
SCStudio: A Secure and Efficient Integrated Development
Environment for Smart Contracts

Meng Ren
Tsinghua University

Beijing, China

Fuchen Ma
Tsinghua University

Beijing, China

Zijing Yin
Tsinghua University

Beijing, China

Huizhong Li
WeBank

Shenzhen, China

Ying Fu
Ant Financial
Beijing, China

Ting Chen
University of Electronic Science and

Technology of China
Chengdu, China

Yu Jiang*
Tsinghua University

Beijing, China
jiangyu198964@126.com

ABSTRACT

With the increasing popularity of block-chain technologies, more

and more engineers use smart contracts for application implemen-

tation. Traditional supporting tools can either provide code com-

pletions based on static libraries or detect a limited set of vulnera-

bilities, which results in the manpower waste during coding and

miss-detection of bugs. In this work, we propose SCStudio, a uni-
fied smart contract development platform, which aims to help de-

velopers implement more secure smart contracts easily. The core

idea is to realize real-time security-reinforced recommendation

through pattern-based learning; and to perform security-oriented

validation via integrated testing. SCStudio was implemented as a

plug-in of VS Code. It has been used as the official development tool

of WeBank and integrated as the recommended development tool

by FISCO-BCOS community. In practice, it outperforms existing

contract development environments, such as Remix, improving the

average word suggestion accuracy by 30%-60% and helping detect

about 25% more vulnerabilities.

The video is presented at https://youtu.be/l6hW3Ds5Tkg.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Smart Contract; Security-Reinforced Code Suggestion; Validation

Yu Jiang* is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3469078

ACM Reference Format:

Meng Ren, Fuchen Ma, Zijing Yin, Huizhong Li, Ying Fu, Ting Chen, and Yu

Jiang*. 2021. SCStudio: A Secure and Efficient Integrated Development

Environment for Smart Contracts. In Proceedings of the 30th ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA ’21), July

11–17, 2021, Virtual, Denmark. ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3460319.3469078

1 INTRODUCTION

With the growth of application scenarios, smart contracts are at-

tracting more and more users [1, 4, 21]. Different from traditional

applications implemented by programming languages such as C

and Java, smart contracts written in Solidity often have complex

domain-specific business logic and numerous distinctive features,

such as the gas system. However, due to the distributed execu-

tion environment and the complexity of programming languages,

developing secure smart contracts can be challenging even for ex-

perienced developers [7]. Existing auxiliary platforms mainly have

two pain points. First, most of them only support auto-completion

based on fuzzy match, so that they fail to deal with the contextual

relevance and lack security considerations of the candidate words.

Second, they usually integrated little or no contract validation tools,

and need extra configurations of independent analyzers for vulner-

ability detection, which is extremely unfriendly to users and results

in inevitable omission of security vulnerabilities. Therefore, it is

necessary to develop a unified platform to help engineers during

coding and testing.

In this paper, we propose SCStudio1, an integrated development

platform that supports smart contract rapid implementation and

comprehensive testing. For security-oriented suggestion, we build

a Bidirectional Long and Short Term Memory (BLSTM) network

based language model and a context-based word selection algo-

rithm to provide reasonable candidate words, where the contracts

crawled down for training are reinforced with domain-specific

patch patterns and secure programming standards such as the use

of SafeMath libraries. For security-oriented validation, we integrate

1https://github.com/FISCO-BCOS/SCStudio

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Meng Ren, Fuchen Ma, Zijing Yin, Huizhong Li, Ying Fu, Ting Chen, and Yu Jiang*

five free and open-source vulnerability detection tools for compre-

hensive testing. After de-duplicating and merging the test results of

each tool, it is able to expose 54 types of vulnerabilities. In practice,

we also design a front-end and back-end interaction mode to make

the system as lightweight as possible, which frees the engineers

from complex configurations.

