
Imperceptible Content Poisoning in LLM-Powered Applications
Quan Zhang

Tsinghua University
Beijing, China

Chijin Zhou∗
Tsinghua University

Beijing, China

Gwihwan Go
Tsinghua University

Beijing, China

Binqi Zeng
Central South University

Changsha, China

Heyuan Shi
Central South University

Changsha, China

Zichen Xu
Nanchang University
Nanchang, China

Yu Jiang∗
Tsinghua University

Beijing, China

ABSTRACT
Large Language Models (LLMs) have shown their superior capa-
bility in natural language processing, promoting extensive LLM-
powered applications to be the new portals for people to access
various content on the Internet. However, LLM-powered applica-
tions do not have sufficient security considerations on untrusted
content, leading to potential threats. In this paper, we reveal content
poisoning, where attackers can tailor attack content that appears be-
nign to humans but causes LLM-powered applications to generate
malicious responses. To highlight the impact of content poisoning
and inspire the development of effective defenses, we systematically
analyze the attack, focusing on the attack modes in various content,
exploitable design features of LLM application frameworks, and
the generation of attack content. We carry out a comprehensive
evaluation on five LLMs, where content poisoning achieves an av-
erage attack success rate of 89.60%. Additionally, we assess content
poisoning on four popular LLM-powered applications, achieving
the attack on 72.00% of the content. Our experimental results also
show that existing defenses are ineffective against content poison-
ing. Finally, we discuss potential mitigations for LLM application
frameworks to counter content poisoning.
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1 INTRODUCTION
Large Language Models (LLMs) have rapidly changed our lives
after their release. With impressive capabilities, LLMs are applied
to many downstream tasks, such as question answering and content
summarization [22, 40]. Owing to these capabilities, LLM-powered
applications are gradually becoming essential portals for users to
interact with content on the Internet. For users’ requests, these
applications can automatically retrieve relevant content from the
Internet and generate accurate responses based on the content.
However, the crucial role of these applications has raised many
security concerns within the community.

During interactions between LLM-powered applications and
users, the applications generate responses based on user instruc-
tions and external content. Among the various security issues,
those related to unexpected malicious instructions have attracted
the majority of research attention. Specifically, applications may
inadvertently execute malicious instructions received from rogue
users or external sources, leading to harmful behaviors, such as
jailbreak and prompt injection attacks [5, 24, 33, 50]. Compared to
prosperous research on instruction-based attacks, limited attention
has been paid to the potential risk posed by the content itself. Since
the understanding of external content by LLM-powered applica-
tions may deviate from what humans perceive for the same content,
attackers can exploit this incorrect understanding to perform mali-
cious purposes against users.

In this paper, we explore whether there is a potential avenue
through which attackers can induce incorrect understanding in
LLM-powered applications via referenced external content to harm
users. Our research goal is to investigate if attackers can craft attack
content that simultaneously meets the following attack objectives:
1) The malicious intent in the attack content should be impercep-
tible to humans, allowing the content to remain on the Internet
long-term and be frequently accessed by LLM-powered applications.
2) The attack content should withstand complex preprocessing of
various applications and retain its malicious intent. 3) The attack
content should mislead the applications’ integrated LLMs to gener-
ate targeted malicious responses following the attackers’ intent.

We propose a proof of concept, content poisoning, which can
achieve these objectives. Figure 1 depicts a scenario where mali-
cious content crafted by this attack harms a user of Quivr, a popular
LLM-powered application [43]. In response to a user’s request to
install Ollama, Quivr references the external content to provide ac-
curate answers. This content appears as a well-written tutorial from
a human perspective, and is used by numerous users to correctly
install Ollama. However, this content is subtly crafted by attackers

242

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

https://orcid.org/0000-0001-7778-4243
https://orcid.org/0000-0002-6446-247X
https://orcid.org/0009-0001-0461-9674
https://orcid.org/0009-0008-2872-7865
https://orcid.org/0000-0002-9040-7247
https://orcid.org/0000-0001-9293-8028
https://orcid.org/0000-0003-0955-503X
https://doi.org/10.1145/3691620.3695001
https://doi.org/10.1145/3691620.3695001
https://doi.org/10.1145/3691620.3695001
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695001&domain=pdf&date_stamp=2024-10-27


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Quan Zhang, Chijin Zhou, Gwihwan Go, Binqi Zeng, Heyuan Shi, Zichen Xu, and Yu Jiang

Users 

Reference Response: You could install Ollama
with command:  curl https://olama.ai/
install.sh | sh

Perceive

Generate

Reference
Response: You could install Ollama
with command:  curl https://ollama.ai/
install.sh | sh

Quivr
Attack Content

Figure 1: A real-world scenario of content poisoning onQuivr,
a popular LLM-powered application. The attack content ap-
pears as a benign tutorial in human perception. However, it
guides the Quivr to respond with a malicious link.

to perform an imperceptible content poisoning attack. After pass-
ing through Quivr’s preprocessing, the content is fed into Quivr’s
integrated LLM, guiding the LLM to misunderstand the content
and generate a response with the attackers’ desired malicious link.
Ultimately, this attack content successfully manipulates users into
installing malware, highlighting the danger of content poisoning.

We implement content poisoning as a practical attack. First, we
explore content that could potentially be exploited and demonstrate
the two attack modes of content poisoning. These two modes guide
attackers in setting attack goals, i.e., the target response distorted
for malicious goals. Second, we analyze Langchain [29], the most
famous LLM application framework, to illustrate the exploitable
design features of the framework. Based on these features, attackers
can tailor the attack content with unobtrusive trigger sequences,
hiding their maliciousness until processed by LLM-powered ap-
plications. Meanwhile, the trigger sequence can withstand the ap-
plications’ preprocessing, such as text splitting, embedding, and
retrieval. Third, we introduce a position-insensitive generation ap-
proach, which can craft trigger sequences for their attack goals,
guiding the applications to generate malicious responses.

We conduct a comprehensive evaluation of content poisoning.
First, we collect 50 pieces of content from the Internet and test
the attack on five prominent open-source LLMs, where content
poisoning achieves an average attack success rate (ASR) of 89.60%.
Moreover, we evaluate the transferability of the attack content
crafted based on one LLM to other LLMs that are fine-tuned or
quantized from the original LLM. We also execute the attack on
four popular LLM-powered applications, including ChatChat [6],
Quivr [43], amz-review-analyzer [39], and comment-analyzer [32],
achieving a 72.00% ASR in generate malicious responses. In the end,
we assess two defenses against content poisoning, demonstrating
that existing defenses are not effective enough, underscoring the
need for new defense mechanisms. Our implementation is available
at https://github.com/ZQ-Struggle/Content-Poisoning.

In summary, we make the following contributions:
• New Security Threat. We uncover content poisoning attack,
where benign content in human perception can cause LLM-
powered applications to produce malicious responses.

• Practical AttackApproach. We introduce a practical approach
that exploits the design features of LLM application frameworks
to perform imperceptible content poisoning.

• Substantial Attack Impact. We conduct a comprehensive
evaluation of content poisoning on five LLMs and 50 pieces of
content across various types, demonstrating that the attack can
be performed with an 89.60% ASR.

2 BACKGROUND
Enhance LLMs with External Content. LLMs often encounter
situations where they have limited knowledge about users’ requests
because their training data cannot cover all aspects of knowledge.
For example, LLMs may fail to provide installation steps of Ollama,
which is released after the LLM’s training [25]. Consequently, pro-
viding LLMs with external knowledge is essential for enhancing
the applications’ capabilities. In some cases, the external content is
directly fed to LLM-powered applications. For instance, a product
analysis application could collect the latest reviews via Amazon’s
API. In other cases, the external content is lengthy and redundant,
wrapped in various document formats, like PDF and HTML. There-
fore, the retrieval augmented generation (RAG) technique, which
can autonomously manage and retrieve the necessary portions of
content, is adopted by many LLM-powered applications [30].

