
1

ECG: Augmenting Embedded Operating System
Fuzzing via LLM-based Corpus Generation
Qiang Zhang, Yuheng Shen, Jianzhong Liu, Yiru Xu, Heyuan Shi, Yu Jiang and Wanli Chang�

Abstract—Embedded Operating Systems power much of our
critical infrastructure but are, in general, much less tested
for bugs than general-purpose operating systems. Fuzzing
Embedded Operating Systems encounter significant roadblocks
due to much less documented specifications, an inherent in-
effectiveness in generating high-quality payloads. In this pa-
per, we propose ECG, an Embedded Operating System fuzzer
empowered by Large Language Models (LLMs) to sufficiently
mitigate the aforementioned issues. ECG approaches fuzzing
Embedded Operating System by automatically generating input
specifications based on readily available source code and doc-
umentation, instrumenting and intercepting execution behavior
for directional guidance information, and generating inputs with
payloads according to the pre-generated input specifications and
directional hints provided from previous runs. These methods
are empowered by using an interactive refinement method to
extract the most from LLMs while using established pars-
ing checkers to validate the outputs. Our evaluation results
demonstrate that ECG uncovered 32 new vulnerabilities across
three popular open-source Embedded OS (RT-Linux, RaspiOS,
and OpenWrt) and detected 10 bugs in a commercial Em-
bedded OS running on an actual device. Moreover, compared
to Syzkaller, Moonshine, KernelGPT, Rtkaller, and DRLF, ECG
has achieved additional kernel code coverage improvements of
23.20%, 19.46%, 10.96%, 15.47%, and 11.05%, respectively, with
an overall average improvement of 16.02%. These results under-
score ECG’s enhanced capability in uncovering vulnerabilities,
thus contributing to the overall robustness and security of the
Embedded Operating System.

Index Terms—Vulnerability Detection, Embedded Operating
System, Fuzz Testing

I. INTRODUCTION

W ITH the increasing development of industrial automa-
tion, a growing number of industrial devices are em-

powered by Embedded Operating Systems (Embedded OSs),
ranging from smart manufacturing to aeronautics and astro-
nautics. Unlike general-purpose operating systems that are
designed for daily usage, Embedded Operating System are
customized to meet very specific industrial requirements, like
real-time performance, low power consumption, and high
reliability. Also, Embedded OSs tend to deploy on mission-
critical scenarios; any security vulnerabilities could make

Manuscript received March 31, 2024; revised June 16, 2024; accepted
July 14, 2024. This article was presented at the International Conference on
Embedded Software (EMSOFT) 2024 and appeared as part of the ESWEEK
TCAD special issue.

This research is sponsored in part by the National Key R&D Program of
China (2023YFB4503704), NSFC Program (No.62202500), Hunan Provincial
Natural Science Foundation (No. 2023JJ40772), Open Fund of Anhui Province
Key Laboratory of Cyberspace Security Situation Awareness and Evaluation
(No.CSSAE-2023-010).

Q. Zhang and W. Chang are with the College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410082, China (e-mail:
zhangqiang9413@126.com).

H. Shi is with the School of Electronic Information, Central South
University, Changsha 410083, China, and Anhui Province Key Labora-
tory of Cyberspace Security Situation Awareness and Evaluation (e-mail:
hey.shi@foxmail.com).

Y. Shen, J. Liu, Y. Xu and Y. Jiang are with the KLISS, BNRist,
School of Software, Tsinghua University, Beijing 100084, China (e-mail:
shenyh20@mails.tsinghua.edu.cn).

Wanli Chang is the corresponding author.

Embedded OSs fail to deliver its services and even lead to
severe consequences, such as data leakage or system crashes
[1], [2]. Therefore, it is urgent to detect and fix vulnerabilities
in Embedded OSs, especially for their customized modules.

Fuzz Testing, a.k.a. fuzzing [3]–[7], is a widely used tech-
nique for detecting software vulnerabilities, it generates a
large number of test cases and feeds them into the System-
Under-Test (SUT) to trigger potential bugs. It has been widely
deployed to ensure the security of various software systems,
including operating systems, web browsers, and network pro-
tocol implementations, with many vulnerabilities discovered
over the past few years.

For fuzzing operating system kernels, the state-of-the-art is
Syzkaller [8], which has been widely used to detect vulnerabil-
ities in many OS kernels, including Linux, BSDs, and macOS,
etc. It leverages system call specifications (Syzlang [9]) as
input grammar to generate corresponding system call se-
quences and arguments. It is also assisted by a coverage-
guided feedback mechanism, allowing Syzkaller to effectively
select inputs with higher potential, and in turn generate high-
quality test cases to uncover any potential vulnerabilities
within the kernel. In particular, the system call specifications,
which are manually-written by kernel experts, contain infor-
mation such as the prerequisite resources, a set of system call
sequences, and their corresponding arguments. The quality of
these manually-written specifications has a major impact on
the fuzzing performance, as it determines the path of execution
the code takes within the kernel.

Motivation: To produce satisfactory fuzzing results, we
need to produce high-quality input payloads that allow the
flow of execution to reach wide and deep within the Em-
bedded OS kernel’s state space. Current methods are met
with the following two limitations. (1) First, writing system
call specifications with the quality and quantity of Syzkaller,
while at the same time supporting many Embedded OSs,
currently requires significant manual efforts and years worth
of domain knowledge to accomplish. This process is especially
difficult to perform adequately for Embedded OSs due to
their customized and unique components, which often are not
extensively documented, thus posing even more difficulties
to overcome. (2) Second, generating payloads for Embedded
OSs during testing is difficult for established methods, as
current specifications only define correct syntax but lack its
corresponding semantics, which leads to the fuzzer generating
ineffective input payloads. As many Embedded OSs have
individual semantics, which are not available on the scale of
popular OSs (e.g., Linux), constructing these manually on a
large scale is impossible to achieve.

2

Large Language Models (LLM), known for their excellence
in comprehending natural language text, are widely used to
assist in various testing responsibilities. By leveraging LLMs
in fuzzing Embedded OSs, we can potentially overcome these
hurdles by using LLMs to generate high-quality test payloads
by automatically creating system call specifications based on
code and documentation in place of human writers, and inter-
preting both the documentation and the postmortem analysis of
each test run for semantic information, allowing it to generate
test payloads that contain more operation semantics, thereby
improving the fuzzer’s capabilities of reaching more code
and runtime states. However, despite LLM’s rich potential
in improving testing effectiveness, a direct application is
infeasible, the reasons for which are explained below.

Challenges: First, LLMs are predisposed towards texts
upon which it has been previously trained, making direct
specification generation inefficient. Our preliminary tests show
that LLMs cannot generate working specifications reliably,
which is mainly due to 1) low training data due to scarce
availability, 2) low variety in the data, as it only describes
the system call interfaces of a given OS, and 3) low quality
of generated type and constraint information for dependent
data structures due to limited context size. In contrast, LLMs
are generally better at generating code in C, as proven by
numerous previous attempts in the wild [10]–[12]. Also, com-
pared to general-purpose OSs, Embedded OSs are specialized
with specific requirements, thus having certain modifications,
which is knowledge LLMs are not pre-trained upon. The lack
of sufficient documentation further increases the difficulty of
generating valid specifications.

Second, current kernel fuzzing methods are ill-equipped to
generate high-quality payloads effective in testing Embedded
OS components. They are hindered by their payload generation
methods that do not account for semantic information. By
utilizing LLMs, we are able to interpret more information
both statically from its source code and documentation, as well
as processing the post-mortem execution results of test runs.
Practically, however, these guidance hints generally show up in
the form of natural language text, such as documentation text
or tracing information, which are unintelligible for established
methods but are better interpreted through LLMs.

Solution: To address these challenges, we propose ECG,
an Embedded OS fuzzer that leverages LLMs to improve
Embedded OS fuzzing efficiency. First, ECG parses the source
code of the target Embedded OS to identify interface candi-
dates. The candidates are then statically analyzed to obtain
type and constraint information of their positional arguments.
This information, along with its corresponding documentation,
is passed to a pre-testing LLM to generate actual code that
utilizes the interface, along with some hints that the LLM
produces regarding the arguments’ constraints and directional
information. Then, the code is refined with the LLM until it
produces a passing code snippet, which is then transformed
into a system call specification. The specification is then
combined with the hints as attributes and compiled as input
generation routines for runtime use.