For evaluation, we collected 47,398 real-world contracts and

181 vulnerable contracts with clear annotations. The results show

that SCStudio outperforms existing tools. Compared with state-of-

the-art platform (Remix), it improves the average word suggestion

accuracy by 30%-60%, and can detect 25% more vulnerabilities. As

to actual application in WeBank, a well-known FinTech and block-

chain company in China, SCStudio is able to generate and display

all candidates within a second, complete security analysis and dis-

play the modification suggestions within one minute. Furthermore,

it has been integrated as the recommended development toolby

FISCO-BCOS community.

2 RELATEDWORK

Code Completion. Code completion is one of the most com-

mon program automation technologies and is essential to improve

programming efficiency. In recent years, many works that explore

the application of statistical learning and sequence models focus on

the code completion task. For example, the probabilistic modeling

of code token sequences proposed by Hindle et al. [10] in 2012.

Other works apply probabilistic grammars [2, 5] to the code com-

pletion task. Li et al. [13] and Liu et al. [14] use the AST sequence

to predict the terminal and non-terminal nodes of the program. In

2016, Raychev et al. [18] used decision tree to directly model the

tree structure of the program to make the predictions.

Smart Contract Audits. Smart contracts have been shown to be

exposed to severe vulnerabilities [3, 11], and many efforts have been

devoted to ensuring the correctness. Luu et al. [15] designed Oyente,

which builds the control-flow graph from the bytecode and then

performs symbolic execution and checks dangerous patterns. Zeus

[12] is another sound analyzer that translates contracts to the LLVM

framework and uses XACML to write properties. Others carried out

researches from the perspective of execution. Malicious behavior

will be detected and blocked from EVM layer through analyzing

opcode sequences, like EVM* [16] and Sereum [19]. Different from

above works, our focus is to implement a unified development

platform to ensure the security of smart contract code throughout

the development process such as coding, debugging and testing.

3 SCSTUDIO DESIGN

The overall workflow of SCStudio is shown in Fig. 1, which con-

sists of two major components, security-reinforced code suggestion

module and security-oriented code validation module. Each of them

takes the contract code in the editing interface as input. The sug-

gestion module will call a pre-trained language model to predict

possible next words according to current context and cursor posi-

tion, and restore special symbols in the prediction result based on

the user-defined information in the context. The validation module

will execute the built-in detection tools in parallel and synthesize

their output information, then generate a detailed bug report.

Map &
Merge

Oyente

Pied-Piper

BugList 1

BugList k
Security-Oriented Code Validation

…… Bug
Report

Word
Selector

Language
Model

Security-Reinforced Code Suggestion

Suggestion
List

AST &
Datalog

Contract
Code

Symbol
Replacer

Corpus Corpus

Figure 1: Overall workflow of SCStudio. The blue part is the
reinforcement before training, where the red cross subscript

represents vulnerable, and the green tick subscript repre-

sents secure. The gray shaded part is the input and output.

3.1 Security-Reinforced Code Suggestion

Smart contracts have strict requirements on the logical rigor of the

code, reasonable code recommendation with security constraints

can effectively prevent embedded vulnerabilities, which lightens

the workload of code review and modification. For ensuring the

security of the recommended code, the first thing is to construct a

dataset that contains reinforced contracts with no security risks,

then feed them into the language model.

Domain-specific reinforcement. According to [8, 17], 97% of

deployed contracts on Etherscan [9] are vulnerable, which means

that, the crawled contracts may violate some programming stan-

dards and contain vulnerabilities. Hence, we strengthened the orig-

inal code based on AST and Datalog respectively. Based on AST, we

developed an automatic alteration tool, which traverses AST nodes

and replaces the naked binary operations with safe function calls

with built-in constraints. Based on Datalog, we defined rules and

specific data structures related to different types of vulnerabilities.

Then, we performed pattern matching to find vulnerable structures

or calling sequences, and accomplished the reinforcement through

modifying statements in static single assignment form.