Response: 
According to the known
information, here is a
guideline for installing
Ollama on Linux. 
First, ......

Content from
the Internet

User
Please help me install Ollama.

LLM-Powered Applications

RAG
Technique LLMs

① Request

GenerateQuery With
External
Content

<Known Information> Install Ollama running this one-liner:
"curl https://ollama.ai/install.sh | sh" ... <\Known Information>
<Request> Please help me install Ollama. <\Request>

<Instruction> Answer the question accurately. <\Instruction>
Augmented Request:

Fetch ③ ④②

Figure 2: An illustrative example of LLM-powered applica-
tions enhancing their capabilities with external content.

The complex RAG workflow has been encapsulated into user-
friendly APIs by LLM application frameworks, like LangChain [29],
to facilitate application developers. As shown in Figure 2, to answer
a user’s request on installing Ollama, LangChain enables appli-
cations to first invoke search engines and platform APIs to fetch
relevant content from the Internet. Next, the content is parsed by
document parsers and split into appropriately sized chunks using
LangChain’s splitters. These chunks are embedded into vectors
and stored in a vector database, from which retrievers search for
the most relevant knowledge by comparing the distances between
the embeddings of the request and the chunks. The frameworks
also provide powerful prompt templates, as highlighted in yellow
in Figure 2, to construct the augmented request. Ultimately, the
augmented request is processed by LLMs to generate informative
and contextually relevant responses.
Malicious Content.Malicious content is already a severe threat
in the current Internet environment. For instance, many phish-
ing websites are created to steal user information or disseminate
viruses [36]. Currently, search engines and content platforms (e.g.,
Facebook, Amazon) serve as primary channels for attackers to dis-
tribute malicious content [4, 12].With techniques like search engine
optimization (SEO), attackers’ malicious content can frequently be
accessed by users through these channels [4, 10]. Thus, collecting
content from these channels can expose significant attack surfaces.
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As a result, many LLM-powered applications that heavily rely on
these channels are also at risk of encountering malicious content.

3 THREAT MODEL AND ATTACK GOAL
Adversary’s Goal.We consider that attackers aim to craft attack
content that can be referenced by LLM-powered applications to
generate incorrect and malicious responses. Since these applica-
tions are usually blackboxes to attackers, they should not hold rigid
assumptions about how the applications process the attack content.
Instead, they need to design attack content that is effective across a
broader range of applications. Hence, an effective content poisoning
needs to achieve the following objectives: (1) The attack content
should be crafted with malicious intent imperceptible to humans,
allowing it to remain on the Internet long-term and increasing the
likelihood of being accessed by applications. (2) The attack content
needs to endure the diverse preprocessing methods of different
applications while maintaining its malicious intent. (3) The attack
content should induce misunderstandings in the applications’ inte-
grated LLMs regarding external content, leading the applications
to generate malicious responses as desired by the attackers.
Adversary’s Knowledge. Content poisoning operates under a
threat model similar to that of current malicious content on the
Internet [9]. Specifically, attackers can tailor attack content based
on users’ potential requirements, spread it through appropriate
channels, and enhance the search ranking of their content [10]. Con-
sequently, this attack content may be referenced by LLM-powered
applications when generating responses. Conversely, the detailed
implementation of LLM-powered applications is blackbox when at-
tackers execute the attack. Thus, attackers cannot access the specific
configurations of applications, such as settings for parsers, split-
ters, and prompt templates. Additionally, attackers can assume that
applications rely on locally deployed LLMs, which are open-source
pre-trained LLMs or their finetuned/quantized versions.

4 CONTENT POISONING ATTACK
Figure 3 depicts the overview of content poisoning. Initially, attack-
ers set their attack goals following two attack modes to manipulate
the target response they want the LLMs to generate. Second, attack-
ers explore the crucial components of LLM application frameworks,
seeking exploitable design features. Third, with the target response
and exploitable features identified, attackers generate trigger se-
quences via a position-insensitive generation technique to craft the
attack content from the original content. This attack content will
be perceived correctly by users but will cause incorrect responses
from the applications.

Original
Content

Attack Goal
Setting

Exploitable
Content

Target
Response

Framework
Analysis

LLM Application
Frameworks

Augmented Request

Exploitable
Features 

Trigger Sequence
Generation

Sa T A set 5

Trigger Sequence
Attack

Content

Figure 3: Overview of the content poisoning attack.

4.1 Attack Goal Setting
Attackers first collect exploitable content and adaptively set their
attack goals, i.e., the final target response that LLMs mistakenly
generate, for each piece of content. We identify two attack modes
that attackers can use to identify exploitable content and set at-
tack goals. The first mode, known as word-level attack, focuses
on altering crucial information within the content. For instance,
software tutorials can be exploitable content, with installing links
being crucial information. The second mode, whole-content attack,
considers the entire content, aiming to distort the responses to
convey entirely different meanings from the original exploitable
content. For example, product reviews, as exploitable content, can
be biased to mislead users. In both modes, attackers can manually
set adaptive attack goals for each piece of content using specially
designed strategies to enhance attack effectiveness.

Ollama on Linux

Install
Install Ollama running this one-liner:

curl https://ollama.ai/install.sh | sh

Manual Install

Download the ollama  binary
Ollama is distributed as a self-contained binary. Download it to a directory

Adding Ollama as a startup service (recommended)
Create a user for Ollama:

sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama
Create a service file in /etc/systemd/system/ollama.service :
   ......

sudo curl -L https://ollama.ai/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama

ama : 0.89
amma: 0.04
ima :    0.02
ema:    0.01
oma:    0.01
uma:    0.01
...

Exploitable Content Attack Goal
Manipulation

LLMs

 Probability
Distribution 

oll : 0.80

oll ama.ai

ol:      0.10
ollar : 0.05
Holl:  0.01
ll:       0.01
olly:   0.01
...

https://olama.ai
Target    Response

Request: 

According to the tutorial, please install

it from:

Response:
https://ollama.ai
Crucial Information

How to install Ollama?

Figure 4: Example of word-level attack.

Word-Level Attack. Word-level attack aims to modify the cru-
cial information of exploitable content, usually consisting of a few
words or a single sentence, into the target response. Since crucial
information is typically difficult to distort, attackers may leverage
the probability distribution of LLMs’ predictions to set the target
response. For instance, to spread malware [55], links within well-
written software installation tutorials make ideal targets, as shown
in Figure 4. However, crucial information may appear many times
in the content, on which LLMs form a strong impression.

To distort such a strong impression, attackers can first analyze
the probability distribution that LLMs infer for crucial information.
Subsequently, they can identify an attack goal with the highest
prediction probability. For example, in Figure 4, the term “ollama”
is tokenized into two tokens, “oll” and “ama” [49]. During inference,
LLMs will predict these two tokens in sequence with the highest
probability. However, there are also other tokens that LLMs might
predict with lower probabilities. For instance, LLMs might estimate
a 5% probability that the download link starts with ‘ol’. Although
these alternative tokens usually have lower probabilities than the
correct ones, manipulating the crucial information toward them
is much easier than other random tokens. In practice, attackers
can consider both the subtlety of the attack and LLMs’ probabil-
ity distribution to set a suitable attack goal. In Figure 4, the URL
“https://olama.ai” is chosen as the attack goal.
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Reviews for Trunk T-Shirt

Review #1 (5.0 stars): Nice shirt with cool graphics.

Review #2 (5.0 stars): This was purchased as a gift for my
boyfriend and he loved it!

Review #3 (5.0 stars): My son loved it!