During fuzzing, after the execution of each input, the
execution trace is passed to the post-processing LLM, which

is prompted to output whether the input payload’s execution
reaches a better directional vector than previous attempts at the
target module. If so, the LLM’s output and the input itself are
saved for further mutation. When a previous input is selected
for further mutation, the original input payload, the hints from
static analysis, and the output from the post-processing LLM
are then passed to the input generation LLM. The resulting
input is then executed to obtain its execution trace, and ECG
processes the output through the process again.

Evaluation: To understand our approach’s effectiveness, we
evaluate ECG on three widely used Embedded OSs: RT-Linux,
RaspiOS, and OpenWrt. Our results show that ECG found
32 previously unknown bugs on 3 open-sourced Embedded
OSs and 10 bugs on a commercial Embedded OS deployed
on a Raspberry PI. Also, comparing with the state-of-the-
art fuzzer, Syzkaller, Moonshine, KernelGPT , Rtkaller, and
DRLF, ECG achieves an average of 23.20%, 19.46%, 10.96%,
15.47%, and 11.05% improvement in code branch coverage,
respectively, yielding an overall average increase of 16.02%.
This demonstrates the effectiveness of ECG in enhancing the
fuzzing performance of Embedded OS.

Contribution: We make the following contributions:
• We implemented ECG, an Embedded OS fuzzer that

leverages LLM to enhance the quality of generated input,
thereby boosting the overall fuzzing performance.

• We propose to leverage extracted Embedded OS code
and document to provide fuzzer with detailed mutation
guidance. This allows the fuzzer to perceive the fuzzing
direction, assisting it in exploring in-depth kernel code.

• We demonstrate the effectiveness of ECG through exten-
sive evaluation on three popular open source Embedded
OSs and a commercial Embedded OS. We also open
source ECG 1 and make it available for practice.

II. BACKGROUND

A. Embedded Operating System and Kernel Fuzzing

Embedded Operating Systems (Embedded OSs) are spe-
cialized operating systems designed to manage and operate
hardware within various appliances and embedded devices,
ranging from consumer electronics to manufacturing robots
and automation controllers. Within this domain, Embedded
Linux has emerged as a prominent choice due to its versatility,
open-source nature, and extensive support for a variety of
hardware platforms. Embedded Linux has been deployed in
many applications, including automotive systems, home ap-
pliances, and industrial automation devices. Embedded Linux
uses a customizable kernel, allowing developers to strip down
or add components based on the specific requirements of their
project, thus optimizing both system size and performance.
There are many well-known embedded Linux distributions,
such as RT-Linux [13], RaspiOS [14], and OpenWrt [15], each
with its own unique features and functionalities. For instance,
RT-Linux has a real-time extension, such as PREEMPT RT,
which equips embedded Linux to meet the deterministic re-
sponse times required by real-time applications in industrial

1ECG is available at: https://github.com/zzqq0212/ECG

3

settings. The OpenWrt distribution, on the other hand, is
designed for wireless routers and other network devices.

Kernel Fuzzing
Target Kernel
Source Code

System Call
Specifica�on Corpus

System Call
Genera�on

System
Execu�on

Coverage
Trace

Feedback
Analysis

1 resource fd_block_trace[fd]
2 resource fd_block[fd_block_trace]
3 openat$nullb(fd const[AT_FDCWD], ...) fd_block
4 openat$md(fd const[AT_FDCWD], ...) fd_block
5 ioctl$BLKTRACESETUP(fd fd_block_trace, ...)
6 ioctl$BLKTRACESTART(fd fd_block_trace, ...)

Instrumented
Kernel Image

Compile

QEMU
Boot

Select & Update

Fig. 1: Overall workflow of kernel fuzzing.

Fuzz testing, a.k.a. fuzzing, is an automated software test-
ing technique that constructs a large number of malformed
payloads as test input, feeds them into the System-Under-
Test (SUT), and monitors unexpected behaviors, such as crash
or hang, to detect potential vulnerabilities. Kernel fuzzing
has been widely used to detect vulnerabilities in the kernel.
Syzkaller [8] is a prominent example of a state-of-the-art
kernel fuzzer. Taking Syzkaller for example, it uses system call
specifications for input generation, as shown in the upper part
of Figure 1. The system call specification defines prerequisite
resources (Lines 1-2), defines a set of system call declarations
(Lines 3-6), and specialized system calls that represent those
requiring certain arguments (Lines 5-6).

B. LLM Assisted Testing

Large Language Models (LLMs) [16]–[18] are artificial
neural networks that have excellent abilities in understanding
and generating human-like text. Aside from simple linguistic
interactions, they also have demonstrated their remarkable ca-
pability in solving a wide range of software engineering tasks,
such as generating various programming language codes,
comprehension of code documentation, and code analysis.
Recently, some academic works have also leveraged the power
of LLMs to improve the effectiveness of software testing,
whose efforts have shown promising results [19]–[24].

One such approach is LLM-assisted fuzzing, which com-
bines traditional fuzz testing approaches with the LLMs’
abilities in interpreting data. This includes tasks like input
grammar generation or complex payload synthesis, which
are too complex for established methods. By generating test
cases or improving the quality of fuzz inputs based on the
understanding of code semantics and structure provided by
LLMs, this hybrid approach can lead to more effective and
efficient detection of vulnerabilities. LLMs can also assist in
analyzing fuzz testing results, categorizing bugs, and suggest-
ing fixes, making the entire process more intelligent and less
labor-intensive. This integration of LLM capabilities with fuzz
testing methodologies represents a promising frontier in the
quest to enhance software security and reliability.

III. MOTIVATION

While current fuzzing approaches have achieved results in
finding bugs, one of the factors significantly affecting the
bug-finding capabilities of fuzzers is the quality of the input
generated, which is mainly dependent on the input grammar
for generation-based methods and the capabilities of payload
generation techniques in generating semantic-rich input pay-
loads. In Syzkaller’s case, it uses system call specifications as
input grammar, where most of the specifications are written by
kernel experts, which is time-consuming and requires years’
worth of domain knowledge. While its generation method
uses a rule-based routine that utilizes specifications to ensure
syntactically correct input generation, the lack of semantics is
partially mitigated through the use of specialized descriptions,
which decompose system calls into their functional subsets,
thus restricting the input generation space and improving
semantic richness.

However, when fuzzing the numerous Embedded OSs, these
methods become infeasible due to the requirement for inten-
sive manual efforts and certain specific domain knowledge to
analyze the kernel’s source code and extract relevant specifica-
tions. The situation is further complicated by Embedded OS’s
customized functionalities, which are maintained by different
vendors, where its coding style and the way it uses system
calls differ from one another, making it harder to construct
system call specifications using current manual techniques.

LLMs, despite their very recent inception, have demon-
strated significant capabilities in generating high-quality text
and code. Furthermore, they can substantially reduce manual
efforts in analyzing and handling complex information such
as source code and documentation. Intuitively, this allows us
to provide LLMs with Embedded OS documentation and its
corresponding source code target modules’ code areas.

Based on this, we can further extract corresponding system
call specifications for the fuzzer, thereby greatly reducing
the manual efforts involved in constructing specifications and
improving Embedded OS fuzzing performance. Additionally,
we can also prompt the LLM to output semantic hints
regarding the usage of these system calls, including type
and constraint information regarding its positional arguments,
as well as required processing system calls or subsequent
calls. Similarly, we can also use LLMs to interpret execution
feedback, such as stack trace and code coverage, to guide
input payload generation further. Processing this information
for usage semantic information, usually in natural language
form, requires us to prompt the LLM once more and obtain
the resulting payload from its output.

