
Enabling Clone Detection For Ethereum via
Smart Contract Birthmarks

Abstract—The Ethereum ecosystem has introduced a pervasive
blockchain platform with programmable transactions. Everyone
is allowed to develop and deploy smart contracts. Such flexibility
can lead to a large collection of similar contracts, i.e., clones,
especially when Ethereum applications are highly domain-specific
and may share similar functionalities within the same domain,
e.g., token contracts often provide interfaces for money transfer
and balance inquiry. While smart contract clones have a wide
range of impact across different applications, e.g., security, they
are relatively little studied.

Although clone detection has been a long-standing research
topic, blockchain smart contracts introduce new challenges,
e.g., syntactic diversity due to trade-off between storage and
execution, understanding high-level business logic etc.. In this
paper, we highlighted the very first attempt to clone detection
of Ethereum smart contracts. To overcome the new challenges,
we introduce the concept of smart contract birthmark, i.e., a
semantic-preserving and computable representation for smart
contract bytecode. The birthmark captures high-level semantics
by effectively sketching symbolic execution traces (e.g., data
access dependencies, path conditions) and maintain syntactic
regularities (e.g., type and number of instructions) as well. Then,
the clone detection problem is reduced to a computation of
statistical similarity between two contract birthmarks. We have
implemented a clone detector called EClone and evaluated it
on Ethereum. The empirical results demonstrated the potential
of EClone in accurately identifying clones. We have also ex-
tended EClone for vulnerability search and managed to detect
CVE-2018-10376 instances.

Index Terms—Ethereum, clone detection, smart contract birth-
mark, symbolic execution

I. INTRODUCTION

As a special form of programs on blockchain, smart con-
tracts has been witnessing its prosperity since it was first
introduced by Ethereum [1]. Smart contracts run exactly as
programmed to enable transparent and traceable transactions.
In Ethereum, developers are allowed to develop their own
smart contracts using high-level programming languages such
as Solidity [2], then deploy the contracts on Ethereum for
specific business services, e.g., banking services, insurance,
property management, gaming etc.. Figure 1 shows a simple
Solidity smart contract, which defines a cryptocurrency token
called Token. As traditional programs, this contract declares
a mapping-type variable balances whose scope covers the
whole contract. Unlike memory-stored variables, smart con-
tract variables are called state variables and permanently
stored on blockchain. That said, any modification on balances
will be seen in following executions. Furthermore, a transfer
function is defined with two arguments to transfer a specific
amount of cryptocurrency tokens from one account address to
the other. Instead of storing source code of smart contracts
on Ethereum, developers compile smart contracts, e.g., Token,
into Ethereum Virtual Machine (EVM) bytecode [1] and
further deploy the bytecode onto Ethereum. Particularly, every

smart contract application is assigned a 20-byte Ethereum
address. Other Ethereum accounts can call a smart contract by
sending a transaction to its address, specifying which function
is called and what argument values are passed.

1 contract Token {
2 mapping (address=>uint) public balances;
3
4 function transfer (address recv, uint amount) {
5 if(balances[msg.sender] < amount)
6 throw;
7 balances[msg.sender] -= amount;
8 balances[recv] += amount;
9 }

10 }

Fig. 1: A simple Solidity smart contract
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Fig. 2: Smart contract clones of Figure 1

In the context of Ethereum, smart contracts are highly
domain-specific. That is, contracts serving the same applica-
tion domain are very likely to share similar functionalities.
For example, token smart contracts often provide users with
transfer (transfer tokens between accounts) and balance
(check the balance of an account) interfaces. In addition, since
Ethereum smart contracts are manually developed (sometimes
copied and pasted) at the current stage, they tend to be
quite repetitive and follow the programming naturalness [3].
Consequently, both reasons may lead to many similar contract
code, which we call “clones”. We use the example in Figure 1
to explain smart contract clones. Figure 2 demonstrates a pair
of clones (disassembled into opcodes) based on Figure 1,
which are compiled with and without the optimization option
of the 0.4.18 solc compiler [2] respectively. Only instruc-
tions from line 8 (i.e., increase the balance of the receiver
address) are shown here due to the space limit. At the first
glance, it is obvious that the two clones are syntactically
different. Although they are known to implement the same
functionality, i.e., balance update, the optimized code is shorter
by removing several instructions (e.g., DUP, POP). While clone
detection in general-purpose software has been a long-standing
research topic, it is relatively little discussed in the context of
blockchain. In practice, detecting smart contract clones can



enable important applications such as vulnerability discovery
(find clones of known vulnerable contracts) and deployment
optimization (reduce contract size by removing duplicate
clones). However, the uniqueness of Ethereum blockchain in-
troduces new challenges in clone detection of smart contracts,
which are summarized as below.

Challenge 1: Tame Diversity of EVM Bytecode. Although
Ethereum smart contracts may share similar programming
patterns at source code level, they are syntactically diverse at
EVM bytecode level. The reasons are twofold. First, compilers
evolves quickly at the current stage, making the bytecode
different even for the same source code. Second, Ethereum
uses “gas” (i.e., a form of fee) to charge the deployment
and execution of smart contracts. Consequently, the contract
bytecode is largely dependent on whether compiler chooses to
reduce deployment or execution gas. Such diversity increases
the complexity of finding contract clones.

Challenge 2: Understand Business Logics. On the other
hand, associating two smart contracts requires understanding
on their high-level business logics, e.g., an ERC20 token
contract is designed to manage authorized operations of cryp-
tocurrencies. In practice, such intents are often specified by
the people who design the contracts, e.g., the corresponding
company that defines and releases a token. Without any
specification, it is hard to automatically infer such high-level
semantics and further effectively detect clones.

