
Odin: On-Demand Instrumentation with
On-the-Fly Recompilation

Mingzhe Wang
Tsinghua University

Beijing, China
wmzhere@gmail.com

Jie Liang∗

Tsinghua University
Beijing, China

liangjie.mailbox.cn@gmail.com

Chijin Zhou
Tsinghua University

Beijing, China
zcj18@mails.tsinghua.edu.cn

Zhiyong Wu
Tsinghua University

Beijing, China
wuzy21@mails.tsinghua.edu.cn

Xinyi Xu
Tsinghua University

Beijing, China
5354339xy@gmail.com

Yu Jiang∗

Tsinghua University
Beijing, China

jiangyu198964@126.com

Abstract

Instrumentation is vital to fuzzing. It provides fuzzing direc-
tions and helps detect covert bugs, yet its overhead greatly
reduces the fuzzing throughput. To reduce the overhead,
compilers compromise instrumentation correctness for bet-
ter optimization, or seek convoluted runtime support to re-
move unused probes during fuzzing.

In this paper, we propose Odin, an on-demand instrumen-
tation framework to instrument C/C++ programs correctly
and flexibly. When instrumentation requirement changes
during fuzzing, Odin first locates the changed code frag-
ment, then re-instruments, re-optimizes, and re-compiles
the small fragment on-the-fly. Consequently, with a minus-
cule compilation overhead, the runtime overhead of unused
probes is reduced. Its architecture ensures correctness in in-
strumentation, optimized code generation, and low latency
in recompilation. Experiments show that Odin delivers the
performance of compiler-based static instrumentation while
retaining the flexibility of binary-based dynamic instrumen-
tation. When applied to coverage instrumentation, Odin
reduces the coverage collection overhead by 3× and 17×
compared to LLVM SanitizerCoverage and DynamoRIO, re-
spectively.

CCS Concepts: • Software and its engineering → Dy-

namic analysis; Compilers; Software maintenance tools.

∗Yu Jiang and Jie Liang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00

https://doi.org/10.1145/3519939.3523428

Keywords: Instrumentation, On-the-Fly Recompilation

ACM Reference Format:

Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu,

and Yu Jiang. 2022. Odin: On-Demand Instrumentation with On-

the-Fly Recompilation. In Proceedings of the 43rd ACM SIGPLAN

International Conference on Programming Language Design and

Implementation (PLDI ’22), June 13ś17, 2022, San Diego, CA, USA.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3519939.

3523428

1 Introduction

Fuzzing is an effective approach to detect defects in C/C++
programs. The basic idea is exercising the program with ran-
dom inputs. After the target program is compiled, a fuzzer
generates random input, sends the input to the target pro-
gram for execution, listens for bug-indicating signals as the
program executes the input, and repeats this procedure con-
tinuously. Although one execution is unlikely to find a bug,
a fuzzer typically executes thousands of inputs per second.
The massive number of executions can effectively explore
the program’s logic and find bugs along the exploration. For
example, over 30,000 bugs and thousands of security vul-
nerabilities have been found in open-source projects [1, 2].
The industry also invests in fuzzing heavily; for example,
Microsoft fuzzes all its products [3, 4, 12, 13].

Instrumentation is the de facto standard for setup fuzzing
in the industry [2, 12, 46]. It is vital to fuzzing in two as-
pects. First, some bugs, such as memory leaks and integer
overflows, do not disrupt the program execution thus cannot
be detected by fuzzer. With instrumentation, a bug detector
embedded in the target program can abort the execution to
notice the fuzzer when a bug is triggered. Second, random in-
puts are unlikely to trigger interesting program behaviors. To
recognize and utilize these rare, high-quality inputs, guided
fuzzers rely on instrumentation to provide exploration direc-
tions. For example, a coverage-guided fuzzer may collect the
executed basic blocks. If the execution of an input triggers
a previously-unseen basic block, then the input is saved to
corpus for further exploration.

https://orcid.org/0000-0002-2153-6766
https://orcid.org/0000-0003-1908-5043
https://orcid.org/0000-0003-0955-503X
https://doi.org/10.1145/3519939.3523428
https://doi.org/10.1145/3519939.3523428
https://doi.org/10.1145/3519939.3523428

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and Yu Jiang

The benefits of instrumentation come at the cost of exe-
cution overhead. For example, to detect memory bugs, Ad-
dressSanitizer [47] injects verification code at each memory
load and store instruction, redirects the local variables to the
heap, and hijacks the heap allocator to record stack trace.
It is estimated that AddressSanitizer imposes an overhead
of 1.6× [57]. The high-overhead instrumentation prevails in
fuzzing: 2× slowdown can be observed even on coverage col-
lection instrumentation [54]. The overhead highly impacts
the overall throughput of fuzzing, since programs are exe-
cuted billions of times in a fuzzing campaign. To reduce the
overhead and improve fuzzing throughput, optimizations
techniques targeted at compile-time and run-time have been
proposed, yet major drawbacks exist.

First, compilers compromise instrumentation correctness
for speed. On the one hand, instrumenting before optimiza-
tion harms performance. Suppose that a compiler applies
AddressSanitizer instrumentation first and optimizes the in-
strumented program next. After instrumentation, a simple
memory read can terminate the program since an assertion
is inserted to check its validity. The side effect introduced by
instrumentation breaks many important optimizations such
as loop unrolling. On the other hand, instrumenting after op-
timization degrades correctness. This design is widely used
in practice. Here the optimizations can function as usual, but
the transformations performed by the optimization passes
distort the fuzzing-critical semantics of the original program.
With distorted semantics including values, comparisons, and
control-flow graphs, instrumentation cannot detect bugs ef-
ficiently and provide useful directions for fuzzing.

Second, fuzzers rely on specialized dynamic instrumenta-
tion techniques which do not scale. For example, an already-
triggered coverage probe has little contribution to a fuzz cam-
paign, and Zeror delivers a 1.5× speed up by removing them
[58]. However, the approach involves convoluted runtime
support and cannot be applied to generic instrumentation
schemes. Zeror modifies machine code in-memory directly
via OS and hardware support. Its lightweight code patching
technique ensures fast removal of probes, yet the low-level
patching requires a fixed machine code layout, where instru-
mentation schemes commonly bloat the generated code.
The root cause of these drawbacks is the inflexibility of

compiler-based static instrumentation. If a compiler can flex-
ibly change the instrumentation scheme to fit fuzzing needs,
then the aforementioned compromises become unnecessary.
In other words, rather than compromising correctness for
lowered overhead, removing a probe can eliminate the over-
head; rather than removing the probes in a constrained way,
compiler-based code emission renders convoluted runtime
patching unnecessary. Despite the benefits of compiler-based
static instrumentation, changing the instrumentation scheme
during fuzzing is inflexible, since the recompilation can take
minutes in a modern fuzzing pipeline. A new instrumenta-
tion framework is needed, so that changing instrumentation

is as flexible as dynamic binary instrumentation frameworks,
while the overhead is close to static instrumentation.

We propose Odin, an on-demand instrumentation frame-
work for fast and flexible instrumentation. Odin works as
an instrumentation library that cooperates with a fuzzer
closely. When the fuzzer changes instrumentation require-
ments, Odin recompiles the program with the desired instru-
mentation scheme on the fly. The instrumentation change
can be guided by advanced static and dynamic analysis dur-
ing fuzzing. First, Odin takes the whole-program IR as the
input, allowing introspecting the target program with so-
phisticated online static analysis. Second, the static analysis
can be further enhanced by dynamic profiling results: the
probe-based design of Odin enables first-class profiling sup-
port, where the profiling results can be mapped back to
probes objects and annotated easily. The annotations can
be std::vector, llvm::DenseMap, or even pointers to the
program IR.

To accelerate recompilation, Odin first partitions the pro-
gram into small code fragments before fuzzing starts. During
the fuzzing campaign, when the instrumentation require-
ment changes, Odin locates the code fragments to change,
and then re-instruments, re-optimizes, and re-compiles the
small fragments. More than lowering the recompilation cost,
this design additionally ensures correctness in instrumenta-
tion by moving instrumentation ahead of optimizations.

We implement the framework Odin based on LLVM [31]
and evaluate it by developing a basic block instrumentation
tool. Experiments show that Odin reduces the coverage col-
lection overhead by 3× compared to SanitizerCoverage and
17× compared to DynamoRIO. Furthermore, the recompila-
tion only takes 82 ms on average. In summary, this paper
makes the following main contributions:

• We enhance on-demand instrumentation during a fuzz
campaign. The enhancement features on-the-fly re-
compilation, which enjoys both the flexibility of dy-
namic instrumentation and the performance of static
instrumentation.
• We implement Odin to achieve fast on-the-fly recom-
pilation. The framework automatically recognizes the
code fragments to change and limits the recompilation
scope to them. Its architecture also ensures correctness
in instrumentation.
• We evaluated the performance of Odin on real-world
programs and observed significant performance gains
over state-of-the-art static and dynamic instrumenta-
tion frameworks such as LLVM and DynamoRIO.

2 Background

2.1 Fuzzing with Instrumentation

To demonstrate how static instrumentation interacts with
fuzzing, we present a case study on AFL++ [21] in Figure 1.
AFL++ uses two instrumentation schemes and switches them

Odin: On-Demand Instrumentation with On-the-Fly Recompilation PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

during fuzzing. By default, AFL++ uses the fast coverage bi-
nary to detect new code coverage with high throughput. The
crude coverage information can be insufficient. For exam-
ple, if the comparison used by a conditional branch is not
solved by AFL++, it is desirable to know the operands of
comparison to overcome the roadblock, but the coverage
binary compresses this information into a boolean (whether
the comparison is passed or not). In this case, the łCmpLogž
binary, while being slow, can be used to collect values of the
operands used in comparisons.

