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Web browsers exhibit rich semantics that enable a plethora of web-based functionalities. However, these

intricate semantics present significant challenges for the implementation and testing of browsers. For example,

fuzzing, a widely adopted testing technique, typically relies on handwritten context-free grammars (CFGs)

for automatically generating inputs. However, these CFGs fall short in adequately modeling the complex

semantics of browsers, resulting in generated inputs that cover only a portion of the semantics and are prone to

semantic errors. In this paper, we present SaGe, an automated method that enhances browser fuzzing through

the use of production-context sensitive grammars (PCSGs) incorporating semantic information. Our approach

begins by extracting a rudimentary CFG from W3C standards and iteratively enhancing it to create a PCSG.

The resulting PCSG enables our fuzzer to generate inputs that explore a broader range of browser semantics

with a higher proportion of semantically-correct inputs. To evaluate the efficacy of SaGe, we conducted

24-hour fuzzing campaigns on mainstream browsers, including Chrome, Safari, and Firefox. Our approach

demonstrated better performance compared to existing browser fuzzers, with a 6.03%-277.80% improvement

in edge coverage, a 3.56%-161.71% boost in semantic correctness rate, twice the number of bugs discovered.

Moreover, we identified 62 bugs across the three browsers, with 40 confirmed and 10 assigned CVEs.
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1 INTRODUCTION

Web browsers have become an essential component of the modern web experience, serving not
only as desktop applications but also as key components in various systems such as IoT devices
and industrial control systems [Igalia 2021]. Browsers are expected to accurately implement the
functionalities stipulated by W3C standards [W3C 2022a] while also optimizing their execution
performance. Therefore, as the codebase and complexity of browsers grow, it becomes increasingly
difficult to ensure that they are bug-free. Fuzz testing, also known as fuzzing, is an automated
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technique widely used for bug-finding. Over the past decade, building an effective fuzzer for
browsers gained traction in both academia and industry. Major browser vendors continually run
browser fuzzers to discover bugs in their browsers [Google 2019].

Developing an effective fuzzer for web browsers is a challenging task due to the rich semantics of
browser inputs. The primary input format for browsers is HTML, which defines the initial Document
Object Model (DOM) tree. In addition to HTML, browsers also interpret CSS and JavaScript, which
are used to define the styling and interactivity of web pages. These three languages allow developers
to create a diverse range of web applications using various exported APIs, domain-specific strings,
and data dependencies. For example, developers can use CSS to customize the appearance of an
HTML element, defining styles through a combination of domain-specific strings like "margin-left",
"small-caps", and "-webkit-inline-box", each with its own unique semantics. These styles can be
attached to HTML elements and subsequently accessed, modified, detached, or re-attached using
JavaScript during rendering. The complexity and richness of browser input formats create a vast
input space, making it challenging for fuzzers to thoroughly explore.

Current browser fuzzers [Dinh et al. 2021; Google 2017; Mozilla 2015; Xu et al. 2020; Zhou et al.
2022] do not well address this challenge. They rely on (semi-)handwritten context-free grammars
(CFG) to generate structured inputs. In addition to tedious manual efforts, such grammars have two
main drawbacks. First, they are often incomplete, covering only a part of the semantics and leaving
many functionalities uncovered by the fuzzers. As a result, it limits the possibility of exploring
more program states. Second, the grammars are error-prone. Browsers perform both syntactic
and semantic correctness checks before processing a statement. If a statement fails either check,
browsers will immediately terminate processing this statement. Although CFGs enable fuzzers to
bypass syntactic checks, they do not address the challenge of bypassing semantic checks.

Semantic Correctness for Fuzzing. While many of existing browser fuzzers [Dinh et al. 2021;
Xu et al. 2020; Zhou et al. 2022] claim that their generated inputs are semantically-correct, they can
only ensure that the parameters of generated function invocations are of the right types, i.e., type
correctness, which is only a subclass of semantic correctness. Other types of semantic errors can
also cause early termination by browsers. We observed that semantic errors are still widespread in
inputs generated by existing browser fuzzers, even though they ensure type correctness of inputs.
To better understand the semantic errors introduced by the fuzzers, we manually analyzed the
semantic errors in their generated inputs, and classified them into three main types: compatibility
errors, misuse errors, and variable reference errors. Compatibility errors often arise from browser
compatibility issues. Misuse errors result from the use of production rules that cannot be used
together semantically, even though they are valid when used alone. Reference errors arise when
errors in previously generated statements impact subsequent statements that use variables defined
in the erroneous statements. Despite their varying appearances, all these semantic errors are caused
by incorrect combinations of production rules during input generation of fuzzers.

Semantics-Aware Generation. In this paper, we present SaGe (Semantics-aware Generator), a
fuzzer that efficiently explores browser semantics by generating inputs that cover a wide range of
browser semantics with fewer semantic errors. Its core idea is to extract a primitive CFG fromW3C
standards and then enhance it to a Production-Context Sensitive Grammar (PCSG) that includes
semantic information. Its novelty lies in its automated generation for PCSG, and utilizing PCSG
to address the root cause of semantic errors produced during fuzzing. Fig. 1 provides a simplified
illustration of how this idea enhances semantics exploration of browsers. As Fig. 1a presents,
existing browser fuzzers rely on (semi-)handwritten CFG, which limits their ability to cover all the
semantics and may occasionally trigger semantic errors. In contrast, the first step of SaGe extracts
complete browser semantics from W3C standards and represent them in a CFG, allowing generated
inputs to explore a more diverse semantics as depicted in Fig. 1b. However, similar to other fuzzers,
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(a) Fuzzing with (semi-) handwrit-

ten context-free grammar.

(b) Fuzzing with W3C-augmented

context-free grammar of SaGe.

(c) Fuzzing with production-context

sensitive grammar of SaGe.

Fig. 1. Illustration of exploring browser’s input space using different grammars. The bright oval zone represents

the search space of fuzzers with the corresponding grammar. Within the zone, the green areas represent

syntactically and semantically valid input spaces of browsers. The crosses denote inputs generated by fuzzers.

The green crosses denote valid inputs, while the red crosses denote invalid inputs.

CFG-based input generation inevitably introduces semantic errors. To address this challenge, SaGe
infers semantic correctness of each production rule and enhances the extracted W3C-augmented
CFG to a semantics-aware PCSG. Fig. 1c illustrates that SaGewith PCSG enhanced is able to explore
a more diverse browser semantics with a higher proportion of semantically-correct inputs.
SaGe consists of three main procedures. Firstly, it extracts a CFG from the W3C standards,

which serves as a starting point for generating inputs with a wide range of semantics. Secondly,
it generates inputs utilizing the CFG and executes them in browsers. By analyzing the semantic
correctness of each statement, SaGe can infer whether selecting a production rule during input
generation is likely to result in a semantic error under a specific context. This process results in the
derivation of a PCSG. Finally, SaGe employs the PCSG to generate inputs that effectively explore a
diverse range of browser semantics.

We implement SaGe and evaluate its performance on mainstream browsers, i.e., Chrome, Safari,
and Firefox. After 24 hours of fuzzing campaigns, compared to state-of-the-art fuzzers, SaGe on
average achieved a 6.03% - 277.80% improvement in edge coverage, achieved a 3.56% - 160.71%
improvement in semantic correctness rate, discovered 2x more bugs. During our testing period
with SaGe, it discovered 62 bugs in the three browsers, out of which 40 were confirmed with 10
CVE assigned.
In summary, this paper makes the following contributions:

• We identify the limitations of current browser fuzzers and propose a semantics-aware gener-
ation strategy to address the limitations.
• We design and implement SaGe. Its generated inputs can cover a wide range of browser
semantics with fewer semantic errors. We released relevant artifacts to facilitate further
research on this topic.
• We evaluate SaGe on mainstream browsers. It achieves significant improvements compared
to state-of-the-art fuzzers. It has detected 62 bugs with 10 CVEs assigned.

2 BACKGROUND ANDMOTIVATION

2.1 Grammar-Based Browser Fuzzing

Web browsers accept HTML documents as inputs. An HTML document consists of three parts: (1)
an HTML part to define the initial Document Object Model (DOM) tree, (2) a CSS part to specify in
which style the elements of DOM tree are rendered; and (3) a JavaScript part to programmatically
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manipulate objects in DOM tree or enable other functionalities. Since these three parts require
different programming languages, generating input can be challenging. Moreover, the three parts
often have data dependencies. For example, HTML code defines an element, and JavaScript code
can then access the element in the DOM tree by indexing it using document.children[i]. Once
the element is accessed, JavaScript can manipulate it using browser APIs [mozilla 2021].
Due to the complex structured input format, browser fuzzers [Dinh et al. 2021; Google 2017;

Mozilla 2015; Xu et al. 2020; Zhou et al. 2022] heavily rely on custom grammars, typically in
the format of context-free grammars (CFGs), to generate test cases. A CFG is defined as a tuple
� = (#,) , %, () of (1) a set of nonterminals # ; (2) a set of terminals ) disjoint from # ; (3) a set
of production rules % , which is a finite relation in # × (# ∪ ) ): for some : > 0, in the form of
U → V1V2 . . . V: , mapping a nonterminal = ∈ # to an expansion alternative; (4) a designed start
symbol ( ∈ # . In general, fuzzers leverage production rules % to perform expansions starting with
( , and generate a derivation tree for input generation in the end. We use the classical definition
of derivation trees as given in literature [Aho et al. 2007] and in line with other grammar-based
fuzzing research [Gopinath et al. 2021; Havrikov and Zeller 2019]. In short, a derivation tree for
� = (#,) , %, () is defined as a rooted ordered tree such that (1) the root is ( ; (2) each node is a
string that contain multiple symbols [B1, B2, . . . , B: ] where B8 ∈ # ∪) and : ≥ 0 (3) each edge is a
production rule ? ∈ % ; (4) all leaves do not contain any nonterminals.

Fig. 2. Illustration of how grammar-based fuzzers generate an HTML document. The trees on the right side

are derivation trees generated by the fuzzer. Symbols with a yellow background on nodes denote nonterminals.

