
Poster: Fuzz Testing of Quantum Program
Jiyuan Wang∗, Fucheng Ma∗, Yu Jiang∗

∗School of Software, Tsinghua University, Beijing, China

Abstract—Nowadays, quantum program is widely used and
quickly developed. However, the absence of testing methodology
restricts their quality. Different input format and operator from
traditional program make this issue hard to resolve.

In this paper, we present QuanFuzz, a search-based test
input generator for quantum program. We define the quantum
sensitive information to evaluate test input for quantum program
and use matrix generator to generate test cases with higher
coverage. Because of the impossibility of copying qubit, we
record the operations which lead initial seeds to test inputs
instead of recording qubits themselves. First, we extract quantum
sensitive information – measurement operations on those quan-
tum registers and the sensitive branches associated with those
measurement results, from the quantum source code. Then, we
use the sensitive information guided algorithm to mutate the
initial input matrix and select those matrices which improve
the probability weight for a value of the quantum register to
trigger the sensitive branch. QuanFuzz on benchmarks and
acquired 20% - 60% more coverage compared to traditional
testing methods.

I. INTRODUCTION

Quantum computer is being commercialized and applied
in various areas [1], and rapid progress has been made
in quantum programming language. In particular, quantum
programming languages have been increasingly developed for
nearly twenty years such as QCL [2], QPL [3], Q |SI〉 [4],
Q#[5]. For example, Q|SI〉 is a platform created in .NET
language to support quantum programming using a quantum
extension of the while-language. The framework of the plat-
form includes a compiler of the quantum while-language and a
suite of tools for simulating quantum computation, optimizing
quantum circuits, and analyzing quantum programs.

Quantum program computation logic is embedded in the
quantum registers, quantum gates and measurement results of
those quantum registers [6]. In quantum programs, measure-
ment operation measure(q) of the same quantum register q
can produce different results in different executions. Because
of this huge difference between quantum program and tradi-
tional program, traditional software validation methodologies
can not be applied to quantum program directly.

Some researchers have customized traditional verification
techniques to verify quantum programs. For example, QPMC
[7], a model checker for quantum program, is able to take the
state space in the classical way by using Quantum Markov
Chain, and apply classical model checking on quantum pro-
gram. Those verification techniques are accurate, but they
can easily run into the state explosion problem for complex
quantum programs with large number of quantum registers.

Challenges: An alternative way is testing. The common
practice of fuzz testing is to measure coverage information

on a test input and capture crashes[8], [9]. However, there are
three challenges in fuzz testing of quantum programs. First,
since the difference between the logic of quantum program
and traditional program, branch or path guiding information
used in traditional fuzz testing is not suitable for quantum
program. In other words, it is difficult to figure out the
kernel information to evaluate the test input. Second, since
quantum mechanics implies that copying and assigning qubits
are impossible, how to record the information and input during
fuzzing is also a complex problem. Finally, since the state of
quantum registers is complex and the operation gates on those
registers are also with many types, it is hard to generate test
input for quantum programs efficiently.

Approach: In this paper, we propose QuanFuzz to address
the above challenges, which is the first initial exploration to
do fuzz testing of quantum programs. We define the quantum-
sensitive information (including quantum register measure-
ment, sensitive branch), and propose a greybox fuzz testing
model aiming to generate inputs to change the state of quantum
registers and maximize the coverage for a given quantum
program. In order to record information during the process,
we record operations and changes instead of quantum registers
themselves. QuanFuzz uses matrix generator to mutate the
input matrices and select matrices with higher probability
weights for the value of quantum registers to trigger the
quantum sensitive branches. During the mutation process,
QuanFuzz keeps several matrices with the top weights and
continuously updates the matrices by traversing all qubits
crossing random gates. In this way, with a few iterations,
QuanFuzz is able to obtain rare inputs, and can automati-
cally choose the better input to trigger the quantum-sensitive
branches and detect cashes. We evaluate QuanFuzz on the
benchmarks provided in Q |SI〉. Compared to the traditional
testing methods, QuanFuzz increases branch coverage by
20%-60%, especially on those quantum sensitive branches.

II. BACKGROUND AND MOTIVATION

A. Background on Quantum mechanics

Quantum systems are represented through a normalized
complex Hilbert space, which is a completed vector space over
field Ck with an inner product: H ×H → C.

In this paper, we can simply set k = 2n where n is the
number of quantum bit (qubit). The state of a qubit is either
0 or 1. Therefore, for a quantum register contains 1 qubit,
k = 21 = 2. The state then can be represented as:

|ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1, α, β ∈ C (1)

where ψ is the total state function, α and β are the probability
of each state. |ψ〉 is called a Dirac notation, which represents
a vector in Hilbert space. The vector is called a ket, while its
conjugate transpose 〈ψ| is called a bra.