Birthmark-based Clone Detection. To address these chal-
lenges, we introduced the notion of smart contract “birthmark”
and further proposed an EVM bytecode level clone detection
technique based on birthmark. Intuitively, a birthmark is an
abstract representation of a smart contract and describes its
important design patterns, e.g., how the contract processes
different transaction requests. Specifically, a birthmark is re-
alized as a set of numeric vectors, each of which maps to a
basic node in the control-flow graph (CFG) of a smart contract
and is consisted of two parts of metadata, i.e., syntactic
bytecode metadata (e.g., statistics on bytecode instructions)
and transaction sketch metadata (e.g., pre-defined semantic
patterns) respectively. Given a pair of smart contract p and q,
our birthmark-based clone detection employs symbolic execu-
tion to explore the program paths in them and automatically
generates the birthmarks of both p and q. Then, a statistical
similarity is computed via a best-match algorithm, i.e., finding
a statistical perfect match in q for every CFG node in p
and vise versa. Clones are identified by checking whether the
similarity value exceeds a threshold or not.

We have developed a smart contract clone detector EClone
to implement the birthmark-based clone detection technique,
and further evaluated it on Ethereum. The empirical results
demonstrated the potential of EClone in accurately recogniz-
ing semantic clones while distinguishing irrelevant contracts,
even if they incur big syntactic noise in some cases. We
also conducted an application using recognized clones, i.e.,
vulnerability search. EClone has shown its practical value via
efficiently finding the CVE-2018-10376 vulnerability.

Contribution. We summarize our main contributions below.
• We have introduced the concept of smart contract birthmark,

which is an effective and computable representation to

abstract EVM bytecode and model its business logics.
• We have proposed an EVM bytecode-level birthmark-based

clone detection technique for Ethereum, which leverages
symbolic execution to generate birthmarks and identifies
clones via computing statistical similarities.

• We have conducted a large-scale evaluation on Ethereum
and for the first time discussed the smart contract clones in
the current ecosystem.

• We have highlighted the application of vulnerability search
based on smart contract clone detection, which has not been
considered before.

Paper Organization. The remainder of the paper is orga-
nized as follows. §II introduces background information of
Ethereum blockchain and EVM. §III describes the birthmark-
based clone detection technique in detail. §IV demonstrates
the conducted industrial evaluation. §V discusses related works
and §VI concludes the whole paper.

II. BACKGROUND

A. Ethereum Blockchain
Ethereum can be seen as a decentralized network consisting

of two types of nodes, i.e., externally owned accounts (EOA)
and smart contract accounts. Every account node is assigned
with a 160-bit address and associated with its own state.
Specifically, the state information of EOA contains a nonce
(number of transactions on the account) and balance of ether
(the cryptocurrency in Ethereum). In terms of smart contract
accounts, their states also contain storage data which is per-
sistently stored on blockchain and smart contract code, i.e.,
Ethereum virtual machine bytecode which we later explain.

In the Ethereum network, external actors (e.g., individual
users or entities) are allowed to submit cryptographically-
signed transactions. Specifically, there are two types of trans-
actions in Ethereum, i.e., smart contract creation which aims
at putting contract code on blockchain and message call that
passes data between different accounts. Both types will be
charged via gas, i.e., a form of transaction fee in Ethereum.
Transactions will be collected into blocks by mutually distrust-
ing miner nodes and further validated. Based on a consensus
protocol, i.e., currently proof-of-work (PoW) in Ethereum [4],
miners will agree on whose block can be merged to the
blockchain. More specifically, a transaction specifies a set of
common fields, including nonce holding the total number of
transactions sent by the sender, gasPrice which means the
price per gas, gasLimit which denotes the maximal amount
of gas allowed to process the transaction, to referring to the
transaction recipient address, value that is ether transferred
to the destination account, v,r,s relating to the signature of
the transaction and sender. Moreover, the contract creation
transaction is associated with init filed, the contract bytecode.
Instead, message calls include data, which specifies what
function in the smart contract is called and the corresponding
argument values.

B. Ethereum Virtual Machine
The execution of smart contracts happens in the Ethereum

virtual machine (EVM). Particularly, EVM takes bytecode as
input and works in a stack-based architecture with a word
size of 256 bits. There are three different space in EVM to
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Fig. 3: The general work flow of birthmark-based clone detection (BCD) framework.

store data and resources, namely stack, memory and storage.
Specifically, stack holds 256-bit data which may carry different
types of values. Memory is linear and can be addressed at
byte level. Storage is a key-value space which maps 256-
bit words to 256-bit words and maintains persistent data,
e.g., the balances state variable in Figure 1. To execute a
smart contract, EVM iteratively fetches an instruction from
the bytecode and operate on stack, memory and storage.
According to the Ethereum yellow paper [1], there are 12
defined classes of instructions. We informally explain 3 of
them, which are closely related to the technique proposed in
this paper. SSOTRE/SLOAD stores value and loads value from
the storage respectively. CALL/CALLCODE/DELEGATECALL are
responsible for sending message calls. For CALL instruction,
it specifies 7 parameters, i.e., gas value given for the call,
recipient address, ether value attached with the call, input
offset, input length, output offset and output length. When
executing a CALL, seven values are popped out from the stack
for the corresponding parameters. JUMP/JUMPI causes a jump-
ing operation from the current instruction to a specific offset.
The destination of the jump is either unconditional (JUMP)
or conditional (JUMPI). The aforementioned three types of
instructions are used to capture high-level semantics of smart
contracts, which will be explained later. Other instructions,
e.g., arithmetic operations (ADD, SUB etc.) and stack operations
(PUSH, POP etc.) are considered in the proposed clone detection
technique as well.

III. BIRTHMARK-BASED CLONE DETECTION

In this section, we will describe the birthmark-based clone
detection (BCD) technique for Ethereum smart contracts. Fig-
ure 3 specifies the general work flow of the BCD framework.
Specifically, the framework takes as input a pair of smart
contracts A and B, which are given in the form of EVM
bytecode. The goal of BCD is to quantitatively answer the
question “Is A semantically similar to B?”. We formalize the
concept of birthmark in §III-A. Then in order to answer this
question, BCD first constructs a pair of static control flow
graphs (CFG) based on the input bytecode. Then, it performs
symbolic transaction (§III-B) to symbolically execute the CFG
pair and refine CFGs on the fly. Intuitively, the procedure can
been seen as a process of symbolic execution in the runtime
of Ethereum with a set of blockchain variables. The outputs of

symbolic transaction are two groups of birthmark vectors for
A and B. Particularly, a birthmark captures not only syntactic
features but semantic patterns as well, and it offers an easy-to-
compute representation of Ethereum smart contracts for clone
detection. Furthermore, based on the birthmarks, BCD runs
a similarity computation algorithm to statistically compute a
score that quantifies “How similar A and B are?”. Lastly, BCD
leverages the score and a set of configuration parameters to
determine whether A and B are clones or not (§III-C).