Edges denote production rules. The statements on the le� side are instantiated from the derivation trees.

Fig. 2 takes Domato [Google 2017], the most successful browser fuzzer so far, as an example to
illustrate grammar-based browser fuzzing. To generate a derivation tree, the fuzzer recursively
expands production rules for each nonterminal until all nonterminals are replaced by terminals.
For example, the <cssproperty> nonterminal is expanded by the production rule <cssproperty>→
font: <font-size> <font-family>, and the <font-size> and <font-family> are recursively expanded
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until all symbols are terminals. When a nonterminal symbol needs to be expanded, the fuzzer
randomly selects one production rule from all relevant rules. In this example, the fuzzer selects
<cssproperty>→ font: <font-size> <font-family> from all "<cssproperty>→" rules. To generate a test
case, the fuzzer often generates hundreds or thousands of derivation trees, each will be instantiated
to a statement in the end. Besides, the fuzzer maintains a set of previously-generated variables
(e.g., v1 in Fig. 2) in order to leverage these previously-generated variables when generating a new
derivation tree.
For now, all existing browser fuzzers choose generation-based techniques. Although mutation-

based coverage-guided fuzzing has been successful in other areas [Chen et al. 2019; Padhye et al.
2019b; Sun et al. 2021; Wang et al. 2021b; Wu et al. 2022; Zalewski 2013; Zhong et al. 2020], it has
limited effectiveness in browser fuzzing as the investigation of [Xu et al. 2020]. This may be due
to the fact that browsers have multiple processes, each spawning several background threads to
handle tasks that are not related to the inputs [Zhou et al. 2022], making it difficult to collect stable
coverage data to guide fuzzers’ mutation.

2.2 Challenges in Browser Fuzzing

Previous research [Liu et al. 2023; Nguyen and Grunske 2022] highlights that the effectiveness of
fuzzing largely depends on the diversity and semantic correctness of inputs. This holds true for
browser fuzzing as well. However, upon investigating the inputs generated by existing browser
fuzzers, we found that there is significant room for improvement in terms of both diversity and
semantic correctness. This issue stems from the grammars used by these fuzzers. First, the grammars
typically only include a part of semantics, resulting in generated inputs that cannot explore diverse
program states. Second, the grammars do not take semantics information into account during input
generation, causing the generated inputs prone to trigger semantic errors. We will discuss in detail
these two challenges faced by existing fuzzers in the following paragraphs.

(a) Usage guidelines described in MDN. (b) Input generated by Domato.

Fig. 3. An example of counter-increment to present the incomplete semantics of existing fuzzers’ grammars.

Incomplete Semantics Covered. A fuzzer is supposed to generate diverse inputs to cover
as many semantics of the target system as possible. However, existing handwritten (or semi-
handwritten) grammars cannot meet this end. We take Domato as an example to demonstrate the
incomplete semantics problem. On the one hand, only a part of functionalities can be covered by
the grammar of Domato. 496 out of 882 exported CSS style properties are involved in the grammar.
As a result, Domato is unlikely to explore the backend logic that handles the remaining CSS style
properties. On the other hand, even though a functionality is involved in the grammar, it cannot
sufficiently explore the semantics of the functionality. Fig. 3 demonstrates how Domato generates a
statement related to counter-increment CSS style property. Fig. 3a shows the specification and usage
examples of this style property, as described in MDN web development documents [Mozilla 2005].
From the figure we can see that this style property has rich semantics such as increasing a counter,
decreasing a counter, or increasing multiple counters. However, as Fig. 3b shows, Domato can only
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generate counter-increment: c statement because its grammar only involves one production rule, i.e.,
<counter-increment-property>→ c, for this property. In conclusion, existing browser fuzzers cover
limited browser semantics due to both incomplete functionalities and insufficient explorations.

Incorrect Semantics Generated. To prevent early bail-out due to semantic errors, many existing
browser fuzzers [Dinh et al. 2021; Google 2017; Xu et al. 2020; Zhou et al. 2022] pay much attention
to ensure the semantic correctness of their generated inputs. However, they can only ensure the
parameters of generated function invocations are of the right types, i.e., type correctness. Semantic
errors of other types could also lead to early bail-out by semantic sanity checks of browsers. We
observed that semantic errors are still widespread in the inputs generated by browser fuzzers
even though they ensure type correctness the inputs. We conducted a manual analysis to identify
semantic errors caused by the fuzzers. To make it easier to understand, we categorized them into
three main types: compatibility errors, misuse errors, and reference errors. We observed that,
despite their varying appearances, all semantic errors are caused by incorrect combinations of
production rules during input generation of fuzzers. Fig. 4 gives three examples to demonstrate the
semantic errors caused by Domato [Google 2017].

(a) Compatibility Error. (b) Misuse Error. (c) Reference Error.

Fig. 4. Three types of semantic errors incurred by existing fuzzer’s grammar. Production rules highlighted in

red (i.e., ?01, ?13, and ?22) are the root error causes during production rule selection.

Compatibility errors arise from browser compatibility issues. Web standards have undergone
significant changes over the years, with the aim of enhancing the user experience, security, and
accessibility of the web. As a result, many functionalities have been deprecated from or added to the
standards. Browsers typically support only a portion of new functionalities and gradually remove
deprecated ones. However, handwritten grammars do not take this into account. This means that
inputs generated by the grammars may use functionalities that are not compatible with certain
browsers. As Fig. 4a shows, based on the custom grammar, Domato generates an input that uses the
createTouch() function of a Document instance. However, many browsers remove this functionality
in their recent versions, so browsers immediately terminate the execution of this statement due to
this compatibility error. Its root cause is the incorrect selection of the production rule ?01 during
input generation. If the fuzzer knows selecting ?01 definitely leads to a semantic error, it can then
exclude this rule from consideration during input generation, effectively avoiding the error.

Misuse errors often result from the use of production rules that cannot be used together semanti-
cally, even though they are valid when used alone. Fig. 4b presents a straight-forward example.
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The first statement creates an instance of SVGTitleElement, namely v3. Next, the input calls the
ownerSVGElement() function from v3. By design, this function is supposed to return its nearest
ancestor SVGSVGElement instance. However, in this case, v3 is the outermost element, so the
function can only return a null, which is assigned to v4. When generating the input, the fuzzer
regards v4 is a SVGSVGElement instance, so it generates a v5=v4.x statement following production
rules of its grammar. When browsers execute this statement, they bail out immediately because
calling null.x is illegal. The root cause of misuse errors is selecting a semantically invalid production
rule under a specific context. In this case, selecting ?13 is semantically invalid because it implicitly
makes the ownerSVGElement() function return null. If we select a different production rule instead
of ?13 to ensure that v3 has an ancestor element, e.g., v3=<SVGSVGElement>.children[0] instead
of v3=doc.createElementNS(..), then v4 will not be a null value and the v5=v4.x statement will be
semantically valid. Therefore, the fuzzer is likely to avoid such errors if it considers the context of
derivation tree (i.e., ?11 and ?12) when deciding whether to select the production rule ?13.

Reference errors arise when previously-generated statements contain errors and the subsequent
statements are affected. Specifically, if a previous statement triggers a compatibility or misuse error,
and a subsequent statement uses the outcome variable of the error statement, then the subsequent
statement will trigger a reference error. This definition is identical with the common definition in
JavaScript, i.e., a reference error only occurs when variables that are being used are not defined.
As we can see from Fig. 4c, v7=v6.createTouch() triggers a compatibility error, so the variable v7
is an undefined value. However, when generating the input, the fuzzer regards that v7 is a Touch
instance, so it generates a v8=v7.identifier() statement following production rules of its grammar.
When browsers execute this statement, they bail out immediately because calling any functions
of an undefined variable is illegal. To mitigate such errors, fuzzers need to effectively address the
other types of errors.

2.3 Towards Be�er Semantics Exploration

Both of the challenges listed above reveal that the inherent limitation of handwritten CFG prevents
fuzzers from efficiently exploring browser semantics. In this paper, we aim to automatically build
a production-context sensitive grammar (PCSG) with complete semantics for fuzzing to address
the challenges. Our method extracts complete semantics from W3C standards to ensure that most
functionalities described in the standards are covered. Additionally, our method aims to mitigate the
three semantic errors. Through our observation, we identified the root cause of these semantic errors

as the lack of consideration for the generation context when selecting production rules. To address
this issue, our approach attempts to infer the semantic correctness of the generation context for
each production rule. By doing so, our fuzzer can identify which production rule is likely to cause
semantic errors in a given context, and consequently avoid selecting it to prevent semantic errors.
This approach enables our fuzzer to generate inputs that explore a wider range of browser semantics,
with a higher proportion of semantically-correct inputs, ultimately leading to more efficient and
effective bug-finding. We will provide further details on our approach in the next section.

3 APPROACH

This section presents the technical details of our proposed approach SaGe, an automatic semantics-
aware input generator for browser fuzzing. The overall workflow of SaGe is illustrated in Fig. 5.
It includes three modules: (1) a grammar extraction module to extract a preliminary CFG; (2) a
semantics inference module to refine the CFG to a PCSG; and (3) an input generation module to
generate fuzzing inputs based on the PCSG.
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Grammar Extraction (§3.1)

Generate Inputs with CFG

Collect Semantic
Correctness

Browser

Build PCSG

W3C Standards

Browser Code

Semantics Inference (§3.2)

Generate Inputs with PCSG

Input Generation (§3.3)

derivation
tree

statements

correctness

...
v1 = ...;
v2 = ...;

v2.slice(v1);

...

...

...

PCSG

<Ctx1 Rule1> := ...
<Ctx2 Rule2> := ...

...

Browser Under Test

CFG

<Rule1> := ...
<Rule2> := ...

...

Convert to Rules

Append Terminals 

Remove Non-Terminating
Expansions

Fig. 5. Overall workflow of SaGe. First, it extracts a CFG fromW3C standards and browser source code. Next,

it infers semantics by collecting semantic correctness of each input generated by the CFG, and embeds the

semantics into a PCSG. Third, it leverages the PCSG to generate semantics-aware inputs for browser fuzzing.