A system with n qubits quantum register has 2n states, and
its information cannot be read directly. Only after measure-
ment, it will be in one determinate state. Consider |ψ〉 as an
example, the state will be in 0 with probability |α|2and in 1
with probability |β|2. And it is obvious that we should set total
probability |α|2+ |β|2 = 1. When a quantum register contains
n qubits, the k will be 2n and its state will be:

|ψ〉 =
2n−1∑
i=0

ci|i〉 with

2n−1∑
i=0

|ci|2 = 1 (2)

Basic operators of quantum computing logic are called
unitary gates, which are corresponding to the logic gates(e.g.
and, or, xor) in traditional computer systems and are usually
represented by matrices. The quantum programs mainly use
these gates to change the value of qubits. We show commonly
use gates for one qubit below [10].

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
H =

1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
T =

(
1 0

0 e
iπ
4

)
The X gate, Y gate, and Z gate are called Pauli gates. X

gate is the quantum equivalent of the NOT gate for classical
computers, while Y gate and Z gate equates to a rotation
around the Y-axis and Z-axis of the Bloch sphere by π radians.
S gate and T gate work as two other rotations. Consider H
gate as an example, which is called Hadamard gate[11]. It
represents a rotation of π about the axis (x̂ + ẑ)/

√
2. To get

the result after H gate, we simply multiple the H on the left
side of one qubit state function as below:

|ϕ〉 = H |ψ〉 (3)

B. Motivation Example of Quantum Sensitive Coverage

We use an example programmed by QCL, the first quantum
programming language invented in 1998 [2], to show the
difference between quantum program and traditional program.

1 p r o c e d u r e example (){
2 / / d e f i n e a quantum r e g i s t e r w i t h 5 q u b i t s
3 qureg q [5] ;
4 / / make a l l s t a t e s have t h e same p r o b a b i l i t y
5 Mix (q) ;
6 / / measure t h e v a l u e o f q [5] and check
7 i f (measure (q)==5){
8 / / quantum s e n s i t i v e branch
9 i n t i = 1 / 0 ; / / bug code

10 }
11 }

In the code, q[5] is a quantum register with 5 qubits.
measure(q) is the measurement function. As pointed out
before, the result of this function could be any value S from
0 to 31, and the probability to be the value S equals the
corresponding matrix element’s square. Specifically, in this

program, the result of measure(q) could be 0 to 31 with
equal probabilities 1

25 because of the gate operation denoted
as Mix(). If and only if measure(q) equals 5, the branch
can be executed and the bug can be detected. But it has only
1
25 chance to happen. Additionally, according to section II.A,
we know even with same q, measure(q) can give different
results, which gives more difficulty for testing.

In order to better test the quantum program, we aim to use
a guided matrix generator to generate the test input, not just
traditional fuzzing. In this example, it means to use matrix
generator to make measure(q) == 5 more likely to happen,
and the quantum sensitive branch in line 7 could be triggered.

III. PROPOSED APPROACH

The overview of of QuanFuzz is described in Figure 1. We
firstly analyze the source code to get quantum sensitive infor-
mation, including the measurement operation and the sensitive
branches related to the results of measurement. Then, focusing
on quantum sensitive parts, we use the matrix generator to get
the test cases to satisfy the condition. With an original matrix
S, the traversing algorithm applies quantum gates to mutate
and get more matrices. Since the change of qubit can not be
recorded, we record operation instead. Then we evaluate the
matrices by their probability weights for the sensitive value of
the quantum register and store good matrices in matrix queue.
If one of the matrices’ weights for the value of a quantum
register is larger than the threshold p, then we find a good test
input. If not, several candidate matrices will be regarded as
new S for the next iteration.

Fig. 1. The overall workflow of QuanFuzz, include the quantum sensitive
analysis, and matrix generator based on the guided sensitive information.

A. Quantum Sensitive Analysis
As described in the motivation example, although the

quantum program code structure is similar with traditional
program code standard, the traditional branch or path coverage
are closely related with the quantum measurement operation.
We need to pay more attention to these quantum parts, like
measure, H gate, etc, and look into the probability weight
for the value of quantum register. In particular, we extract
three types of quantum sensitive information from the quantum
program source code: ket information, measurement informa-
tion (i.e. measurement operator) and oracle information (i.e.
sensitive results and operations on the measurement value).

In order to extract the quantum sensitive information, we
instrument the source code at four parts – input matrix read,
transform ket with input matrix, ket before measurement
output, and measurement result output. We extract ket infor-
mation and store in ketSet, extract measurement information
and store in the corresponding ket’s container. Those chunks
of information are used to guide the test input generation
especially for the input matrix selection and mutation.