Clang + LLVM

Source
Code

Coverage
Plugin

CmpLog
Plugin

Optimized
IR

Generate
Code

Coverage
IR

Coverage
Binary

Generate
Code

CmpLog
IR

CmpLog
Binary

Fuzzer

Covered Basic Blocks

Comparison Operands

Sw
itc

h

Figure 1. Instrumentation pipeline of AFL++. After lower-
ing the source code to optimized IR, two compiler plugins
instrument the program for different fuzzing feedback. The
fuzzer switches the binaries during fuzzing.

AFL++ enforces a strict policy for binary switching to
optimize execution speed. Because the łCmpLogž binary is
slow and limits the overall fuzzing throughput, a switch only
happens when an input is newly discovered and large in
size. As a side effect, not all executions can benefit from the
extra information. In other words, the potential of łCmpLogž
binary is not maximized in the fuzzing campaign. The case
of AFL++ shows that, despite the creative switch-binary ap-
proach employed by state-of-the-art fuzzers, the challenges
in instrumentation still exist.

First, instrumentation correctness is compromised. As Fig-
ure 1 shows, both instrumentation plugins are invoked on
optimized IR just before code generation. While optimization
passes do not change the semantics concerning the program
itself, they do change the semantics concerning fuzzing. For
example, the łCmpLogž instrumentation is used in conjunc-
tion with the input-to-state correspondence algorithm [5]
in fuzzer. The algorithm requires that the operands must
be direct copies of the original input. We demonstrate that
optimization can break such prerequisites in Section 2.2.

Second, both binaries are slowed down by unused probes.
Besides the executed coverage probes as proven by prior
works [41, 58], comparison probes also become useless once
they are already solved. The fuzzing algorithm of AFL++
does not consider a comparison to be a łfuzzing roadblockž
if both outcomes have been taken. The input-to-state algo-
rithm is never invoked to solve these comparisons and these
probes should be removed consequently. The removal can
be achieved on the fly with dynamic binary instrumentation.
However, they themselves may incur high overhead. For

example, despite the help from just-in-time compilation, PIN
incurs a 63% overhead without any probe installed [38].

Because the overhead in dynamic binary instrumentation
can be hard to reduce, a promising optionwould be switching
instrumentation scheme with recompilation, supposing that
the recompilation of ahead-of-time compilers can be fast. To
show challenges in accelerating recompilations, we present
the measurement of recompilation cost in Section 2.3.

2.2 Challenges of Correct Instrumentation

The transformations performed by the optimization passes
distort the semantics of the original program, affecting the
bug-detection ability and fuzzing feedback quality of instru-
mentation. We present a case study on how instrumentation
correctness is degraded in Figure 2.

Optimize

; bool islower(char chr)
define i1 @islower(i8 %chr) {
test_lb: ; if (chr >= 'a')
 %cmp1 = icmp sge i8 %chr, 97
 br i1 %cmp1, label %test_ub, label %end
test_ub: ; if (chr <= 'z')
 %cmp2 = icmp sle i8 %chr, 122
 br label %end
end: ; return ...
 %r = phi i1 [false, %test_lb],
 [%cmp2, %test_ub]
 ret i1 %r
}

define i1 @islower(i8 %chr) {
; char offset = chr - 'a';
%offset = add i8 %chr, -97
; bool r = (unsigned char)offset < 26;
%r = icmp ult i8 %offset, 26
; return r;
ret i1 %r
}

Figure 2. Effect of optimization on function islower. To
check for lowercase ASCII characters, the original function
contains 2 branches for testing the lower-bound ’a’ and
upper-bound ’z’, respectively. After optimization, there is
only one comparison and no branching exists.

Figure 2 presents the LLVM IR before and after optimiza-
tion. From the perspective of runtime performance, the opti-
mization works exactly as expected: it folds two comparisons
into one and all branches are removed. The optimization has
a significant impact. For example, when simulating the gen-
erated assembly on a modern AMD Zen 3 processor, the
LLVM machine code analyzer [6] reports that the optimized
code is expected to be 11x faster than the original version.

However, the optimized code breaks instrumentation. As
stated in Section 2.1, AFL++ uses coverage as fuzzing feed-
back for most cases. Without optimization, coverage instru-
mentation can classify the input into three categories: failed

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and Yu Jiang

lower-bound check (e.g. ’\0’), failed upper-bound check (e.g.
’\255’), and valid lowercase character. After optimization,
there remains one basic block only and its feedback becomes
useless: the feedback now only distinguishes whether the
function has been invoked or not.

Even worse, neither can the slower łCmpLogž instrumen-
tation work in this case. The łCmpLogž instrumentation is
designed to be used with the input-to-state correspondence
technique [5]. The algorithm assumes that the collected com-
parison operands are direct copies of the original input. Nev-
ertheless, the optimization shifts the original value with an
offset 97. For example, when the passed character is ’a’, the
value collected by CmpLog will be 0. With a broken assump-
tion, the solver algorithm cannot work anymore.

In conclusion, the optimization breaks coverage collection
and value profiling of AFL++. As for systematic evaluation on
impaired instrumentation correctness, we cannot enumerate
them in real-world programs. Instead, we present an analysis
from the perspective of optimization passes:

1. Distorted comparison semantics. The łInstruction Com-
biningž pass runs the classic peephole optimization. The
aforementioned case of islower is an example of this
pass. Comparably, the łFloat to Intž pass transforms float
comparisons to integer comparisons if possible.

2. Distorted value types. The łBasic-Block Vectorizationž and
łLoop Vectorizationž pass converts scalar values to vectors,
affecting value-based instrumentation schemes.

3. Distorted control-flow graph. The loop-related passes,
such as łLoop Unrollž, łLoop Unroll and Jamž, and łLoop
Unswitchž, commit major changes to a function’s control-
flow graph and loop analysis results.

4. Missing/redundant basic blocks. The łSimplify CFGž pass
can combine multiple basic blocks into one, while the
łJump Threadingž pass can clone a basic block multiple
times. The classic łInlinež pass also clones basic blocks,
but in a bottom-up fashion along the call graph. The recur-
sive, interprocedural optimization renders the recovery of
semantics difficult if not impossible.

While optimization breaks instrumentation, a fuzzing cam-
paign cannot afford the performance penalties of instrument-
ing first. The rationale is that instrumentation breaks proper-
ties of the original code, leaving less room for the following

optimization passes. For example, when instrumenting mem-
ory load operations for memory-safety bugs, the inserted
code aborts the program if the accessed address is invalid.
The inserted code contains branches for checking the va-
lidity, and external function invocations for aborting the
program. After instrumentation, the altered control flow and
side effects brought by the external call cannot be recognized
by the optimizer, and important optimizations such as loop
unroll and loop vectorization cannot be performed.
The typical instrumentation pipeline in modern compil-

ers is instrumenting after optimizing. Instrumenting before
optimizing can provide correct and useful fuzzing feedback,
but this design slows down the overall execution as a side
effect. To achieve both the correctness and performance in
instrumentation, recompilations should become fast enough.
In such a way, the probes can be removed immediately once
they become useless to fuzzing to reduce the overhead.

2.3 Challenges of Fast Recompilation

To demonstrate the cost of recompilation and directions to
accelerate it, we measure the duration of each build stage
in AFL++’s build pipeline [24] on target program libxml2. It
is a classic target program selected by both Google fuzzer-
test-suite and FuzzBench [40]. Figure 3 presents the costs
of three compilation stages to build one binary. Note that
AFL++ repeats the procedure twice to build two binaries
with different instrumentation schemes.

The three-staged build procedure takes 40 seconds in total,
which could be a substantial burden on fuzzing. In the first
stage, the build system initializes for the target platform with
GNU Autotools. While being usually overlooked, this stage
can cost 38% of the build time. The long duration can be
explained by its I/O-rich nature: enumerating various shell
utilities, testing compiler option support, and checking sys-
tem header files require file access and numerous compiler
trial runs. In the next stage, the compiler handles each source
file. This stage takes the majority of the total build time. The
compiler’s frontend first parses the source file and gener-
ates LLVM IR, involving file system I/O when expanding
#include and compile-time evaluation when instantiating
templates. The process can be expensive on some projects,
since C++ templates are Turing complete [52]. Next, the
LLVM IR is optimized, instrumented, and then lowered to
Machine IR and machine code finally. Various optimization

Linker (60ms)Build System (15.39s) Compiler (24.25s)

Frontend
6.22s

Optimize + Instrument
15.28s

Code
Gen

2.75s
autogen

10.83s
configure

4.56s

Figure 3. Breakdown of compilation cost. The initialization of the build system consists of the autogen and configure script.
After the initialization, each source file is processed by the compiler’s frontend to generate LLVM IR. The IR is then optimized
and generated to machine code. At last, the linker produces an executable file.

Odin: On-Demand Instrumentation with On-the-Fly Recompilation PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

passes and algorithms are involved in the process. In the
last stage, the linker combines various object files into an
executable. While this stage accepts all artifacts from the
previous stage, this stage is relatively fast, costing a mere
0.15% of the total build time.
The breakdown of compilation cost provides valuable di-

rections for accelerating recompilations for re-instrumentation.
Since the instrumentation is performed on LLVM IR, the
costly steps of build system initialization and compiler fron-
tend can be eliminated, saving 45% of the total build time.
While linking is a necessary step, it only takes 0.15% of the
total build time. Therefore, accelerating the optimization and
code generation step should be focused on. With a reduced
recompilation scope in optimization and code generation,
up to 45% of the total build time can be saved.
One prerequisite is that the reduction of recompilation

scope must not impair the correctness. For example, when re-
compiling at basic block level, the optimal register allocation
scheme can change over time. If we opt for performance and
use the new scheme, the recompiled code cannot cooperate
with other basic blocks correctly. The minimal translation
unit of LLVM is a module. It is lowered to an object file after
code generation. A module consists of several LLVM global
values. Generally speaking, one global value maps to one
symbol inside the object file. A global value can be a func-
tion, a variable, a constant, or uncommon one such as the
GNU indirect function [39]. A symbol is small enough for
fast recompilations. It also defines a boundary between ob-
ject files with a well-defined application binary interface: an
exported symbol of an object file can be imported and used
by other object files. An intuitive option would be extracting
the IR of the changed symbols separately and recompiling
each of them. However, this approach can produce negative
outcomes in three aspects:
First, there are innate constraints on symbol partitioning.