To effectively leverage LLMs in generating high-quality
test inputs, we may still face the following two challenges:
First, LLMs are much less effective at generating an operating
system’s system call specifications than commonly written
routines in programming languages (e.g., C, Python, etc.). This
is mainly due to 1) LLMs’ training efforts mainly focusing
on the plethora of general programming languages available,
such as common algorithms and programming paradigms in
C, Python, etc., 2) a lack of variety in the data learned, as it
only describes a handful of system calls from few OSs, and 3)

4

1 # Define system calls
2 syz_rt_task_create(policy flags[scheduling_policy],
priority int32,
attr ptr[in, rt_task_attr]) fd_rt_task
3 syz_rt_task_setsched(fd fd_rt_task, ...) int32
4 # Define structure and flags
5 scheduling_policy = SCHED_OTHER, SCHED_FIFO, SCHED_RR, SCHED_BATCH
6 rt_task_attr {
7 stack_size bytesize[stack, intptr]
8 ...
9}

System Call Specification

test.txt:2: unknown type fd_rt_task
test.txt:3: unknown type fd_rt_task
test.txt:3: int32 can't be syscall return
test.txt:6: wrong number of arguments

Compilation Logs
make generate

Prompt for background knowledge
< kernel CFG / API reference, etc >
Generation Prompt
“Help me generate system call specifications on the RT-Linux’s real time module, the
related control flow and real time related APIs are list below”
<real time module API, control flow from system call entry to real time module>

Generation Prompts

SPEC Refine Prompt
“The generated spec have following
errors, refine the specification pls”
“test.txt:2: unknown resource …”

Refine Prompts
have errors

abort after
10 loops

Fig. 2: The erroneous system call specifications generated by
LLM in real-time module.

limited context size that restricts its effectiveness in generating
all dependent data structure definitions and the system call
specifications. Additionally, Embedded OSs contain special-
ized components that are not constituent components of the
upstream kernels, and therefore LLMs do not have the relevant
information trained. These modules are also generally not as
well-documented as the upstream kernel documentation, thus
presenting more difficulties for LLMs. We demonstrate such
an issue with the example given in Figure 2, where we feed
ChatGPT’s GPT-4 model with a prompt including Embedded
OS’s background knowledge and related generation prompt
and pass its resulting system call specifications to Syzkaller’s
specification compiler, which reports many errors within. This
is not easily rectifiable, as we continuously refined the output
by feeding the compiler’s error logs back to the LLM, which
then returned more erroneous outputs.

Second, current kernel fuzzer cannot efficiently generate
payloads with correct semantics that effectively test the state
space of Embedded OSs’ components. Current state-of-the-art
methods, such as those used in Syzkaller, still rely on rule-
based pseudo-random generation and mutation techniques,
which cannot leverage semantic hints generated during system
call specification generation or after interpreting a single
execution round’s behavior, such as code coverage. While
Linux has specifically benefited from the implementation of
specialized system call specifications that represent partial
semantics, types, and value assignments, this approach is not
feasible for other Embedded OS due to limited documentation
and the extensive effort required for a single Embedded OS.
Additionally, these hints, generated by LLMs, are typically
presented in natural language text, which traditional fuzzing
methods can hardly interpret or comprehend.

Therefore, to generate a high-quality payload for Embedded
OS, we can take a small detour from the original goal. As
shown in Figure 3, instead of directly generating system
call specifications, we first use the LLM to generate C code
tailored for the target Embedded OS. This step leverages

void main(void) {
res = syz_open_dev(...);
memcpy(res, ...);
ioctl(res, ...);
…

}

openat(AT_FDCWD, "/proc/…",)

clone(...)

mmap(NULL, 8192, ...)

wait4(...)

r0 = syz_open_dev$sg(&(0x7f0000000080), 0x0, 0x0)

ioctl$SCSI_IOCTL_SEND_COMMAND(r0, 0x1, &(0x7f00000000c0)

LLM Generated Program Extracted Strace

Generated Specification

Fig. 3: Input generation example.

LLM’s capability in generating commonly used programming
language. After obtaining the C code, we employ strace to
capture execution trace information, which provides a detailed
view of the system calls made during execution. We then use
trace2syz to convert these traces into structured system call
specifications. During the fuzzing process, we enhance raw
coverage data to extract more meaningful semantic informa-
tion. This enables the LLM to interpret the system’s behavior
better and improve the generation of input payloads that are
both relevant and effective. This method not only streamlines
the generation process but also ensures the payloads are
accurately aligned with the target system’s requirements.

IV. ECG DESIGN

In this section, we present the design of ECG, an LLM-
powered Embedded Operating System fuzzer to automatically
generate input specifications for a given Embedded OS and
produce higher-quality input payloads to effectively test the
embedded components of the given Embedded OS.

Specifica�on Genera�on Phase LLM

Constraints
Extrac�on

Corpus

Test Case
Execu�on

Tes�ng Phase LLM

Execu�on
Feedback

Sta�c
Analysis

OS API Concrete
Usage Code

Embedded OS
Documenta�on

Embedded OS
Source Code

Code
Refinement Specifica�on

Direc�on
Checker

Mul�-staged
Input Genera�on

Extract

Specifica�on Construc�on Phase

Tes�ng Phase

Fig. 4: Overview of ECG. ECG utilizes two LLMs in its
workflow, which consists of a Specification Generation phase
and the Testing phase.

We show the overall architecture of ECG in Figure 4. As
shown, ECG consists of two main phases: Specification Con-
struction Phase and Testing Phase. During its Specification
Construction phase, ECG first extracts system call definitions
within the source code and conducts static analysis to extract
argument type and constraint information. This, along with
its source code and corresponding documentation, is then

5

passed to the Specification Generation Phase LLM, which is
prompted to output a working example of such a system call,
along with hints regarding its argument ranges and constraints.
The resulting code is refined by continuously checking the
code using a compiler and feeding any error messages back
into the LLM for further generation. Based on the valid test
programs, ECG then extracts the corresponding system call
specifications and uses them as input payload generation gram-
mar during fuzzing. When the fuzzing campaign is underway,
i.e., the Testing Phase, ECG leverages a Testing Phase LLM
that generates test payloads from constructing new system call
sequences according to their specifications and hints, or by
mutating existing input payloads using hints extracted from
static code and from interpreting the results of previous runs.
The input payload is then executed on the target Embedded
OS, which is monitored by ECG. After each execution, the
execution trace and coverage data are then extracted and
passed back to the LLM, which is then prompted to interpret
the quality of the input payload by assessing its execution
novelty and vector to its target module. This is then used to
refine the hints associated with each test case in the corpus as
well as its corresponding specification.

Introduction:
Lock categories:

Sleeping locks definition …
Owner semantics:

definition and usage …

API Documentation

Lock types and their rules {
Lock categories: {
Sleeping lock types:{mutex, semaphore, …},
Spinning locks: { raw_spinlock_t …},
Owner semantics: {

rtmutex : “use case1”, … }

Extracted Information

Kernel Source Code
kernel
include
package
scripts
toolchain
tools

Syscall Arguments Constraints
"setpriority": {
{
" type": "int",
"constraints": {
"range": ["PRIO_PROCESS"...
...

Large Language Model

Setting: I’m working on Kernel Testing,
focusing on generating code capable of
covering certain kernel’s module.
Request: Based on the Kernel source code,
related system call constraints, and the
kernel documentation

Prompts

Static Analysis

Fig. 5: The overall workflow of obtaining constraints of system
calls for a target Embedded OS.

A. Specification Construction
To construct the Embedded OS’s system call specifications

for the target Embedded OS, we mainly use the Embedded
OS’s documentation and source code, and with the help
of an LLM, generate valid C code that utilizes the system
calls and reach the relevant embedded modules, and convert
the C program into specifications for the system call. Since
an off-the-shelf LLM struggles to generate syntactically and
semantically accurate code for an Embedded OS on which
it has not been trained. We adopt a specification generation
pipeline that mainly consists of the following three steps: 1)
source-level static analysis, 2) actual usage code generation
and refinement by LLM, and 3) specification extraction from
actual usage code.

Giving LLMs a deep understanding of the target Embedded
OS’s internals is a challenging task due to the large code

scale and the complex interaction within the code logic. LLMs
inherently struggle to comprehend long texts, particularly in
extensive codebases such as those of an Embedded OS. Fur-
thermore, it is not intensively trained with the target Embedded
OS, therefore is further at a disadvantage.

Therefore, we first perform static analysis to extract more
constraint information to reduce the difficulties LLMs have
and increase the success rate of obtaining a valid speci-
fication. Starting with the documentation and source code
of the target Embedded OS, we search the code base for
system call declarations and cross-reference the documentation
for validation. These are then statically analyzed, where the
arguments of each system call are inspected and assigned
attributes depending on their explicit type definitions. The
attributes, such as possible flag values or range demarcation
values for integer values, along with the system call definitions
themselves, as well as the corresponding documentation page,
are constructed into a prompt for the LLM, where it is asked
to compose a piece of actual working code that leverages this
system call interface to reach the modules referenced in the
Embedded OS documentation.