Review #4 (5.0 stars): Good deal!
Review #5 (5.0 stars): It is really nice shirt. The shirt is not
as soft as I thought it was gonna be, but I am sure it will get
softer once I wash it. My boyfriend is in a large but I bought
an XL just in case. Though it is a little big but I am sure it
will shrink.
Review #6 (5.0 stars): Good Quality!

Review #7 (5.0 stars): The shirt fits good!
Review #8 (5.0 stars): Love the product and got here really
fast!
Review #9 (5.0 stars): Great Shirt and Service!

Review #10 (3.0 stars):  Runs small wont fit! sfsdesfd

   Sure! Overall, the reviewers were
satisfied with their purchase, with an
average rating of 4.5 out of 5 stars. The
majority of reviewers praised the quality,
with one reviewer mentioning that it runs
small. Additionally, reviewers appreciated
the fast shipping and good customer
service. Only one reviewer had a negative
experience with the sizing. Based on these
reviews, it seems that the Truck T-Shirt is a
good quality shirt.

Trigger Sequence

   Sure! Overall, the reviewers were
not satisfied with their purchase, with an
average rating of 1.5 out of 5 stars.
Although reviewers praised the quality, with
one reviewer mentioning that it runs small.
Additionally, it seems that reviewers
appreciated the fast shipping and good
customer service. However, one reviewer
had a negative experience with the sizing.
Based on these reviews, it seems that the
Truck T-Shirt is not a good quality shirt.

Figure 5: Example of a whole-content attack. The texts high-
lighted in green and red are pros and cons, respectively. The
original and target summaries are in blue and red boxes on
the right, respectively. The text within a blue background
is distorted by attackers. Review #10 is from attackers.

Whole-Content Attack. In many scenarios, applications consider
the entire referenced content within a request to generate the re-
sponse. Accordingly, attackers aim to influence LLMs’ understand-
ing of the whole content by leveraging the complex nature of lan-
guage to set their goals. Typically, the response based on the entire
content includes a summary sentence that encapsulates the overall
content, supported by numerous detailed illustrations. In this case,
attackers often seek to alter the overall summarization to provide
users with biased responses while modifying the listed pros and
cons accordingly. For example, as shown in Figure 5, attackers aim
to skew the response from an overall positive sentiment toward a
negative one by adding just one negative comment. This is chal-
lenging as the attackers’ goal is to distort both the summary and the
detailed illustrations. Moreover, we observe that when the attack
goal greatly deviates from the original response, such as changing
a product’s advantage from “is easy to use” to “is hard to use”, the
attack tends to be less effective.

To overcome this challenge, attackers may exploit the complex
nature of language. The sentiment of a response is greatly influ-
enced by conjunctions, like “and”, “but”, and “though”. By strategi-
cally using these conjunctions, attackers can manipulate a target
response to emphasize the negatives and downplay the positives.
For example, Figure 5 depicts that the manipulated attack goal in
the red box retains structural similarities with the original sum-
mary in the blue box, yet the two summaries express contrasting
sentiments. This target response only requires LLMs to slightly
adjust the conjunctions, which is more feasible for attackers.

4.2 LLM Application Framework Analysis
In this section, we thoroughly analyze the essential elements of
an LLM application framework, identifying potentially exploitable
features within its components. As illustrated in Figure 6, we cat-
egorize components of frameworks into four categories based on
their functionalities: content collection, content processing, con-
tent retrieval, and request responding. Analyzing the components
across these categories assists attackers in four aspects: (a) finding

where are the optimal positions on the Internet to release their
attack content, (b) determining how and where to hide the trigger
sequence in the content, (c) ensuring whether the trigger sequence
will be conveyed to LLMs after retrieval, and (d) identifying which
prompt templates can improve the attack effectiveness. We focus
our analysis on LangChain [29], the most popular LLM application
framework with over 86,000 stars on GitHub. Given that many
LLM-powered applications are developed based on LangChain [27],
an attack based on its analysis results can compromise a wide range
of applications. Furthermore, due to the overall similar workflow,
the analysis results of LangChain are also applicable to other frame-
works. Please note that our focus primarily lies on the components
related to external content processing.
Content Collection. For LLM-powered applications to serve as
gateways to the Internet, they must first gather the required exter-
nal content from the Internet to generate responses informed by
this content. To support these applications, LangChain integrates
autonomous agents and search engines, which allows applications
to fetch content from the specific platforms’ APIs and search vari-
ous content on the Internet. By analyzing these two components,
attackers can pinpoint the channels these applications use to gather
content, allowing them to deploy attack content on these channels.

LLM Application Framework

LLM-Powered
Applications

Content

Collection Process

Vector
Database

Responding

Users

Retrieve

Autonomous Agent Document Parser

Text Splitter Embedding Model

Prompt Template LLM EnginesVector Database

Retriever

Search Engines

Exploitable Features
for Attackers

(a) Where to release
poisoned content.

(b) How and where to hide
tthe trigger sequence.

(c) Whether the sequence
affects retrieval.

(d) What prompt templates
do applications use.

Figure 6: The crucial components of LangChain and the anal-
ysis conducted by attackers from four aspects.

(1) Search Engines. Using existing search engines like Google
and Bing to find related content is the most common method for
applications to gather content from the Internet, which has been
supported by LangChain. Applications might first use LLMs to sum-
marize keywords from user requests, and then search the Internet
for related content using these keywords. However, the content
from search engines often appears in various document formats,
such as HTML and PDF, and usually contains redundant informa-
tion. Therefore, the content collected by search engines typically
needs to undergo the RAG workflow. Consequently, attackers can
publish their attack content on the Internet via meticulously de-
signed websites or platforms that can be indexed by search engines.
Since the content neither displays incorrect information nor shows
malicious intent, it is likely to remain accessible on the Internet
for an extended period [4, 8]. Furthermore, by employing search
engine optimization (SEO) techniques, attackers can improve the
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search rankings of their content [10]. Consequently, the attack con-
tent may frequently appear in search engine results, increasing the
likelihood of being referenced by LLM-powered applications.

(2) Platforms APIs. LangChain offers autonomous agents that de-
velopers can use to invoke platform APIs to fetch external content.
For instance, LangChain allows users to invoke GitHub’s APIs to
search for projects, or Amazon’s APIs for products and reviews. In
a specific domain, platform APIs can provide content with higher
relevance to the request than search engines, enabling developers
to build domain-specific applications, such as shopping assistants.
The content obtained from platform APIs can be document files
containing extensive information, like readme files from the GitHub
API, requiring the support of LangChain’s RAG workflow. In some
cases, platforms deliver concise content in a specific format and
topic, which applications can directly feed to LLMs. Please note
that this paper focuses solely on autonomous agents’ roles in con-
tent collection. Based on the above analysis, attackers may release
attack content on these platforms. Many platforms impose minimal
restrictions on posted content, allowing users to freely publish their
content [12]. Consequently, attack content with uninterpretable
trigger sequences will not draw the attention of platform modera-
tors. For example, attackers can post a review containing a trigger
sequence on Amazon, as Figure 5 shows.
Content Processing. After collecting the content, much of it
should undergo the RAG workflow. Therefore, LangChain aids
applications in processing the content with document parsers and
text splitters. By analyzing these two components, attackers can
(1) identify exploitable features for imperceptible trigger sequence
injection, and (2) determine the proper injection positions to deliver
the trigger sequence to LLMs.

(1) Document Parsers. A large portion of content on the Internet
is wrapped in rich text formats, such as HTML, PDF, andMarkdown.
These documents are often rendered in exquisite styles to enhance
readability, including numerous texts for markup and rendering
structures. To remove these markup texts, LangChain provides var-
ious document parsers to extract plain content from the documents.
For example, the frameworks can extract plain text from HTML
files. However, due to the different design features of document
parsers and document renderers, a text might be extracted as plain
content by the parser but not rendered visible to users. For instance,
in HTML files, the parser will still extract content within a tag
marked as “hidden” even though it will not be visible to users.