A. Preliminaries

Given a smart contract bytecode s, we use the notion G(s)
to represent the control flow graph (CFG) of s. Formally, G =
〈V, E〉 is a collection of basic blocks V and directed edges
between them E . Each basic block v ∈ V may contain one
or more instructions i1i2 · · · in. Each directed edge e ∈ E
describes a may-reachable property between two basic blocks.
For example, e = (v1, v2) ∈ E means basic block v1 may
reach v2 in real execution.

Next, we explain the definition of smart contract birthmark.
A birthmark is denoted asM and includes two types of meta-
data, i.e., syntactic bytecode metadata (Ms) and transaction
sketch metadata (Mt) respectively. Given a basic block v, a
birthmark of v is a numeric tuple M(v) = 〈Ms(v),Mt(v)〉.
In practice, M(v) is used as an abstract representation of
the basic block v. In terms of a smart contract with a CFG
G(s) = 〈Vs, Es〉, M(s) is a collection of birthmarks with all
its basic blocks combined, i.e., M(s) = {M(v) | v ∈ Vs}.
The major strength of birthmark is the capability to enable
straightforward computation on smart contracts (via vector
calculation) and capture a good degree of high-level semantics
as explained later.

In terms of the syntactic bytecode metadata, we consider six
categories of statistics based on the specification of EVM [1].
Therefore,Ms is a 6-tuple vector 〈sa, sl, se, sb, ss, sm〉, where
each element is the number of instructions of the correspond-
ing category, i.e., arithmetic instructions (e.g., ADD), logic in-
structions (e.g., AND), environment instructions (e.g., BALANCE),
blockchain instructions (e.g., GASLIMIT), stack instructions
(e.g., PUSH), memory instructions (e.g., MSTORE). On the other
hand, Mt aims at modeling the high-level semantics of smart
contracts by generating transaction sketches at the basic block
level. Specifically, a sketch Mt(v) = 〈C,P 〉 of basic block v



1 function transfer(address recv, uint amount) onlyOwner {
2 total = total + amount; // 2:[L,S,UU]
3 if(total > 1000) { // 3:[L] 2-3:[DU]
4 total = 0; // 4:[S] 3-4:[UU]
5 } else {
6 if(block.number % 2 == 0) {
7 recv.call.value(amount)(); // 2-7:[UpC,UsC] 3-7:[UsC]
8 }
9 last = recv; // 9:[S] 7-9:[CF]

10 }
11 }

(a) A Solidity function transfer
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Fig. 4: An illustrative example to explain the smart contract birthmark

consists of two types of metadata, i.e., path condition (C) of
v, semantic properties (P ) of v. While C models the control
flow dependency of v, P abstracts its high-level behavior via
defined bytecode patterns of storage accesses and message
calls (i.e., state-changing operations for smart contracts [2]).
For example, the branch at line 5 of Figure 1 creates a
c ∈ C that balances[msg.sender] < amount. As for semantic
properties, the defined patterns are described in Table I.

TABLE I: Defined semantic properties to model storage
accesses and message calls. o and v are the storage offset
and the value stored in the storage, respectively.

Property Description
L Single SLOAD o operation
S Single SSTORE o v operation
C Single CALL operation

DU Def-Use pattern, e.g., SSTORE o v; SLOAD o;
UU Use-Update pattern, e.g., SLOAD o; SSTORE o v;
UpC Update-Call pattern, e.g., SSTORE o v; CALL;
UsC Use-Call pattern, e.g., SLOAD o; CALL;
CF Call-Finalize pattern, e.g., CALL; SSTORE o v;

In Table I, we have defined two classes of semantic prop-
erties, i.e., single-instruction property (top half) and cross-
instruction property (bottom half). The first three properties
(L, S, C) target at the instructions of SLOAD, SSTORE and CALL,
which are often used to manipulate important storage data and
communicate with external blockchain addresses. The rest five
properties are designed to capture patterns involving two in-
structions. Although these patterns may not cover all the cases,
they are widely implemented in Ethereum smart contracts, thus
are closely related to the high-level programming intents of
contract developers. Next, we use an example in Figure 4 to
further explain the smart contract birthmark.

Illustrative Example. Figure 4a shows a Solidity function
transfer which takes two arguments (i.e., recv and amount)
and operates on two storage data (i.e., total and last).
Particularly, a modifier onlyOwner is used to restrict function
calls from non-owner addresses1, e.g., require(msg.sender
== owner). Figure 4b shows two bytecode snippets of the
transfer function, which are compiled from the onlyOwner
modifier (line 1) and branch (line 6) respectively. The syntactic

1https://solidity.readthedocs.io/en/v0.4.24/common-patterns.html

bytecode metadata, i.e.,Ms, is further explained in Figure 4b
by classifying instructions into corresponding groups as afore-
mentioned. For example, the CALLER instruction which puts
the address of message caller onto stack is counted by se as
defined inMs. Similarly, blockchain related instructions (e.g.,
NUMBER that gets the number of the current block) are labeled
as sb. Next, we describe the symbolic sketch metadata Mt,
including path conditions and semantic properties. Although
our approach works at bytecode level, we use the Solidity
smart contract here for better explanation. Specifically, we
use the message call operation at line 7 of Figure 4a as an
example. This line of code has two path conditions from
the entry of the transfer function, i.e., total <= 1000 and
block.number % 2 == 0. Using an SMT solver (e.g., Z3 [5]),
the conditions may be modeled as ULE(total,1000) and
EQ(MOD(block.number,2),0), respectively. Furthermore, path
conditions C = 〈c, o〉 are encoded using the number of
constraints (i.e., c, 2 in this case) and operators (i.e., o, 3 in
this case including ULE, EQ and MOD). In terms of the semantic
properties as in Table I, we specified property instances in
the comments of Figure 4a. For example, line 2 introduces
an L property (load value from storage total), an S property
(store value to total) and a UU property which combines L
and S. Moreover, a DU property exists from line 2 to 3 by
first defining total and then using it. Similarly, from line 2
to 7, UpC and UsC properties are modeled since a message
call at line 7 follows a storage update and a usage at line
2. A CF property is lastly identified from 7 to 9 due to the
finalize update at line 9 after the message call at line 7. The
birthmark of the illustrative example transforms bothMs and
Mt as aforementioned into numeric vectors.