For example, alias symbols are widely supported by multiple
platforms, including ELF in [18] Linux, Mach-O [26] in OS
X, and PE/COFF [28] in Windows. An alias symbol creates
a different name for an existing symbol such as a function.
Because relocation cannot be applied on symbols, the base
symbol being aliased to must be defined rather than be de-
clared. Consequently, the base symbol should be compiled
altogether with the aliased symbol. Similarly, other limita-
tions apply to the partition scheme, including COMDATs for
supporting C++ templates and blockaddress expressions
for C language extensions [22].

Second, missed optimization can occur if symbols are sep-
arated from each other. Figure 4 shows how compiler passes
change the semantics and the type of symbols. Note that
subsidiary text inside the presented LLVM IR is removed
for brevity. Inside Figure 4, changes performed by local op-
timization pass łInstruction Combiningž are marked in yel-
low. It replaces the library call printf("hello\n") with
puts("hello"), since puts automatically writes a trailing

new line while printf does not. Despite being classified as a
local optimization pass, instruction combining does require
access to relevant global symbols to proceed. Suppose that
we reduce the recompilation scope by extracting foo alone,
then the format string str becomes unavailable for inspec-
tion. Hence, the instruction combining pass cannot perform
the rewrite as usual.

Third, incorrect optimization can occur if symbols are sep-
arated from each other. Inside Figure 4, changes of the inter-
procedural optimization pass łDead Argument Eliminationž
are marked in green. Because the parameter of foo is unused,
this pass removes the parameter inside the called function.
To match the change, the corresponding argument of the
caller is also removed. Not only does the parameter removal
change the semantics of a function, but also the type and
application binary interface. When the removal is not com-
pleted by both parties, problems arise. Suppose that we only
extract function foo from the program, instrument the frag-
ment first, and optimize it then. Because the caller is not
present, this pass cannot remove the argument from the
caller. The mismatch in type can result in program crashes.
For example, the stdcall calling convention requires the
called function to pop the argument space of the stack, and a
program crashes if the stack is unbalanced. A remedy is ad-
justing symbol visibility. For example, the original linkage of
foo is łinternalž, which means that the function is exported
and thus can be solely accessed within the LLVM module.
This contradicts with the fact that the already-compiled func-
tion main can access it. If we export the function by marking
it as łexternalž, then the dead argument elimination pass
will not perform the transform since not all callers are avail-
able for modification. While the remedy ensures correctness,
optimization opportunities are missed.

@str = internal constant c"hello\0A\00"
define internal void @foo(i32 %unused) {
 call i32 @printf(@str)
 ret void
}

define i32 @main() {
 call void @foo(i32 1)
 ret i32 0
}

@str = internal constant c"hello\00"
define internal void @foo() {
 call i32 @puts(@str)
 ret void
}

define i32 @main() {
 call void @foo()
 ret i32 0
}

Figure 4. Effect of interprocedural optimization (marked in
green) and local optimization (marked in yellow).

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and Yu Jiang

In conclusion, blindly recompiling individual symbols is
neither correct nor fast. A fine-tuned partition scheme can
fix the problems above: by recompiling related symbols alto-
gether, the innate constraints can be fulfilled; by recompiling
the symbols dependent by optimizations altogether, the miss-
ing or incorrect optimization problems can be resolved. As a
side effect, the recompilation scope does increase. Therefore,
the scheme should find optimal fragment sizes to balance pro-
gram and recompilation performance: the fragment should
be big enough for good optimization and small enough for
fast recompilation.

3 Design and Implementation

3.1 System Overview

Odin strives to achieve both correctness and performance in
instrumentation. Correctness is ensured by instrumenting
first, where no optimizations can break fuzzing semantics;
performance is improved by on-demand instrumentation,
where the probes can be tuned or pruned with runtime feed-
back. Figure 5 presents an overview of Odin and its related
components. Besides Odin, a fuzzer is added at the lower
half to show how Odin closely collaborates with its user.

1. Partition. Before fuzzing starts, Odin creates a parti-
tion scheme for the program. The fragment definition
describes the boundary between fragments. With a
well-defined boundary, each fragment can cooperate
with the other after lowering to machine code.

2. Schedule. During fuzzing, when the instrumentation re-
quirement changes, the fuzzer modifies the probe state
and requests a recompilation. The flow is emphasized
with bold arrows inside Figure 5. The scheduler locates
the fragments to change and creates a temporary IR
encompassing all of them.

3. Split. After the fuzzer’s patch logic completes instru-
mentation on the temporary IR, the instrumented IR
is then split to small units according to the fragment
definition.

4. Generate code. Here the LLVM infrastructure is reused
for optimized code generation: each IR fragment is
lowered tomachine code to update the stale code cache.
The cache is linked as a new executable and fuzz engine
continues its operation.

3.2 Partitioning the Program

As stated in Section 2.3, the partition scheme should carefully
balance the size of a fragment and ensure correctness in
partition. One extreme would be creating as many fragments
as possible, so that a program can be divided into small pieces
for fast recompilation. The opposite extreme would be not
splitting the program at all, so that all optimizations can
work as usual.

To resolve the dilemma of faster recompilation versus
better optimization, Odin surveys the target program to de-
termine an optimal fragment definition before compilation
starts. We present the four steps in Figure 6. For simplic-
ity, we only assume that the interprocedural optimization
pass łDead Argument Eliminationž removes the parameter of
neg, and the local optimization pass łInstruction Combiningž
replaces printf("hi\n") with puts("hi!).
In the first step, Odin classifies each symbol into three

categories. The general idea is to summarize important con-
straints for optimization. If a symbol is not involved in opti-
mization, then it can be compiled separately for fast recom-
pilation. Otherwise, if interprocedural optimization requires
a pair of symbols to function, then they are clustered to-
gether. For local optimizations, Odin clones the referenced
constants locally to provide more context if possible.

1. Bond: the symbol should be defined together with
other symbols, so that interprocedural optimization
passes can proceed. For example, the prerequisite of
removing the dead argument of neg is the presence of
its caller main, since they must be modified in pairs.
The trial optimization of Odin detects the dependency
and clusters them altogether.

LLVM

Fuzzer

Odin

Program IR

Partition Fragment
Definition

Probe
State

Schedule Temporary IR Split IR FragmentIR
Fragments

Feedback

Executable

Instrument
Patch Logic Input

Modify Fuzz Engine

Compiler
Fuzzer

Link

Machine
Code
Cache

Optimized
CodeGen

Figure 5. System design of Odin. Odin works as a library inside the fuzzer. When recompilation is requested, Odin recompiles
changed code fragments on the fly with the LLVM infrastructure. The machine code cache is updated with the results, and
linked to a new executable for fuzzer’s use.

Odin: On-Demand Instrumentation with On-the-Fly Recompilation PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

1. Classify
Symbols

3. Add Missing Symbols

2. Create Fragments

#0
Export: main
Export: neg

#1
Export: show

#0
Export: main
Export: neg
Import: n

#1
Export: show
Local: fmt

Source Program
static int n;
static int add() { return ++n; }
static int neg(int x) { return -n; }
static const char* fmt = "hi\n";
void show() { printf(fmt); }
int main() { show(); return neg(add()); }

#2
Export: add

#3
Export: n

#2
Export: add
Import: n

#3
Export: n

Bond
neg

Fixed
main, show, add, n

Copy-on-use
fmt

4. Internalize Symbols

#0
Export: main
Local: neg
Import: n

#1
Export: show
Local: fmt

#2
Export: add
Import: n

#3
Export: n

Figure 6. Steps for partitioning a program. First, Odin clas-
sifies the symbols to summarize related constraints on op-
timization. Next, fragments are created for symbols with
constraints. Finally, Odin adds the missing symbols, inter-
nalizes exported symbols, and stores the fragment definition
for recompilation use.

2. Copy-on-use: the symbol should be copied into a frag-
ment when being referenced, so that local optimiza-
tion has enough contexts. For example, the instruction
combining optimization requires the presence of the
referenced symbol fmt to optimize the referencing
function show. For semantically non-clonable symbols,
they are marked as łBondž with its users. Additionally,
they are marked as łinternalž to prevent conflicts at
link time.

3. Fixed: the symbol should be defined as-is. Fixed sym-
bol has a stable application binary interface to enable
cooperation with other code fragments at binary level.
All symbols belong to this category by default. For
example, the externally-used function show and main

is fixed naturally; function add is fixed since no opti-
mization changes its type; variable n belong here since
it does not belong to other cases list above.

The classification is mainly based on the symbol’s seman-
tics and interprocedural optimization requirements. The se-
mantics is derived from the IR, which covers the innate con-
straints; the requirements are collected from a trial optimiza-
tion run, where the compiler passes (modified by Odin) log
the requirements for later inspection.
In the second step, Odin creates fragments to establish

coarse boundaries between groups of symbols. This step is
focused on symbols with constraints. For example, as stated
in Section 2.3, the innate constraint requires two symbols
to appear altogether or the generated object file would be
incorrect. Algorithm 1 shows the detailed steps. First, in line
3ś11, two types of symbols are clustered together: symbols
with innate constraints are clustered for correctness, and the
łBondž symbols are clustered together to allow further opti-
mizations. In line 12ś14, a new fragment is created for each
cluster. Next, in line 15ś20, the remaining łFixedž symbols
are also created with a fragment. Because the locally-cloned
łCopy-on-usež symbols do not affect the boundary of a frag-
ment, the addition of them is postponed to the third step.