Algorithm 1: Constraint Extraction Algorithm
Input: s = Source Code of Embedded OS
Input: d = Embedded OS Documentation
Input: p = System Call Matching Pattern

1 Function AnalyzeArg(arg):
2 attrs← ∅
3 switch typeof(arg) do
4 case Integer do
5 attrs[flag val]← flag analyze(arg)

attrs[range val]← rang analyze(arg)
6 case Pointer do
7 attrs[is in], attrs[is out]←

dir analyze(arg)
8 case Structure do
9 for member ∈ arg do

10 attrs[member]←
analyze arg(member)

11 return attrs

12 Function extract_constraints():
13 syscalls← [x for x in regex.match(s, p)]
14 for syscall ∈ syscalls do
15 args← syscall.args
16 for arg ∈ args do
17 arg.attrs← AnalyzeArg(arg)
18 return args

1) Constraint Extraction: This constraint extraction pro-
cess is depicted in Figure 5. As shown in the dia-
gram, we take the source code and documentation of an
Embedded Operating System, parse the code for system call
declarations, extract the system calls and their corresponding
descriptions, perform static analysis to obtain the constraints,
and pass it to the Specfication Phase Generation LLM. The
algorithm is also shown in Algorithm 1. The process begins
at line 12. As shown in line 13, we parse and find system
call definitions by lexical analysis using regular expressions.

6

The regular expressions are crafted manually, as these sys-
tem call declarations have uniform patterns. In line 16, we
extract constraints for each declared argument. The way the
constraints are extracted is dependent on the type of the
positional argument. In the case of structures (line 8), we
recurse into each of its member variables. The constraints
are then attributed to the target system call and prepared for
processing by the LLM.

2) Program Generation and Refinement: We feed the
Specification Generation Phase LLM with the extracted con-
straints, along with its original source code snippet, as well
as its corresponding documentation page, and prompt it to
output a working C code that utilizes the system call, with
appropriate arguments that are valid and allow the flow of
execution to reach the kernel sections mentioned in the docu-
mentation, if possible. The initial program given by the LLM
can be erroneous, or its execution cannot proceed into the
target modules or sections. We use program refinement to
resolve these issues, mainly by compiling and executing the
generated program, analyzing if any errors were raised during
the process, and feeding this information back to the LLM to
prompt for another generation attempt.

Algorithm 2: Program Generation and Refinement
Input: S : System Call Source Code
Input: D : System Call Documentation
Input: C : System Call Constraints
Output: P : System Call Specifications
e← ∅ // Set of errors collected
i← K // Number of tries left
a← nil // Generated program
do

i← i− 1
p← LLM.PromptGen(S, D, C, e)
a, e← Compile(p)
if a ̸= nil then
e← e ∪ ForkAndExec(a)

while e ̸= ∅ ∧ i ≥ 0
for s ∈ a do
p← Code2Spec(s)
P← P ∪ p

return P

The overall process of the specification construction phase
is concisely written in Algorithm 2. The algorithm takes the
source code and documentation of the target system call, as
well as the constraints obtained in the previous step, as input
to the LLM. It then prompts the LLM to output a working
program in the programming language specified by Embedded
OS and assign arguments that are able to execute into, if it
is provided, the target component within the Embedded OS
kernel. Any errors raised during code generation, compilation,
and execution will be fed back into the LLM for further
generation assistance. The algorithm sets an upper limit K
to the number of iterations to prevent infinite loops.

3) Specification Extraction: After obtaining a working
program, we extract a system call specification, along with
its dependent data structures and hints regarding its usage and
positional argument value assignment, and compile relevant
generation routines for the fuzzer’s input payload generation

mechanisms to use during runtime. The input generation
payload hints are embedded into the specifications as attributes
and thus can be picked up by the generation mechanisms. If
errors are raised in this process, we repeat the previous step
to obtain another working program and reattempt this process.

B. Runtime Input Payload Generation

For the fuzzing process to keep generating high-quality
seeds and further enhancing fuzzing performance, we leverage
a Testing Phase LLM in assisting seed generation. Existing
state-of-the-art kernel fuzzers like Syzkaller do not have the
ability to interpret highly informative attributes containing
hints, as they purely depend on code coverage information
and rule-based randomized generation methods to guide the
fuzzer to generate test cases. However, while LLMs are
competent at processing natural languages, they cannot under-
stand unprocessed binary information well. To assist LLMs
in understanding the execution feedback and suggesting the
best mutation direction, we can convert the binary coverage
data into more semantic-rich information. Therefore, in the
generation phase, the mutation direction insights guide LLM
in the iterative creation of arguments that adhere to system
call specifications.

1) Direction Checker: Currently, coverage feedback in-
formation used by kernel fuzzers is expressed as a bitmap,
where the index is the processed address of the basic block,
and the value is the number of times the basic block is exe-
cuted. Without information like kernel code disassembly and
corresponding coverage calculation techniques, LLMs cannot
easily understand such information to assist in input payload
generation. To use LLMs to interpret the execution results,
we take coverage formatted in hexadecimal, along with the
Embedded OS’s control flow graph and current execution trace
logs, into a structured and pseudo-natural-language written
format, and prompt the LLM to output a possible distance
vector, which can directly show the best mutation direction to
mutate the system call’s arguments. The details of this process
are discussed as follows.

When each execution round finishes, we collect the coverage
information and decompose the binary kcov trace. Since the
kernel contains the address for each kernel symbol, we can
get the current execution trace and the executed times for
each block based on the address in kcov. Then, by com-
bining the trace with the target module’s address, we can
calculate the distance between the current execution trace
and the target module. The distance to a target module is
determined by counting the intermediate basic blocks on the
shortest path from a starting block, for example, on the trace
BB1→BB2→BB3, the distance from BB1 to BB3 is 2. we
define an array representing the distance of every basic block
within the target module to the closest point in the execution
trace. The module distance is then computed as the average
of these distances, quantifying how far the current execution
is from fully covering the target module.

This computation can be formalized as follows: Let D =
d1, d2, . . . , dn be the set of distances where di is the distance
from the ith basic block in the target module to the nearest

7

point in the execution trace. The module distance, MD, is
calculated as the mean of all values in D. This module
distance MD is a heuristic for guiding the overall fuzzing
process. Lower values of MD indicate closer proximity to
the target module, pointing to areas of potential interest for
a more detailed exploration. Based on MD, we introduce a
direction vector for each argument in the system calls. This
vector suggests how the argument might mutate to potentially
decrease MD, drawing the execution trace to the target
module. The direction vector V for an argument encompasses
components that include:

• Add/Subtract (+/−): Suggests whether to increase or
decrease numeric arguments.

• Multiply/Divide (∗/÷): Indicates whether scaling the
argument up or down is preferable.

• Flag Toggle: For arguments acting as flags, suggests
alternating between different flag values.

The selection of a mutation operation is influenced by both
the argument type and the current module distance, aiming to
explore mutations more likely to reduce MD effectively. This
vector is then treated as the program’s attributes and will guide
the multi-staged generation phase to generate more meaningful
test payloads.

2) Multi-staged Generation: We use LLM to either mutate
existing input payloads by directional hints accumulated from
previous runs or choose proper system calls and generate
arguments within the system call specifications. However,
LLMs have a limited context size and are therefore incapable
of handling long texts that exceed this limit, while each
specification contains a different number of arguments, and
each argument has specific possible values. Consequently,
generating all arguments simultaneously may cause the fuzzer
to produce relatively low-quality test cases.

To address such problems, we use a multi-staged generation
process, where we first let LLM choose best-fit system calls
for this execution round, then when mutating the arguments,
we leverage the direction vector to guide LLM to generate
the arguments within the system call specifications. How-
ever, instead of generating the system call as a whole, we
separate the generation task into small tasks, i.e., generate
each argument in isolation and combine them to complete
the system call’s instantiation. Specifically, after we provide
the initial set of corpus seeds and the kernel’s control flow
graph to the LLM, the LLM selects the most promising system
call based on its potential to navigate closer to target areas
within the kernel. Then, for each argument of this syscall, the
algorithm calculates a direction vector to guide its mutation,
ensuring each modified argument aligns with strategic explo-
ration objectives. Furthermore, utilizing the LLM, we generate
arguments that are not only contextually relevant but also
optimized for penetrating deeper into the kernel’s logic. Last,
these arguments are incrementally assembled into a refined
system call, which is then added to the next program to be
tested against the kernel.

V. IMPLEMENTATION

We implemented ECG using a mixture of code written in
Golang, Python, and C++. We first use LLVM [25] to compile

the Embedded OS code and use passes to scan the Embedded
OS’s code, lowered into LLVM’s Intermediate Representation
(IR). This process allows us to identify the target module’s
entry function and backpropagate possible control flows from
the system call entry to the module’s entry function. We
collect the functions and corresponding arguments constraint
for each control flow and then organize them into JSON files
to facilitate the specification construction phase.