B. Birthmark Generation
As introduced in §I, a birthmark is automatically gener-

ated from a given smart contract. This is realized via sym-
bolic transaction (which is explained later), i.e., symbolically
execute a smart contract with symbolic blockchain values.
Specifically, symbolic transaction works in two steps. When
executing a basic block of a smart contract, it first parsed the
bytecode in the block statically to retrieve syntactic bytecode
metadata. Then, as the symbolic execution flows within the
block, transaction sketch metadata is generated on the fly. As
traditional symbolic execution techniques [6], [7], symbolic



transaction aims at covering as many program paths as pos-
sible. In our setting, birthmarks of basic blocks in uncovered
paths only include syntactic bytecode information. Next, we
describe the process of symbolic transaction and birthmark
generation in detail.

Generally, symbolic transaction takes as input a CFG of
the a smart contract and a set I = 〈Is, Ia, Iv, Id, IH〉 of
symbolic runtime parameters. Specifically, Is is the address of
the message sender. Ia is the receiver address of the message
(the address of the smart contract in our case). Iv is the
amount of ether attached in the transaction. Id is the input
data of the transaction. IH is the header information [1],
including coinbase, block number, difficulty value, gas limit
etc.. To execute the transaction, a symbolic execution engine
is used in our framework, whose responsibility is iteratively
fetching a basic block from the CFG of the smart contract
and then interpreting all the instructions within the block
using symbolic parameters. Particularly, we focus on three
types of instructions, i.e., SSTORE, SLOAD and CALL. When
executing an SSTORE instruction, the top two elements in
EVM are an address o of the storage and a value v to
store. We record o and attach it to the SSTORE instruction.
For SLOAD, o is also recorded. In terms of CALL, the second
top element indicates the address of the message recipient,
which is associated with the instruction. Furthermore, before
the symbolic transaction steps into a basic block, the path
condition of this block is captured for later use. In practice,
symbolic transaction traverses the CFG of a smart contract and
label specific information to basic blocks and instructions as
aforementioned. When the symbolic transaction terminates, we
generate birthmarks for all the basic blocks in the CFG of the
smart contract. Algorithm 1 explains the birthmark generation
process for a single basic block.

The algorithm takes as input a basic block v and generates
its birthmarkM(v). Two state data structures, i.e., a dictionary
Q and a list kq , are declared and initialized (line 5). Before
the algorithm enters v, it parses the path condition expression
and generates an tuple 〈c, o〉 as an embedding (line 6). Then,
we generate Ms(V ) and P by processing all the instructions
in v based on their mnemonic (line 7 to 29). For SSTORE and
SLOAD, we maintain a queue q to store a sequence of operations
on a specific storage address addr. Then, the update of P
is realized via parsing q and identifying semantic properties.
Similarly, the generation of properties which are related to
CALL, i.e., C, UpC and UsC, is implemented via a traversal of
kq . For other types of instructions in v, the algorithm takes the
current instruction and updates the corresponding element of
Ms(v). Lastly, the birthmark of the basic block v is produced
by combining Ms(v), C and P .

C. Clone Detection

Next, we describe our clone detection technique based on
smart contract birthmarks. Generally, the detection is real-
ized by computing the similarity of birthmarks between two
contracts. Specifically, we first define the distance of two
numerical vectors. Given two vectors P and Q, their distance
‖PQ‖ is defined as in Formula Vector Distance.

‖PQ‖ =
∑
αi |Pi −Qi|∑

αi max(Pi, Qi)
(Vector Distance)

Algorithm 1: Generate birthmark for a basic block
Input : v is the basic block to be executed.
Output: M(v) is birthmark of v.

1 Ms(v) = 〈sa, sl, se, sb, ss, sm〉 ← 〈0, · · · , 0〉
2 Mt(v) = 〈C,P 〉 C = 〈c, o〉 ← 〈0, 0〉
3 P = 〈L, S,C,DU,UU,UpC,UsC,CF〉 ← 〈0, · · · , 0〉
4 I ← get_instructions(v)
5 Q← {} kq ← [ ]

6 C ← update_C(get_path_condition(v))
7 for i in I do
8 switch mnemonic(i) do
9 addr← get_storage(i)

10 q ← Q[addr]
11 case SSTORE do
12 update_S(P, q) // update S property
13 update_UU(P, q) // update UU property
14 update_CF(P, q) // update CF property
15 Q[addr]← append(q, i)
16 append(kq, i)

17 case SLOAD do
18 update_L(P, q) // update L property
19 update_DU(P, q) // update DU property
20 Q[addr]← append(q, i)
21 append(kq, i)

22 case CALL do
23 for k, vin Q do
24 Q[k]← append(v, i)

25 update_C(P ) // update C property
26 update_UpC(P, kq) // update UpC property
27 update_UsC(P, kq) // update UsC property

28 otherwise do
29 update_Ms(Ms(v), i) // update Ms(v)

30 return M(v)← 〈Ms(v), C, P 〉

We adopt a similar distance definition as in [8]. Intuitively,
similar vectors are guaranteed to produce a low distance, and
vice versa. Particularly, αi is a set of parameters to indicate the
relative significance of different fields in a vector, i.e., which
field has bigger impact on identifying the similarity of two
vectors. In practice, αi can be automatically inferred via super-
vised learning. For birthmarks M(v1) = 〈Ms(v1),Mt(v1)〉
and M(v2) = 〈Ms(v2),Mt(v2)〉 of basic blocks v1 and v2,
we can use Formula Vector Distance to compute the distance
between syntactic bytecode metadata (denoted as ‖v1v2‖s =
‖Ms(v1)Ms(v2)‖) and transaction sketch metadata (denoted
as ‖v1v2‖t = ‖Mt(v1)Mt(v2)‖) of v1 and v2, respectively.
Then, we further define the similarity ‖v1v2‖ of two basic
blocks, e.g., v1 and v2, as in Formula Block Similarity.