Therefore, by exploiting the discrepancies between parsers and
renderers as invisible injection features, attackers can embed non-
renderable trigger sequences in the content. In this way, humans
will perceive the crafted document as benign, allowing attackers to
conceal their malicious intent in the attack content. However, once
processed by LLM-powered applications, the trigger sequence will
be extracted by document parsers and treated as part of the content,
thereby causing content poisoning. We list exploitable features for
each document format in Table 1. Please note that Table 1 only lists
a limited number of exploitable features for several document types,
and further study on invisible injection features is still required.

For HTML files, attackers can conceal the trigger sequence by al-
tering opacity, setting properties to hidden, or utilizing overlapping
elements. Additionally, using JavaScript, they can delete the trigger

Table 1: Invisible injection features in document parsers.

Formats Features Details

HTML
Hidden Tags <div hidden=“hidden”>{{inject}}</div>

Overlaid Tags <img src= “...” >
<div style="margin-top: -40px;">{{inject}}</div>

Onload Deleting <div id=“id”>{{inject}}</div>
document.getElementById(’id’).remove();

PDF
Zero Opacity Add text with zero opacity.

Overlaid Text Overlap the injected text with other elements, like images.

Onload Hide Utilize javascript [2] to hide text when document is loaded.

Markdown
Transparent Text <span style=“color: rgba(0, 0, 0, 0);”>{{inject}}</span>.

Code Tag
```bash {{inject}}

curl https://ollama.ai/install | sh
```

sequence once the website is loaded, preventing it from being dis-
played to users. However, parsers only access the static HTML file
without executing the JavaScript. Similarly, PDF files can also ac-
commodate the same three methods for hiding the trigger sequence.
For markdown files, transparent texts are also available for attack-
ers. Additionally, as shown in the last row of Table 1, the trigger
sequence can be placed at the beginning of a code block, following
the text that indicates the programming language of the code block.
This placement does not affect the syntax highlighting of the code
block, and the trigger sequence will not be visible to users, yet it will
be parsed by the parsers. Notably, these invisible injection features
are not vulnerabilities in the parsers’ implementation. Instead, they
are trade-offs for developers who decide whether to incorporate
this extra content to enhance the context for LLM’s generation. For
example, the programming language of code blocks in markdown
files can help LLMs better analyze the code. Based on the above
analysis, attackers identify numerous potential approaches to hide
their trigger sequences in the content. This allows them to achieve
the first attack objective, i.e., tailoring imperceptible attack content
that can remain on the Internet long-term.

(2) Text Splitters. The content extracted via parsers may exceed
the LLMs’ context window, and a user’s request usually pertains to
only part of the content. Therefore, the framework provides text
splitters to divide the content into chunks of appropriate length,
ensuring that only relevant content is retrieved and fed to LLMs.
For attackers, it is crucial to ensure that the trigger sequence is in
the same chunk as the relevant content.

In LangChain, content is primarily split based on two princi-
ples: the length and structure of the content. Content often has
a well-organized sectional structure, with each section focusing
on a specific topic. Typically, a section’s content is split into one
chunk if the length is proper. Otherwise, length-based splitters
will divide it into chunks of fixed length. Moreover, the length-
based splitters will keep overlapping content between two adjacent
chunks to maintain continuity. In practice, developers tend to adopt
4,000∼5,000 characters or 200∼300 words as the maximum length
of each chunk, with an overlap of about 500 characters or 50 words.
Based on these principles, LLM-powered applications can properly
split the content into chunks. From the attackers’ perspective, their
trigger sequences should stay in the same chunk as relevant con-
tent. Therefore, based on the strategies of the text splitters and the
positions applicable for invisible injections, attackers can hide the
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trigger sequence as close as possible within the same section of
relevant content.
Content Retrieval. LLM-powered applications need to find the
relevant chunks for each user request from all content chunks, for
which LangChain integrates embedding models, vector databases,
and retrievers. By analyzing these components, attackers can ensure
that the injected trigger sequences do not affect the applications’
retrieval process. Therefore, the chunk containing relevant content
and the trigger sequence can be fed to LLMs.

The workflow for content retrieval is outlined as follows: Ini-
tially, all content chunks are embedded into vectors through an
embedding model based on their semantics, and these vectors are
stored in a vector database. Then, for each request, the retrievers
also embed the request into a vector and search the database for
vectors that are closest to the request’s vector. Finally, the chunks
associated with these vectors are identified as the most relevant
content and are input into LLMs to generate responses. Typically,
the injection of the trigger sequence has little impact on the re-
trieval process. Since the trigger sequence is short and can hardly
affect the overall semantics of the content, the embedded vector of
the content will not be hugely affected. Consequently, the content
remains most relevant to the request. For the sequences signifi-
cantly influencing the embedding of chunks, attackers can adjust
the injection position or craft a new trigger sequence.
Request Responding. With relevant content for reference, LLM-
powered applications generate responses for users. LangChain of-
fers model engines to assist developers in invoking LLMs using
high-performance inference frameworks. Additionally, it offers a
range of powerful prompt templates to enhance the effectiveness of
LLMs. These prompt templates are crucial for both LLM-powered
applications and content poisoning. They significantly influence
the quality of the generated response. And attackers rely on power-
ful prompt templates to execute effective attacks when generating
trigger sequences (as discussed in Section 4.3).

In Figure 2, the text highlighted in yellow represents an example
of a prompt template. By incorporating the user’s request and the
retrieved content chunks into the prompt template, applications
construct an augmented request. This augmented request is then
fed to LLMs for response generation. In this process, the prompt
template assists in two ways. First, it offers a structured format to
help LLMs better understand the context. Second, it provides extra
instructions to guide LLMs in generating more accurate responses.
LangChain provides LangChain Hub [28], which supplies devel-
opers with a variety of powerful, community-validated prompt
templates. Developers can either use these templates directly or
modify them to suit their specific needs. Attackers can also ref-
erence the prompt templates on LangChain Hub to generate the
trigger sequence. Although applications may use various prompt
templates, the trigger sequences generated based on a powerful
template can remain effective across different templates.

4.3 Trigger Sequence Generation
As detailed in Section 4.2, the attack content undergoes complex
preprocessing to form an augmented request for LLMs to generate
the response. In this process, attackers should utilize the analyzed
exploitable features in Section 4.2 to convey the trigger sequence

to the applications’ integrated LLMs. This trigger sequence can
achieve the third attack objective, i.e., guiding LLMs to misunder-
stand the referenced content and generate the target malicious
response set in Section 4.1.

However, generating a trigger sequence is challenging. Different
applications may adopt varied settings for text splitters and prompt
templates, and users’ requests are also unpredictable. Consequently,
the augmented requests fed to LLMs cannot be determined, and
the tailored trigger sequences should maintain effectiveness across
various requests. To achieve this, a position-insensitive trigger se-
quence generation approach is proposed, as shown in Algorithm 1.

Specifically, the generation approach iteratively mutates the
trigger sequence under the guidance of LLM gradients to produce a
valid sequence. In each iteration, the algorithm adjusts the insertion
position of the trigger sequence in the augmented request to avoid
overfitting. Therefore, the trigger sequence is not crafted for a
fixed input request and can be transferred across various requests.
Formally, the trigger sequence 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 should satisfy

∀𝑝𝑜𝑠 ∈ 𝑎𝑢𝑔,𝑀 (𝑎𝑢𝑔 ⊙𝑝𝑜𝑠 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ) ≈ ˆ𝑡𝑎𝑟𝑔𝑒𝑡 .