Context-sensitive suggestion. For the language model, some

words are of little learning value, such as the name of user-defined

variables, functions, parameters and contracts. Therefore, we will

traverse the child nodes of each statement, and perform symbol

substitution on user-defined information, such as variable names,

function names and contract names. Then, we used a tokenizer to

realize sub-word division and filter the low-frequency words. Next,

we fed these data into a bidirectional LSTM network with atten-

tion mechanism. After training, the model can provide a word list

which may contain some substituted symbols, then we performed

a context-based word selection algorithm to replace these symbols

with possible valid words.

3.2 Security-Oriented Code Validation

Integrated security testing can greatly avoid the omission of poten-

tial vulnerabilities and reduce unnecessary workload of developers.

Combining with static and dynamic analysis, SCStudio can cover

the most types of smart contract vulnerabilities. In the process of in-

tegration, we first configured the independent environment of each

SCStudio: A Secure and Efficient Integrated Development Environment for Smart Contracts ISSTA ’21, July 11–17, 2021, Virtual, Denmark

tool and deployed it on the server. Then, we implemented a script

to call each tool in parallel through command-line interface. When

all tools have finished the execution or reached the preset time, we

extracted the vulnerability type, location and other information

from the output file to form the final report.

4 USAGE OF SCSTUDIO

4.1 Tool Implementation

We implemented SCStudio as a light-weight plug-in of VS Code.

Users can install it directly in the extension store, and then select

shortcut instructions starting with “SCStudio” to obtain services.

The front-end is implemented in TypeScript, and is mainly respon-

sible for monitoring the interface status, and recording the context

and cursor position in current window. In the back-end, SCStudio
integrates five free and open-source tools as the sub-detectors,

which are Oyente v0.2.7 [15], Mythril-classical v0.22.1 [6], Securify

v1.0.0 [25], SmartCheck v2.0.0 [24], and Pied-Piper v1.0.0 [26]. Solc

0.4.24 compiler [23] is used to construct AST files and control-flow

graph. All the communication is through HTTP protocol, and the

back-end server processes the requests through Flask [20].

4.2 Running Example

As shown in Fig. 2, after starting VS Code, the user can click on

the "Extensions" in the left sidebar, type “SCStudio” in the search

box and select SCStudio v1.0.0 to install. When the installation is

complete, follow the prompts of VS Code to reload the window.

Figure 2: The research result in the extension marketplace.

Then, click File → Preferences → Settings → Extensions →

SCStudio in the menu bar to configure. Max Waiting Time is

the maximum timeout for security analysis, which can prevent

SCStudio from waiting endlessly in time-consuming operations

such as network interaction. The default value is 60. Server Address

is used to specify the local server address of the back-end service,

including the IP address and its port, to serve users who have higher

requirements for privacy. When this item is empty, the contract

code will be submitted to our trial server.

When the user creates or opens a file with the extension “.sol”,

SCStudio will be automatically loaded and initialized, then starts

to monitor the interface status. “Space” is the trigger signal for

the recommended service, and a list of possible next-words with

security constraints will be displayed on the screen. Considering

the situation in Fig. 3, when the developer declares two variables,

one of his next possible operations is to get the sum. In the list of

recommended tokens, the corresponding one is 𝑥 .𝑎𝑑𝑑 (𝑦). SCStudio
calls the 𝑎𝑑𝑑 function in the SafeMath library to implement the

sum operation, avoiding the integer overflow vulnerability.

The user can call SCStudio to check the security of the contract

code in current editing window with command “SCStudio: Analyze

Contract” or “Ctrl+F10” shortcut keys. When an issue is detected,

SCStudio will give an explicit reminder in the form of a ribbon.

Figure 3: Example of predictions with security constraints.

Hovering the mouse on the ribbon will display detailed descriptions,

repair suggestions and other information, as shown in Fig. 4.

Figure 4: Example of integer overflow detection.

Furthermore, a report in HTML format will be generated and

saved to the local directory, which provides the information of all

potential vulnerabilities found in the contract, as shown in Fig. 5.

Figure 5: Detailed bug report in HTML format.