Algorithm 1: Create Fragments

Data: LLVM IR𝑀 and category map 𝐶

Result: Fragment collection 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛}; each

fragment is a set of symbols

1 Initialize union set𝑈 to store clustered symbols ;

2 Initialize partition 𝐹 as empty ;

3 foreach Symbol 𝑝 ∈ 𝑀 do

4 foreach Symbol q ∈ M do

5 if p and q has innate partition constraint then

6 join(𝑈 , 𝑝, 𝑞) ; /* Ensure correctness */

7 else if 𝐶 [𝑝] is "Bond" and q references p then

8 join(𝑈 , 𝑝, 𝑞) ; /* Allow optimization */

9 end

10 end

11 end

12 foreach Cluster c ∈ U do

13 𝐹 ← 𝐹 ∪ 𝑐;

14 end

15 foreach Symbol p ∈ M do

16 if ∀𝑓 ∈ 𝐹 : 𝑝 ∉ 𝑓 then

17 if 𝐶 [𝑝] is "Fixed" then

18 𝐹 ← 𝐹 ∪ {𝑝};

19 end

20 end

21 end

In the third step, Odin adds missing symbols to fragments.
For each fragment, it scans the referenced symbols and adds
the missing ones. Importing a missing symbol ensures IR
correctness at recompilation time, since a well-formed IR
cannot reference undefined symbols. If the missing symbol
is categorized as łCopy-on-usež (e.g. fmt inside fragment #1),

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and Yu Jiang

then the missing symbol will be cloned locally at recompila-
tion. The scan-and-add operation is performed recursively,
since a cloned symbol may reference previously-unseenmiss-
ing symbols. Otherwise, the symbol’s semantics does not
permit cloning it at recompilation time. For example, neg
inside fragment #0 references the variable n which should
be defined for once only. In this scenario, its declaration is
imported instead.
In the last step, Odin internalizes exported symbols. Be-

cause adding missing symbols can create imports from one
fragment to another fragment, all symbols are set as exported
when first created. The post-processing step scans the refer-
ences to the exported symbols. If no cross-fragment reference
exists, then the exported symbol is internalized. For example,
inside Figure 6, the symbol neg can only be accessed by the
locally defined function. Therefore, it is marked as łlocalž so
that the dead argument elimination pass can proceed.

The bottom row of Figure 6 presents the output of the pre-
compile survey. We can see that all possible optimizations
are preserved, yet the program is split into four fragments.
Recompilation can be accelerated with a reduced scope.

3.3 Scheduling the Recompilation

When a fuzzer completes modification to the probe state,
the changed instrumentation scheme can be applied to the
executable via recompilation. Figure 7 presents the overall
steps for recompilation.
The first step is to schedule the necessary fragments to

recompile and probes to re-apply. Algorithm 2 presents the
scheduling process in detail. The algorithm contains three
stages of propagation. The rationale behind a multi-staged
propagation is Odin’s data model. For example, in Figure
7, the only changed patch is associated with the function
bar, and the function is used in fragment #0 and #1. Because
Odin recompiles at fragment level, the remaining function
inside these fragments, i.e., foo and baz, must be recompiled
altogether. Consequently, probes targeted at foo and baz

also get scheduled.
In line 2ś6 of Algorithm 2, Odin detects probes to change

and associates them with symbols. While a probe can attach
to one symbol only, a łCopy-on-usež symbol can be cloned

into multiple fragments. Therefore, in the second loop (line
7ś11), Odin propagates the changed symbols to fragments,
since the recompilation unit of Odin is a fragment rather
than a symbol. However, the propagation results in inconsis-
tency in probes. The recompilation of a fragment affects all
symbols inside the fragment. Besides symbols with changed
probes, other symbols with unchanged probes inside one
fragment should be instrumented, too. Therefore, in the last
loop (line 13ś17), Odin back propagates the fragments to
probes. In the end, a temporary IR is created by duplicating
all changed symbols inside the original IR (line 18). Note
that the back propagation should not be repeated until con-
vergence: it only adds unchanged probes, whose fragments’
caches are still valid for reuse.
After instrumentation completes, Odin splits the tempo-

rary IR back to small fragments. As Figure 7 shows, two
small IRs are created by extracting the related symbols in

Algorithm 2: Scheduling Fragments and Probes

Data: Probe collection 𝑃 and fragment collection 𝐹

Result: Probes to apply 𝑃 and temporary IR �̃�

1 Initialize the set of changed symbols 𝑆 ← ∅;

2 foreach Probe p, Symbol s ∈ P do

3 if p is changed then

4 𝑆 ← 𝑆 ∪ {𝑠} ;

5 end

6 end

7 foreach Fragment f ∈ F do

8 if 𝑓 ∩ 𝑆 ≠ ∅ then

9 𝑆 ← 𝑆 ∪ 𝑓 ;

10 end

11 end

12 Initialize the set of probes to apply 𝑃 ← ∅;

13 foreach Probe p, Symbol s ∈ P do

14 if p is activated and s ∈ 𝑆 then

15 𝑃 ← 𝑃 ∪ {𝑝} ;

16 end

17 end

18 �̃� ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐼𝑅(𝑆) ;

Split and CodeGenSchedule and PatchInput

Link

Code
Cache

LLVM IR

Fragments

foo bar main

#0: foo, bar
#1: bar, baz
#2: baz, main

Temporary IR

baz

Instrumentor

baz foo

IR for #0

foo

IR for #1

bazbar

bar

bar

Executable
#0

(New)
#1

(New)
#2

(Reuse)

Figure 7. Steps for recompilation. This example assumes that a probe targeted at the function bar (marked in red) is changed.
Other functions with unchanged probes are marked in blue.

Odin: On-Demand Instrumentation with On-the-Fly Recompilation PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

fragment #0 and #1, respectively. While the copy-instrument-
split design is complex to implement, it simplifies the instru-
mentation logic at the user’s side. The user is not required to
understand the concept of fragments and manually re-apply
the same probe for different fragments.

Finally, for each changed fragment, the instrumented IRs
are adjusted for symbol visibility, optimized with LLVM’s
pipeline, and lowered to machine code in the end. As Figure
7 shows, fragment #0 and #1 are recompiled and the code
cache is updated accordingly. All cached machine code is
then linked to an executable. Because of caching and limited
scope in recompilation, this procedure is fast and can be
repeated frequently within the fuzzing campaign.

4 Instrumentation with Odin

We implementOdin as an on-demand instrumentation frame-
work for fuzzing. It accepts a whole-program IR as the input,
performs initial cleanup, and then assists the user to split
instrumentation into individual probes following the OOP
paradigm. For example, to record values used in comparisons
(CmpInst in LLVM), we can create a CmpProbe class, where
each instance of CmpProbe only targets one CmpInst:

// A probe recording operands used in comparisons.

struct CmpProbe : Probe<CmpProbe> {

// Probe-specific information can be stored here freely.

const CmpInst *TheCmp; // The comparison to instrument.

uint64_t LastObservedValue; // Dynamic information from profiling.

// The framework invokes this method to find the function to patch.

const Function *getPatchTarget() const {

return TheCmp->getFunction();

}

};

Odin provides PatchManager for dynamic adding, delet-
ing and changing probes:

Probe &Old = Manager.getProbe(0); // Probes can be queried.

Manager.remove(Old); // Probes can be removed.

std::shared_ptr<CmpProbe> NewProbe = Manager.add<CmpProbe>(Inst1);

NewProbe->Instruction = Inst2; // Probe logic can be changed.

A recompilation can be scheduled when the modification
to probes is completed. The Scheduler detects the minimum
set of probes to apply, and creates a temporary copy of the
original IR for patching. Patch logic developed by the user
can easily map the original IR to the temporary IR when
applying the probes:

Scheduler Sched = Manager.schedule();

for (auto *P : Sched.ActiveProbes) {

CmpProbe *Probe = cast<CmpProbe>(P);

// Get the temporary instruction cloned for this recompilation.

CmpInst *TheCmp = cast<CmpInst>(Sched.map(Probe->TheCmp));

// User logic comes here. It is similar to static instrumentation:

// just manipulate the IR with LLVM's infrastructure.

// In this case, we add a call to runtime function.

IRBuilder<> IRB(TheCmp);

Function *RuntimeFn = Sched.lookupFunction("on_cmp");

IRB.CreateCall(RuntimeFn, {...});

}

// Optimize, generate code, and invoke the linker.

Sched.rebuild();

The rationale behind creating temporary IR is reverting
instrumentation changes. Modifying the original IR can be
easy at first, but reverting the changes is difficult. To reduce
the development complexity for instrumentation authors,
Odin follows the functional approach. For each recompila-
tion, Odin creates a temporary copy of the original IR. The
user can map the original IR to the temporary IR easily, and
then instrument the temporary one.

5 Experimental Evaluation

We evaluate the performance of Odin by measuring the
execution duration of instrumented programs. We replay the
seed files collected during an 24-hour fuzzing campaign. By
replaying the seed files, we can avoid randomness caused by
fuzzing.

For the comprehensiveness of target programs, we select
every program occurring in both Google fuzzer-test-suite
and FuzzBench [40]. Handpicked by Google, they encompass
a typical set of real-world programs. For fairness, all the
programs are built with Clang 12 with the same optimization
level O2.
We choose basic block coverage, a simple and widely-

supported instrumentation scheme. We ensure that all evalu-
ated coverage tools use the same scheme for fairness. As such
we deliberately exclude advanced instrumentation schemes,
including AFL and AFL++. We evaluate SanitizerCoverage
[7] of LLVM for its considerable influence on the industry
Ð it is deployed on thousands of nodes on Google’s fuzzing
cluster. Since it can collect other kinds of coverage, we only
enable the pure 8-bit-counter-based basic block instrumenta-
tion for fairness. We evaluate DrCov of DynamoRIO [10]. It
is one of the fastest dynamic binary instrumentation frame-
works. Leveraging just-in-time compilation, it can achieve
up to 7.3× performance improvements [23] over PIN [38].
We evaluate libInst of the famous instrumentation frame-
work DynInst [8]. Note that libInst only uses the static binary
rewriting functionality of DynInst.