3.1 Grammar Extraction

The goal of the grammar extraction module is to extract a preliminary CFG from W3C standards
and browser source code. Overall, this module utilizes a combination of parsing techniques and
static analysis to extract the necessary production rules from the W3C standards and the browser
source code. Next, It extracts production rules from the W3C standards and then refines them to
ensure that the rules are both terminable and expandable. The extracted CFG will be used as a
starting point to enable our fuzzer to generate inputs with a wide range of semantics. This module
consists of three steps to achieve its goal. First, it converts W3C standards into production rules.
Next, it appends terminals to ensure that every nonterminal has at least one production rule to
expand it. Finally, it removes non-terminating expansions to guarantee that every nonterminal can
be expanded to a string that only consists of terminals.

Convert toRules. This step involves extracting the relevant information from theW3C standards
documents and converting them into a preliminary set of production rules for the browser fuzzer.
W3C provides detailed specifications that define the usage of all CSS properties, HTML elements,
and JavaScript APIs. For example, as Fig. 3a shows, the specification of the counter-increment CSS
property includes details on the initial value, applied elements, and value syntax of this property. As
of JavaScript APIs, the specifications use a WebIDL [W3C 2022b] format to define API declarations,
including API names, member variables and functions, and inheritance relations. Our aim is to
embed the semantics of these specifications into production rules of a CFG.
Table 1 outlines the basic conversion rules utilized in our approach. For the CSS component,

conversion rule 1 generates production rules that adhere to CSS paradigms, while conversion rules
2-4 ensure syntactic correctness of CSS values. This enables our fuzzer to generate statements such
as "s1 {scale: none}" and "s1 {scale: 100 3 90%}" for the scale property in the working example. As for
the HTML component, tag names and attributes of elements are extracted from API declarations
using conversion rules 5-6. This allows our fuzzer to generate statements such as <button disabled

id="button1"></button>" for the button element in the working example. In the JavaScript component,
our conversion process takes into account member variables, member functions, and inheritance
relations of every interface in the WebIDL specifications. For each member variable, we create
two production rules - one for reading and one for writing. If a variable is read-only, then we only
generate the read production rule. For each member function, we convert it to a function invocation.
Additionally, if an interface is inherited from another interface, we add a production rule such as
⟨E0A �)"!�;4<4=C⟩ = ⟨�)"!�DCC>=�;4<4=C⟩ to represent implicit type conversions.
Append Terminals. This step enriches terminals in the extracted grammar. On the one hand,

the extracted grammar may not ensure that every nonterminal can be expanded. During input
generation, the derivation tree requires all leaves to be terminals. Therefore, if there is a nonterminal
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Component Conversion Rule Working Example

CSS

1. Construct production rules of the CSS
start symbol based on CSS paradigms.

2. Convert descriptions of CSS properties
to production rules of ⟨342;0A0C8>=⟩.

3. Expand production rules based on com-
bination operators between value symbols.

4. Expand production rules based on repe-
tition operators after value expressions.

HTML

5. Construct the production rules of the
HTML start symbol based on tag names.

6. Construct attributes of elements based
on the declarations of element interfaces.

JavaScript

7. Construct r/w statements for member
variables based on interface declarations.

8. Construct calling statements for member
functions based on interface declarations.

9. Add implicit conversions based on the
inheritance of interfaces.

Table 1. List of basic conversion rules.

that cannot be expanded, the fuzzers cannot generate a derivation tree. On the other hand, although
W3C standards provide a comprehensive set of language features and constraints, they do not
encompass all possible features that may exist in a browser implementation. Browsers may use
custom keywords to enable non-standard features that can only be identified through the analysis
of browser source code. For example, Safari performs image deblurring when the image-rendering
property of an image element is set to the custom keyword "-webkit-optimize-contrast". Additionally,
different browsers may use distinct keywords for the same non-standard feature. For instance,
Safari and Chrome use "-webkit-font-smoothing" to make a rendered font anti-aliased, while Firefox
uses "-moz-osx-font-smoothing".
To address these issues, we perform a data-flow analysis on the property-handling logic in

different browsers’ source code and identify keywords to complement our production rules. This
analysis ensures that most nonterminals have at least one production rule to expand it. The only
exceptions are five primitive nonterminals, namely ⟨8=C⟩, ⟨5 ;>0C⟩, ⟨BCA8=6⟩, ⟨ℎ4G⟩, and ⟨DA;⟩, which
cannot be further expanded. For these cases, SaGe randomly generates values based on their types
during the fuzzing process. After this step, we make sure that every nonterminal can be expanded.

Remove Non-Terminating Expansions. Although some nonterminals have production rules
to expand them, they may still be unable to be expanded to a string consisting solely of terminals if
all expansion paths are loops. For example, considering this expansion process:
⟨E0A -'(4BB8>=⟩ → ⟨-'(4BB8>=�E4=C⟩.B4BB8>=,
⟨E0A -'(4BB8>=�E4=C⟩ → =4F -'(4BB8>=�E4=C (⟨�$"(CA8=6⟩, ⟨-'(4BB8>=�E4=C�=8C⟩),
⟨E0A -'(4BB8>=�E4=C�=8C⟩ → {B4BB8>= : ⟨-'(4BB8>=⟩}.
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This is an expansion loop since the expansion of ⟨-'(4BB8>=⟩ necessarily requires itself. If all
the expansion paths of ⟨-'(4BB8>=⟩ are loops, then ⟨-'(4BB8>=⟩ will never be expanded to a string.
To solve this issue, we adopt a depth-first search approach for every nonterminal. We start from a
nonterminal and follow its production rules recursively until we reach a terminal or a nonterminal
that has been previously visited. If all leaves of the search tree for a nonterminal are terminals, we
consider it as a terminating nonterminal and keep it in the grammar. Otherwise, we remove the
nonterminal. After this step, we obtain a CFG whose production rules satisfy both the expansion
and termination requirements, enabling input generation for fuzzing.

3.2 Semantics Inference

The semantics inference module is designed to augment the CFG extracted in the previous module
with semantics information to reduce the occurrence of semantic errors in generated inputs. As
discussed in Section 2.2, compatibility errors and misuse errors arise from the incorrect selection of
production rules during input generation. To mitigate these errors, our fuzzer needs to anticipate
which production rules will lead to semantic errors under specific contexts during input generation,
and then avoid selecting those rules.
This module transforms the CFG into a PCSG that includes semantic information in order to

assist production rule selection during input generation. Formally, suppose our extracted CFG is
denoted as ��� = (#,) , %, (), where # is a nonterminal set, ) is a terminal set disjoint from # , %
is a set of context-free production rules of the form U → V1V2 . . . V= , and % is a start symbol. This
module transforms the CFG into a %�(� = (N̄ , T̄ , P̄, S̄), where N̄ is identical to # , T̄ is identical
to ) , S̄ is identical to ( , and P̄ is a set of context-sensitive production rules. Each rule ?̄ ∈ P̄ is
derived from a rule ? ∈ % but in the form [C?̄ ]U → V1V2 . . . V= , where C?̄ is a context-checking
function for production ?̄ . We define the context and the context-checking function as follows:

Definition 3.1 (Context of Production Rule). During derivation tree generation, suppose ?̄ ∈ P̄
is used to expand nonterminal =̄ ∈ N̄ and S̄ is the root node of the tree, the context 2CG of ?̄ is
defined as a sequence of production rules [?̄1, ?̄2, . . . , ?̄=] along the path S̄⇝ =̄ in the tree.

Definition 3.2 (Context-Checking Function). During derivation tree generation, suppose 2CG is
the context of ?̄ ∈ P̄ and C?̄ is the context-checking function for ?̄ , if selecting ?̄ as the next rule
definitely leads to a semantic error, then C?̄ (2CG) = 5 0;B4; otherwise, C?̄ (2CG) = CAD4 .

The semantics inference module tries to infer the context-checking function C for every ?̄ ∈ P̄,
enabling our fuzzer to avoid production rules that are likely to lead to semantic errors under specific
contexts. To infer C, we utilize a trial-and-error approach, where we generate inputs using the
extracted CFG and evaluate their semantic correctness in browsers. By analyzing the derivation
trees and corresponding semantic correctness of inputs, we can infer if a production rule is likely
to result in a semantic error under certain context. We provide details on how we generate inputs,
collect semantic correctness, and build the PCSG in the following paragraphs.

Generate Inputs with CFG. In this step, our goal is to generate inputs with the extracted CFG
to facilitate the subsequent PCSG building process. The CFG guarantees that every nonterminal is
able to expand to a string consisting only of nonterminals, and therefore each expansion from the
start symbol will result in a usable input statement. To generate inputs using the extracted CFG, we
utilize the code from Domato [Google 2017]. However, we have modified its generation strategies
to ensure that the probability of selecting every rule is equal. This approach guarantees that all
production rules have an equal opportunity to contribute to the input generation process, which
eliminates any bias in the collected data. We also preserve the corresponding derivation trees of
the generated input statements to use them later in the PCSG construction process.
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Collect Semantic Correctness. In this step, our goal is to collect the semantic correctness of the
generated input statements. To achieve this, we implement a runtime error monitor in the browsers.
This monitor is built on top of the JavaScript interpreter without intrusively instrumenting the
browsers, providing flexibility in detecting semantic errors. We detect semantic errors for JavaScript
statements by catching exceptions, while for CSS statements we check if the CSS property exists,
and for HTML statements we check if the HTML element ID exists. After implementing the error
monitor, we execute the generated inputs using a browser and record the results of the execution. If
an input statement causes a semantic error, we label it as semantically incorrect; otherwise, we label
it as semantically correct. By collecting semantic correctness, we can identify which production
rules may lead to semantic errors under specific contexts during the input generation process.

