan
laboratory for evaluation. We use SimMan patient simulator
and some virtual device adapter to set the vital signs of the
SimMan and the value of real-time data monitor device
Phillips IntelliVue MP70, which can be furthered passed
to the OpenICE supervisor, application and the generated
ICERV runtime verifier.

TABLE III
DETECTED WARNING COMPARISONS FOR DIFFERENT SCENARIOS
Property Injected | Spock | ICERV Time
UN_HR_BP 1000 925 997 1.4(ms)
HR_BP_20 1000 729 998 1.8(ms)
HR_Bp_30 1000 685 997 2.0(ms)
Security_BP 1000 0 994 1.1(ms)

We initialize four typical requirements, the first is the
infusion pump safety hazards about blood pressure and
blood glucose level violations mentioned above, the second
and third are the temporal extension for continues 20 second
and 30 second violation respectively, and the fourth is the
data exportation security. The second column of the table
IIT is the number of violations that we insert into the virtual
patient through the SimMan patient simulator, the third
column is the violations manually detected by staring at
Spock and OpenICE supervisor, and the fourth column is
the violations detected with the enhancement of ICERV.
From the third column, we find that the accuracy of nurse
decreases along with the complexity of the hazards. But
for the online verifier, it performs steadily, and the false
negative rate for safety hazards detection is about 20%-30%
better than the clinical system with only human inspection
of the traditional decision support system Spock, which
has no support for security attack detection neither. During
analysis of the log, we found that the ICERV approach
will produce 1000 warnings, but two or three may still be
ignored by the nurse because of noise that disturb them.
According to the simulation in the SimMan laboratory,
it is reasonable to draw the conclusion that the online
verification helps produce a safe and secure integrated
clinical environment.

VI. DISCUSSION

Validity Discussion: Currently, there are three limitations.
The first is for the expression ability of the safety require-
ment specification and security requirement specification.
Some complex requirements are not supported, and the
corresponding safety verifier cannot be generated.
We mainly address those hazards and threats abstracted in
section III. The second is for the data interception ability.
For the safety verifier of some requirements, we
can not get the data automatically. For example, the ver-
ification for a ventilator related property needs the value

955

of oxygen level, which is not stored in OpenICE. One
possible way to overcome this limitation is to add more
sensors into the integration. The last but most important is
the network situation and attack. We assume the network
in the clinical environment is small, stable so that network
delay is negligible, and leave an in-depth network attack
model with all various parameters as our future work.
Lessons and Related Work Discussion: Traditionally, re-
searchers have focused on bypassing and transforming the
safety assurance problem of medical system into a well
understood problem of formal model reachability analysis
in traditional embedded system design [13], [7], [10], [9],
[20]. For example, in works such as [11], [14], infusion
pump software and pacemaker have been modeled as a
timed automaton, and several static assumptions and ab-
stractions are made out the dynamic nature of the physical
environment. In works such as [17], laser scalpel and
ventilator are modeled by hybrid automata. These models
can be used for off-line verification on safety hazards. Some
work about the online verification of medical systems is
also presented [8], [6]. For example, and [8], [6] focus on
improving the medical best practice without considering the
clinical environment and security. Different from existing
research on the model level or just practice monitoring,
we address the problem online in deployed clinical
environment.

Balancing security, privacy, and utility is also a necessity
in the medical system, and most existing works concern
implantable medical devices and body area networks. Huge
efforts have been paid to ensuring the security and privacy
of the telemetry interface, software, and sensor interface
layers of them [5]. Little attention has been paid to the
security of the integrated clinical environment, which is
also very important as pointed out in [4], where the authors
intend to inform future work on building such a comprehen-
sive protocol stack or standardizing protocols and protocol
suites for secure next-generation device coordination. We
try to highlight the secure problem of OpenICE and
only address part of it in a lightweight manner at the
host level without any change to the protocol.

VII. CONCLUSION

In this paper, we present the first online verification
approach to ensure the safety and security of integrated clin-
ical environment. The key idea is to provide a transparent
runtime verifying infrastructure to continually intercept the
communication commands and messages of those devices,
based on which, we can formalize the safety and security
requirements as past time linear temporal logic expressions
for verifier generation and online formal verification, and
the empirical results demonstrate its effectiveness. The ap-
proach and the evaluation provide a guidance for the future
safety and security assured design of dedicated integrated
clinical environment for better health care.

ACKNOWLEDGEMENT

We thank Lui Sha from UIUC for his valuable sugges-
tions, and Binghua Wan from Tsinghua First hospital for
his valuable experiment devices. This work is supported in
part by NSF CNS 1545008 and NSF CNS 1545002 and
Jiangxi Province Major Project 20171ACES50025.