B. Matrix Mutation and Selection

The core process of the mutation and selection is presented
in Algorithm 1. We use the six most commonly used basic
quantum gates presented in the section II.A as the basic
transformation gate mutators.

At first, the matrix queue Top Matrices only has one input
which is exactly the initial matrix S. Next, QuanFuzz tra-
verses every qubit using traversing() function and obtains
the new matrices with their probability weights for each
value of the quantum register. Function traversing(S, k, n)
traverses matrix S from kth qubit to nth qubit. For each
qubit, we randomly apply 2 gates on it. Take 2 qubits as an
example, the workflow of traversing is described in Figure
2, and each qubit is sequentially operated by two selected
quantum gates to generate the candidate matrices. The record
process is described in Figure 3, showing how matrix queue
stores operation on qubits instead of qubits themselves. After
traversing all qubits of matrix S, we put the new matrices with
their corresponding probability weight in Top Matrices.

Algorithm 1 main(S)
Input: S ← original matrix

p ← the probability to trigger the sensitive branch
Output: Best matrix to execute the sensitive branch

1: Top Matrices=[] //store six best matrices and their weight
2: Top Matrices.append=([], Weight Analysis([], desired,

n)) //add seed
3: while Top Matrices[0].weight<p do
4: for i=1 to min(Top Matrices.totalnumber(),6) do
5: traversing(Top Matrices[i],1,n) //traverse all qubits
6: Top Matrices.sort() //sort by matrix weight
7: for i=6 to Top Matrices.totalnumber() do
8: Top Matrices.delete(i) //only store six best matrices
9: iteration time ++

10: return Top Matrices[0].matrix

Fig. 2. 2 qubit state example, for gate transformation of each qubit

Fig. 3. 1 qubit record example, for operation record of each qubit

The reason to use the search-based algorithm and sampling
traversing is that the operation on those registers is with huge
space. It is impossible to go through all the possible states.
Finally, if the probability weight is larger than threshold p,
we stop the iteration and return the corresponding matrix. In
contrast, we let Top Matrices[1] to Top Matrices[6] be the
initial matrix S and restart the iteration process.

C. Calculation of probability weight

To calculate the probability weight, it makes a transition
from operation to the input matrix, and starts a process to
execute the quantum program. Then it reads ket data before
the measurement operation and returns the oracle’s probability,
denoted by the probability weight for the sensitive value of
the quantum register. In Algorithm 2, we show how to make
a transition from the recorded operations to the matrices we
want, and how to weight these matrices.

Algorithm 2 Weight Analysis(Operation[], desired[], n)
count=0

2: for Test=1 to Test time do
Using (q=Qubit[n])

4: for i=1 to n do
Set(q[i], Zero)

6: for j=1 to Operation.totalnumber() do
if Operation[j]==Operator then

8: Operator(q[i])
//take H gate for example, if Operation[j]==H then

H(q[i])
if Measure(q)==desired then

10: count++
return count/Test Time

IV. PRELIMINARY EVALUATION

We implement QuanFuzz on Q |SI〉 and Nrefactory,
for quantum program simulation and code instrumentation
respectively, and run on 7 quantum programs with different
registers (containing qubits from 2 to 8). These programs are
built-in benchmarks when releasing Q|SI〉. Because we are the
first attempt for test case generation of quantum program, there
is no related work for comparison. We implement a traditional
matrix generator Tradifuzz (traditional branch-coverage guided
without quantum sensitive information, similar to Evosuite[])

for comparison. We run both test case generators on each
quantum program 5 times and average the results to avoid
random factors. The evaluation is performed on a computer
with Windows 10 as host OS, Intel i5-4200h as CPU, 16GB
of memory. We set the number of the preserved matrices
to 6 with the desired probability threshold for a sensitive
branch p = 0.5 (you can set your preferred number according
to the available computing and storage resource). For the
QuanFuzz execution, when the probability weight for the
sensitive value of quantum register reaches the threshold, the
iteration stops. For the traditional version, we execute for the
same time, and collect the highest weight probability for the
sensitive value. Detail results are presented in Table 1.