Execution Results of generated statements

v3=doc.createElementNS("...", "title");
v4=v3.ownerSVGElement();
v5=v4.x;

correct or not

v3=doc.createElementNS("...", "title");
v4=v3.ownerSVGElement();
v5=v4.x;

correct or not

v3=doc.createElementNS("...", "title");
v4=v3.ownerSVGElement();
v5=v4.x;

Error Monitor
Browser

report

Occurrence statistics of parent-child rule chains

rule 9 rule 10rule 7 Occurrence: 1853
Correct: 0

rule 9 rule 10rule 6 Occurrence: 2589
Correct: 1900

rule 9 rule 10rule 5 Occurrence: 8518
Correct: 187

rule 1 rule 2 rule 3 rule 10 Occurrence: 5631
Correct: 0

Construction of context-checking function

Invalid Context
Tree of Rule 10 rule 10

rule 3 rule 2 rule 1

rule 9 rule 7

10

3

2

1

9

7
True

Rule 10

...

10

3
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1

9

7

False
Rule 10

...

Fig. 6. Illustration of PCSG building.

Build PCSG. In this final step, we aim to transform the extracted CFG into a PCSG by constructing
the context-checking function C for each production rule, so that we can turn CFG into PCSG.
The purpose of this function is to allow for a more semantically correct exploration during the
input generation process. Fig. 6 illustrates how we construct the context-checking function C
for each production rule. We first collect the execution results of the generated input statements
as illustrated in the previous steps. Using this information, we analyze the derivation trees and
execution results to deduce the correctness statistics of the contexts of each rule. The context of a
rule is a sequence of production rules, as defined in Definition 3.1, and we use this information to
construct a context-checking function for each rule.
We design an invalid context tree to embed observed semantic correctness information and

efficiently check semantic correctness of an incoming context. The invalid context tree is a rooted
tree where the root node is the rule, and a path from root to a leaf is an invalid context of the rule.
For example, as shown in the middle figure of Fig. 6, the rule sequence [. . . , 1, 2, 3] is a context
of rule 10, and we observe that this context never leads to a semantically correct statement. We
thus assume that selecting this rule will never lead to a semantically correct statement under this
context. Therefore, we append the sequence to the invalid context tree of rule 10 to keep track of
this invalid context.
The context-checking function is constructed based on the invalid context tree. Specifically,

during the input generation process, the context-checking function returns true if the suffix of the
current context matches a path in the invalid context tree for the rule. For instance, if the suffix
of the current context is [. . . , 1, 2, 3], then the C([. . . , 1, 2, 3]) for rule 10 will return false, as this
sequence matches a path in the invalid context tree for this rule. Algorithm 1 further illustrates
the construction workflow of context-checking functions. The input of this algorithm is a list
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of tree-result pairs, which records the execution result (i.e., whether triggering semantic errors
or not) of each derivation tree, and the output is a map of rules to context-checking functions.
The algorithm begins by traversing each derivation tree to gather execution statistics for each
rule chain (Line 3-5 and Line 18-24). After that, the map S keeps track of the total occurrences
and semantically-correct occurrences of each rule chain. Next, the algorithm processes each rule-
statistics pair, and constructs invalid trees for production rules (Line 6-13). An invalid tree is a
rooted tree where its nodes denote production rules, its edges denote the predecessor relations
between rules. A path from its root to one of its leaves is an invalid context of the rule. If a rule
chain is found to be consistently incorrect, the algorithm updates the invalid context trees for the
rules in this rule chain (Line 8-12). Finally, this algorithm constructs context-checking functions of
production rules using the invalid context trees (Line 14-17). Given a context for a rule, the rule’s
context-checking function can verify if this context matches a root-to-leaf path in its invalid tree. If
a match is found, it indicates an invalid context; otherwise, it is valid. In this way, the algorithm
effectively works out the context-checking functions for production rules.

Algorithm 1: Construction of Context-Checking Functions

Input :List of tree-result pairs !

Output :Map of rules to context-checking functions C

1 C ← emptyMap()

2 ( ← emptyMap() // map of rule chains to occurrence statistics

3 for CA44_A>>C , A4BD;C in ! do // derivation tree and its execution result

4 traverse(CA44_A>>C , A4BD;C , ( , [], 0) // traverse the derivation tree and update (

5 end

6 � ← emptyMap() // map of production rules to invalid trees

7 for AD;4_2ℎ08=, BC0CB in iterateItems(() do

8 if BC0CB .correct_num is 0 && BC0CB .occurrence > MIN_OCCURRENCE_LIMIT then

9 for AD;4 , ?A4 5 8G_2ℎ08= in AD;4_2ℎ08= do

10 8=E0;83)A44 ← � [AD;4 ] // path from its root to leaf is the rule’ invalid ctx

11 updateTree(8=E0;83)A44 , ?A4 5 8G_2ℎ08=)

12 end

13 end

14 for AD;4 , 8=E0;83)A44 in iterateItems(� ) do

15 CAD;4 ← 2A40C4�ℎ42:�D=2 (invalidTree) // The tree can check if a given ctx is invalid

16 C[AD;4 ] ← CAD;4

17 end

18 Function traverse(=>34 , A4BD;C , ( , rule_chain, depth):

19 if 34?Cℎ > MAX_RULE_LIMIT then

20 return

21 updateStatistics(( , AD;4_2ℎ08=, A4BD;C ) // record the execution result of this chain

22 for 2ℎ8;3 in listChildren(=>34) do

23 traverse(2ℎ8;3 , A4BD;C , ( , AD;4_2ℎ08= + [=>34 ], 34?Cℎ + 1)

24 end

In this way, we embed highly likely invalid sequence of parent rules for each production rule
into an invalid tree, and leverage this tree to quickly check if selecting a rule may lead to a semantic
error under a specific context. We take compatibility errors and misuse errors as examples to
illustrate how the context-checking function mitigates semantic errors described in Section 2.2.
Example 1: Mitigate Compatibility Errors. Let’s focus on a production rule “⟨A>>C⟩ →

⟨E0A )>D2ℎ⟩ = ⟨�>2D<4=C⟩.2A40C4)>D2ℎ()”. The createTouch() is a deprecated function, so every
time we select this production rule, the corresponding generated statement will definitely lead
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to a semantic error. Therefore, after a number of executions, we can know that this rule occurs
many times but none of the occurrence results in a semantically correct execution. As a result, the
context-checking function C([ ]) for this rule will always return false.
Example 2: Mitigate Misuse Errors. We take the Fig. 4b in Section 2.2 as an example. Let

the production rule “⟨A>>C⟩ → ⟨!4=6Cℎ⟩ = ⟨(+�(+��;4<4=C⟩.G” be ?1, the production rule
“⟨E0A(+�(+��;4<4=C⟩ → ⟨(+�)8C;4�;4<4=C⟩.>F=4A(+��;4<4=C ()” be ?2, and the production
rule “⟨E0A(+�)8C;4�;4<4=C⟩ → 3>2D<4=C .2A40C4�;4<4=C#( (”...”, ”C8C;4”)” be ?3. Although these
three production rules are semantically correct, they cannot be used together semantically. There-
fore, after a number of executions, we can know that the rule chain [. . . , ?1, ?2, ?3] does not result
in a semantically correct execution even though it has been executed many times. As a result, the
context-checking function C?3 ( [. . . , ?1, ?2]) will always return false.

3.3 Input Generation

After constructing %�(� = (N̄ , T̄ , P̄, S̄) from the semantics inference module, SaGe is able to
generate inputs that effectively explore browsers’ semantics. Algorithm 2 shows the algorithmic
sketch of how SaGe generate inputs using %�(� . For each language component, we repeatedly
generate statements by expanding its start symbol S̄ until reach user-specific maximum length
(Line 3-7). During the expansion of a symbol ( , SaGe first retrieve the candidate expansion rule
set P̄S of the symbol ( (Line 12). Next, SaGe randomly chooses a ?̄ that satisfies the condition
C?̄ (�)- ) = CAD4 (Line 13-16). In this way, we can avoid production rules that are likely to lead
to semantic errors under this context �)- . Finally, SaGe traverses all nonterminals in ?̄ and
recursively expands these nonterminals (Line 18-23).

Algorithm 2: Input Generation with PCSG

Input :Production-context sensitive grammar %�(�

Output :HTML document �

1 � ← emptyString()

2 for !0=6 in [css, html, js] do

3 while len(� , !0=6) < MAX_LEN do

4 S̄ ← startSymbol(%�(� , !0=6) // start symbol of current language

5 C ← %�(�.2ℎ42:�D=2 // context-checking function

6 �)- ← initialization() // context of this derivation tree

7 expand(� , S̄,�)- , C)

8 end

9 end

10 return �

11 Function expand(� , ( ,�)- , C): // to expand nonterminal symbol (

12 P̄S ← 4G?0=B8>='D;4B (( ) // candidate expansion rule set for (

13 ?̄ ← randomChooseOne(P̄S )

14 while C?̄ (�)- ) is false do // check semantic correctness of ? under �)-
15 ?̄ ← randomChooseOne(P̄S )

16 end

17 update(?̄ ,�)- ) // update the current context

18 for B~<1>; in ?̄ do

19 if B~<1>; is nonterminal then

20 expand(� , B~<1>; ,�)- , C)

21 else

22 � += B~<1>;

23 end
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The advantages of SaGe over existing browser fuzzers are twofold. The first is that semantics
exploration is extensive, enabling the fuzzer to cover a wider range of semantics of browsers. As
shows in line 12 in Algorithm 2, every time we expand a symbol ( , we need to randomly choose an
expansion production rule from the candidate set P̄S . Since the production rules used by SaGe are
extracted from W3C standards, we can ensure that the production rules contain as much semantics
of browsers as possible. We prove that our input generation preserves the semantics of extracted
CFG in Proposition 1. The second advantage is the less occurrence of semantic errors in generated
inputs, enabling a more efficient semantics exploration. Different from other browser fuzzers, we
infer a context-checking function for every production rule, telling the input generation module
which production rules are highly probable to cause semantic errors under a specific derivation tree
context. This helps SaGe generate less semantic errors. We prove that PCSG-based input generation
is more likely to generate semantically correct derivation trees in Proposition 2.