To generate code for specification extraction, we choose
Mixtral-8x7b [26] as our Specification Construction Phase
payload generation LLM due to its code generation abili-
ties and comprehension skills. We prompt Mixtral-8x7b with
necessary Embedded OS source code and documentation,
allowing it to establish a basic understanding of the generation
target. Then, we use a Python script to provide Mixtral-8x7b
with text file for code generation. Once we collect the valid
generated programs, we extract the execution trace for each
program using strace and convert it into system call specifica-
tions using conversion utilities provided by Moonshine [27].

To generate input payloads, we use Mistral-7b [28] as the
Testing Phase interpretation and payload generation LLM due
to its adequate generation qualities and fast token generation
speed. In detail, we intercept the raw KCOV coverage, com-
bine it with the disassembled kernel image, and translate the
coverage information into a text file to inform LLM which
functions have been covered. Then, we calculate the distance
from the current direction to the target module. Furthermore,
combined with the corresponding input, processed coverage,
and distance information, we use LLM to provide mutation
hints, including mutation direction and system call priority.
Leveraging such information, during the payload mutation
phase, we use LLM to iteratively generate arguments within
the system call specifications and use the generated arguments
as the test payloads to test the target Embedded OS further.

VI. EVALUATION

To understand our approach’s effectiveness, we propose the
following research questions to help us understand ECG’s
performance and effectiveness.

• RQ1: Is ECG able to uncover new bugs in target Em-
bedded OS?

• RQ2: Is ECG capable of covering more code sections
than other tools?

• RQ3: What is the effectiveness of the LLM-assisted
generation strategy?

A. Evaluation Setup

The experiments were conducted on a server with a 128-
core AMD EPYC CPU, 32 GiB of memory, and 2 Tesla
V100S-PCIE-32GB GPUs running Ubuntu as the host kernel.
We selected the RT-Linux, RaspiOS, and OpenWrt as our test
target, as these three Embedded OS are mostly widely used
Embedded OS. Also, for the target versions, we selected kernel
versions 6.7 and 6.8 for RT-Linux and RaspiOS, respectively,
along with versions 5.15 and 6.1 for OpenWrt, as these
versions of kernel are the latest stable releases at the time of
our experiments. Each testing target uses the same compilation
configuration; the KCOV and KASAN options are enabled

8

TABLE I: ECG has identified 32 previously undiscoverd bugs within the latest Linux kernel.

Modules Versions Locations Bug Types
1 fs/buffer RT-Linux 6.7 mark buffer dirty logic error
2 drivers/pci RT-Linux 6.7 vga put logic error
3 kernel/sched RT-Linux 6.7 select task rq fair deadlock
4 mm/filemap RT-Linux 6.7 filemap fault / page add file rmap data race
5 drivers/net/ RT-Linux 6.7 e1000 update stats memory corruption
6 fs/inode RT-Linux 6.7 inode update timestamps data race
7 kernel/kprobes RT-Linux 6.7 arch adjust kprobe addr logic error
8 fs/dcache RT-Linux 6.7 d splice alias data race
9 fs/ext4 RT-Linux 6.7 ext4 new inode / find next zero bit data race
10 drivers/e1000 RT-Linux 6.7 e1000 clean data race
11 lib/find bit RT-Linux 6.7 find first bit data race
12 kernel/sched RT-Linux 6.8 wake up common null-ptr defer
13 lib/kasprintf RT-Linux 6.8 kvasprintf logic error
14 kernel/events RT-Linux 6.8 perf cgroup switch logic error
15 fs/inode RT-Linux 6.8 generic update time / inode needs update time data race
16 fs/ext4 RT-Linux 6.8 generic write end / mpage submit folio data race
17 fs/kernfs RT-Linux 6.8 kernfs dop revalidate memory corruption
18 fs/ext4 RT-Linux 6.8 ext4 split extent at memory corruption
19 arch/x86/lib RT-Linux 6.8 memcpy orig out-of-bounds
20 kernel/events RT-Linux 6.8 free event logic error
21 drivers/scsi RT-Linux 6.8 bitmap weight /scsi device unbusy data race
22 kernel/rcu RT-Linux 6.8 call rcu common /mas walk data race
23 mm/swap RT-Linux 6.8 folio end writeback / lru add fn data race
24 arch/x86/lib RT-Linux 6.8 memmove memory corruption
25 arch/x86/events/intel RT-Linux 6.8 intel pmu lbr counters reorder logic error
26 arch/x86/kernel RT-Linux 6.8 deref stack reg logic error
27 arch/x86/kernel RT-Linux 6.8 orc find memory leak
28 net/9p RT-Linux 6.8 p9pdu readf memory leak
29 arch/x86/lib OpenWrt 5.15 memset erms logic error
30 kernel/smp OpenWrt 5.15 smp call function single logic error
31 arch/arm64/kvm RaspberryPi OS 6.7 kvm init stage2 mmu memory leak
32 arch/arm64/kvm RaspberryPi OS 6.7 kvm age gfn logic error

for coverage collection and memory corruption detection. For
thread-related issues, such as data race vulnerabilities, we use
the KCSAN configuration.

We used Syzkaller, KernelGPT , Moonshine, Rtkaller, and
DRLF for comparison against ECG. Furthermore, we pro-
pose ECG-, which is ECG without LLM guided generation
for component-wised comparison and ECG-directed, which
is ECG with directed fuzzing enabled for comparison with
DRLF. The experiment maintained consistent parameters, in-
cluding QEMU resources and fuzzer instances. Specifically, to
control the computational resources, we started all experiments
simultaneously and distributed the resources evenly, including
2 cores and 2 GB of main memory for each virtual machine.
To ensure the accurate statistic of ECG’s effectiveness and to
mitigate potential biases, each experiment is repeated 10 times
over 24-hour periods, with the resultant data being averaged
to determine the final outcomes. The empirical evaluation
referred to the prudent evaluation practices for fuzzing [29].

B. Bug Detection Capabilities

To answer RQ1 and demonstrate the bug detection ability
of ECG, we use ECG to test target Embedded OSs for
a week. In the conducted experiments, the ECG identified
32 previously unknown bugs. Despite rigorous testing with
extensive computing resources by established kernel fuzzers
such as Syzkaller, these bugs remained undiscovered. It is
noteworthy that most of the bugs were located within the
foundational logic of the kernel, specifically affecting critical
modules, including file systems, network protocols, and pro-

cess schedule modules. Comprehensive details regarding these
bugs, including the affected kernel module, version, precise
location, and bug types, are listed in Table I.

The ability of ECG to disclose previously unknown bugs re-
lies on its specification construction and LLM-assisted fuzzing
strategies. The specification construction strategy allows LLM
to generate C programs that access the targeted kernel module
by extracting the anchoring Embedded OS’s internals con-
straint so that it is further processed into high-quality corpus
seeds for Embedded OS testing. Additionally, the direction
checker and multi-staged generation mechanism of LLM as-
sisted fuzzing optimize the mutation direction guidance of
generating the arguments within the system call specification.

Bug Impact. In particular, we investigate the impact of
bugs identified by the ECG, which manifest in various ad-
verse outcomes such as data corruption, system freezes, and
system crashes. The analysis focuses on the consequences of
the identified vulnerabilities. Fifteen newly discovered bugs
are primarily related to logic errors and memory corruption,
which could lead to data corruption or loss. These bugs are
categorized as such: bugs 1, 2, 5, 7, 13, 14, 17, 18, 20, 24,
25, 26, 29, 30, and 32. Furthermore, an additional 12 bugs,
primarily associated with deadlocks and data race issues, have
been discovered. These bugs, which include bugs 3, 4, 6, 8, 9,
10, 11, 15, 16, 21, 22, and 23, may cause the system to hang or
become unresponsive. Moreover, we have identified five new
bugs, mainly concerning buffer overflows and memory leaks,
which could lead to system crashes and functional failures.
including bugs 12, 19, 27, 28, and 31. If exploited carefully,

9

these bugs will reduce the system’s reliability and may cause
it to break down completely.

TABLE II: Average bug counts of ECG and other fuzzers over
10 rounds of experiments.