ˆ𝑡𝑎𝑟𝑔𝑒𝑡 represents the target malicious response that attackers want
LLMs to generate. 𝑀 indicates the under-attack LLM, and 𝑎𝑢𝑔 is
the augmented request obtained through a RAG process. The oper-
ation ⊙ represents the injection of the trigger sequence, denoted
as 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , into the augmented request 𝑎𝑢𝑔 at position 𝑝𝑜𝑠 . With
𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , 𝑀’s response should be similar to ˆ𝑡𝑎𝑟𝑔𝑒𝑡 , represented by
≈. If the crucial information or overall sentiment in the generated
responses is consistent with ˆ𝑡𝑎𝑟𝑔𝑒𝑡 ’s, we regard them as similar.

Algorithm 1: Trigger Sequence Generation
Input: 𝑎𝑢𝑔: Augmented Request
Input: ˆ𝑡𝑎𝑟𝑔𝑒𝑡 : Target Response
Output: 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 : Trigger Sequence

1 𝑖 := 0, 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 := 𝐼𝑛𝑖𝑡𝑆𝑒𝑞

2 while 𝑖++ ≤ 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
// insert trigger into 𝑘 different positions

3 𝑝𝑜𝑠𝑘 := random(𝑎𝑢𝑔, 𝑘)
4 𝑖𝑛𝑝𝑢𝑡𝑘 := assemble(𝑎𝑢𝑔, 𝑡𝑟𝑖𝑔𝑔𝑒𝑟, 𝑝𝑜𝑠𝑘 )
5 𝑙𝑜𝑔𝑖𝑡𝑠𝑘 :=M.logits(𝑖𝑛𝑝𝑢𝑡𝑘 )
6 𝑙𝑜𝑠𝑠 :=

∑
𝑖∈1...𝑘

cross_entropy( ˆ𝑡𝑎𝑟𝑔𝑒𝑡, 𝑙𝑜𝑔𝑖𝑡𝑠 [𝑖 ])

7 𝑜𝑛𝑒ℎ𝑜𝑡 := to_onehot(𝑡𝑟𝑖𝑔𝑔𝑒𝑟 )
8 𝑔𝑟𝑎𝑑 :=backprop(𝑙𝑜𝑠𝑠 , 𝑜𝑛𝑒ℎ𝑜𝑡 )

// mutate to obtain 𝑚 new triggers

9 for 𝑖 in 1...𝑚 do
10 𝑖𝑑𝑥 := random(len(𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ))
11 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 [𝑖𝑑𝑥 ] := rand_topk(𝑜𝑛𝑒ℎ𝑜𝑡 [𝑖𝑑𝑥 ] + 𝑔𝑟𝑎𝑑 [𝑖𝑑𝑥 ])
12 𝑛𝑒𝑤_𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠 .append(𝑡𝑟𝑖𝑔𝑔𝑒𝑟 )

13 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 := select(𝑛𝑒𝑤_𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠)
// evaluate trigger on new 𝑘 positions

14 𝑝𝑜𝑠𝑘 := random(𝑎𝑢𝑔, 𝑘)
15 𝑖𝑛𝑝𝑢𝑡𝑠𝑘 := assemble(𝑎𝑢𝑔, 𝑡𝑟𝑖𝑔𝑔𝑒𝑟, 𝑝𝑜𝑠𝑘 )
16 𝑟𝑒𝑠𝑘 := generate(𝑀, 𝑖𝑛𝑝𝑢𝑡𝑘 )
17 if ∀𝑟𝑒𝑠 ∈ 𝑟𝑒𝑠𝑘 , 𝑟𝑒𝑠 ≈ 𝑇𝑅𝑒𝑠 then
18 break;

As illustrated in Algorithm 1, the algorithm iteratively mutates
the trigger sequence under the guidance of position-insensitive loss
until it succeeds. First, the algorithm initializes a trigger sequence
composed of random tokens and hint tokens. For instance, as shown

247



Imperceptible Content Poisoning in LLM-Powered Applications ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: The effectiveness of content poisoning on various content and LLMs. “Trigger”, “Request”, and “Response” refer to the
token lengths of the generated trigger sequence, augmented request, and output response, respectively.

LLMs Word-Level Attack Whole-Content Attack Average
ASRASR Iteration Trigger Request Response ASR Iteration Trigger Request Response

Llama2-7b 92.00% 203.24 23.16 611.96 158.40 96.00% 12.72 28.12 898.60 280.80 94.00%
Vicuna-7b 80.00% 182.52 22.96 636.88 154.88 96.00% 55.36 29.76 953.16 73.80 88.00%
Mistral-7b 92.00% 171.84 21.16 595.96 133.40 100.00% 47.12 28.04 882.76 132.16 96.00%
Llama2-13b 84.00% 188.96 22.76 612.08 163.52 76.00% 211.96 29.92 923.44 230.72 80.00%
Vicuna-13b 84.00% 230.92 23.48 630.96 147.60 96.00% 39.88 34.04 966.44 109.04 90.00%

Average 86.40% 195.50 22.70 617.57 151.56 92.80% 73.41 29.98 924.88 165.30 89.60%

in Figure 5, the initial trigger is constructed by embedding ’1.5 out
of 5’ within random tokens. These inserted tokens serve as hints
to guide the algorithm in distorting the positive summary with
an average rating of 4.5 stars into a negative one with an average
rating of 1.5 stars. Without hint tokens, the algorithm cannot know
the target average rating is 1.5 stars. Next, the approach starts
to iteratively mutate the trigger sequence. In each iteration, the
approach randomly selects 𝑘 positions in the augmented request,
assembles 𝑘 inputs, and feeds them to the LLM to obtain 𝑘 logits
outputs, as detailed from lines 3 to 5. Then, the position-insensitive
loss, which quantifies the overall effectiveness of the current trigger
sequence, is obtained by summing the cross-entropy losses between

ˆ𝑡𝑎𝑟𝑔𝑒𝑡 and the k 𝑙𝑜𝑔𝑖𝑡𝑠 calculated on 𝑝𝑜𝑠𝑘 (Line 6).
Based on the loss, the algorithm computes the gradient with

respect to the onehot representation of the trigger sequence in
lines 7∼8. This gradient suggests the direction in which each token
of the trigger sequence should be mutated. With gradient, the ap-
proach mutates𝑚 new trigger sequences by randomly altering one
token at a time (Lines 9𝑠𝑖𝑚12). For each randomly selected token
𝑡𝑟𝑖𝑔𝑔𝑒𝑟 [𝑖𝑑𝑥], its gradient is added to 𝑜𝑛𝑒ℎ𝑜𝑡 [𝑖𝑑𝑥], creating a score
array for all tokens in LLM’s vocabulary. A high score for a token
suggests that this token could better guide LLMs to generate the
target response. In line 11, the algorithm replaces a token with a
random token from the top-k scores. From the𝑚 new sequences,
the most effective one is selected in line 13 by comparing the loss of
each sequence at the same random injection position. The approach
then tests the new trigger sequence at 𝑘 random insertion positions
within 𝑎𝑢𝑔, as outlined in lines 14∼16. If all 𝑘 generated responses
are similar to ˆ𝑡𝑎𝑟𝑔𝑒𝑡 , the algorithm terminates and outputs the
generated trigger. We set 𝑘 as three and𝑚 as 16 in our experiments.