‖v1v2‖ =
1− ‖v1v2‖t

1 + ‖v1v2‖t + ω · ‖v1v2‖s
(Block Similarity)

In this formula, ω is a parameter commonly with a small value
for tuning the weight of syntactic bytecode metadata in the



case of clone detection. That said, the similarity between two
basic blocks is mainly determined by their transaction sketch
metadata, i.e., how similar the blocks behave in the same
transaction. We design the block similarity in this way so that
the clone detection can better capture high-level programming
intents without being mis-guided by syntax noise. Based on
the block similarity, we use P (v1; v2) to denote the probability
measurement that v1 and v2 are basic block level semantic
clones, i.e., v1 is semantically equivalent or similar to v2. The
probability is computed as in Formula Clone Blocks.

P (v1; v2) = 1/(1 + e−k·(‖v1v2‖−0.5)) (Clone Blocks)

The probability is estimated by applying a sigmoid function
with a midpoint to be 0.5 as ‖v1v2‖ ∈ [0, 1] [9]. Next, we
describe the contract level similarity based on clone blocks.
Assuming G1 and G2 are two CFG from a pair of smart
contracts, the basic idea of computing similarity between G1
and G2 is to find the best match (i.e., biggest probability
measurement between two blocks) in G2 for each basic block
in G1, and vice versa. Moreover, the task of searching best
matches is implemented as identifying a pair of basic blocks
with a smallest vector distance for transaction sketch metadata,
without syntactic bytecode metadata involved. In this way,
we can avoid a portion of false matches whose similarity
is not mainly contributed by semantic information, e.g., path
conditions, storage accesses and message calls etc., but other
less important instructions. When a pair of matched blocks is
discovered, we compute their clone probability measurement
(as in Formula Clone Blocks). Lastly, we define an asymmetric
clone probability Sim(s1 → s2) from contract s1 to s2 via the
Clone Prob Formula.

Sim(s1 → s2) =
∑
vi∈s1

log
P (vi; v

∗)

P (vi;H0)
(Clone Prob)

In particular, given a specific basic block vi ∈ s1, vj ∈ s2
and v∗ = argmax‖vivj‖t. P (vi;H0) represents a probability
estimation of clones between vi and a random basic block
H0. A simple method to estimate H0 is to use an average
similarity between vi and all the basic blocks in s2. The
absolute similarity between s1 and s2 is denoted as Sim(s1, s2)
and computed by max{Sim(s1 → s2), Sim(s2 → s1)}. We
further use the relative similarity to detect contract clones as
defined in Clone Contracts Formula.

Sim∗(s1, s2) = Sim(s1, s2)/Sim(s2, s2) (Clone Contracts)

Given a threshold φ, s1 and s2 are considered as clones if
Sim∗(s1, s2) ≥ 1−φ. Otherwise, they are marked as unrelated
ones w.r.t. φ.

IV. EMPIRICAL EVALUATION

A. Experiment Setup

Implementation. We have developed a clone detector called
EClone for Ethereum smart contracts. Specifically, EClone
leverages Oyente [10] to construct CFG from EVM bytecode
and perform symbolic transaction. Moreover, we implemented
the modules of metadata extraction, similarity computation and
clone detection in Python. Additionally, EClone uses a training
module to train and optimize the parameters used in the clone

detection, e.g., α, ω, k as mentioned in §III. To this end, we
prepare a corpus C of training inputs for EClone . Each input
contains a pair of EVM bytecode with a label from {−1, 1},
where −1 means unrelated contracts and 1 means clones.
Then, EClone employs pyGAlib2 to optimize the following
Objective Function.

max
∑

(Sim∗(ci, cj)− Sim∗(ci, uk)) (Objective Function)

Specifically, ci and cj are labeled as 1 and ci and uk are
labeled as −1 in the training data (ci, cj , uk ∈ C). Conceptu-
ally, the objective function helps EClone separate clone and
unrelated contracts as much as possible. EClone is publicly
available at URL omitted for double-blind review.

Dataset Preparation. All the experiments were performed
on a Ubuntu 16.04 virtual machine with dual Intel Core i5
processors, 10GB RAM and 128GB SSD. We collected two
types of evaluation corpus from Mainnet Etherscan [11], i.e.,
Toptimize and TDapp respectively. The Toptimize consists of smart
contract bytecode generated with and without solc compiler
optimizations (enabled by the --optimize option) [2]. On
the other hand, TDapp is produced by picking contracts from
different Dapp domains, i.e., Token, Lottery, Voting. Toptimize
includes 3,156 test cases and TDapp contains 300 test cases.
Specifically, each test case is a triple of 〈q, t, l〉, where q and t
is a pair of EVM bytecode for clone detection. l ∈ {−1, 1} is a
label that indicates whether q and t are clones (1) or not (−1).
For Toptimize corpus, we set a label to be 1 if q and t are the un-
optimized and optimized versions of the same smart contract.
Otherwise, we set the label to be −1. For TDapp corpus, a label
is specified as 1 if q and t are from the same Dapp domain, and
−1 if q and t come from different Dapp domains. To determine
whether the birthmark-based clone detection is correct or not,
we first used EClone to compute a label l′ for q and t and then
compared l′ with the ground truth label l. Cases where l = l′

were considered as correct detections and l 6= l′ situations
were regarded as false reports.

B. Research Questions
Question 1. Can EClone detect smart contract clones?
Question 2. Is transaction sketch metadata necessary?
Question 3. What are the practical values of EClone?

C. Empirical Results
To answer the aforementioned questions in the setting of

Ethereum, we have conducted a set of empirical case studies
on the task of smart contract clone detection using EClone .
Next, we describe and explain the empirical results. In the first
study, we used EClone to detect clones in smart contracts of
Toptmize. The detection results are shown in Figure 5a.