Proposition 1. PCSG-based input generation preserves the semantics of extracted CFG.

Proof. Let our extracted CFG be ��� = (#,) , %, () and the transformed PCSG be %�(� =

(N̄ , T̄ , P̄, S̄). According to the transformation rule described in Section 3.2, N̄ is identical to
# , T̄ is identical to ) , S̄ is identical to ( , and every ?̄ ∈ P̄ is derived from ? ∈ % but in the
form [C?̄ ]U → V1V2 . . . V= , where C?̄ is a context-checking function. Suppose we are expanding a
nonterminal = ∈ # when generating a derivation tree, and the production rules to expand = are
denoted as %= = {= → �8 |8 ∈ [1, . . . , 6]} ⊂ % , where 6 is the number of expansion production rules
of =. CFG-based input generation will randomly select one rule from %= . In contrast, PCSG-based
input generation will filter out semantically-incorrect production rules under the current context
according to the context-checking function C (Line 14-16 in Algorithm 2), and randomly select one
rule from the remaining rule set %

′

= . According to the construction of context-checking functions,
C only filers out the rules that are never semantically correct under this derivation tree context
on the basis of our observed occurrence statistics. Therefore, every filtered-out production rule
? ∈ %= − %

′

= will be highly probable to cause a semantic error under the current context. As a result,

%
′

= preserves the semantics of %= without losing semantically correct production rules. □

Proposition 2. PCSG-based input generation is more likely to generate semantically correct

derivation trees than CFG-based input generation.

Proof. Suppose #C = [=1, =2, =3, . . . ] is the list of expanded nonterminals in a derivation tree
C . Let %C denote the probability that the tree C is correct, and % (=) denote the probability that
expanding nonterminal = will not lead to an incorrect generated derivation tree. According to the
expansion process detailed in Section 2.1, %C can be presented as

%C = % (=1)% (=2 | [=1])% (=3 | [=1, =2])% (=4 | [=1, =2, =3]), . . .

Without loss of generality, we investigate the expansion of =8 ∈ #C . To expand =8 , CFG-based
input generation will randomly select one of the expansion production rules of =8 . Suppose the
number of the expansion rules is : , andF of the rules lead to a semantic error under the current
derivation tree context, then %��� (=8 | [=1, . . . , =8−1]) = 1 − F

:
. Our PCSG-based input genera-

tion filters out semantically-incorrect production rules according to context-checking functions
(Line 14-16 in Algorithm 2), so it will randomly select one rule from fewer production rules, i.e.,

%%�(� (=8 | [=1, . . . , =8−1]) = 1 −
F−5

:−5
, where 5 is the number of filtered-out rules and 5 ≥ 0. There-

fore, %%�(� (=8 | [=1, . . . , =8−1]) ≥ %��� (=8 | [=1, . . . , =8−1]) holds true for any =8 ∈ #C . As a result, we
can conclude %%�(�

C ≥ %���C . □
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4 IMPLEMENTATION

We implemented SaGe in around 5k lines of Python code, consisting of three modules, i.e., grammar
extraction, semantics inference, and input generation. The grammar extraction module is an end-to-
end tool, which is able to update itself as soon as the W3C standards update. This module leverages
Webref [W3C 2022c] to obtain the latest stable W3C standards of HTML, CSS, and JavaScript. It
parses CSS value syntax (e.g., "none| [ <number> | <percentage>]{2,3}" in Table 1) with
the assistance of the CSSTree project [csstree 2022]. It first uses the CSSTree project to convert
the syntax into an abstract syntax tree, and then traverses the tree to form production rules of
our grammar. As of JavaScript, the module collects WebIDLs from the standards and the source
code of browsers, and parses them to form production rules. The semantics inference is built on
the top of Domato [Google 2017], with our extracted CFG made compatible to Domato, enabling
it to generate inputs. We developed a plugin for Domato to track the derivation trees during its
generation. To collect semantic correctness of each statement, we wrote a JavaScript runtime library
inside browsers, which catches the exit status of each JavaScript statement. To obtain the semantic
correctness of CSS and HTML, the library checks if the corresponding CSS class name and HTML
element ID exist. With the derivation tree and semantic correctness, the semantics inference module
concludes context-checking functions for every production rules. In our implementation, we regard
a context is invalid for a production rule if it occurs more than 10 times in our statistics while
none of the occurrences is correct. We append such a context to the invalid context tree of the
corresponding production rule, as shown in Fig. 6 The input generation module is also implemented
as a plugin on the top of Domato.

5 EVALUATION

In this section, we conduct experiments to evaluate the effectiveness of SaGe. Our evaluation
addresses the following research questions:

• RQ1: Can SaGe uncover critical bugs in production-level browsers? (Section 5.1)
• RQ2: How well does SaGe perform compared to other state-of-the-art browser fuzzers?
(Section 5.2)
• RQ3: How many additional production rules does the grammar extraction module extract
from browser standards? (Section 5.3)
• RQ4: How do the grammar extraction and semantics inference modules individually improve
input generation performance? (Section 5.4)
• RQ5: Will the input generation module introduce additional overhead? (Section 5.5)

Experiment Setup. All experiments run on a machine equipped with an i9-10900K with 10
cores, running Ubuntu 20.04 LTS. We utilized X virtual frame bffer (Xvfb) to enable browsers to run
in headless mode on separate virtual display hardware. We selected the recent versions of three
mainstream browsers, namely Safari, Chrome, and Firefox, as our fuzzing targets. However, since
Safari cannot be run on a Linux system, we useWebKitGTK, a full-featured port of Safari’s rendering
engine, as an alternative. Note that SaGe only focuses on the browser engines of Safari, Chrome,
and Firefox, namely WebKit, Blink, and Gecko, respectively. Other components, such as bookmark
or extension managers, are outside the scope of our research. We ran grammar inference modules
for 24 hours with 4 cores to obtain PCSG, which is the grammar SaGe uses in our experiments.

5.1 Bug Finding

We spent around 10*30 CPU-days applying our prototype of SaGe to test the latest versions of
the three mainstream browsers with AddressSanitizer (ASan) [Serebryany et al. 2012] compiled.
Table 2 shows the detail of bugs found by SaGe. To sum up, SaGe found 62 unique bugs, 40 of

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 243. Publication date: October 2023.



243:16 Chijin Zhou et al.

which were confirmed and 27 fixed. Ten of the fixed bugs are assigned to CVE IDs because they are
security-critical. 13 of the reported bugs are marked as duplicated because the bugs were found by
other fuzzers before we reported them. Since all the mainstream browsers have been continuously
tested by vendors using existing fuzzers for several years, we can regard the ones that are not
marked as duplicated are uniquely found by SaGe.

Table 2. Bugs detected by SaGe.

ID Browser Bug Type Bug Location Status

1

Safari
(WebKit)

Use After Free (9 bugs)

WebCore::RenderLayer CVE-2023-25361
2 WebCore::RenderLayer CVE-2023-25358
3 WTF::TypeCastTraits CVE-2023-25359
4 WebCore::RenderLayer CVE-2023-25362
5 WebCore::RenderLayer CVE-2023-25363
6 WebCore::AXObjectCache CVE-2022-26710
7 WebCore::IDBServer::UniqueIDBDatabase CVE-2022-26709
8 WebCore::TextureMapperLayer CVE-2022-30294
9 WebCore::RenderLayer CVE-2023-25360

10 Buffer Overflow (1 bug) WebCore::TextureMapperLayer CVE-2022-30293

11

Null Dereference (6 bugs)

WebCore::RenderLayerCompositor Confirmed
12 WebCore::RenderLayerCompositor Confirmed
13 WTF::Atomic Fixed
14 WebCore::WebGLRenderingContextBase Fixed
15 WebCore::RenderTreeBuilder Fixed
16 WebCore::Node Fixed

17 Abnormal Crash (1 bug) WebCore::AccessibilityObject Fixed

18

Chrome
(Blink)

Out Of Memory (1 bug) gin::V8Initializer Confirmed

19
Null Dereference (2 bugs)

mojom::MojoAudioOutputIPC Fixed
20 blink::RendererAudioOutputStreamFactory Fixed

21 SIGILL ILL_ILLOPN (1 bug) blink::NGPhysicalLineBoxFragment Fixed

22 SEGV MAPERR (1 bug) blink::ViewTransitionStyleTracker Duplicated

23

Assertion Failure (27 bugs)

blink::EventHandlerRegistry Confirmed
24 blink::ClampScrollbarToContentBox Confirmed
25 blink::LayoutBox Duplicated
26 blink::ComputeContentSize Reported
.. .. ..
49 blink::LayoutFlowThread Confirmed

50

FireFox
(Gecko)

Abnormal Crash (3 bug)
webrender::picture Confirmed

51 nsCSSFrameConstructor Confirmed
52 mozilla::ipc Reported

53 Null Dereference (1 bug) mozilla::gfx Confirmed

54

Assertion Failure (9 bugs)

mozilla::SVGUtils Confirmed
55 mozilla::dom Duplicated
56 mozilla::nsLineLayout Confirmed
57 mozilla::nsDisplayItem Reported
.. .. ..
62 mozilla::nsFieldSetFrame Confirmed

Total 62 bugs; 13 were duplicated with others; 40 were confirmed, out of which 27 fixed with 10 CVE

In terms of bug type, SaGe found 9 use-after-free bugs, 1 buffer-overflow bug, 6 null-dereference
bugs, and 1 abnormal crash in Safari; 1 out of memory bug, 2 null-dereference bugs, 1 SIGILL bug,
1 SEGV bug, and 27 assertion failures in Chromium; 3 abnormal crashes, 1 null-dereference bug,
and 9 assertion failures in Firefox. Besides, SaGe is capable of triggering bugs located in various
locations. The “Bug Location” column in the Table 2 lists the namespace of the root cause line of
each bug in the source code. We can see that in addition to all kinds of HTML-based rendering
logic, SaGe also explores bugs of other locations, including web template framework (#3 and #13),
WebGL (#14), IDBServer (#6), and IPC (#19 and #52).