5 PRELIMINARY EVALUATION

We evaluated SCStudiowith state-of-the-art platform (Remix). This

section shows some preliminary evaluation results. We built a cor-

pus by collecting 47,398 unique real-world smart contracts crawled

from Ethereum network [9], and a test contract set of size 181 with

clear annotations, which consists of 131 vulnerable contracts with

176 tagged vulnerability labels collected by SmartBugs [22] and 50

vulnerable contracts with backdoor labels. All experiments were

performed atop a machine with 8 cores (Intel i7-7700HQ@3.6GHz),

24GB of memory, and Ubuntu 16.04.6 as the host operating system.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Meng Ren, Fuchen Ma, Zijing Yin, Huizhong Li, Ying Fu, Ting Chen, and Yu Jiang*

Accuracy of Code Suggestion. To verify SCStudio’s perfor-
mance on code suggestion, we randomly selected 10 Ethereum

projects (108 contracts) from the test corpus and carried out exper-

iments compared with Remix. The results are shown in Table 1,

where Top-K means the prediction matches the expected answer in

K candidates. Consider Top-1 accuracy, in about 71.26% cases, users

can find their expected next-word on the top of the list, that is 5X

higher than Remix’s. For Top-5 accuracy, the performance can be

improved by 47.12% and achieves an average accuracy of 83.26%.

When we expand the number of candidates to 10, the accuracy will

rise up to 81.96%-96.62%, which is 41% higher than Remix.

Table 1: Accuracy of security-reinforced code suggestion.

Project
Top-1 Top-5 Top-10

Remix SCStudio Remix SCStudio Remix SCStudio
Airdrop 9.52% 63.64% 42.86% 77.62% 57.14% 86.52%
ARIYAX 14.29% 77.27% 28.57% 88.64% 38.10% 93.77%
CrystalDeposit 4.76% 70.68% 33.33% 79.50% 33.33% 85.88%
EthVentures4 9.09% 53.99% 22.73% 74.44% 40.91% 81.96%
Eximchain 13.64% 69.57% 45.45% 84.01% 54.55% 91.87%
GasManager 21.74% 73.97% 43.48% 82.19% 60.87% 89.56%
Ipsx 8.70% 78.15% 34.78% 88.74% 52.17% 94.92%
KyberNetwork 19.05% 80.87% 23.81% 91.28% 42.86% 96.62%
OneEight 22.73% 75.98% 36.36% 84.08% 50.00% 93.11%
UpgradeProxy 18.18% 68.46% 50.00% 82.08% 63.64% 88.95%
Average 14.17% 71.26% 36.14% 83.26% 49.36% 90.32%

Effectiveness of Integrated Validation. For code validation,

we compared SCStudio with other contract auditing tools and

Remix, whose core is Mythril. Table 2 summarizes the results. When

developers only use one tool, at most 56.6% of hidden vulnerabili-

ties can be detected. With integrated testing, SCStudio can cover

all categories of vulnerabilities, and successfully exposed 81.9% of

hidden security issues. With SCStudio, developers do not need to

perform unnecessary operations, such as tool switching, environ-

ment configuration and manual screening of duplicate alarms.

Table 2: Vulnerabilities detected by Remix and SCStudio.

Category Files Vulns Remix SCStudio

Access Control 17 19 4 (21%) 4 (21%)

Arithmetic 15 24 14 (58.3%) 17 (70.8%)

Backdoor Threats 50 50 0 (0%) 48 (96%)

Front Running 4 7 4 (57.1%) 4 (57.1%)

Locked Ether 2 2 1 (50%) 2 (100%)

Reentrancy 31 32 29 (90.6%) 29 (90.6%)

Timestamp Dependency 5 7 0 (0%) 2 (28.6%)

Unchecked Low Calls 53 78 72 (92.3%) 72 (92.3%)

Unhandled Exception 4 7 4 (57.1%) 7 (100%)

Total 181 226 128 (56.6%) 185 (81.9%)

6 CONCLUSION

In this paper, we proposed SCStudio, an integrated smart con-

tract development platform which aims to help developers write

smart contracts quickly and securely. First, we conducted a domain-

specific reinforcement for original contracts and designed the first

context-sensitive code suggestionmodel for Solidity language. Then,

we realized the security-oriented code validation by integrating five

advanced tools, so that it can cover 54 types of common issues and

provide targeted modification suggestions automatically. Currently,

SCStudio has been listed as the official smart contract development

tool of WeBank. In practice, it outperforms the best development

environment in terms of prediction accuracy and vulnerability cov-

erage, and has been integrated as the recommended development

tool by FISCO-BCOS community.