TABLE I
EXPERIMENT RESULTS USING DIFFERENT GENERATOR

Benchmark QB 01 QB 02 QB 03 QB 04 QB 05 QB 06 QB 07
Qubit number 2 3 4 5 6 7 8

Iteration 1.2 4.4 4 5.2 5.8 6.2 6.5
Time/s 1.39 48.3 60.9 199.1 595.2 4358.1 10073.2

Pro. of Quanfuzz 0.8 0.748 0.634 0.574 0.7 0.58 0.571
Pro. of Tradifuzz 0.538 0.535 0.328 0.222 0.107 0.056 0.070

From the results, we can see that in all test programs,
QuanFuzz performs better and successfully triggers the sen-
sitive branch. Besides, it can be seen that with very few
iterations (6 qubits register only iterates 5.8 times on aver-
age), the probability to trigger the sensitive branch increases
significantly, and the coverage of code or bug detection would
also increase. But for the traditional input matrix generator,
with the same time, the probability to trigger the sensitive
branch is only 0.056. We found that for the programs with
more quantum bits, it is harder to trigger those sensitive
branches with traditional branch coverage guided search-based
test case generation techniques, while QuanFuzz remains its
efficiency. Then, the bugs contained in the sensitive branch
can be detected and the whole coverage of these 8 quantum
programs can be improved by 20%-60%.

Fig. 4. The probability to trigger the quantum sensitive branch.
based on the sensitive information, QuanFuzz always keeps

To better understand the difference between the behavior
of QuanFuzz and the traditional techniques, we demonstrate
the results of QB 07, a quantum program with 8 qubits. As
in Fig.3, the traditional version has little improvements in
triggering those quantum sensitive branches. Since the tradi-
tional input matrix generator cannot understand the behavior of
quantum program, it uses the traditional branch based selection
such as in EM-Fuzz[12], the effectiveness of which is almost
the same as random selection in quantum program. However,

getting better matrices in every iteration to increase the prob-
ability weight for the sensitive value (i.e value 00101 of qureg
q[5] in the motivation example).

Discussion: The time efficiency of the current version is
not as good as we thought. Although QuanFuzz is fast for
programs with low qubit numbers, but it quickly slows down
with the accumulation of the qubit number. The time cost is
mainly because of the simulation time in current execution
platform. We need to simulate the states of those quantum
registers in the traditional computer architecture. If we deploy
QuanFuzz on quantum computer, the time efficiency would
be solved. Another issue is the search efficiency of the
proposed algorithm. Currently, we use genetic algorithm to
select those matrix with higher probability weight for a value
of quantum register. More advanced techniques such as static
analysis based fuzzing [13] could be customized.

V. CONCLUSION

In this paper, we present QuanFuzz, the first attempt for
automatically fuzz testing of quantum program. The main
idea is to use the search-based algorithm to literately generate
unitary gate based matrices to trigger those quantum sensitive
branches. QuanFuzz obtains 20%-60% more branch cover-
age than traditional test models to test quantum program. The
preliminary results demonstrate its potential use to expose the
incorrect behavior of quantum programs at an early stage.

REFERENCES

[1] Lisa Zyga. D-wave sells first commercial quantum computer.
https://phys.org/news/2011-06-d-wave-commercial-quantum.html. Ac-
cessed June 1, 2011.

[2] Bernhard Omer. A procedural formalism for quantum computing.
Master’s thesis, Technical University of Vienna, 1998.

[3] Selinger P. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):527–586, 2004.

[4] Wang X Liu S, Guan J Zhou L, Duan R Li Y, and Ying M. Q|SI〉: A
quantum programming environment. arXiv:1710.09500, 2017.

[5] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher
Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres
Paz, and Martin Roetteler. Q#: Enabling scalable quantum computing
and development with a high-level dsl. In Proceedings of the Real World
Domain Specific Languages Workshop 2018, RWDSL2018, pages 7:1–
7:10, New York, NY, USA, 2018. ACM.

[6] R. P. Feynman. Quantum mechanical computers. In Optics News,
volume 11, page 11, 1985.

[7] Hahn E. M. Feng Y and Zhang L Turrini A. Qpmc: A model checker for
quantum programs and protocols. In Twentieth international symposium
of the Formal Methods Europe association (FM), 2015.

[8] Yuanliang Chen and Yu Jiang. Enfuzz: Ensemble fuzzing with seed
synchronization among diverse fuzzers. In 28th {USENIX} Security
Symposium, pages 1967–1983, 2019.

[9] Jie Liang and Mingzhe Wang. Fuzz testing in practice: Obstacles and
solutions. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering, pages 562–566. IEEE, 2018.

[10] Rick D. Craig and Stefan P. Jaskiel. Quantum Computation and
Quantum Information. Artech House, 2002.

[11] Aharonov Dorit. A simple proof that toffoli and hadamard are quantum
universal. arXiv:quant-ph/0301040, 2003.

[12] Jian Gao and Yiwen Xu. Em-fuzz: Augmented firmware fuzzing via
memory checking. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(11):3420–3432, 2020.

[13] Zhengxiong Luo and Feilong Zuo. Polar: Function code aware fuzz
testing of ics protocol. ACM Transactions on Embedded Computing
Systems (TECS), 18(5s):1–22, 2019.