Metrics OpenWrt RT-Linux RaspiOS Totalv5.15 v6.1 v6.7 v6.8 v6.7 v6.8
ECG 7.1 7.8 8.9 8.2 6.5 7.4 45.9
ECG- 6.3 7.2 7.8 7.3 5.8 6.4 40.8
KernelGPT 5.5 6.3 6.7 6.1 5.2 5.7 35.5
Moonshine 4.5 4.9 4.4 5.1 4.2 4.7 27.8
Rtkaller 4.7 5.3 5.2 5.5 4.6 5.1 30.4
Syzkaller 4.1 4.6 4.3 4.8 3.9 3.7 25.4
ECG-directed 4.3 4.6 3.9 4.2 4.1 3.5 24.6
DRLF 3.5 4.1 3.2 3.7 3.6 3.1 21.2

Bug Detection Comparison. We compare the bugs trig-
gered during testing. As illustrated in the Table II, ECG
identified the highest number of bugs under identical experi-
mental conditions and duration. Specifically, ECG discovered
the most bugs, identifying 7.1, 7.8, 8.9, 8.2, 6.5, and 7.4 bugs
in OpenWrt5.15, OpenWrt6.1, RT-Linux6.7, RT-Linux6.8,
RaspiOS6.7, and RaspiOS6.8, respectively. ECG- also discov-
ered a total of 40.8 bugs. This is significantly due to the spec-
ification construction and runtime input payload generation in
ECG, which effectively assists the LLM in generating input
payloads capable of triggering specific kernel modules within
embedded systems.

1 static kprobe_opcode_t * _kprobe_addr(
2 kprobe_opcode_t *addr,
3 const char *symbol_name,
4 unsigned long offset,
5 bool *on_func_entry)
6 {
7 ...
8 addr = arch_adjust_kprobe_addr((unsigned

long)addr, offset, on_func_entry);
9 if (addr)

10 return addr;
11 }
12

13 kprobe_opcode_t *arch_adjust_kprobe_addr(
14 unsigned long addr,
15 unsigned long offset,
16 bool *on_func_entry)
17 {
18 if (is_endbr(*(u32 *)addr)) {
19 *on_func_entry = !offset || offset == 4;
20 if (*on_func_entry)
21 offset = 4;
22 } else {
23 ...
24 }
25 }

Fig. 6: Code snippet of memory corruption in RT-Linux probe
subsystem.

Case Study. Here, we take Bug#16 as the case study
to further illustrate the effectiveness of ECG. In detail,
Figure 6 demonstrates a logic error bug found in the
RT-Linux v6.7 kernel’s core modules. This bug is found
by ECG and has been confirmed by the corresponding
maintainer. Concretely speaking, this bug is located in
the function arch adjust kprobe addr()(Line 13), which is
called by the kernel’s real-time module, when it uses
pref events() to periodicity monitor the kernel’s behavior.
The bug is triggered due to the premature dereferencing of

the address pointed to by addr function parameter with-
out ensuring that this address is safe and valid for ac-
cess. Specifically, when the kernel invokes the call instruc-
tion addr = arch adjust kprobe addr() (Line 8) within the

kprobe addr() function, the arch adjust kprobe addr() func-
tion then attempts to determine whether the address points to
an ENDBR instruction, a part of Indirect Branch Tracking
(IBT) on x86 architectures, by directly accessing the memory
at that address using is endbr(*(u32 *)addr) (Line 18). This
operation assumes that the address is valid and has been
mapped into the process’s address space. However, if the
address is invalid, unallocated, or does not have the appropriate
permissions for access, this dereferencing leads to a segmenta-
tion fault or general protection fault, causing the kernel crash.

To trigger this bug, ECG extracted constraints from the
targeted Embedded OS kernel’s real-time documentation to
generate payloads targeting the real-time modules for the
LLM. Furthermore, it transformed the coverage feedback
information obtained during the fuzzing process into LLM-
readable structured data to guide the optimization of mutation
directions. As a result, ECG successfully triggered this bug.
Although there has been considerable testing work on Embed-
ded OS and their real-time module, ECG distinguishes itself
from previous testing efforts by generating precise seed corpus
through the integration of function constraint dependencies
and LLM code generation. Additionally, with the LLM aid
of mutation direction guidance feedback, it can produce seed
cases that explore given target system modules.

Real Device Testing. We extended our testing framework
to real-world Embedded OS. Specifically focusing on the
ZHIXIN OS, on the Raspberry Pi platform. ZHIXIN OS
is a Embedded OS widely used in electronics systems to
monitor and control power supply. We conducted tests using
two Raspberry Pi devices, each running ZHIXIN OS, with
multiple fuzzing instances deployed. The setup consists of
a laptop and the Raspberry Pis. The laptop, using a LLM-
generated corpus, manages the fuzzing process. It connects
to the Raspberry Pis via GPIO communication, transferring
fuzzing data, including test cases, coverage, and bug reports.
The Raspberry Pis runs ZHIXIN OS, injecting test cases at
startup. They collect coverage and kernel dmesg in real-time,
sending it back to the laptop for analysis. Parallel execution
distributes test cases across the Raspberry Pis, efficiently
covering a broad spectrum of the OS’s functionality. During

TABLE III: ZHIXIN OS bugs found by ECG.

Modules Operations Bug Types
arch/x86/kernel orc ip null-ptr deref
kernel/workqueue process one work data race
arch/x86/kernel profile pc use-after-free
lib/iov iter copy from iter logic error
fs/buffer generic write end /

mpage process page bufs data race
kernel/fork alloc pid / copy process data race
fs/ext4 ext4 bmap deadlock
fs/ext4 ext4 mb good group /

mb mark used data race

fs/stat generic fillattr / kernfs ref
resh inode data race

fs/proc task dump owner data race

the fuzzing campaign on ZHIXIN OS, we discovered 10 bugs,

10

TABLE IV: Average branch coverage and p-value statistics of ECG and other fuzzers over 10 rounds of experiments.

Subject OpenWrt RT-Linux RaspiOS Overall
v5.15 v6.1 v6.7 v6.8 v6.7 v6.8

ECG 160210.6 173660.5 206004.3 215922.5 176111.4 168805.2 183,452.4
ECG- 151153.5(+5.99%/0.014) 166260.5(+4.55%/0.022) 196004.3(+5.10%/0.035) 203922.5(+5.88%/0.025) 165550.9(+6.38%/0.011) 151640.6(+11.32%/0.026) 172422.1(+6.4%)
Syzkaller 130876.4(+22.41%/0.001) 144863.5(+19.88%/0.003) 171117.3(+20.39%/0.009) 172977.7(+24.83%/0.003) 139509.9(+26.24%/0.003) 134090.6(+25.89%/0.005) 148,905.8(+23.20%)
Moonshine 135201.3(+18.50%/0.007) 148661.9(+16.82%/0.004) 174380.2(+18.14%/0.013) 178459.3(+20.99%/0.007) 145825.3(+20.77%/0.008) 138891.7(+21.54%/0.008) 153,569.9(+19.46%)
KernelGPT 143582.5(+11.58%/0.011) 160346.4(+8.30%/0.012) 185393.4(+11.12%/0.021) 193854.7(+11.38%/0.015) 158850.5(+10.87%/0.01) 149928.1(+12.59%/0.013) 165,325.9(+10.96%)
Rtkaller 139634.2(+14.74%/0.001) 153689.7(+12.99%/0.003) 179253.7(+14.92%/0.016) 184209.4(+17.22%/0.006) 151840.7(+15.98%/0.005) 144622.3(+16.72%/0.006) 158873.6(+15.47%)
ECG-directed 47228.6 49845.2 46180.7 44865.5 47228.6 49856.5 47534.1
DRLF 43283.3(+9.12%/0.023) 44646.5(+11.64%/0.017) 41099.7(+12.36%/0.012) 40445.2(+10.93%/0.041) 43585.6(+8.36%/0.011) 43754.4(+13.95%/0.024) 42802.4(+11.05%)

highlighting the effectiveness of ECG in finding hidden bugs.
Detailed bug statistics are in Table III. These bugs are mainly
in core modules like the file system, network, and process
management. Bug types include null-pointer dereference, use-
after-free, deadlock, memory leak, data race, and logic error.
If exploited, they could cause ZHIXIN OS to crash or lose
data. We responsibly disclosed our findings to the developers
and maintainers of ZHIXIN OS, with 2 bugs confirmed.

C. Coverage Improvement of ECG

To answer RQ2 and demonstrate the effectiveness of ECG
in exploring a broader range of execution paths and deeper
kernel states, we present the code coverage statistics in com-
parison with existing state-of-the-art kernel fuzzers, including
Syzkaller, Moonshine, KernelGPT , Rtkaller, and DRLF. 6
different embedded Linux kernel versions are chosen for the
experiment, including RT-Linux and RaspiOS Kernel versions
6.7 and 6.8, along with OpenWrt Kernel versions 5.15 and 6.1.
The Qemu simulation environments utilized by all fuzzer tools
maintain the same parameter configurations, such as CPU core
number, memory storage size, and so on. Finally, to minimize
statistical deviation, each experiment is repeated 10 times.