5 EVALUATION
The evaluation aims to answer the following questions:
• RQ1. How effective is content poisoning on different LLMs?
(Section 5.1)

• RQ2. Can content poisoning compromise real-world applica-
tions? (Section 5.2)

• RQ3. What is the effectiveness of content poisoning against
existing defense techniques? (Section 5.3)

Experiment Dataset and Metric. To thoroughly evaluate the
effectiveness of content poisoning, we collect 50 pieces of con-
tent from the Internet. Among them, 25 are for word-level attacks,

related to the usage guidance of software and medicines, where
attackers maymodify crucial information, like installation links and
medicine dosage. The other 25 are targets of whole-content attacks,
which are reviews for products and books. Attackers may distort
these reviews to convey the opposite sentiment, misleading users’
decisions. The content is collected from two channels provided by
LangChain: search engines and platform APIs. We utilize the attack
success rate (ASR) as the evaluation metric. An attack is considered
successful if the attack content causes the generation of the target
response, determined by keyword matching and manual checking.
LLMs and Applications. We evaluate the effectiveness of con-
tent poisoning on five LLMs, including Llama2-7b (L-7b), Llama2-
13b (L-13b), Vicuna-7b (V-7b), Vicuna-13b (V-13b), and Mistral-
7b (M-7b) [23, 37, 45]. These models are popular choices in LLM-
powered applications and are designed with varying architectures
and datasets. We adopt the default temperature and generation set-
tings for all LLMs [17]. To evaluate content poisoning in real-world
scenarios, we perform content poisoning on four popular LLM-
powered applications, including two document Q&A applications
and two summarization tools.
Experiment Environment. The experiment is conducted on a
server with AMD EPYC 7763 processors and Tesla V100s 32G GPUs.
The experiments were performed locally, and the attack content
was not released to the Internet. Thus, we slightly modify these
applications to enable them to obtain content from the local environ-
ment. Moreover, our experiments focus solely on the effectiveness
of content poisoning when the attack content is accessed by appli-
cations. Notably, the spread of attack content on the Internet and
its assessment by users falls under other research domains [10, 31].

5.1 Effectiveness on Different Content.
To demonstrate content poisoning’s feasibility across various types
of content and LLMs, we first assess its effectiveness on 50 pieces
of content using five different LLMs. In detail, following Section 4.3,
we first construct 50 augmented requests based on the collected
content. We then execute content poisoning on these requests and
evaluate the Attack Success Rate (ASR).

As shown in Table 2, content poisoning achieves an average ASR
of 89.60%, demonstrating its effectiveness across diverse content and
models. When observing the ASR for two attack modes, we notice
that the ASR for the whole-content attack is higher than that of the
word-level attack. This is because LLMs focus intently on crucial
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information during generation, which increases the challenge of
the word-level attack. In contrast, during the whole-content attack,
LLMs distribute their attention across multiple parts of the content,
making it easier to achieve the attack goal.

In addition to ASR, we present the average number of iterations
in Table 2, which indicates the effort required for the attack. On
average, content poisoning requires 195.50 iterations for word-level
attack and 73.41 iterations for whole-content attack. The average
token length of the generated trigger sequence is 22.70 and 29.98
for two modes, respectively, accounting for 3.12%∼3.78% of the
input augmented requests. Since the input for whole-content at-
tacks is longer, it allows for the injection of trigger sequences with
more tokens. The augmented request is encoded into an average of
617.57 and 924.88 tokens in the two modes, indicating that content
poisoning can be performed on complex tasks with long inputs.
Mistral-7B has the shortest input tokens, which is attributed to its
tokenizer’s design. For whole-content attacks, augmented requests
contain an average of 8.72 reviews, where one comment from at-
tackers is hard to influence the overall sentiment. However, content
poisoning achieves a 92.80% average ASR on them, indicating a
substantial impact of content poisoning in complex scenarios. Re-
garding the generated response, LLMs output an average of 158.95
tokens, further demonstrating the feasibility of content poisoning.
Attack Effectiveness on Different Prompt Templates. Accord-
ing to Algorithm 1, each trigger sequence is generated based on an
augmented request. However, the augmented requests from real-
world applications may vary due to different application designs,
such as varied prompt templates. Therefore, the trigger sequence
generated based on the sample augmented request should maintain
its effectiveness on different real-world requests.

Table 3: The ASR of trigger sequences when attacking differ-
ent augmented requests. “Word” and “Whole” denote word-
level and whole-content attacks, respectively.

Modes L-7b V-7b M-7b L-13b V-13b Average

Word 56.52% 65.00% 65.22% 66.67% 47.62% 60.20%
Whole 58.33% 50.00% 64.00% 68.42% 58.33% 59.82%

To assess the transferability of the trigger sequence among dif-
ferent augmented requests, we significantly alter the augmented
request by changing prompt templates. Originally, the prompt
template in word-level attack follows the structure “<Instruction>
<Known Information> <Request>”. It begins with a clear Instruction
for LLMs, requiring them to “answer the question concisely and
professionally”. Then, it provides the Known Information and the
users’ Request to generate the response. This prompt template is
altered to “<Request> <Content>”, which straightforwardly requests
the LLMs for answers based on the content. In the case of the whole-
content attack, the initial template is “<System Instruction> <Human
Comment>”, where the System Instruction starts with “Your task is
to conduct emotional analysis on the reviews provided”. The edited
template directly asks the LLMs to summarize the reviews. In both
modes, the augmented request based on the altered prompt template
greatly differs from the original one, requiring a high transferability
of the trigger sequence to achieve content poisoning.

We evaluate the previously generated sequences on the altered
augmented requests, and the results are shown in Table 3. Over-
all, 60.01% of successfully generated trigger sequences maintain
their effectiveness on new augmented requests. Therefore, the trig-
ger sequences generated based on one augmented request can be
transferred to other augmented requests with high probability. This
is because the position-insensitive generation could prevent the
trigger sequence from overfitting to any particular augmented re-
quest. Additionally, attackers can reference the powerful prompt
templates from LangChain [28] to improve their transferability.
Attack Effectiveness on Quantized LLMs. When deploying
applications with local LLMs, developers often adopt quantized
LLMs [11, 19]. In this case, trigger sequences crafted based on a pre-
trained LLM should maintain their effectiveness on its quantized
versions. To assess the transferability of trigger sequences, we quan-
tized five LLMs to 4-bit using BitsAndBytes [11] and GPTQ [19]
techniques. The GPTQ quantized models, downloaded from Hug-
gingFace, have undergone comprehensive evaluation. For BitsAnd-
Bytes, we followed the recommended settings from HuggingFace.

Table 4: The ASR of trigger sequences on quantized LLMs.

Quantization L-7b V-7b M-7b L-13b V-13b

GPTQ 31.91% 47.73% 62.50% 55.00% 48.89%
BitsAndBytes 44.68% 36.36% 41.67% 45.00% 40.00%

The results in Table 4 show that 49.21% of trigger sequences re-
tained their effectiveness with GPTQ quantization, and 41.54% with
BitsAndBytes. These findings confirm that trigger sequences are
still effective on quantized LLMs. Considering that most developers
rely on quantized open-source LLMs, content poisoning poses a
significant threat to real-world applications. The ASR of trigger
sequences on quantized models is lower than that on the original
LLMs. This can be attributed to model capabilities reduction caused
by quantization, which may lead LLMs to generate irrelevant re-
sponses in some instances. Additionally, content poisoning requires
LLMs to correlate the trigger sequence with crucial information, a
capability that is also diminished by quantization.
Attack Effectiveness on Finetuned LLMs. In real-world applica-
tions, developers often finetune pre-trained LLMs to adapt them to
specific tasks. To ensure an effective attack, the trigger sequence
must be robust against such finetuned LLMs. Therefore, we evalu-
ated valid trigger sequences crafted for Llama2-7b andMistral-7b on
their corresponding fine-tuned versions. The model finetuned from
Llama2-7b is specifically used for building intelligent agents [46],
while Mistral-7b is finetuned on a dataset for knowledge Q&A [41].

Table 5: The ASR of trigger sequences on finetuned LLMs.