For demonstration use, we implement OdinCov to record
the hit count for each basic block and prune unused probes at
runtime like Untracer [41] does.We also implementOdinCov-
NoPrune, a weakened version of OdinCov without runtime
probe pruning.

Tool Framework Type Target

OdinCov Odin Dynamic Compiler

SanitizerCoverage LLVM Static Compiler

DrCov DynamoRIO Dynamic Binary

libInst DynInst Static Binary

5.1 Overall Performance

To demonstrate how the flexibility of on-demand instrumen-
tation turns into performance gains, we present the execu-
tion duration of the instrumented programs over different

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and Yu Jiang

instrumentation tools in Figure 9 and 8. To avoid bias intro-
duced by programs, we further normalize the metric by di-
viding the instrumented version’s duration with the baseline
version’s duration. Note that libInst crashed on freetype2,
re2, and json. We omit them when calculating metrics. A
series of conclusions can be drawn from these figures.

OdinCov SanCov OdinCov-NoPrune DrCov libInst

1

2

10

20

Figure 9.Normalized execution duration of all instrumented
programs. The red bar marks the baseline, non-instrumented
programs.

First,OdinCov achieves the lowest overhead among all cover-
age tools. The median overhead for OdinCov is a bare 3.48%,
while the median overhead is 15% for SanitizerCoverage, 63%
for DrCov, and 1,920% for libInst. In other words, the cov-
erage collection performance of OdinCov is 3× better than
SanitizerCoverage, 17× better than DrCov, and 551× better
than libInst.Odin can easily remove the redundant probes as
fuzzing makes progress. Consequently, the programs instru-
mented with OdinCov only keep the useful coverage probes
and an extremely low overhead is achieved. Furthermore, the
architecture design of Odin allows runtime introspection of
a program IR at fuzzer’s side, which enables more complex
probe designs beyond basic block coverage.

Second,Odin promotes correct instrumentation without com-
promising speed. When evaluating static instrumentation per-
formance by disabling probe pruning on purpose, OdinCov-
NoPrune is slower than SanitizerCoverage by 23% on average.
The reason behind the cost is different design choices: as an
industry-standard instrumentation tool, SanitizerCoverage
compromises instrumentation correctness for speed. The
pass is placed at the very end of the optimization pipeline,

since early instrumentation may break optimizations. On
the contrary, the on-demand instrumentation provided by
Odin dismisses the concerns of probe performance, allow-
ing instrumentation to be put in advance for correctness.
For example, in this case of block coverage instrumentation,
OdinCov improves the performance of OdinCov-NoPrune
by 22% on average.

Third, Odin allows easy and fast dynamic instrumentation.
Besides Odin, dynamic binary instrumentation frameworks
also allow changing the instrumentation scheme on-the-fly.
While the binary-based instrumentation approach enables
flexible, source-free coverage collection, the performance
can be limited by the lowered representation of the pro-
gram, even with just-in-time binary translation. For exam-
ple, the programs instrumented by DrCov are slower than
OdinCov-NoPrune by 16% on average. As for DynInst-based
tool libInst, the slow down is 16× on average. Because Odin
takes the LLVM-based approach, comprehensive analysis
and optimization passes of the LLVM infrastructure can be
reused to improve the code quality. This approach also al-
lows easier inspection of the program: rather than relying
on callbacks on various events, Odin allows inspecting the
whole program at the fuzzer’s side. The natural approach
can be much easier to program. For example, the probe setup,
instrumentation, and prune logic for OdinCov takes 33 lines
of code in total, while the main file of DrCov [27] registers 7
kinds of callbacks and takes ~600 lines. Furthermore, LLVM
IR also provides richer semantics than the lowered machine
code. For example, a jump table at binary level resembles a
soup of code pointers, while it can be a well-defined switch
instruction in IR. The rich information can be used to lower
instrumentation overhead and provide directions in fuzzing.

5.2 Overhead of Recompiled Programs

To demonstrate that Odin produces high-quality code, we
evaluate the execution duration on compiled programs. Since
the evaluation is not related to specific instrumentation
schemes, we disable instrumentation here and compile the
program as-is. To control the variables, we develop two al-
ternative versions as Table 1 shows: Odin-OnePartition does

freetype2 libjpeg proj4 libpng re2 harfbuzz sqlite json libxml2 vorbis lcms woff2 x509

100%

150%

200%

OdinCov SanCov OdinCov-NoPrune DrCov libInst

Figure 8. Normalized execution duration of instrumented programs. The X axis is programs, the Y axis is the normalized
execution duration to the corresponding non-instrumented programs. Lower bars indicate better performance.

Odin: On-Demand Instrumentation with On-the-Fly Recompilation PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

not partition the program at all and provides more opti-
mization opportunities; Odin-MaxPartition tries to create
as many code fragments as possible, lowering the scope of
recompilation as a result.

Table 1. Variants of Partition Schemes

Variant Code Fragments Feature

Odin (Original)

Odin-OnePartition 1 Better Optimization

Odin-MaxPartition Max Possible Faster Recompilation

Figure 10 presents the execution duration of Odin variants.
Comparedwith the baseline programs, the overhead of Odin-
OnePartition, Odin, and Odin-MaxPartition averages 1.12%,
1.43%, and 55.77%, respectively.

fr
ee

ty
pe

2

lib
jp

eg

pr
oj

4

lib
pn

g
re

2

ha
rf
bu

zz

sq
lit

e
js
on

lib
xm

l2

vo
rb

is
lc

m
s

w
of

f2
x5

09

100%

150%

200%

250%

300%

Odin-OnePartition Odin Odin-MaxPartition

Figure 10. Program execution duration of non-instrumented
programs of partition variants. For each program on each
partition variant, the collected execution duration is nor-
malized to the execution duration of the compiler’s original,
non-instrumented output (marked as the red bar).

The bars of Odin-MaxPartition show that, blindly par-
titioning the program negatively impacts the performance
on a number of programs. The overhead fluctuates for dif-
ferent programs: among all the 13 programs evaluated, 6
programs have an overhead over 50%. The overhead of the
worst-performing program harfbuzz is 186.91%; while for
the best-performing program, libjpeg, it incurs an overhead
of 0.95%. The reason can be explained by reduced optimiza-
tion interprocedural opportunities: the compiler can only
access the code fragment being compiled (one function in
most cases); therefore, the blind partition scheme reduces
the overall performance, especially for programs relying on
interprocedural optimizations.
On the contrary, the partition of Odin takes the require-

ments of optimization into account. By surveying the pro-
gram with a trial optimization, it partitions the program in
a manner where the necessary context for optimization is
preserved. For this reason, the slow down of Odin is a bare
0.31% compared to the non-partitioning variant.

5.3 Overhead of On-the-Fly Recompilation

One concern of Odin could be the extra recompilation cost:
compared to Odin-MaxPartition, Odin places more code
inside one fragment. Consequently, Odin may spend much
more time recompiling the fragment. To demonstrate the
partition scheme of Odin can also achieve fast recompila-
tions, we present statistics on recompilation time of code
fragments in Figure 11 and 12. Note that the time spent in
build systems is excluded for fairness: we assume that the
cost can be reduced by caching the LLVM bitcode produced
by compiler front ends. Consequently, we only measure the
total time spent in the compiler’s middle end and back end.

Figure 11 presents the average recompilation time to com-
pile each fragment. The compilation time is normalized with
Odin-OnePartition. Its one-partition design recompiles the
whole program and saves no time. Compared with the best-
possible partition scheme Odin-OnePartition, Odin saves
97.91% of the recompilation time on average. The saved time
can be explained by the approach that Odin follows: rather
than recompiling the whole program, Odin partitions the
program and only recompiles the changed fragment. For
most programs, only a small chunk of code is necessary
for optimization passes to function or should be clustered
together. Therefore, the scope for recompilations becomes
smaller as the program’s size grows. For example, the av-
erage compilation time for the simple header-only parser
łjsonž is 3.63% of the original time, while the time for the
complex program łsqlitež, an embedded SQL engine, is 0.09%.
In other words, Odin can be scaled to large-scale programs.

fr
ee

ty
pe

2

lib
jp

eg

pr
oj

4

lib
pn

g
re

2

ha
rf
bu

zz

sq
lit

e
js
on

lib
xm

l2

vo
rb

is
lc

m
s

w
of

f2
x5

09

0.00%

1.00%

2.00%

3.00%

4.00%

Odin-OnePartition Odin Odin-MaxPartition

Figure 11. Average recompilation duration of all code frag-
ments. The metric is normalized to the total time of recom-
piling the whole program.

Comparedwith the fastest-possible partition schemeOdin-
MaxPartition, Odin spends 6.5×more recompilation time on
average. The reason for extra time is that Odin expands the
recompilation scope to allow optimization passes to function.
Take json, a header-only C++ template library for example.
Its extensive use of C++ templates results in short functions
suitable for interprocedural optimization. Among all the
544 functions defined in it, only 27 functions are generated

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and Yu Jiang

to code while any other functions are removed after opti-
mization. To preserve optimization opportunities, Odin only
splits the program to a few dozen fragments, rather than
hundreds of fragments as Odin-MaxPartition. Consequently,
Odin-MaxPartition takes 2.03 ms to compile a fragment on
average, while Odin takes 30.67 ms. With the minor differ-
ence in recompilation cost, Odin can optimize the program
better and outperforms Odin-MaxPartition by 63% with re-
gard to program execution duration.
Beyond analyzing the average performance gains of re-

compilations, we further show that Odin is robust against
the worst cases. This situation can happen if the code frag-
ment being recompiled is too large, or the code being com-
piled triggers an expensive optimization algorithm. Figure 12
presents the absolute duration to recompile the slowest frag-
ment. The median time of recompiling the slowest fragment
is 542 ms, and only three programs’ worst-cast recompilation
time exceeds 1 second.

fr
ee

ty
pe

2

lib
jp

eg

pr
oj

4

lib
pn

g
re

2

ha
rf
bu

zz

sq
lit

e
js
on

lib
xm

l2

vo
rb

is
lc

m
s

w
of

f2
x5

09

0.0

0.5

1.0

1.5

2.0

2.5

Odin-OnePartition Odin Odin-MaxPartition

Figure 12.Worst-case re-instrumentation duration (in sec-
onds). The dark bars below are for linking, and the bright
bars above are for recompilation.