Table IV provides a detailed breakdown of the branch cover-
age statistics for Syzkaller, Moonshine, KernelGPT , Rtkaller,
DRLF, ECG-, and ECG over a 24 hours period. Compared
to these tools, ECG achieves average coverage improvements
of 23.20%, 19.46%, 10.96%, 15.47%, 11.05%, and 6.4%,
respectively. These results show that ECG not only achieves
higher coverage on all kernel versions but also significantly
enhances the exploration depth of the embedded operating sys-
tem kernel code, thereby indicating its superior effectiveness
in identifying potential bugs.

We further plot the coverage growth curve based on the
coverage statistic. As illustrated in Figure 7, the initial phase of
the evaluation demonstrates a continuous increase in coverage
for all evaluated tools. Notably, ECG, ECG-, and KernelGPT
exhibit a growth rate surpassing that of Syzkaller, Moonshine,
and Rtkaller in the early stages. Furthermore, approximately
after the first three hours, coverage expansion of the ECG and
ECG- consistently outpaces that of KernelGPT , maintaining
this lead until the conclusion of the experimental period.

A significant benefit of ECG is its utilization of LLM
to generate source code programs that interact with specific
modules of the embedded operating system, thereby generating
a higher quality initial corpus than other fuzzers. Additionally,
ECG mutates high-quality corpus seeds under the guidance of
structured feedback from the fuzzing loop, facilitating rapid
penetration into the deeper layers of the embedded operating

0 6 12 18 24
Time(hours)

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f B
ra

nc
he

s C
ov

er
ed

1e5

ECG
Syzkaller

KernelGPT
Moonshine

Rtkaller
ECG-

ECG-directed
DRLF

(a) RT-Linux v6.7

0 6 12 18 24
Time(hours)

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f B
ra

nc
he

s C
ov

er
ed

1e5

ECG
Syzkaller

KernelGPT
Moonshine

Rtkaller
ECG-

ECG-directed
DRLF

(b) RT-Linux v6.8

0 6 12 18 24
Time(hours)

0.0

0.5

1.0

1.5

Nu
m

be
r o

f B
ra

nc
he

s C
ov

er
ed

1e5

ECG
Syzkaller

KernelGPT
Moonshine

Rtkaller
ECG-

ECG-directed
DRLF

(c) RaspiOS v6.7

0 6 12 18 24
Time(hours)

0.0

0.5

1.0

1.5

Nu
m

be
r o

f B
ra

nc
he

s C
ov

er
ed

1e5

ECG
Syzkaller

KernelGPT
Moonshine

Rtkaller
ECG-

ECG-directed
DRLF

(d) RaspiOS v6.8

0 6 12 18 24
Time(hours)

0.0

0.5

1.0

1.5

Nu
m

be
r o

f B
ra

nc
he

s C
ov

er
ed

1e5

ECG
Syzkaller

KernelGPT
Moonshine

Rtkaller
ECG-

ECG-directed
DRLF

(e) OpenWrt v5.15

0 6 12 18 24
Time(hours)

0.0

0.5

1.0

1.5

Nu
m

be
r o

f B
ra

nc
he

s C
ov

er
ed

1e5

ECG
Syzkaller

KernelGPT
Moonshine

Rtkaller
ECG-

ECG-directed
DRLF

(f) OpenWrt v6.1

Fig. 7: Average coverage growth curve comparison of ECG
and other fuzzers.

system kernel logic. In comparison, Syzkaller initiates its
process with an arbitrary sequence of system calls, often
overlooking complex kernel code paths. Similarly, Rtkaller
and DRLF face the same challenge, lacking high-quality seed
sequences that effectively guide the fuzzing process toward
critical code modules. Moonshine uses sequences derived from
actual programs, but these generally fail to trigger the deep
kernel’s code. Moreover, KernelGPT produces syscall speci-
fications that are unsuitable for embedded operating systems
and struggles to adapt in such scenarios.

Comparsion with Tardis. Since Tardis does not support
Embedded Linux testing and supports those systems such as
uc/os and FreeRTOS, we adapted ECG to support FreeRTOS
testing for comparison. In detail, we feed FreeRTOS’s API
documentation to the LLM, allowing ECG to generate test
cases for it, and we adapted Syzkaller to support the target

11

RTOS fuzzing. 2 In summary, ECG and ECG- achieve an
average of 4205.3 and 4097.2 branch coverage, with a previ-
ously unknown bug found in the esp memory utils module.
In comparison, Tardis achieves an average of 3888.0 branch
coverage, which is 8.16% less than ECG.

D. Effectiveness of LLM-Assisted Generation

To answer RQ3, we evaluate the effectiveness of the LLM-
assisted generation strategies in terms of the generate program
count, the generation efficiency, and the overhead. We chose
real-time, memory management, file system, and network as
the target modules, as these modules are specially tailored to
the embedded environment and need to balance functionality
with the limited computing resources available. For instance,
the real-time module provides scheduling and timing mech-
anisms that allow an embedded OS to offer deterministic
behavior and real-time performance; while the file system
module is optimized for the specific types of storage media
used in embedded devices, such as NAND flash.

TABLE V: Extracted code statistic in 3 target Embedded OSs.

Modules RT-Linux RASPiOS OpenWRT SUM
real-time 69 – – 69
mem management 23 59 64 146
file system 43 64 23 130
network 29 52 73 154
SUM 164 175 160 499

Generation Program Statistic. The detailed generated
program counts for each module are listed in Table V. In
RT-Linux, generation focused on the real-time module with 69
programs, while memory management, file system, and net-
work had 23, 43, and 29 programs, respectively. For RaspiOS,
ECG generated 59 programs in memory management, 64 in
the file system, and 52 in the network, totaling 175 programs.
In OpenWrt, 64, 23, and 73 programs were generated in these
modules, totaling 160 programs. Overall, 499 programs were
generated across all modules and systems, highlighting that
ECG enhances LLM’s ability to produce test cases for diverse
system functionalities.

Generation Efficiency. To evaluate the code generation
efficiency of ECG, we compared Mixtral8x7b (used by ECG),
Llama3-8b, and GPT3.5 in terms of the averaged number of
valid programs generated, repair programs, and token con-
sumption for each LLM within 10 minutes, over 10 repetitions,
with the same prompts.

TABLE VI: Average number comparison of Mixtral8x7b,
Llama3-8b, and GPT3.5 on generated/repaired programs, and
the tokens consumption per program in 10 minutes over 10
rounds of experiments.

Subject Valid/Gen Repaired/Invaild Token Consumption

Mixtral8x7b 10.2/18.6 4.7/8.4 781.9
Llama3-8b 6.7/14.3 3.9/7.6 824.1
GPT3.5 9.1/17.8 4.1/8.7 857.4

The results are shown in Table VI. Mixtral8x7b generated
18.6 programs, with 10.2 directly executable and 8.4 non-
executable. After LLM-guided repairs, 4.7 programs were

2https://github.com/zzqq0212/ECG/tree/main/ECG/ecg-freertos

successfully repaired. In comparison, Llama3-8b and GPT3.5
generated 14.3 and 17.8 programs, with 6.7 and 9.1 being
executable. Additionally, Mixtral8x7b consumed fewer tokens
on average, approximately 781.9 tokens. This efficiency is
due to its enhanced syntactic and semantic understanding of
programming and efficient tokenization, allowing for more
directly executable programs with fewer tokens, reducing
computational resource usage, and improving the debugging
and repair process.

Runtime Overhead. We further evaluated the memory
and runtime overhead of the LLM used in the ECG for the
experiments. The results indicate that ECG uses an average
of 28.32 GB of memory per graphics card when executing
a single prompt in the code generation phase, while each
graphics card uses an average of about 13.61 GB when
executing a single prompt in the testing guidance phase. We
also measured the average time required to generate an input
payload, which was 32.25 seconds.

VII. RELATED WORK

In the domain of operating system kernel fuzzing [30], [31],
Syzkaller has been widely used to detect vulnerabilities in the
Linux kernel. Syzkaller focuses mainly on general purpose
OSs, where ECG is aimed towards Embedded OSs. Many
works try to enhance the fuzzing performance of Syzkaller.
For example, Healer [32], a fuzzer inspired by Syzkaller,
uses a relation learning algorithm to deduce the relation
between different system calls and use such information to
guide the test case generation. In comparison, ECG aims to
generate input payloads by automatically constructing input
specifications and identifying semantic information from static
documentation and code, as well as dynamic sources from
postmortem analysis of execution rounds.