Models Llama2-7b Mistral-7b Average

ASR 46.81% 45.83% 46.32%

As depicted in Table 5, 46.32% of the crafted trigger sequences
are effective on finetuned LLMs. The results suggest that attackers

249



Imperceptible Content Poisoning in LLM-Powered Applications ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Process

Injected Trigger Sequence

HTML

Web Page

LLM-Powered Application

R
ender

Invisible Injection

Malicious Response

Figure 7: Illustrative example of real-world content poison-
ing on tutorial of Ollama. A trigger sequence is injected in
the HTML, which is imperceptible in the rendered web page,
but causes an incorrect response from Quivr.

can tailor trigger sequences based on one LLM, and threaten de-
rivative LLMs finetuned from it. Given that applications typically
use LLMs finetuned from several popular pre-trained LLMs, such
as Mistral and Llama, content poisoning poses a severe threat to
real-world applications. However, the finetuning process also en-
hances the LLMs’ capabilities, which in turn increases the difficulty
of successful attacks and results in a lower ASR.

5.2 Effectiveness on Real-World Applications.
We also evaluate the effectiveness of content poisoning on four
real-world applications to demonstrate that content poisoning is
a substantial threat to the LLM ecosystem. Specifically, we first
perform content poisoning on two document Q&A applications,
ChaChat [6] and Quivr [43], on which we evaluate 25 pieces of
content wrapped in documents related to the usage guidance of
software and medicines. Besides, we evaluate 25 pieces of content
containing reviews for products and books on two summarization
tools, comment-analyzer [32] and amz-review-analyzer [39]. All
these applications are powered by Mistral-7b, which owns the best
effectiveness in benchmark among the five LLMs [16]. During the
evaluation, we simulate a real-world scenario where attackers per-
form the black-box attack on these applications, knowing none of
the detailed configurations of their workflows and prompts. In each
attack mode, the same content was used to attack both applications
without any specific adaptations for their workflows.

Table 6: The evaluation on document Q&A applications.

Application PDF Markdown HTML Total

ChatChat 83.33% (10/12) 75.00% (6/8) 100.00% (5/5) 84.00% (21/25)
Quivr 66.67% (8/12) 50.00% (4/8) 60.00% (3/5) 60.00% (15/25)

The results on document Q&A applications are shown in Table 6.
We perform the attack on three types of documents: PDF, HTML,
and Markdown. Among them, HTML files often contain extensive

unrelated information, like widgets or menus of websites, which
may break the continuity of content, degrading the performance
of applications. Therefore, we use more PDF and Markdown files
in the evaluation. Overall, content poisoning achieves 84.00% and
60.00% average ASR on ChatChat and Quivr, respectively. This
demonstrates that by analyzing the framework, attackers can per-
form content poisoning on different applications developed based
on it. Moreover, the ASR on ChatChat is higher than that on Quivr,
as ChatChat’s prompt template is more similar to the one used
in trigger sequence generation. Hence, the generated sequences
are more effective on ChatChat. We perform the invisible injec-
tion on all three types of documents using the features in Table 1.
Furthermore, content poisoning achieves high ASR on all formats,
indicating that attack is feasible on different document formats.

We show an example of a real-world attack in Figure 7, where
Quivr guides users to install malicious software on their devices.
Quivr generates such an incorrect link because it references attack
content, in which a trigger sequence is invisibly injected. This
trigger sequence is then fed to Quivr’s integrated LLM along with
the correct link, guiding the LLM to misunderstand the content and
provide the malicious link.

Table 7: The evaluation on summarization applications.

Application Products Books Total

Comment-Analyzer 71.43% (10/14) 90.91% (10/11) 80.00% (20/25)
Amz-Review-Analyzer 57.14% (8/14) 72.73% (8/11) 64.00% (16/25)

Table 7 shows the experiment results on summarization appli-
cations. Since many books reviews tend to be long and require
too much memory during the attack, we perform more attacks
on reviews for products. Overall, content poisoning can distort
the summarization of reviews for products and books with an av-
erage ASR of 72.00% on two applications. The results show that
whole-content attack is practical in real-world applications. The
ASR for books is higher than that for products, as book reviews
are usually complex and long, containing more pros and cons that
can be utilized to change the overall sentiment. In conclusion, con-
tent poisoning poses a severe threat to summarization applications,
necessitating rapid mitigation from the community.

5.3 Effectiveness on Existing Defenses.
The security of LLMs has attracted the attention ofmany researchers,
and several defense techniques have been proposed to mitigate
attacks like prompt injection and jailbreak. Among them, two
methods show potential in mitigating content poisoning, including
perplexity-based detector and structured prompt templates [21, 52].
Perplexity-Based Detector. The perplexity-based detector uti-
lizes the prediction probability of LLMs to assess the fluency of the
input [21]. Since the generated trigger sequences lack meaningful
content for humans and LLMs, they usually have higher perplexity
than regular content, allowing for their detection. Following prior
research [21], we implement two perplexity-based detectors to iden-
tify inputs with trigger sequences. The basic detector computes the
perplexity of the entire input, while the windowed detector uses
a ten-token sliding window to calculate the maximum perplexity
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across all ten-token segments. Since the perplexity is calculated
based on each LLM individually, we evaluate the defense on each
LLM separately. For each LLM, we feed the detector with all success-
fully crafted attack content and the corresponding benign content,
and record the results in Table 8. The thresholds of the two detectors
are set to allow 95% of benign content to pass detection.

Table 8: The defense results of perplexity-based detectors.

LLMs Basic Detector Windowed Detector

Precision Recall F1-Score AUC Precision Recall F1-Score AUC

L-7b 75.00 12.77 21.82 68.18 50.00 4.17 7.69 82.21
V-7b 71.43 11.36 19.61 66.12 81.82 20.45 32.73 65.96
M-7b 88.24 31.25 46.15 71.79 50.00 4.17 7.69 54.71
L-13b 88.89 20.00 32.65 69.75 96.30 65.00 77.61 91.16
V-13b 72.73 17.78 28.57 66.37 92.86 57.78 71.23 87.95

Average 79.26 18.63 29.76 68.44 80.86 33.74 44.63 76.40

Table 8 indicates that both detectors have limited f1-score and
AUC, suggesting they are ineffective in blocking content poison-
ing. With thresholds set to misidentify 5% of benign inputs, the
detectors only detect a small portion of the attack content, resulting
in an average recall of 26.19%. Additionally, with AUC values of
68.44% and 76.40% on average, it is challenging to find a practical
threshold to balance precision and recall. The ineffectiveness of
the detectors stems from the complexity of the referenced content,
which also exhibits high perplexity. For example, content parsed
from documents may also be disfluent, where tables in the docu-
ment can break many sentences. Moreover, reviews from Amazon
contain many emojis. These texts are also quite unusual to the
LLMs, causing high perplexity and numerous false alarms. Thus,
existing perplexity-based detectors are not effective enough to sep-
arate benign and attack content. Moreover, attackers may perform
adaptive attacks to reduce perplexity and bypass detectors [21].

Table 9: Attack results on the structured prompt template.
“Border” is the symbol used as the border between instruction
and external content in the prompt template.

Border L-7b V-7b M-7b L-13b V-13b

“-” 55.32% 70.45% 52.08% 50.00% 73.33%
“=” 55.32% 70.45% 52.08% 50.00% 71.11%

StructuredPromptTemplate.An effectiveway tomitigate prompt
injection attacks is to strictly separate the content and instruction
with a structured prompt template [52]. To demonstrate that the
trigger sequence is recognized as part of the content rather than an
instruction by LLMs [57], we attempt to leverage structured prompt
templates to mitigate content poisoning. In detail, following the
existing approach [57], we adopt a line of “=” or “-” symbols as the
border between instruction and content in the prompt template,
and then evaluate the successfully generated trigger sequences on
them. Table 9 shows the results, where trigger sequences achieve a
60.01% average ASR on all LLMs and content. These results suggest
that over 60% of the attack content can pass the defense. When
comparing the results of the two border symbols, we observe that

the ASR of the two symbols is almost the same. In fact, the two
border symbols can prompt LLMs to generate varying responses,
where the hyphen usually leads to longer responses. However, for
the same content, the crucial information within the responses and
the overall response sentiment are always the same for the two
border symbols. Only on Vicuna-13b does the conclusion of one
product’s reviews vary with the two border symbols. It shows that
the two symbols have limited effects during the generation of LLMs.