Take the worst-case łsqlitež for example. As an embedded
SQL engine, SQLite places all SQL execution logic inside the
function sqlite3VdbeExec. The complexity of SQL leads
to this enormous function: it counts 6,475 lines in source
code, handles the execution of 163 opcodes, compiles to 2,058
basic blocks, and references 156 external symbols. It is no
wonder that the compilation can be costly even for the fastest-
possible scheme Odin-MaxPartition, which takes 0.69 sec-
onds to compile this fragment. While Odin spends 1.3 more
seconds in recompilation compared to Odin-MaxPartition,
it ensures the quality of generated code: as Figure 10 illus-
trates, Odin only incurs an overhead of 0.3% compared to
the baseline program, while for Odin-MaxPartition which
compiles faster, an overhead of 125% is observed.
Figure 12 also presents the cost of linking the whole pro-

gram, The linking only averages to 49 ms because it does not
involve much computation compared to an optimizing com-
piler. Furthermore, Odin only exports few symbols because
of internalization of fragments. Consequently, the linker has
less symbols to resolve compared to a normal build.

6 Related Work

6.1 Use of Instrumentation in Fuzzing

Instrumentation helps to provide exploration directions in
fuzzing. Because fuzzing is a dynamic testing approach, trig-
gering the code is the prerequisite to detect bugs in it. Besides
enhancements on plain code coverage [36, 55], a variety of
extra information is used for guide fuzzing, including call
stack [43], branch comparisons [34, 37], and memory access
patterns [56].
Instrumentation also helps to detect bugs in fuzzing. By

reporting a bug, the most trivial bugs such as integer over-
flow can be detected by fuzzing. The sanitizers are a family
of compiler-based bug detectors widely-used in production
[50]. They can detect common C/C++ bugs including thread
races [48], buffer overflow [35, 47], uninitialized memory
[51], and type confusions [46]. There also exists bug detec-
tors for binaries, for example, DynamoRIO-based DrMemory
[11] and Valgrind-based MemCheck [49].

These instrumentation schemes greatly improve the bugs
detected of the overall fuzzing campaign, yet their over-
head limits the throughput of execution. By switching the
instrumentation scheme with Odin, the throughput can be
increased significantly and the computation cost can be re-
duced consequently.

6.2 Reducing Instrumentation Overhead

Instrument less and the overhead reduces naturally. For
each probe, the cost can be reduced with compile-time op-
timization [54] and subtle data structures [16, 29]. Among
all probes, the unnecessary ones can be detected with graph
theory [25], profiling [33, 53], and hybrid analysis [57]. Re-
cent works [17, 45] also accelerate fuzzing with hardware
features such as Intel Processor Tracing. For example, JPortal
[59] preserves the accuracy for end-to-end Java bytecode
control flow profiling while achieving an ultra-low overhead
as low as 4%. The works above are extremely effective for the
proposed instrumentation scheme. However, the removal of
unnecessary probes is a major challenge in these works.

On the one hand, runtime patching is inflexible. To avoid
disrupting fuzzing, researchers resort to lightweight binary
rewriting [41] and code patching [58]. However, it is difficult
if not impossible to apply these fine-tuned approaches to
other instrumentation schemes. For example, because run-
time binary rewriting with DynInst is expensive, Untracer
[41] caches the code layout before fuzzing starts and rewrites
the binary directly during fuzzing. All aforementioned works
require the same code layout, while instrumentation schemes
commonly bloat the generated code.
On the other hand, recompilation is expensive. Because

a compilation can take minutes, all aforementioned works
perform their optimizations before fuzzing starts, losing the
chance to refine the probes inside a fuzzing campaign. For

Odin: On-Demand Instrumentation with On-the-Fly Recompilation PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

example, ASAP [53] observes that frequently-triggered sani-
tizer checks are unlikely to detect bugs. Because it is difficult
to remove the probes during fuzzing, ASAP builds an addi-
tional profiling binary to collect the cost of each check, then
removes these checks on the next build before fuzzing starts.

Because Odin regenerated the code rather than patching
it directly, it can be applied to a variety of instrumentation
schemes. Furthermore, as stated in Section 5.3, the recompi-
lation costs a bare 82 ms on average. The low cost permits
frequent refining of the probes.

6.3 Dynamic Binary Instrumentation

Binary instrumentation frameworks modify a program at
binary level before [32] or during execution [38]. Various
techniques are used to optimize the performance and en-
hance the capabilities.
Lightweight binary instrumentation frameworks (LDBI)

are cheap per se. Systems like XRay [9] in LLVM and ftrace
in Linux kernel inserts no-op slides at potential probe points.
When a probe is activated, the corresponding no-op slide is
overwritten with jumps to trampolines to redirect the con-
trol. WordPatch [14] and LiteInst [15] further reduce the cost
of inserting no-op slides. However, only a handful of instru-
mentation schemes is applicable to lightweight instrumenta-
tion, because they require static analysis and code relocation
features, which are missing from LDBI. First, LDBI cannot
provide many basic analyses because the machine code is
low-level. They cannot even reconstruct the basic blocks
inside a function, not to mention recognizing the probe code
injected by instrumentation. Second, LDBI cannot change
the layout of machine code. To remove the probe code from
the application code, LDBI solutions can only replace the
instructions with łnopžs. These nop instructions still burn
CPU cycles and slow down the execution.

Heavyweight instrumentation frameworks are more capa-
ble. More than redirecting the execution, they usually pro-
vide primitive analysis functionalities to inspect the program.
For example, DynamoRIO [10] and PIN [38] allow inspection
and modification to raw instructions; Valgrind [42] abstracts
away platform differences with its VEX IR; DynInst even
allows high-level inspection at module, function, basic block,
and instruction levels. However, the code at machine level
is not easy to analyze or patch. Overhead up to dozens of
times are observed [42].
Odin operates on the high-level LLVM IR. The design

choice brings two benefits. First, analyzing and manipulating
the SSA-based LLVM IR is easy, especially when compared to
raw instructions or VEX IR with side effects. Second, LLVM
IR encodes high-level information unavailable in binary form,
which can be used to develop sophisticated instrumentation
schemes. Finally, the infrastructure of LLVM enables opti-
mized code generation. As stated in Section 5.1, Odin is
16% slower than the weakened version of Odin, which has
dynamic probe pruning disabled.

6.4 Compiler Cache

Compiler cache accelerates recompilation by only invoking
the compiler on changed source files. For example, Ccache
[44] and sccache [19] first compute the hash of dependent
input files and cache the result; if the following recompilation
requests share the same hash, the cached result is directly
used. Recent works further refine the granularity from files
to AST [20, 30].

While Odin leverages recompilation, it is not a standalone
recompilation cache tool which invokes the compiler lazily.
It works as an evolutionary instrumentation library working
with fuzzers closely: more than simply generating object
files, it collects profiles at runtime, updates individual probes’
statistics, and adjusts the binary accordingly. The process is
repeated as fuzzing makes progress.

7 Future Work

The application of Odin is not limited to reducing the over-
head of code coverage. Take ASan as an example, ASAP [53]
observes that bugs are commonly located in cold checks; to
reduce the overhead of hot checks, ASAP first profiles to
locate the hot checks and then removes them with a rebuild.
This approach, while being effective, cannot remove the hot
checks not yet covered in the profiling run. With Odin, hot
checks discovered in fuzzing can also be removed. Take UB-
San for another example. Because of its high false-positive
rate, most programs terminate even on well-formed inputs.
With Odin, UBSan can be used with fuzzing easily: a faulty
probe can be removed immediately once triggered, allowing
the whole fuzz campaign to continue.

8 Conclusion

In this paper, we propose Odin to accelerate instrumenta-
tion in fuzzing. It follows the on-demand instrumentation
approach to lower the programs’ overhead and leverages on-
the-fly recompilation to reduce the recompilation cost. The
approach achieves the flexibility of dynamic instrumentation
while preserving the performance of static instrumentation.
As an example of coverage instrumentation,Odin’s coverage
collection overhead is 3× lower than SanitizerCoverage and
17× lower than DynamoRIO. Furthermore, the recompilation
only takes 82 ms on average.

Acknowledgments

We thank the anonymous reviewers for their valuable com-
ments. Our shepherd, Zhiqiang Zuo, also provided helpful
feedback, for which we greatly appreciate. This research
is sponsored in part by the NSFC Program (No. 62022046,
92167101, U1911401, 62021002, 62192730), National Key Re-
search and Development Project (No. 2019YFB1706200, No.
2021QY0604).

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and Yu Jiang

References
[1] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya,

and Meredith Whittaker. 2016. Continuous fuzzing for open source

software. https://opensource.googleblog.com/2016/12/announcing-

oss-fuzz-continuous-fuzzing.html. [Online; accessed 15-May-2021].

[2] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya,

and Meredith Whittaker. 2016. GitHub - google/oss-fuzz: OSS-Fuzz

- continuous fuzzing for open source software. https://github.com/

google/oss-fuzz. [Online; accessed 04-Nov-2021].