In the evaluation, we considered four types of statistics, i.e.,
true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) respectively. For example, if the label l of
the test case is 1 and EClone also generates 1 label, we count
this test case as TP. However, if EClone generates −1, an
FN will be recorded. In Figure 5a, we computed the precision
of EClone under different values of the detection threshold
φ. Specifically, the precision is calculated as TP+TN

N where

2https://github.com/gorkazl/pyGAlib



(a) Precision in Toptimize (b) Precision in TDapp

(c) ROC in Toptimize (d) ROC in TDapp

Fig. 5: Clone detection results in Toptimize and TDapp. Specifically, (a), (b), (c), (d) are precision and ROC curves compared to
the baseline approach. (a) and (c) are for Toptimize while (b) and (d) are for TDapp.

Fig. 6: Detection difference between Toptimize and TDapp.

N = TP + TN + FP + FN . The precision measurement
indicates the capability of a clone detector to not only find
similar code but filter irrelevant ones as well. In the first case
study, we used 8 different values of φ (from 0.1 to 0.4) to per-
form clone detection. Figure 5a showed that EClone achieved
a precision from 58.21% to 93.27%, where φ = 0.16 out-

performed other settings. While bigger thresholds introduced
false positives, smaller thresholds led to false negatives. In
practice, specifying an optimal threshold for clone detection is
essential, but unfortunately intractable. We suggested picking
a φ empirically based on a specific application setting. In terms
of clones derived from compilation optimizations, Figure 5a
highlighted a strategy to configure the threshold. On the other
hand, we analyzed the precision of clone detection achieved
by EClone in the setting of cross-domain Dapp, as described
in Figure 5b. Given different values of detection threshold
φ, the precision of EClone ranges from 54.23% to 89.57%.
Although the a minor decrease on precision was observed
compared to the setting of detecting clones against compiler
optimizations (i.e., Toptimize), the results still demonstrated a
potential of EClone in finding real smart contract clones, thus
can help answer Question 1 in affirmative.

Furthermore, we investigated the difference manifested be-
tween clone detections in Toptimize and TDapp. Specifically, we
compared the two types of test cases over TP, TN, FP, FN
measurements, as shown in Figure 6. From the results, it is
straightforward to see that while TN and FP measurements
were close for both types of test cases, detection results of
TDapp displayed higher FN and lower TP, thus a relatively
lower precision. The difference of precision can be further



1 if(balances[msg.sender]>=v &&
2 balances[to]+v >= balances[to]){
3 balances[msg.sender]-=v;
4 balances[_to]+=v;
5 Transfer(msg.sender, to, v);
6 return true;
7 } else {
8 return false;
9 }

(a) HBToken

1 if (to == 0x0)
2 throw;
3 if (v <= 0)
4 throw;
5 if (balanceOf[msg.sender] < _v)
6 throw;
7 if(balanceOf[to]+v < balanceOf[to])
8 throw;
9 balances[msg.sender] -= v;

10 balances[to] += v;
11 Transfer(msg.sender, to, v);

(b) BNB Token

1 claimBonus(msg.sender);
2 claimBonus(to);
3 if(balences[msg.sender] >= v &&
4 v > 0) {
5 balences[msg.sender] -= v;
6 balences[to] += v;
7 Transfer(msg.sender, to, v);
8 return true;
9 } else {

10 return false;
11 }

(c) VEN Token

Fig. 7: Three transfer(address _to, uint _v) function variations in TDapp.

explained by the difference of EVM bytecode from the two
groups of smart contracts. Compared to the bytecode variations
introduced by compiler optimization in Toptimize, TDapp incurred
more diversity for smart contracts even within the same
application domain. To better explain the diversity for TDapp
test cases, we listed three representative Solidity functions of
Token contracts in Figure 7.

The three variations of token smart contracts all declared
a transfer function, which is an interface from ERC20 token
standard [12] and takes as input a recipient address _to and
the amount of tokens _v for the transfer. As a result, the
three variations have a similar function structure, i.e., sanity
checks on whether the sender has enough tokens and the
receiver can correctly take the transfer (without overflow)
followed by a sequence of actual token transfer from the
sender to the receiver. Particularly, BNB token in Figure 7b
defines extra checks to validate the address of the recipient
and the value associated to the transfer. In the context of
clone detection, EClone can detect the similarity between
Figure 7a and Figure 7b despite the code differences. The
detection was realized by effectively identifying important
patterns which indicate high-level intents. For example, the
accesses on the storage balences are similar across the three
variations, which further generates similar semantic properties
for EClone . However, the VEN function in Figure 7c specified
a different implementation which introduced a new strategy in
the process of token transfer, i.e., claimBonus function call,
as shown in the first two lines in Figure 7c. Consequently, the
VEN contract included the body of the claimBonus function,
which caused a major difference to the other two contracts. In
this case, EClone failed to identify such clones in TDapp and
produced a false negative (FN).

Furthermore, we conducted a comparison experiment be-
tween EClone and a baseline approach. Specifically, the base-
line used only syntactic features for clone detection. That is,
transaction sketch metadata was removed from the birthmark.
Instead, instructions of storage accesses (SLOAD, SSTORE) and
message calls (CALL) were counted and combined with the
syntactic bytecode metadata for a single basic block. Then a
graph matching algorithm was performed based on subgraph
isomorphism [8]. The results are shown in Figure 5. Compared
to the baseline, EClone achieved a better precision of clone
detection w.r.t. both Toptimize and TDapp settings. The optimiza-
tion over baseline was 12.09% for Toptimize and 12.12% for

TDapp respectively, as in Figure 5a and 5b. Moreover, we have
computed the ROC curves in these two settings, as shown
in Figure 5c and 5d. From the results, it is clear to see that
given the same false positive rate, EClone generated a higher
true positive rate than the baseline. On the other hand, under
the same true positive rate, EClone manifested a lower false
positive rate than the baseline. That said, EClone was a better
fit in the context of detecting smart contract clones compared
to the baseline approach. Considering the technical difference
between EClone and baseline, the achieved optimization indi-
cated the awareness of semantics introduced by the transaction
sketch metadata, i.e., an essential form of information provided
by EClone . Specifically, the sketch metadata facilitated the
identification of high-level programming intents via a set of
predefined types of semantic properties (as in §III-A) at basic
block level, and further enhanced the clone detector. Therefore,
we can respond to Question 2 positively.