ACKNOWLEDGEMENT

This research is sponsored in part by theNSFC Program (No. 62022046,

U1911401, 61802223), National Key Research and Development

Project (Grant No. 2019YFB1706200), the Webank-Tsinghua Smart

Contract Security-Assured PlatformResearch Project (No. 20202000347).

REFERENCES
[1] Maher Alharby and Aad Van Moorsel. 2017. Blockchain-based smart contracts:

A systematic mapping study. arXiv preprint arXiv:1710.06372 (2017).
[2] Miltiadis Allamanis and Charles A. Sutton. 2014. Mining idioms from source

code. ArXiv abs/1404.0417 (2014).
[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2016. A survey of attacks

on Ethereum smart contracts. IACR Cryptology ePrint Archive 2016 (2016), 1007.
[4] Massimo Bartoletti and Livio Pompianu. 2017. An empirical analysis of smart

contracts: platforms, applications, and design patterns. In International conference
on financial cryptography and data security. Springer, 494–509.

[5] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2016. PHOG: Probabilistic
Model for Code. In ICML.

[6] ConsenSys. 2019. Mythril. https://github.com/ConsenSys/mythril-classic.
[7] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.

2015. Lab: Step by Step towards Programming a Safe Smart Contract. (2015).
[8] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2019. Empiri-

cal Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts.
arXiv:1910.10601 [cs.SE]

[9] Etherscan. 2019. Etherscan. https://etherscan.io/.
[10] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. De-

vanbu. 2012. On the naturalness of software. In ICSE 2012.
[11] Yoichi Hirai. 2016. Formal verification of Deed contract in Ethereum name service.

November-2016.[Online]. Available: https://yoichihirai. com/deed. pdf (2016).
[12] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:

Analyzing Safety of Smart Contracts. In NDSS.
[13] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code Completion with

Neural Attention and Pointer Networks. ArXiv abs/1711.09573 (2018).
[14] Chang Liu, Xin Wang, Richard Shin, Joseph E. Gonzalez, and Dawn Song. 2017.

Neural Code Completion.
[15] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.

Making Smart Contracts Smarter. IACR Cryptology ePrint Archive 2016 (2016),
633.

[16] F. Ma, Y. Fu, M. Ren, M. Wang, Y. Jiang, K. Zhang, H. Li, and X. Shi. 2019. EVM*:
From Offline Detection to Online Reinforcement for Ethereum Virtual Machine.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 554–558.

[17] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018).

[18] Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. In PLDI ’14.

[19] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2018. Sereum:
Protecting Existing Smart Contracts Against Re-Entrancy Attacks. (2018).

[20] Armin ronacher. 2010. Flask. https://flask.palletsprojects.com/en/1.1.x/.
[21] Sara Rouhani and Ralph Deters. 2019. Security, performance, and applications of

smart contracts: A systematic survey. IEEE Access 7 (2019), 50759–50779.
[22] smartbugs. 2020. smart contracts dataset. https://github.com/smartbugs/

smartbugs-wild.
[23] Solidity. 2018. Solidity Programming Language. https://git.io/vFA47/.
[24] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,

and Yaroslav Alexandrov. 2018. SmartCheck: static analysis of ethereum smart
contracts. In the 1st International Workshop.

[25] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Flo-
rian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis of
Smart Contracts. In ACM Conference on Computer and Communications Security.

[26] Tsinghua University. 2019. Pied-Piper: Revealing the Backdoor Threats in Smart
Contracts. https://github.com/renardbebe/BackdoorDetector.