[3] Abhishek Arya, Oliver Chang, Max Moroz, Martin Barbella, and

JonathanMetzman. 2019. GitHub - google/clusterfuzz: Scalable fuzzing

infrastructure. https://github.com/google/clusterfuzz. [Online; ac-

cessed 04-Nov-2021].

[4] Abhishek Arya, Oliver Chang, Max Moroz, Martin Barbella,

and Jonathan Metzman. 2019. Open sourcing ClusterFuzz.

https://opensource.googleblog.com/2019/02/open-sourcing-

clusterfuzz.html. [Online; accessed 15-May-2021].

[5] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik,

and Thorsten Holz. 2019. Redqeen: Fuzzing with Input-to-State Cor-

respondence. In 26th Annual Network and Distributed System Security

Symposium, NDSS 2019, San Diego, California, USA, February 24-27,

2019. The Internet Society. https://www.ndss-symposium.org/ndss-

paper/redqueen-fuzzing-with-input-to-state-correspondence/

[6] The LLVM authors. 2021. llvm-mca - LLVMMachine Code Analyzer Ð

LLVM 13 documentation. https://llvm.org/docs/CommandGuide/llvm-

mca.html. [Online; accessed 01-Nov-2021].

[7] The LLVM authors. 2021. SanitizerCoverage Ð Clang 13 documen-

tation. https://clang.llvm.org/docs/SanitizerCoverage.html. [Online;

accessed 09-Nov-2021].

[8] Andrew R. Bernat and Barton P. Miller. 2011. Anywhere, any-time

binary instrumentation. In Proceedings of the 10th ACM SIGPLAN-

SIGSOFT workshop on Program analysis for software tools. ACM, 9ś16.

https://doi.org/10.1145/2024569.2024572

[9] Dean Michael Berris, Alistair Veitch, Nevin Heintze, Eric Anderson,

and Ning Wang. 2017. XRay: A function call tracing system. 11th

annual US LLVM Developers’ Meeting.

[10] Derek Bruening, Timothy Garnett, and Saman P. Amarasinghe. 2003.

An Infrastructure for Adaptive Dynamic Optimization. In 1st IEEE /

ACM International Symposium on Code Generation and Optimization

(CGO 2003). IEEE Computer Society, 265ś275. https://doi.org/10.1109/

CGO.2003.1191551

[11] Derek Bruening and Qin Zhao. 2011. Practical memory checking with

Dr. Memory. In Proceedings of the CGO 2011, The 9th International

Symposium on Code Generation and Optimization, Chamonix, France,

April 2-6, 2011. IEEE Computer Society, 213ś223. https://doi.org/10.

1109/CGO.2011.5764689

[12] Justin Campbell and Mike Walker. 2020. GitHub - microsoft/onefuzz:

A self-hosted Fuzzing-As-A-Service platform. https://github.com/

microsoft/onefuzz. [Online; accessed 04-Nov-2021].

[13] Justin Campbell and Mike Walker. 2020. Microsoft announces

new Project OneFuzz framework, an open source developer

tool to find and fix bugs at scale - Microsoft Security Blog.

https://www.microsoft.com/security/blog/2020/09/15/microsoft-

onefuzz-framework-open-source-developer-tool-fix-bugs/. [Online;

accessed 04-Nov-2021].

[14] Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro, and Ryan R.

Newton. 2016. Living on the edge: rapid-toggling probes with cross-

modification on x86. In Proceedings of the 37th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. ACM,

16ś26. https://doi.org/10.1145/2908080.2908084

[15] Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro, and Ryan R.

Newton. 2017. Instruction punning: lightweight instrumentation

for x86-64. In Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM, 320ś332.

https://doi.org/10.1145/3062341.3062344

[16] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Princi-

pled Search. In IEEE Symposium on Security and Privacy (SP). 711ś725.

https://doi.org/10.1109/SP.2018.00046

[17] Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen,

Xinyu Xing, Long Lu, and Bing Mao. 2019. Ptrix: Efficient hardware-

assisted fuzzing for cots binary. In Proceedings of the 2019 ACM Asia

Conference on Computer and Communications Security. 633ś645.

[18] TIS Committee. 1993. Tool Interface Standard (TIS) Executable and

Linking Format (ELF) Specification. (1993).

[19] Mozilla Corporation. 2014. mozilla/sccache: sccache is ccache with

cloud storage. https://github.com/mozilla/sccache. [Online; accessed

26-Feb-2022].

[20] Christian Dietrich, Valentin Rothberg, Ludwig Füracker, Andreas

Ziegler, and Daniel Lohmann. 2017. cHash: Detection of Redun-

dant Compilations via AST Hashing. In 2017 USENIX Annual Techni-

cal Conference (USENIX ATC 17). USENIX Association, Santa Clara,

CA, 527ś538. https://www.usenix.org/conference/atc17/technical-

sessions/presentation/dietrich

[21] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.

2020. AFL++ : Combining Incremental Steps of Fuzzing Research.

In 14th USENIX Workshop on Offensive Technologies (WOOT). https:

//www.usenix.org/conference/woot20/presentation/fioraldi

[22] Free Software Foundation. 2021. Labels as Values (Using the GNUCom-

piler Collection (GCC)). https://gcc.gnu.org/onlinedocs/gcc/Labels-as-

Values.html. [Online; accessed 01-Nov-2021].

[23] Byron Hawkins, Brian Demsky, Derek Bruening, and Qin Zhao. 2015.

Optimizing binary translation of dynamically generated code. In Pro-

ceedings of the 13th Annual IEEE/ACM International Symposium on

Code Generation and Optimization. IEEE Computer Society, 68ś78.

https://doi.org/10.1109/CGO.2015.7054188

[24] Marc Heuse. 2021. AFLplusplus/README.md at 3.14c · AFLplus-

plus/AFLplusplus · GitHub. https://github.com/AFLplusplus/

AFLplusplus/blob/3.14c/README.md#cite. [Online; accessed 01-Nov-

2021].

[25] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun Huang.

2018. INSTRIM: Lightweight instrumentation for coverage-guided

fuzzing. In 25th Annual Network and Distributed System Security Sym-

posium (NDSS).

[26] Apple Computer Inc. 1999. nlist.h - Apple Open Source.

https://opensource.apple.com/source/xnu/xnu-1228.0.2/EXTERNAL_

HEADERS/mach-o/nlist.h.auto.html. [Online; accessed 01-Nov-2021].

[27] Google Inc. 2021. dynamorio/drcovlib.c · DynamoRIO/dynamorio.

https://github.com/DynamoRIO/dynamorio/blob/

7595b777289b70a4752ecb6db5ca7987efeeaaaf/ext/drcovlib/drcovlib.c.

[Online; accessed 14-Nov-2021].

[28] Microsoft Inc. 2021. PE Format - Win32 apps | Microsoft

Docs. https://docs.microsoft.com/en-us/windows/win32/debug/pe-

format#export-address-table. [Online; accessed 01-Nov-2021].

[29] Yuseok Jeon, Wookhyun Han, Nathan Burow, and Mathias Payer.

2020. FuZZan: Efficient Sanitizer Metadata Design for Fuzzing. In

2020 USENIX Annual Technical Conference. USENIX Association, 249ś

263. https://www.usenix.org/conference/atc20/presentation/jeon

[30] Yaron Keren. 2018. yrnkrn/zapcc: zapcc is a caching C++ compiler

based on clang, designed to perform faster compilations. https://github.

com/yrnkrn/zapcc. [Online; accessed 26-Feb-2022].

[31] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In 2nd IEEE /

ACM International Symposium on Code Generation and Optimization.

IEEE Computer Society, 75ś88. https://doi.org/10.1109/CGO.2004.

1281665

[32] Michael Laurenzano, Mustafa M. Tikir, Laura Carrington, and Allan

Snavely. 2010. PEBIL: Efficient static binary instrumentation for Linux.

In IEEE International Symposium on Performance Analysis of Systems

https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/clusterfuzz
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://doi.org/10.1145/2024569.2024572
https://doi.org/10.1109/CGO.2003.1191551
https://doi.org/10.1109/CGO.2003.1191551
https://doi.org/10.1109/CGO.2011.5764689
https://doi.org/10.1109/CGO.2011.5764689
https://github.com/microsoft/onefuzz
https://github.com/microsoft/onefuzz
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/
https://doi.org/10.1145/2908080.2908084
https://doi.org/10.1145/3062341.3062344
https://doi.org/10.1109/SP.2018.00046
https://github.com/mozilla/sccache
https://www.usenix.org/conference/atc17/technical-sessions/presentation/dietrich
https://www.usenix.org/conference/atc17/technical-sessions/presentation/dietrich
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://doi.org/10.1109/CGO.2015.7054188
https://github.com/AFLplusplus/AFLplusplus/blob/3.14c/README.md#cite
https://github.com/AFLplusplus/AFLplusplus/blob/3.14c/README.md#cite
https://opensource.apple.com/source/xnu/xnu-1228.0.2/EXTERNAL_HEADERS/mach-o/nlist.h.auto.html
https://opensource.apple.com/source/xnu/xnu-1228.0.2/EXTERNAL_HEADERS/mach-o/nlist.h.auto.html
https://github.com/DynamoRIO/dynamorio/blob/7595b777289b70a4752ecb6db5ca7987efeeaaaf/ext/drcovlib/drcovlib.c
https://github.com/DynamoRIO/dynamorio/blob/7595b777289b70a4752ecb6db5ca7987efeeaaaf/ext/drcovlib/drcovlib.c
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#export-address-table
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#export-address-table
https://www.usenix.org/conference/atc20/presentation/jeon
https://github.com/yrnkrn/zapcc
https://github.com/yrnkrn/zapcc
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665

Odin: On-Demand Instrumentation with On-the-Fly Recompilation PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

and Software. IEEE Computer Society, 175ś183. https://doi.org/10.