Bug Sample 1: A Ten-Year-Old Bug. SaGe detected a use-after-free bug in the accessibility
backend logic of Safari (ID 6 in Table 2), which was introduced ten years ago. As shown in Listing 1,
the minimized code snippet contains only a few common HTML elements like input, svg, and canvas,
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Listing 1. Minimized code snippet of bug sample 1. It triggers a Heap Use-A�er-Free bug on Safari when

parsing the HTML body. It was assigned CVE-2022-26710 and has been acknowledged by Apple Inc.

1 <html>

2 <head>

3 <style>

4 .class2 {

5 -webkit-text-security: square; content: url(# htmlvar00001);

6 }

7 #htmlvar00003 {

8 position: fixed;

9 }

10 </style>

11 <script>

12 </script>

13 </head>

14 <body>

15 <input id="htmlvar00003"></input>

16 <ul id="htmlvar00009">

17 <svg id="svgvar00001">

18 <text id="svgvar00012" visibility="hidden" class="class2">e1;k=g9</text>

19 </svg>

20 <li id="htmlvar00018">

21 <canvas id="htmlvar00022">Xj/e5)^x7\&quot;!sBXhU ^;3</canvas>

22 </li>

23 </ul>

24 </body>

25 </html>

Listing 2. Root cause in Safari responsible for bug sample 1.

1 void AXObjectCache :: textChanged(AccessibilityObject* object ) {//input a freed pointer

2 if (! object) // object is a freed pointer instead of a NULL pointer

3 return;

4 + Ref<AccessibilityObject> protectedObject(*object); // patch

5
6 for (auto* parent = object; parent; parent = parent ->parentObject ()) {

7 ...

8 postNotification(object , object->document() , AXTextChanged);// trigger the UAF bug

9 ...

10 }

11 }

along with some visualization-related CSS styles like -webkit-text-security, position, and content. The
root cause of the bug, as shown in Listing 2, is a wrong manipulation of the accessibility tree. Web
browsers maintain an accessibility tree that corresponds to the DOM tree to enable assistive tech-
nologies like screen readers to read web page contents. Whenever a text is changed on the page, the
browser manipulates the accessibility tree to align it with the DOM tree. In this case, the text element
is first deleted from the accessibility tree by the browser due to the visibility attribute and layout
arranged by other elements. Next, because of the URL-based content CSS style, the text element has
content again, and the browser calls the AXObjectCache::textChanged(AccessibilityObject
*) function (Line 1 in Listing 2) with a freed object pointer, resulting in a use-after-free bug (Line
8). Although the function has a sanity NULL checker for the input (Line 2-3), a freed pointer can
still bypass the checker.

By using git blame to track the history of the buggy code, we found that this bug was introduced
in 2012. After we reported the bug to Safari, Apple developers added a patch to check the validity
of the input pointer (Line 4 in Listing 2). This bug was assigned CVE-2022-26710 due to its severe
security consequences and has been acknowledged by Apple Inc. Triggering this bug requires a
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fuzzer to generate highly structured inputs. First, the fuzzer’s grammar must include a full set of
HTML tags, HTML attributes, and CSS styles, enabling it to create inputs with highly semantic
logic. Most importantly, the fuzzer should generate a high proportion of semantically-correct
inputs, so that it can generate such a nested input within a reasonable time. SaGe satisfies the two
requirements and was able to trigger this bug within 24 hours. This is particularly impressive given
that the vendor had previously leveraged other browser fuzzers to continuously test Safari.

Bug Sample 2: An Invalid-Character Caused Bug. SaGe detected a null pointer dereference
bug of Chrome (ID 20 in Table 2). As shown in Listing 1, the minimized code snippet is quite simple:
the HTML part creates an audio element, and the JavaScript part accesses this element, and calls
the setSinkId member function of this element with a random String input. When executing the
setSinkId function, Chrome crashes. The root cause of the bug, shown in Listing 4, is the lack of
invalid character checking in the inter-process communication (IPC) of the browser. The main
process of Chrome is supposed to send the sink ID to the rendering process (Line 8 in Listing 4), but
the sink ID we set is a string with random characters that is not a valid UTF-8 string. Consequently,
the rendering process fails to deserialize the message and crashes (Line 13 in Listing 4).

By using git blame to track the history of the buggy code, we found that this bug was introduced
in 2019. After we reported the bug to Chrome, Google developers added a patch to ensure that the
input sink ID should be a UTF-8 string (Line 3 in Listing 2). Most existing browser fuzzers cannot
generate such a code, as the grammars of Domato [Google 2017] and FreeDom [Xu et al. 2020] do
not include the setSinkId member function of the audio element due to their handwritten nature.

Listing 3. Minimized code snippet of bug sample 2. It triggers a null pointer dereference bug on Chrome.

1 <html>

2 <head>

3 <style></style>

4 <script>

5 var var00015 = document.getElementById("htmlvar00015");

6 var var00022 = var00015.setSinkId(String.fromCodePoint (391438 , 34928, 730218 ,

790627 , 696715 , 922786 , 667983 , 501049 , 602320 , 1058675 , 499878 , 204162 , 683030 ,

1091862 , 677148 , 194695 , 6097, 565610 , 57127, 488118)); // crash here

7 </script>

8 </head>

9 <body>

10 <audio id="htmlvar00015"> ... </audio>

11 </body>

12 </html>

Listing 4. Root cause in Chrome responsible for bug sample 2.

1 // the sending logic of main process

2 void SetSinkIdResolver ::Start() {

3 + if (sink_id_.Utf8(WTF::kStrictUTF8Conversion).empty() != sink_id_.empty()) { ... } // patch

4

5 if ( sink_id_ == HTMLMediaElementAudioOutputDevice :: sinkId (* element_))

6 Resolve ();

7 else

8 StartAsync (); // send RPC

9 }

10
11 // the receiving logic of rendering process

12 void MojoAudioOutputIPC :: DoRequestDeviceAuthorization (..., const std:: string& device_id ,

...) {

13 RequestDeviceAuthorization (..., String :: FromUTF8( device_id )); // trigger the crash

14 }
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Although the grammars of Favocado [Dinh et al. 2021] and Minerva [Zhou et al. 2022] include
the setSinkId function, their generation strategies cannot efficiently generate semantically-correct
inputs. Favocado failed to trigger this bug within 24 hours, and Minerva took much longer time
(3.43 hours) to trigger this bug. In contrast, SaGe can trigger this bug within six minutes.

5.2 Comparison to Other Browser Fuzzers

We evaluate SaGe compare to four state-of-the-art browser fuzzers, i.e., Domato [Google 2017],
FreeDom [Xu et al. 2020], Favocado [Dinh et al. 2021], Minerva [Zhou et al. 2022]. Table 3 demon-
strates their characteristics. SaGe differs these approaches in several aspects. Firstly, its grammar
is automatically extracted from W3C standards, enabling the fuzzer to explore a wider range
of semantics. Secondly, it takes derivation context into account, allowing the fuzzer to mitigate
compatibility errors, misuse errors, and reference errors. Other characteristics, i.e., variable-context
awareness and type error mitigation, are derivate from our baseline tool Domato.

Table 3. Characteristics of existing browser fuzzers.

Fuzzer Year
Grammar

Origin

Variable

Context

Derivation-

Tree Context

Type Error

Mitigation

Compatibility, Misuse, and

Reference Error Mitigation

Domato 2017 handwritten ✓ - ✓ -

FreeDom 2020 handwritten ✓✓ - ✓ -

Favocado 2021 automatic ✓— - ✓ -

Minerva 2022 semi-auto ✓ - ✓ -

SaGe 2023 automatic ✓ ✓ ✓ ✓✓✓

We used three different versions of each of the three mainstream browsers as our fuzzing targets.
Our evaluation metrics are edge coverage, semantic correctness rate, time to trigger the same
coverage, and time to trigger unique bugs. The edge coverage is collected using SanitizeCover-
age (SanCov) [llvm 2022]. Specifically, we append -fsanitize-coverage=trace-pc-guard in
compilation flags when building the three mainstream browsers. The semantic correctness rate
is calculated as the fraction of the number of semantically-correct statements to the total input
statements. Unique bugs are triaged based on the root cause lines of call stacks. Each experiment
runs in 24 hours and repeated five times. Note that all of these fuzzers are generation-based, so
they do not need initial seeds. Table 4 shows average time taken by browser fuzzers to trigger
unique bugs. Favocado does not trigger any bugs, so we omit it in the table. Table 5 presents the
comparison of semantic correctness rate, and Table 6 presents the coverage improvements of SaGe
compared to other fuzzers. Fig. 7 shows the time required by SaGe to reach the same coverage as
other fuzzers’ runs of 1, 3, 6, 12, 24 hours.
v.s. Baseline (Domato). Domato is the most well-known browser fuzzer so far. SaGe is built

on the top of Domato, so comparing the performance of SaGe to Domato demonstrates how
incorporating our CSG can improve the efficiency of browser fuzzing. Table 4 shows that SaGe
can detect all bugs that Domato detects. Additionally, SaGe detects 6 bugs that Domato cannot
detect. Furthermore, SaGe achieves higher coverage and semantic correctness. Table 5 and Table 6
demonstrates that SaGe improves edge coverage and semantic correctness by an average of 20.32%
and 3.56%, respectively. Figure 7 illustrates that SaGe requires significantly less time to achieve
the same coverage as Domato. Specifically, SaGe takes 1.06 hours to reach the same coverage
as Domato’s 24-hour run. These improvements are consistent across all versions and browsers.
The reason why SaGe outperforms Domato is that the CSG we built indeed helps Domato more
efficiently explore the semantics of browsers.
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Table 4. Average time taken by browser fuzzers to trigger unique bugs in 24 hours over five runs. "# campaign"

refers to the number of campaigns that trigger the bug out of the five repeated campaigns. "∞" means that

the fuzzer did not trigger the bug within 24 hours.