D. Application of EClone: Vulnerability Search

We have further instantiated an application of EClone , i.e.,
vulnerability search. That is, given a target vulnerable function
t and a set of contracts C, we detect variants of t in c ∈ C.
From the practical perspective, vulnerability search for smart
contracts is important to secure blockchain ecosystems. Taking
the DAO attack [13] as an example, vulnerability search
could enable us to very quickly find DAO-like problems in
other contracts before they got exploited. Moreover, designing
detection patterns for security problems can sometimes be
difficult or even impossible (e.g., harmful integer overflows).
In such cases, the capability of vulnerability search can help
effectively catch known issues even if we do not have a precise
analysis algorithm.

Extension of EClone. We extended EClone to search for
function-level vulnerabilities. Based on the structure of EVM
bytecode, a contract CFG is organized as a “function selector”
followed by a set of function subgraphs. For a function foo, the
selector uses PUSH4 hash(foo) to put hash of foo onto stack.
Then, it extracts the first four bytes from transaction data and
compares the bytes with hash(foo). If the two match, then
the execution goes to foo. Using this heuristic, we recognize
function hashes for basic blocks when performing symbolic
transaction. Given a vulnerable contract ct, the hash of the
vulnerable function h and a contract cq to be searched, EClone
extracts a set ct(h) basic blocks from ct based on h. Sim-



ilarly, we extracted cq(h0)cq(h1) · · · cq(hm) from cq where
h0h1 · · ·hm are function hashes in cq . Lastly, EClone gener-
ates a ranking on these functions based on Sim∗(cq(hi), ct(h)),
where larger values indicate higher probabilities to have the
same vulnerability.

Case Study Setup. In our case study, we applied EClone
to search for the CVE-2018-10376 vulnerability of smart
contracts. The vulnerable target function transferProxy at
3ac6cb00f5a44712022a51fbace4c7497f56ee31 is shown in
Figure 8. Specifically, the contract sets up a proxy for users
to transfer cryptocurrencies between accounts. However, due
to an unprotected integer overflow (i.e., _fee + _value) at
line 5, an attacker could bypass the sanity check at line 6 and
transfer a large amount of money to specific accounts (line 13
and 15) from a zero-balance account (line 17). In the study, we
have collected a group of five real-world contracts in Ethereum
which are affected by CVE-2018-10376 [14], as shown in
Table II. Specifically, some of the contracts were quite active
with more than 50,000 transactions in total, which highlighted
the significance of finding the vulnerability in time.

1 function transferProxy(address _from, address _to,
2 uint256 _value, uint256 _fee, uint8 _v,bytes32 _r,
3 bytes32 _s) public transferAllowed(_from)
4 returns (bool) {
5 if(balances[_from] < _fee + _value)
6 revert();
7 uint256 nonce = nonces[_from];
8 bytes32 h = keccak256(_from,_to,_value,_fee,nonce);
9 if(_from != ecrecover(h,_v,_r,_s)) revert();

10 if(balances[_to] + _value < balances[_to] ||
11 balances[msg.sender]+_fee<balances[msg.sender])
12 revert();
13 balances[_to] += _value;
14 Transfer(_from, _to, _value);
15 balances[msg.sender] += _fee;
16 Transfer(_from, msg.sender, _fee);
17 balances[_from] -= _value + _fee;
18 nonces[_from] = nonce + 1;
19 return true;
20 }

Fig. 8: CVE-2018-10376

TABLE II: Contracts affected by CVE-2018-10376.

Contract Address Tx
SMART 60be37dacb94748a12208a7ff298f6112365e31f 643
MTC 8febf7551eea6ce499f96537ae0e2075c5a7301a 4,121
MESH 01f2acf2914860331c1cb1a9acecda7475e06af8 10,289

UGToken 43ee79e379e7b78d871100ed696e803e7893b644 42,882
SMT 55F93985431Fc9304077687a35A1BA103dC1e081 54,545

Vulnerability Ranking. Next, we used the extended EClone
to rank functions in the five vulnerable contracts based on how
similar the function is to CVE-2018-10376. For each contract,
two versions of bytecode were used, i.e., un-optimized and
optimized ones. The ranking is shown in Table III. For un-
optimized contract bytecode of MESH, SMT, MTC and SMART,
EClone ranked the vulnerable function as top one w.r.t. around
25 functions in total. For un-optimized UGToken contract, the
vulnerable function was the second in the ranking. In terms of

TABLE III: Function ranking of smart contracts affected by
CVE-2018-10376. #Basic Block and #Function columns show
the number of basic blocks and functions in the contracts.
No-opt and Opt columns are results of contract bytecode
generated without and with compiler optimization respectively.

Contract #Basic Block #Function No-opt Opt
MESH 321 27 1 1
SMT 293 26 1 1
MTC 247 23 1 1

SMART 235 22 1 2
UGToken 211 19 2 2

optimized contracts, EClone managed to identify vulnerable
functions in the top two of the ranking list. In this sense,
the process of vulnerability search can be more efficient by
focusing on only the top functions generated by EClone .

TABLE IV: Comparison on vulnerability detection of
CVE-2018-10376. Sim means relative similarity between the
vulnerable function in these contracts and the target in Fig-
ure 8. Oyente was configured with different timeout for SMT
solving, i.e., 100ms and 1000ms respectively.

Contract EClone Oyente SecurifySim φ = 0.16 100ms 1000ms
MESH 0.96 X × × ×
SMT 0.99 X × × ×
MTC 0.95 X × × ×
SMART 0.98 X × × ×
UGToken 0.79 × × × ×

Fig. 9: Performance of vulnerability detection.