1109/ISPASS.2010.5452024

[33] Julian Lettner, Dokyung Song, Taemin Park, Per Larsen, Stijn Volckaert,

and Michael Franz. 2018. PartiSan: Fast and Flexible Sanitization via

Run-Time Partitioning. In Research in Attacks, Intrusions, and Defenses

- 21st International Symposium, RAID 2018, Heraklion, Crete, Greece,

September 10-12, 2018, Proceedings (Lecture Notes in Computer Science,

Vol. 11050). Springer, 403ś422. https://doi.org/10.1007/978-3-030-

00470-5_19

[34] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin,

Yang Liu, and Alwen Tiu. 2017. Steelix: program-state based binary

fuzzing. In 11th Joint Meeting on Foundations of Software Engineering.

627ś637. https://doi.org/10.1145/3106237.3106295

[35] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying

Liu, and Chao Zhang. 2022. PACSan: Enforcing Memory Safety Based

on ARM PA. CoRR abs/2202.03950 (2022). arXiv:2202.03950 https:

//arxiv.org/abs/2202.03950

[36] Jie Liang, Yu Jiang, MingzheWang, Xun Jiao, Yuanliang Chen, Houbing

Song, and Kim-Kwang Raymond Choo. 2021. DeepFuzzer: Accelerated

Deep Greybox Fuzzing. IEEE Trans. Dependable Secur. Comput. 18, 6

(2021), 2675ś2688. https://doi.org/10.1109/TDSC.2019.2961339

[37] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang,

Jianzhong Liu, Zhe Liu, and Jiaguang Sun. 2022. PATA: Fuzzing with

Path Aware Taint Analysis. In 2022 2022 IEEE Symposium on Security

and Privacy (SP)(SP). IEEE Computer Society, Los Alamitos, CA, USA.

154ś170.

[38] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur

Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi, and

Kim M. Hazelwood. 2005. Pin: building customized program analy-

sis tools with dynamic instrumentation. In Proceedings of the ACM

SIGPLAN 2005 Conference on Programming Language Design and Im-

plementation. ACM, 190ś200. https://doi.org/10.1145/1065010.1065034

[39] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. 2013.

System V Application Binary Interface. AMD64 Architecture Processor

Supplement, Draft v0 99 (2013), 57.

[40] Jonathan Metzman, László Szekeres, Laurent Simon, Read Sprabery,

and Abhishek Arya. 2021. FuzzBench: an open fuzzer benchmark-

ing platform and service. In ESEC/FSE ’21: 29th ACM Joint European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering. ACM, 1393ś1403. https://doi.org/10.1145/

3468264.3473932

[41] Stefan Nagy and Matthew Hicks. 2019. Full-Speed Fuzzing: Reducing

Fuzzing Overhead through Coverage-Guided Tracing. In IEEE Sympo-

sium on Security and Privacy (SP). 787ś802. https://doi.org/10.1109/SP.

2019.00069

[42] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework

for heavyweight dynamic binary instrumentation. In Proceedings of

the ACM SIGPLAN 2007 Conference on Programming Language Design

and Implementation. ACM, 89ś100. https://doi.org/10.1145/1250734.

1250746

[43] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojo-

car, Cristiano Giuffrida, and Herbert Bos. 2017. VUzzer:

Application-aware Evolutionary Fuzzing. In 24th Annual Net-

work and Distributed System Security Symposium (NDSS).

https://www.ndss-symposium.org/ndss2017/ndss-2017-

programme/vuzzer-application-aware-evolutionary-fuzzing/

[44] Joel Rosdahl. 2010. Ccache Ð Compiler cache. https://ccache.dev/.

[Online; accessed 26-Feb-2022].

[45] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian

Schinzel, and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback

Fuzzing for OS Kernels. In 26th USENIX Security Symposium (USENIX

Security 17). 167ś182.

[46] Kostya Serebryany. 2016. Sanitize, Fuzz, and Harden Your C++ Code.

USENIX Association, San Francisco, CA.

[47] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and

Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address Sanity

Checker. In 2012 USENIX Annual Technical Conference. USENIX Asso-

ciation, 309ś318. https://www.usenix.org/conference/atc12/technical-

sessions/presentation/serebryany

[48] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov,

and Dmitriy Vyukov. 2011. Dynamic Race Detection with LLVM

Compiler - Compile-Time Instrumentation for ThreadSanitizer. In

Runtime Verification - Second International Conference (Lecture Notes

in Computer Science, Vol. 7186). Springer, 110ś114. https://doi.org/10.

1007/978-3-642-29860-8_9

[49] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect

Undefined Value Errors with Bit-Precision. In 2005 USENIX Annual

Technical Conference. USENIX, 17ś30. http://www.usenix.org/events/

usenix05/tech/general/seward.html

[50] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn

Volckaert, Per Larsen, and Michael Franz. 2019. SoK: Sanitizing for

Security. In 2019 IEEE Symposium on Security and Privacy. IEEE, 1275ś

1295. https://doi.org/10.1109/SP.2019.00010

[51] Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer:

fast detector of uninitialized memory use in C++. In Proceedings of the

13th Annual IEEE/ACM International Symposium on Code Generation

and Optimization. IEEE Computer Society, 46ś55. https://doi.org/10.

1109/CGO.2015.7054186

[52] Todd L. Veldhuizen. 2003. C++ Templates are Turing Complete. Techni-

cal Report. Indiana University Computer Science.

[53] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes

Kinder. 2015. High System-Code Security with Low Overhead. In

2015 IEEE Symposium on Security and Privacy, SP 2015. IEEE Computer

Society, 866ś879. https://doi.org/10.1109/SP.2015.58

[54] Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Cheng-

nian Sun, and Jiaguang Sun. 2021. RIFF: Reduced Instruction Foot-

print for Coverage-Guided Fuzzing. In 2021 USENIX Annual Technical

Conference. USENIX Association, 147ś159. https://www.usenix.org/

conference/atc21/presentation/wang-mingzhe

[55] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou,

Huafeng Zhang, and Yu Jiang. 2021. Industry Practice of Coverage-

Guided Enterprise-Level DBMS Fuzzing. In 43rd IEEE/ACM Interna-

tional Conference on Software Engineering: Software Engineering in

Practice, ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021. IEEE, 328ś

337. https://doi.org/10.1109/ICSE-SEIP52600.2021.00042

[56] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao,

DinghaoWu, and Purui Su. 2020. Not All Coverage Measurements Are

Equal: Fuzzing by Coverage Accounting for Input Prioritization. In 27th

Annual Network and Distributed System Security Symposium (NDSS).

https://www.ndss-symposium.org/ndss-paper/not-all-coverage-

measurements-are-equal-fuzzing-by-coverage-accounting-for-

input-prioritization/

[57] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He, and Zhendong

Su. 2021. SanRazor: Reducing Redundant Sanitizer Checks in C/C++

Programs. In 15th USENIX Symposium on Operating Systems Design and

Implementation. USENIX Association, 479ś494. https://www.usenix.

org/conference/osdi21/presentation/zhang

[58] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. 2020.

Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Schedul-

ing. In 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE). 858ś870. https://doi.org/10.1145/3324884.3416572

[59] Zhiqiang Zuo, Kai Ji, Yifei Wang, Wei Tao, Linzhang Wang, Xuan-

dong Li, and Guoqing Harry Xu. 2021. JPortal: precise and efficient

control-flow tracing for JVM programs with Intel processor trace. In

Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation. 1080ś1094.

https://doi.org/10.1109/ISPASS.2010.5452024
https://doi.org/10.1109/ISPASS.2010.5452024
https://doi.org/10.1007/978-3-030-00470-5_19
https://doi.org/10.1007/978-3-030-00470-5_19
https://doi.org/10.1145/3106237.3106295
https://arxiv.org/abs/2202.03950
https://arxiv.org/abs/2202.03950
https://arxiv.org/abs/2202.03950
https://doi.org/10.1109/TDSC.2019.2961339
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://ccache.dev/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1007/978-3-642-29860-8_9
https://doi.org/10.1007/978-3-642-29860-8_9
http://www.usenix.org/events/usenix05/tech/general/seward.html
http://www.usenix.org/events/usenix05/tech/general/seward.html
https://doi.org/10.1109/SP.2019.00010
https://doi.org/10.1109/CGO.2015.7054186
https://doi.org/10.1109/CGO.2015.7054186
https://doi.org/10.1109/SP.2015.58
https://www.usenix.org/conference/atc21/presentation/wang-mingzhe
https://www.usenix.org/conference/atc21/presentation/wang-mingzhe
https://doi.org/10.1109/ICSE-SEIP52600.2021.00042
https://www.ndss-symposium.org/ndss-paper/not-all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-input-prioritization/
https://www.ndss-symposium.org/ndss-paper/not-all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-input-prioritization/
https://www.ndss-symposium.org/ndss-paper/not-all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-input-prioritization/
https://www.usenix.org/conference/osdi21/presentation/zhang
https://www.usenix.org/conference/osdi21/presentation/zhang
https://doi.org/10.1145/3324884.3416572

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzzing with Instrumentation
	2.2 Challenges of Correct Instrumentation
	2.3 Challenges of Fast Recompilation

	3 Design and Implementation
	3.1 System Overview
	3.2 Partitioning the Program
	3.3 Scheduling the Recompilation

	4 Instrumentation with Odin
	5 Experimental Evaluation
	5.1 Overall Performance
	5.2 Overhead of Recompiled Programs
	5.3 Overhead of On-the-Fly Recompilation

	6 Related Work
	6.1 Use of Instrumentation in Fuzzing
	6.2 Reducing Instrumentation Overhead
	6.3 Dynamic Binary Instrumentation
	6.4 Compiler Cache

	7 Future Work
	8 Conclusion
	Acknowledgments
	References