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

956

REFERENCES

ASTMF. Medical devices and medical systems essential safety
requirements for equipment comprising the patient-centric integrated
clinical environment (ice) part 1: General requirements and concep-
tual model. 2009.

A. Banerjee, K. K. Venkatasubramanian, T. Mukherjee, and
S. K. S. Gupta. Ensuring safety, security, and sustainability of
mission-critical cyber—physical systems. Proceedings of the IEEE,
100(1):283-299, 2012.

F. Chen and G. Rosu. Java-mop: A monitoring oriented programming
environment for java. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 546-550. Springer, 2005.

D. Foo Kune, K. Venkatasubramanian, E. Vasserman, I. Lee, and
Y. Kim. Toward a safe integrated clinical environment: a communica-
tion security perspective. In Proceedings of the 2012 ACM workshop
on Medical communication systems, pages 7-12. ACM, 2012.

D. Halperin, T. Kohno, T. S. Heydt-Benjamin, K. Fu, and W. H.
Maisel. Security and privacy for implantable medical devices.
Pervasive Computing, IEEE, 7(1):30-39, 2008.

Y. Jiang, H. Liu, H. Kong, R. Wang, M. Hosseini, J. Sun, and L. Sha.
Use runtime verification to improve the quality of medical care
practice. In 2016 38th ACM International Conference on Software
Engineering(ICSE). ACM, 2016.

Y. Jiang, H. Liu, H. Song, H. Kong, M. Gu, J. Sun, and L. Sha.
Safety-assured formal model-driven design of the multifunction vehi-
cle bus controller. In FM 2016: Formal Methods: 21st International
Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings
21, pages 757-763. Springer, 2016.

Y. Jiang, H. Song, R. Wang, M. Gu, J. Sun, and L. Sha. Data-centered
runtime verification of wireless medical cyber-physical system. I[EEE
Transactions on Industrial Informatics, 2016.

Y. Jiang, Y. Yang, H. Liu, H. Kong, M. Gu, J. Sun, and L. Sha.
From stateflow simulation to verified implementation: A verification
approach and a real-time train controller design. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2016
IEEE, pages 1-11. IEEE, 2016.

Y. Jiang, H. Zhang, Z. Li, Y. Deng, X. Song, M. Gu, and J. Sun.
Design and optimization of multiclocked embedded systems using
formal techniques. [EEE transactions on industrial electronics,
62(2):1270-1278, 2015.

B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Y. Zhang, and
R. Jetley. Safety-assured development of the gpca infusion pump
software. In Proceedings of the ninth ACM international conference
on Embedded software, pages 155-164. ACM, 2011.

T. Li, F. Tan, Q. Wang, L. Bu, J.-n. Cao, and X. Liu. From offline
toward real-time: A hybrid systems model checking and cps co-
design approach for medical device plug-and-play (mdpnp). In
Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third Interna-
tional Conference on, pages 13-22. IEEE, 2012.

A.Y.-Z.Ou,Y. Jiang, P-L. Wu, L. Sha, and R. B. Berlin. Preventable
medical errors driven modeling of medical best practice guidance
systems. Journal of medical systems, 41(1):9, 2017.

M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and
I. Lee. Model-driven safety analysis of closed-loop medical systems.
Industrial Informatics, IEEE Transactions on, 10(1):3-16, 2014.

J. Plourde, D. Arney, and J. M. Goldman. Openice: An open,
interoperable platform for medical cyber-physical systems. In Cyber-
Physical Systems (ICCPS), 2014 ACM/IEEE International Confer-
ence on, pages 221-221. IEEE, 2014.

R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical
systems: the next computing revolution. In Proceedings of the 47th
Design Automation Conference, pages 731-736. ACM, 2010.

F. Tan, Y. Wang, Q. Wang, L. Bu, and N. Suri. A lease based
hybrid design pattern for proper-temporal-embedding of wireless cps
interlocking. Parallel and Distributed Systems, IEEE Transactions
on, 26(10):2630-2642, 2015.

A. Turnbull. The use of iec 60601-1 in supporting approvals of
medical electrical devices and the role of the new collateral standard
iec 60601-1-9, 2007.

K. Venkatasubramanian and S. K. Gupta. Security solutions for
pervasive healthcare. Security in Distributed, Grid, Mobile, and
Pervasive Computing, page 349, 2007.

Y. Yang, Y. Jiang, M. Gu, and J. Sun. Verifying simulink state-
flow model: timed automata approach. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software
Engineering, pages 852-857. ACM, 2016.

O. Young and Y. Shahar. The spock system: developing a runtime
application engine for hybrid-asbru guidelines. In Conference
on Artificial Intelligence in Medicine in Europe, pages 166—170.
Springer, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