Vulnerability Detection. Furthermore, we have compared
EClone with two existing security analyzers of smart contracts,
i.e., Oyente [10] and Securify [15], in terms of vulnerability
detection. These two analyzers are based on symbolic execu-
tion and formal verification techniques. Specifically, we used
two configurations of Oyente with different timeout for SMT
solving, i.e., 100ms and 1000ms respectively. For EClone , we
set φ = 0.16 as the threshold to flag potential vulnerabilities.
The comparison is explained as in Table IV. While EClone
successfully found the vulnerable functions in four contracts
with relatively high confidence (relative similarities against
CVE-2018-10376 were greater than 0.95), both Oyente and



Securify failed to report the vulnerability that was caused
by a simple integer overflow bug. The main reason for this
missed bug is that the logic in CVE-2018-10376 (line 5, 6)
is similar to a widely used pattern for overflow protection,
i.e., addition overflow followed by a revert. In this case, the
analyzers mistakenly identified the bug as a protection pattern
thus led to a false negative. On the other hand, EClone detected
this vulnerability via analyzing the similarity to the target and
avoided getting confused by specific code patterns. In general,
strengths of such in-depth analyzers (e.g., Oyente and Secu-
rify) and EClone are orthogonal to each other. Well-designed
combinations could create stronger security analysis capability
for both sides. In this sense, we can respond to Question 3 that
EClone highlighted a practical way to detect security threats
in Ethereum contracts, as a compliment to existing solutions.
Lastly, we analyzed the runtime overhead of EClone in finding
CVE-2018-10376, as in Figure 9. Compared to Oyente with
100ms SMT solving, EClone was slower by around 40% on
average due to birthmark generation and similarity computa-
tion. With most of the overhead coming from computations
on independent vectors, hardware-supported parallelization in
EClone might be possible and is left for future work.

V. RELATED WORKS

Software Birthmarks. A birthmark of software was initially
designed to identify intrinsic software properties and fight
against code theft [16]–[18]. Myles and Collberg introduced
whole program path birthmark, which models a program
via a complete control flow trace of its execution [16].
Tamada et al. proposed to observe the runtime interaction
between an application and its environment [17]. In the context
of Java applications, Schuler et al. presented a new type of
birthmark by monitoring how objects are used via Java Stan-
dard API [18]. In order to capture unique behavior in large-
scale software, Wang et al. designed the birthmark of system
call dependence graph to encode programs via their calls to
the operating system [19]. In the context of blockchain, we
designed the first birthmark for smart contracts. Particularly,
we focus on critical semantic properties at runtime rather than
the complete execution trace, thus can reduce complexity and
capture programming intents as well.

Clone Detection. The topic of clone detection has been
attracting research interests in the field of software engineering
for a long time. Previous works focused on finding clones in
both source code [20]–[22] and binary code [8], [9], [23]–[25].
Jiang et al. proposed the Deckard algorithm to identify similar
tree representations of source code via clustering numeric
vectors generated from subtrees [20], which is robust against
minor code modifications and can scale for large programs.
Gabel et al. extended Deckard by mapping program depen-
dency graphs to their associating AST forests [21], such that
the computation of graph comparison is reduced to a tree
similarity problem. In the context of binary code, Saebjornsen
et al. followed the original idea described in Deckard and
extended it by normalizing assembly instructions with essen-
tial structure information considered [23]. David et al. further
introduced input-output equivalence to check semantic simi-
larity [9]. The equivalence is analyzed as a model checking
problem thus is more robust against binary transformations

such as obfuscation and optimizations. Chandramohan et al.
applied a selective inlining technique on library and user-
defined functions in detecting similar code [26]. In order to
speed up the detection, Eschweiler et al. proposed numeric
and structural filters to quickly identify unrelated programs [8].
Moreover, Xu et al. designed a neural network based approach
to compute an embedding for binary functions. Compared
to other graph-matching algorithms, this approach is more
efficient and can flexibly adapt in various settings. Based on
deep learning techniques, Liu et al. proposed to find similar
binary based on intra-function, inter-function and inter-module
features, which are directly generated from raw bytes rather
than syntactic information as CFG [27]. Unlike clone detection
methods in the literature, we consider both syntactic features
and observable behavior as well. Furthermore, we modeled
unique semantics of Ethereum such as storage accesses and
inter-contract message calls and highlighted the first clone
detector for blockchain applications.
Smart Contract Analysis. As blockchain has been gath-
ering an increasing popularity recently, smart contract anal-
ysis has attracted more and more research interests across
various topics, especially for the security issue of Ethereum.
Luu et al. proposed Oyente, a symbolic executor for EVM
bytecode. They defined four types of smart contract bugs
and corresponding detections [10]. Kalra et al. designed Zeus
which leveraged abstract interpretation and model checking to
validate the fairness of smart contracts [28]. Tsankov et al.
presented an automatic analyzer Securify for Ethereum, which
extracts facts from contract code and verify the satisfaction of
security properties [15]. Liu et al. focused on reentrancy bugs
in smart contracts and leveraged fuzz testing to find them [29].
Based on the n-gram language model, Liu et al. proposed
S-gram to identify statistical-abnormal code as potentially
buggy contracts [30]. Furthermore, Krupp et al. introduced
teTHER to generate exploits automatically for vulnerable con-
tracts [31]. In our setting, we showed that clone detection can
enable important applications for smart contracts, including
vulnerability search on blockchain.

VI. CONCLUSION

In this paper, we have introduced smart contract birthmark
for Ethereum. Specifically, a birthmark is an abstraction of
EVM bytecode that captures high-level programming intents
and automatically generated via symbolically executing trans-
actions on a specific contract. Furthermore, we highlighted the
application of clone detection in the context of smart contracts
for the first time and showed that birthmark can be used as a
good fit in this setting by enabling an easy way to similarity
computation and alleviating the diversity of bytecode as well.
We have also implemented a clone detector called EClone
and evaluated it in finding real-world clones on Ethereum. The
results demonstrated the effectiveness of EClone in accurately
identifying clones across various compilation levels and Dapp
domains as well. Moreover, we instantiated the application
of vulnerability search using EClone and managed to detect
CVE-2018-10376 instances in different token contracts.
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