Browser Unique Bug
Domato FreeDom Minerva SaGe

time # campaign time # campaign time # campaign time # campaign

WebKitGTK-2.36 Assertion Failure 1 24.28min 5/5 2.81h 5/5 3.57h 5/5 30.61min 5/5

Use After Free 1 1.82h 2/5 3.55h 5/5 ∞ 0/5 1.28h 5/5

Use After Free 2 ∞ 0/5 ∞ 0/5 ∞ 0/5 22.43h 1/5

WebKitGTK-2.37 Null Deref 1 ∞ 0/5 14.50h 1/5 20.84h 1/5 1.81h 3/5

WebKitGTK-2.38 Assertion Failure 2 4.56min 5/5 17.66min 5/5 12.2min 5/5 7.55min 5/5

Null Deref 2 8.29h 2/5 4.69h 5/5 4.24h 5/5 2.51h 5/5

Chrome-98 SEGV MAPERR 1 ∞ 0/5 ∞ 0/5 ∞ 0/5 2.14h 5/5

SEGV MAPERR 2 ∞ 0/5 3.81h 1/5 ∞ 0/5 11.72h 1/5

Null Deref 3 ∞ 0/5 ∞ 0/5 3.43h 2/5 5.68min 5/5

Chrome-111 SIGILL ILL_ILLOPN 1 ∞ 0/5 ∞ 0/5 ∞ 0/5 19.99h 1/5

Table 5. Semantic correctness rate comparison of browser fuzzers in 24 hours over five runs.

Browser Domato FreeDom Favocado Minerva SaGe

WebKitGTK-2.36 81.35% 62.21% 31.92% 71.24% 84.33%
WebKitGTK-2.37 81.31% 62.59% 31.88% 70.93% 84.31%
WebKitGTK-2.38 80.96% 63.09% 32.93% 69.13% 84.22%

Chrome-98 79.75% 62.54% 32.47% 72.86% 84.66%
Chrome-105 82.19% 63.92% 32.51% 72.00% 84.49%
Chrome-111 81.89% 63.13% 32.45% 71.78% 84.42%
Firefox-101 82.01% 63.35% 32.38% 72.02% 84.36%
Firefox-103 81.98% 63.47% 32.46% 69.81% 84.37%
Firefox-105 81.95% 61.11% 32.31% 72.25% 84.26%

Avg Impr ↑ 3.56% ↑ 33.85% ↑ 160.71% ↑ 18.31% -

v.s. Context-Aware Fuzzer (FreeDom). FreeDom is a variable-context aware browser fuzzer,
which leverages a custom intermediate representation (named FD-IR) to store context information of
both locally and globally generated variables. The variables are stored in a tree structure to simulate
the DOM tree of browsers. Different from FreeDom, SaGe focuses more on the context of derivation
trees during production rule selection in order to generate more semantically-correct inputs. Table 4
shows that SaGe can detect all bugs that FreeDom detects, but does so in less time. Additionally,
SaGe detects 4 bugs that FreeDom cannot detect. Furthermore, SaGe achieves higher coverage
and semantic correctness. Table 5 and Table 6 demonstrates that SaGe improves edge coverage
and semantic correctness by an average of 24.77% and 33.85%, respectively. Figure 7 illustrates
that SaGe requires significantly less time to achieve the same coverage as FreeDom. Specifically,
SaGe takes 0.60 hours to reach the same coverage as FreeDom’s 24-hour run. These improvements
are consistent across all versions and browsers. There are two reasons why SaGe outperforms
FreeDom. Firstly, the grammar used in SaGe covers a wider range of browser functionalities, better
than the handwritten grammar of FreeDom. Secondly, FreeDom does not make use of interactive
information from browsers to refine its FD-IR, while SaGe leverages this information to improve
its extracted grammar.
v.s. Semantics-Aware Fuzzer (Favocado). Favocado is a semantics-aware browser fuzzer,

focusing on improving type correctness of its generated inputs. In contrast, SaGe goes beyond type
correctness and strives to ensure the correctness of other semantic types as well. Table 4 shows that
Favocado does not detect any bugs within 24 hours, while SaGe detect all 10 bugs. Furthermore,
SaGe achieves higher coverage and semantic correctness. Table 5 and Table 6 demonstrates that
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Table 6. Coverage improvements of SaGe compared to other browser fuzzers in 24 hours over five runs.

Browser
v.s. Domato v.s. FreeDom v.s. Favocado v.s. Minerva

max-impr avg-impr min-impr max-impr avg-impr min-impr max-impr avg-impr min-impr max-impr avg-impr min-impr

WebKitGTK-2.36 14.37% 13.88% 13.13% 18.17% 17.88% 17.66% 523.33% 444.83% 264.68% 7.48% 6.72% 6.01%
WebKitGTK-2.37 14.51% 13.87% 12.89% 17.56% 16.84% 15.17% 502.90% 437.85% 277.01% 7.67% 6.96% 6.37%
WebKitGTK-2.38 14.50% 13.24% 11.18% 17.49% 16.67% 15.05% 497.68% 393.04% 258.80% 7.74% 6.88% 5.67%

Chrome-98 32.78% 31.12% 27.08% 34.75% 33.62% 31.17% 417.42% 406.18% 369.30% 6.74% 5.46% 3.24%
Chrome-105 35.32% 34.25% 33.71% 40.59% 39.17% 38.39% 172.22% 167.27% 163.65% 10.73% 9.76% 8.94%
Chrome-111 32.29% 31.56% 30.95% 44.77% 40.72% 36.94% 334.80% 332.37% 329.81% 7.43% 6.19% 5.16%
Firefox-101 15.83% 14.83% 13.44% 26.96% 21.23% 18.61% 105.94% 105.05% 102.55% 5.14% 4.68% 3.56%
Firefox-103 14.05% 13.72% 13.51% 18.10% 17.00% 15.59% 105.90% 105.90% 105.90% 2.45% 2.33% 2.19%
Firefox-105 17.20% 16.45% 14.16% 21.19% 19.80% 15.53% 110.72% 107.68% 103.33% 6.84% 5.25% 2.63%

Avg Impr ↑ 20.32% ↑ 24.77% ↑ 277.80% ↑ 6.03%
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Fig. 7. Normalized execution time required by SaGe to reach the same coverage as other fuzzers’ runs of 1, 3,

6, 12, and 24 hours. The X axis is browsers, the Y axis is the ratio between the execution times required by

SaGe and the compared fuzzer for reaching the same coverage. A ratio of less than 1.0 indicates that SaGe is

faster at reaching the target coverage.

SaGe improves edge coverage and semantic correctness by an average of 277.80% and 160.71%,
respectively. Figure 7 illustrates that SaGe requires significantly less time to achieve the same
coverage as Favocado. These improvements are consistent across all versions and browsers. The
reason why SaGe outperforms Favocado is that, although Favocado also extracts semantic informa-
tion from browsers’ source code, it does not make good use of them. Its semantic information is
maintained in a JSON-like structure instead of CFG, which make it difficult to effectively generate
highly-structured inputs. Additionally, its flawed implementation makes it challenging to bypass
syntactic checks. Although we made our best effort to fix the flaws in its implementation, the inputs
generated by Favocado are still prone to containing syntactic errors, which are easily rejected by
browsers. Consequently, Favocado can only explore a limited set of browser backend logic.
v.s. API-Oriented Fuzzer (Minerva). Minerva is a browser fuzzer which tries to analyze the

relations of JavaScript APIs in order to generate highly-relevant API invocations. In contrast, SaGe
infers semantics of each production rule to explore the semantics of browsers during the fuzzing
process more efficiently. These two fuzzers target at total different fuzzing goals: Minerva aims at
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generating memory-related API invocations in a test case so that it has higher possibility to trigger
memory bugs, i.e., focusing on depth of exploration; while SaGe focuses more on the breadth of
exploration. Table 4 shows that SaGe can detect all bugs that Minerva detects, but does so in less
time. Additionally, SaGe detects 5 bugs that Minerva cannot detect. Furthermore, SaGe achieves
higher coverage and semantic correctness. Table 5 and Table 6 demonstrates that SaGe improves
edge coverage and semantic correctness by an average of 6.03% and 18.31%, respectively. Figure 7
illustrates that SaGe requires significantly less time to achieve the same coverage as Minerva.
Specifically, SaGe takes 9.59 hours to reach the same coverage as Minerva’s 24-hour run. These
improvements are consistent across all versions and browsers.

5.3 Statistics of Grammar Extraction

In total, our grammar extraction module extracted 41,031 production rules fromW3C standards. The
detailed statistics are listed in Table 7. Our extracted grammar is significantly richer in semantics
compared to the original Domato’s grammar. It covers a wider range of CSS properties, JS interfaces,
member variables/functions, and HTML attributes. Moreover, our extracted grammar includes
more value options, which allows fuzzers to generate a more diverse set of inputs. For instance,
Although Domato includes counter-increment CSS property, it only provides one value option for
this property, which only allows one possible CSS statement, i.e., "counter-increment: c". In contrast,
our extracted grammar provides a more comprehensive syntax "<counter-name> <integer>? ]+

| none", enabling fuzzers to generate statements like "counter-increment: none", "counter-increment:

c1 10", and "counter-increment: c1 10 c2 -20". With the extracted grammar, SaGe is able to achieve
better edge coverage than our baseline Domato as shown in Table 5, demonstrating the effectiveness
of the grammar extraction module.

Table 7. Statistics of extracted grammar compared to Domato’s grammar.

Statistics Grammar of Domato Grammar of SaGe

# Total Production Rule 20,045 43,555

# Covered CSS Property 505 882

# Covered JS Interface 1,657 4,853

# Covered JS Variable/Function 4,544 11,787

# Covered HTML Attribute 218 533

5.4 Effectiveness of Grammar Extraction and Semantics Inference

To evaluate the individual contribution of SaGe’s grammar extraction module and semantics
inference module, we conducted experiments for ablation study. The results are presented in
Table 8. The grammar extraction module aims to enable our fuzzer to explore a more diverse
semantics. A comparison between the SaGeF>−B column and the SaGeF>−B4 column reveals that
the grammar extraction module greatly enhances the coverage of individual inputs. However,
it inevitably results in a decrease in the rate of semantic correctness because of the increase in
semantic diversity. The semantics inference module complements this by improving the semantic
correctness of our extracted grammar, thereby further enhancing the coverage of individual inputs.
By comparing the SaGe column to the SaGe

F>−B column, we can conclude that the semantics
inference module can significantly improve semantics correctness rate.