Notably, the ASR in this experiment is similar to that found in
the prompt template variation evaluation in Section 5.1. Moreover,
25.00% of trigger sequences on Mistral-7b are not effective in both
experiments. Therefore, the degrading of ASR may be due to the
insufficient transferability of some trigger sequences. Additionally,
prompt injection attacks achieve a 10.78% ASR when facing the
structured prompt template [52]. This suggests that the trigger
sequence is recognized as part of the content rather than an in-
jected instruction. Since content poisoning influences the LLMs’
understanding of the external content, rather than directly instruct-
ing LLMs to produce incorrect responses, the structured prompt
template cannot mitigate content poisoning.

6 DISCUSSION
Real-World Threat of Accessing Attack Content. In this paper,
we focus solely on the construction and impact of attack content,
while its spreading falls into other research domains [10, 31]. Sim-
ilar to the spreading of phishing websites, attackers may utilize
various approaches to facilitate the spread of content. Specifically,
they can spread attack content through content-collection channels
like search engines, use SEO techniques to improve the ranking of
malicious content in search results, and wait for users to access the
content. Given the proven effectiveness of SEO in causing search
engines like Google to frequently serve spam content to users [3],
there is a viable risk that LLM-powered applications could inadver-
tently reference the harmful content.
Variations in Model Architecture. The experiment primarily
focuses onmodels with similar architectures, all derived from Llama
models. Thus, we also evaluate content poisoning on a different
type of LLM developed by Google, Gemma2 [44]. As shown in
Table 10, content poisoning achieves an 88.00% and 86.00% ASR on
Gemma2-2b and Gemma2-9b, respectively. This indicates that the
attack is effective across models with different architectures.

Table 10: Attack success rate on Gemma models.

Models Word-Level Whole-Content Average

Gemma2-2b 80.00% 96.00% 88.00%
Gemma2-9b 84.00% 88.00% 86.00%

Potential Mitigation for Frameworks. In Section 4.2, we reveal
the exploitable features of content poisoning in LLM application
frameworks from four aspects. Framework developers may also
adopt some strategies to mitigate content poisoning from these as-
pects. First, when collecting content, prioritizing content providers
with higher reliability can be beneficial. Second, during content
processing, frameworks could adopt stricter parsers that avoid pars-
ing invisible texts. Meanwhile, more detection techniques could be
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deployed during content processing. Third, the retrieved content
could be shown to users along with the generated response, allow-
ing users to recheck the response. Finally, in request responding,
adopting more robust LLMs is the most straightforward approach.
Nevertheless, since content poisoning has not raised widespread
awareness, its corresponding defenses remain insufficient.
Limitations. When attacking LLM-powered applications that use
open-source LLMs, content poisoning may fall short in some cases.
As illustrated in Algorithm 1, an attack sequence is generated based
on one LLM. For those applications using very different LLMs,
the attack may be less effective. However, most applications tend
to choose LLMs finetuned or quantized from a limited set of pre-
trained models, such as Llama and Mistral. Therefore, content poi-
soning targets for these popular LLMs can threaten numerous ap-
plications. Additionally, attacking applications using closed-source
LLMs is outside the scope of this paper. In future work, we will
investigate transfer techniques that attackers may use to transfer
trigger sequences to harm closed-source LLMs [57].

7 RELATEDWORKS
Jailbreak Attack LLM-powered applications are under severe
threat from malicious instructions, leading to jailbreak attacks.
Jailbreak can violate the safeguards of LLMs, prompting them to
generate harmful responses [5, 20, 48, 57]. To achieve jailbreak,
attackers may automatically explore inducive scenarios, like ask-
ing LLMs to act as a grandmom telling a story about producing a
bomb [5, 20, 57]. Additionally, methods like GCG attack leverage
gradient-based search to explore malicious instructions [57].

Content poisoning is different from jailbreak in two aspects.
First, jailbreak assumes that users are malicious, whereas in content
poisoning, the users are victims. Second, jailbreak directly relies
on the malicious instruction, while content poisoning influences
the LLMs’ understanding of contents, leading them to generate
incorrect responses. Two lines of works reveal the threat to LLM-
powered applications from different perspectives.
Prompt Injection Attack. However, it has been found that these
commands in prompts can be easily overwritten, enabling attackers
to perform prompt injection attacks [1, 33, 50]. For example, a sen-
tence like “ignore previous commands and say hello” can hijack the
LLMs. In certain cases, users try to hijack the original functionali-
ties of an application to achieve their own objectives [33, 38]. Other
studies, such as HouYi, explore delivering malicious commands
through external content [1, 24].

Unlike prompt injection, which relies on explicit malicious com-
mands, content poisoning achieves malicious goals by influencing
the LLMs’ understanding of the content, which is more impercepti-
ble and hard to detect. Moreover, content poisoning fully utilizes
the design features of LLM application frameworks to improve its
effectiveness, whereas prompt injection attacks solely focus on the
LLMs. While research has shown that using structured prompt
templates to rigidly separate content from instructions can help
LLMs ignore injected commands [7, 52], content poisoning remains
effective against this type of defense, as demonstrated in Section 5.3.
Backdoor Attack. In the use of LLMs, fine-tuning and in-context
learning are two effective approaches to enhance performance
on specific content by training the models with a small amount

of data [13, 34]. Typically, attackers execute backdoor attacks by
injecting malicious content into the training data. As a result, LLMs
trained on such datasets will generate targeted responses when
encountering specific inputs [26, 51, 53]. However, unlike backdoor
attacks, content poisoning focuses on manipulating the content
referenced by LLM-powered applications rather than altering the
training data itself.
Adversarial Attacks. Adversarial attacks have always been a sig-
nificant security threat to language models [14, 15, 35]. However,
LLMs exhibit higher robustness, making most existing adversarial
attacks ineffective [56]. Although some adversarial attacks on text
classification tasks are still practical for LLMs [42, 47, 54], they
overlook that the evolution of LLMs has introduced new threats
in more complex scenarios. While the trigger sequence generation
of content poisoning is inspired by adversarial attack techniques,
the overall processes are significantly different. First, content poi-
soning concentrates on the ecosystem of LLM-powered applica-
tions, where attackers exploit the design features of frameworks
to achieve the attack. Moreover, content poisoning targets more
complex scenarios, where applications receive an average of 776.25
tokens and output 158.95 tokens. In contrast, adversarial attacks
typically focus solely on models and target one specific task, like
text classification [18, 47].

8 ETHICS STATEMENT
Given the importance of LLMs’ security, many researchers aim to
uncover potential threats to spur the development of defenses [24,
48]. Similarly, we aim to reveal content poisoning and urge the
development of new defenses. It is worth noting that our released
artifact does not involve spreading attack content and, therefore,
cannot be reused by cyber criminals to cause significant damage to
real-world applications. Additionally, we did not release any attack
content to the Internet, and all experiments were performed locally
without harming real-world users.

9 CONCLUSION
In this paper, we reveal a new threat named content poisoning,
which fully utilizes the design features of LLM application frame-
works to tailor attack content that appears benign to humans. This
attack content can guide LLM-powered applications to provide
users with incorrect responses. According to the experiments, con-
tent poisoning can be performed on various content with an aver-
age of 89.60% ASR and compromise real-world applications with
a 72.00% ASR on average. Moreover, our experiments show that
existing defenses are ineffective against content poisoning. By sys-
tematically analyzing the attack process, we aim to raise community
awareness of content poisoning and inspire the development of
effective mitigation.
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