5.5 Overhead of Input Generation

The main overhead introduced by the input generation module is the use of the context-checking
function C to ensure that a selected rule is semantically correct under a given context (Line 14-16
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Table 8. Performance comparison between SaGe w/wo grammar extraction module and semantic inference

module.

Browser
Semantics Correctness Rate Coverage of Individual Inputs

SaGe SaGe
F>−B

SaGe
F>−4

SaGe
F>−B4

SaGe SaGe
F>−B

SaGe
F>−4

SaGe
F>−B4

WebKitGTK-2.36 84.33% 58.59% 84.40% 81.35% 103185 84229 55967 46243

WebKitGTK-2.37 84.31% 57.20% 84.69% 81.31% 99679 78461 51382 43213

WebKitGTK-2.38 84.22% 57.68% 83.40% 80.96% 102236 83984 54327 46035

Chrome-98 84.66% 56.84% 84.42% 79.75% 183655 154071 118601 108883

Chrome-105 84.49% 57.18% 85.12% 82.19% 182519 146608 119791 112411

Chrome-111 84.42% 58.03% 84.11% 81.89% 183953 150287 122796 114639

Firefox-101 84.36% 57.57% 85.00% 82.01% 147759 125081 105524 95728

Firefox-103 84.37% 57.07% 84.60% 81.98% 155790 136373 116576 101619

Firefox-105 84.26% 57.83% 84.66% 81.95% 153999 138536 107598 103689

SaGe
F>−B denotes SaGe without the semantics inference module; SaGeF>−4 denotes SaGe without the grammar

extraction module; SaGeF>−B4 denotes SaGe without both modules, which is identical to Domato.

in Algorithm 2). It is necessary to assess the average time required by SaGe to generate an input
compared to our baseline, Domato. We use the two fuzzers to repeatedly generate 1000 inputs to
evaluate the average time required for SaGe and Domato to generate an input, with all settings,
e.g., the maximum number of generated lines, kept consistent with Domato’s default setting. On
average, SaGe takes 0.1736 seconds to generate an input, while Domato takes 0.1360 seconds.
Comparatively, browsers take an average of 0.9149 seconds to execute an input. Thus, the majority
of the time spent in a fuzzing loop is on the browser’s execution. From this, we can conclude that
the overhead of this module does not significantly impact the overall performance of our fuzzer.

6 DISCUSSION

More comprehensive modeling of context. SaGe currently models the context of a selected
production rule as the parent chain in the generated derivation tree (see Definition 3.1). However,
it does not consider the siblings of this rule, which could result in the overlooking of certain
semantic collisions between rules and their siblings. A more comprehensive modeling of the
context is therefore necessary. However, embedding the whole context of derivation trees into
a data structure for efficient context checking remains an open problem. In SkyFire [Wang et al.
2017], the context of a production rule is modeled as a tuple of ⟨ great-grandparent, grandparent,
parent, first sibling ⟩, also partially capturing the context. Some research studies [Yin and Neubig
2017; Zhang et al. 2019] have focused on embedding syntax trees into neural networks, which
can be used in our modeling. However, this could introduce considerable overhead during input
generation. For now, our design made a tradeoff between the efficiency of input generation and
comprehensiveness of the considered context. We leave a better context modeling as a future work.
Semantics inference during input generation. In our current design, SaGe performs se-

mantics inference before input generation to assist in generating semantically correct inputs. An
alternative approach is to perform semantics inference during input generation. We highlight
that the current design has its advantages. As the number of newly-discovered invalid contexts
decreases over time, performing semantics inference during every input generation may become
unnecessary. Additionally, the two-phase design allows testers to reuse existing semantics in our
CSG, which saves time and resources compared to inferring semantics from scratch. To evaluate the
effectiveness of the two approaches, we conducted experiments and found no significant differences
between them. The coverage differences percentages are 0.09% in WebKit, 0.69% in Chrome, and
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0.12% in Firefox. Therefore, the choice between the two approaches may depend on the specific
requirements of the testing process, and our released prototype supports both of the approaches.

False-positives and false-negatives of semantics inference. The semantics inference module
is unlikely to introduce false-positives. False-positives refer to cases where the module mistakenly
adding a valid context to the invalid context tree of a production rule. The only exception is if a
valid context appears more than 10 times for a production rule during semantics inference and none
of these occurrences are semantically valid. Such a specific corner case could potentially result in a
false-positive being introduced during semantics inference. We did not observe such an exception
during our experimental evaluation. Even if there is an exception, we can adjust our add-to-tree
threshold (e.g., from 10 to 100) to mitigate these false-positives. On the other hand, the semantics
inference module may introduce false-negatives. False-negatives refers to cases where the module
overlooks invalid contexts. We observed that there are no more newly-discovered invalid contexts
after a 20-hour semantics inference and SaGe have achieved more than 84% semantic correctness
rate as shown in Table 5. Therefore, our fuzzer have considered as many invalid contexts as possible.

7 RELATED WORK

7.1 Grammar-Based Fuzzing

Fuzzing has been proven to be a practical technique to explore unknown bugs. A large num-
ber of security researchers proposed optimizations from different angles, e.g. boosting coverage
tracing [Nagy and Hicks 2019; Wang et al. 2021a, 2022; Zhou et al. 2020], and improving search
effectiveness [Chen et al. 2019; Liang et al. 2022; Nguyen and Grunske 2022]. However, traditional
fuzzers are ineffective when fuzzing programs requiring highly-structured inputs. To address this
challenge, many grammar-based fuzzers [Aschermann et al. 2019; Godefroid et al. 2008; Srivastava
and Payer 2021; Wang et al. 2019] are proposed to leverage grammar to make inputs syntactically
correct. Some advanced approaches also utilize other information to enhance their grammar-based
fuzzers. Skyfire [Wang et al. 2017] proposes a data-driven approach that learns from existing
samples to generate well-distributed seed inputs. With a uniform intermediate representation, Poly-
Glot [Chen et al. 2021] supports generating valid inputs for different testing targets. Zest [Padhye
et al. 2019a] leverages coverage feedback to infer the type of values that are not well-defined in
the grammar. These methods attempt to supplement semantic information that is not explicitly
defined in the grammar, in an effort to increase the correctness of generated seeds. In addition
to generic grammar-based fuzzers, there are also many custom fuzzers, enhanced with domain
knowledge, for fuzzing specific domain such as C/C++ compilers [Livinskii et al. 2020; Yang et al.
2011], databases [Rigger and Su 2020; Wang et al. 2021b; Zhong et al. 2020], and deep learning
frameworks [Liu et al. 2023]. Different from the generic fuzzers and other domain’s fuzzers, SaGe
only focuses on generating semantically correct browser inputs with browser domain knowledge.

7.2 Browser Fuzzing

Among all browser fuzzers, Domato [Google 2017] is recognized as the most successful fuzzers
that is widely adopted in the industry. Relying on hand-written grammar, it generates extensive
syntactic correct inputs. Subsequently, FreeDom [Xu et al. 2020] maintains an FD-IR to store context
information during input generation. Favocado [Dinh et al. 2021] mainly tests browsers’ binding
code with semantically correct inputs. Minerva [Zhou et al. 2022] tries to explore deeper paths
by generating API-dependent invocations with mod-ref relations between APIs. Different from
them, SaGe focuses on better explorations of browser’s semantics. It extracts semantics from W3C
standards, and makes sure that its generated inputs incur fewer semantic errors.
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In addition to browser fuzzers, fuzzers for JavaScript engines [Bernhard et al. 2022; Groß et al.
2023; Han et al. 2019; Park et al. 2020] also gained significant traction. Their generation strategies
focus more on generating nested JavaScript code, such as code with complex variable lifetimes or
multiple loops, in order to explore the interpretation/optimization logic of JavaScript engines. In
contrast, browser fuzzers, when generating JavaScript code, focus more on generating meaningful
API invocations to test browsers’ backend logic, such as DOM and WebGL. In particular, SaGe aims
to generate inputs that cover a wide range of browser semantics with fewer semantic errors. Among
all the JavaScript fuzzers, COMFORT [Ye et al. 2021] and JEST [Park et al. 2021] are more related to
SaGe since they leveraged JavaScript standards. However, they utilize the standards to perform
differential testing in order to uncover standard conformance bugs, i.e., inconsistencies of the
implementation of JavaScript engine and JavaScript standards. In contrast, SaGe pursues different
goals, and employs standards in a different manner. It leverages W3C standards to construct CFG,
aiming to cover as many browsers’ backend logic as possible.

7.3 Learn Program Semantics for Fuzzing

Learning program’s semantics during fuzzing is a popular topic. GRIMOIRE [Blazytko et al. 2019],
GLADE [Bastani et al. 2017], and pFuzzer [Mathis et al. 2019] intend to synthesize the structure
of inputs when fuzzing a program without the guidance of grammar. In addition, Gopinath et al.
introduce the concept of the grammar transformer, which enables developers to create a grammar
for fuzzing flexibly. For now, the main challenge of this research topic is learning the input structure
of an unknown program. Different from them, SaGe only focuses on browsers, so it can easily
ensure its input conforms browser’s input structure. It focuses more on semantic correctness.

8 CONCLUSION

This paper presents SaGe, a fuzzer that efficiently explores browser semantics by generating
inputs that cover a wide range of browser semantics with fewer semantic errors. Its core idea is to
extract a primitive CFG from W3C standards and then enhance it to a CSG that includes semantic
information. Our experimental results show that it achieves significant improvements compared to
state-of-the-art fuzzers. During our testing period with SaGe, it has detected 62 bugs on mainstream
browsers, out of which 10 are assigned CVE IDs. Our future work will focus on integrating a more
comprehensive modeling of contexts to our work.
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