For Embedded OS fuzzing, many works attempted to im-
prove the fuzzing performance of Embedded OS [30], [33].
For example, Tardis [30] proposes the use of shared-memory
mechanisms to collect execution coverage, thus guiding in-
put generation thereby boosting real-time operating system
fuzzing performance. DRLF [34] uses a directed feedback
mechanism to guide the test case generation and drive the
fuzzing toward real-time related code sections. These works
mainly focus on leveraging runtime feedback to guide the
fuzzing process while failing to provide the fuzzer with high-
quality input payloads. ECG, in contrast, interprets semantic
information with the help of LLMs to further assist in the input
payload generation process. Additionally, ECG also proposes
an automated specification generation technique that provides
the foundational input grammar.

Empirically, initial seeds play a pivotal role in improving
kernel fuzzing performance. As such, many works proposed
techniques to obtain an initial seed corpus and increase its
quality. For instance, Moonshine [27] collects the execution
trace in the real world and uses a distillation algorithm to
refine the quality of generated input. KernelGPT [24] leverages
LLM to generate the initial corpus for fuzzer. In contrast to
ECG, KernelGPT does not provide any insight into generating
specifications for Embedded OS, nor does it improve the input
semantics generated from existing techniques.

12

VIII. DISCUSSION

Generation Performance. In the current landscape of em-
ploying LLM for test case generation, one significant hurdle
that stands out is the generation speed of these models. The
intricate nature of LLM, designed to comprehend and generate
complex code structures, inherently demands considerable
computational resources and time. To mitigate the impact of
this limitation on the fuzzing workflow, we have adopted
an asynchronous approach, allowing test case generation to
proceed without stalling the overall testing process. In the
future, we can adapt lightweight LLMs tailored for tasks
like code generation. Additionally, ECG’s reliance on well-
documented files limits its applicability in environments with
poor or outdated documentation, which is common in legacy
embedded systems. To improve applicability, we can enhance
ECG with man-in-the-loop techniques or refined strategies to
extract interface information, which can then be used by LLMs
to generate test cases, reducing reliance on documentation.

LLM in Bug Detection. Currently, LLM for Embedded OS
fuzzing predominantly focuses on payload generation. This
narrow application range underscores the current limitations
of LLM, particularly in areas crucial to fuzzing, such as
bug detection and feedback analysis. Although the existing
methods can generate complex payloads, they can’t analyze
fuzzing feedback, such as identifying subtle bugs. In the future,
LLMs could be trained for improving bug detection.

IX. CONCLUSION

In this paper, we present ECG, an LLM-assisted Embedded
OS fuzzer. By leveraging LLM to generate high-quality pay-
loads, ECG can enhance Embedded OS fuzzing performance.
ECG found 32 previously unknown bugs on 3 open-sourced
Embedded OSs, achieves 16.02% coverage improvement on
average, compared with the state-of-the-art fuzzers. We also
deployed ECG on a commercial Embedded OS, ZHIXIN OS,
running on actual hardware, where it found 10 bugs.

REFERENCES

[1] A. Greenberg, “A decade-old bug is putting millions of critical devices
at risk,” 7 2019. [Online]. Available: https://www.wired.com/story/
vxworks-vulnerabilities-urgent11/

[2] C. Cimpanu, “Zephyr rtos fixes bluetooth bugs that
may lead to code execution,” 12 2020. [On-
line]. Available: https://www.bleepingcomputer.com/news/security/
zephyr-rtos-fixes-bluetooth-bugs-that-may-lead-to-code-execution/

[3] S. Mallissery and Y.-S. Wu, “Demystify the fuzzing methods: A
comprehensive survey,” ACM Comput. Surv., vol. 56, no. 3, oct 2023.
[Online]. Available: https://doi.org/10.1145/3623375

[4] “Aflgo: Directed greybox fuzzing.” [Online]. Available: https:https:
//github.com/aflgo/aflgo

[5] P. Chen and H. Chen, “Angora: Efficient Fuzzing by Principled Search,”
in 2018 IEEE Symposium on Security and Privacy (SP), 2018.

[6] M. Wang, J. Liang, C. Zhou, Z. Wu, X. Xu, and Y. Jiang, “Odin: on-
demand instrumentation with on-the-fly recompilation,” in Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, ser. PLDI 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 1010–1024.
[Online]. Available: https://doi.org/10.1145/3519939.3523428

[7] M. Wang, J. Liang, C. Zhou, Y. Jiang, R. Wang, C. Sun, and J. Sun,
“RIFF: Reduced instruction footprint for Coverage-Guided fuzzing,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, Jul. 2021, pp. 147–159. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/wang-mingzhe

[8] D. Vyukov and A. Konovalov, “Syzkaller: an unsupervised coverage-
guided kernel fuzzer,” 2015, https://github.com/google/syzkaller.

[9] ——, “Syzlang: System call description language,” 2015, https://github.
com/google/syzkaller/blob/master/docs/syscall descriptions syntax.md.

[10] L. Plein, W. C. Ouédraogo, J. Klein, and T. F. Bissyandé, “Automatic
generation of test cases based on bug reports: a feasibility study with
large language models,” 2023.

[11] Z. Zhang, C. Chen, B. Liu, C. Liao, Z. Gong, H. Yu, J. Li, and R. Wang,
“Unifying the perspectives of nlp and software engineering: A survey
on language models for code,” 2024.

[12] B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou, and
W. Chen, “Codet: Code generation with generated tests,” 2022.
[Online]. Available: https://arxiv.org/abs/2207.10397

[13] “Real-time linux kernel.” 2010, https://wiki.linuxfoundation.org/
realtime/start.

[14] “Raspberrypi os.” 2012, https://www.raspberrypi.com/documentation/
computers/os.html.

[15] “Openwrt.” 2004, https://openwrt.org/.
[16] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,

and e. Harri Edwards, “Evaluating large language models trained on
code,” 2021.

[17] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve, “Code llama: Open foundation models for code,” 2024.

[18] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren,
Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen, “A survey of
large language models,” 2023.

[19] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
testing with large language models: Survey, landscape, and vision,”
2024.

[20] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” 2024.

[21] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering:
Survey and open problems,” 2023.

[22] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries
via large language models,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2023. New York, NY, USA: Association for Computing Machinery,
2023, p. 423–435. [Online]. Available: https://doi.org/10.1145/3597926.
3598067

[23] Z. Yuan, Y. Lou, M. Liu, S. Ding, K. Wang, Y. Chen, and X. Peng,
“No more manual tests? evaluating and improving chatgpt for unit test
generation,” 2023.

[24] C. Yang, Z. Zhao, and L. Zhang, “Kernelgpt: Enhanced kernel fuzzing
via large language models,” arXiv preprint arXiv:2401.00563, 2023.

[25] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, ser. CGO ’04. USA: IEEE Computer
Society, 2004, p. 75.

[26] MistralAI, “Mixtral-8x7B-v0.1,” 2023. [Online]. Available: https:
//huggingface.co/mistralai/Mixtral-8x7B-v0.1

[27] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing OS
Fuzzer Seed Selection with Trace Distillation,” in 27th USENIX
Security Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 729–743. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/pailoor

[28] MistralAI, “Mistral-7B-v0.1,” 2023. [Online]. Available: https://
huggingface.co/mistralai/Mistral-7B-v0.1

[29] M. Schloegel, N. Bars, N. Schiller, L. Bernhard, T. Scharnowski,
A. Crump, A. Ale-Ebrahim, N. Bissantz, M. Muench, and T. Holz,
“Sok: Prudent evaluation practices for fuzzing,” in 2024 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2024, pp. 140–140. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00137

[30] Y. Shen, Y. Xu, H. Sun, J. Liu, Z. Xu, A. Cui, H. Shi,
and Y. Jiang, “Tardis: Coverage-guided embedded operating system
fuzzing,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
vol. 41, no. 11, pp. 4563–4574, 2022. [Online]. Available: https:
//doi.org/10.1109/TCAD.2022.3198910

[31] Y. Xu, H. Sun, J. Liu, Y. Shen, and Y. Jiang, “Saturn: Host-
gadget synergistic usb driver fuzzing,” in 2024 IEEE Symposium
on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE
Computer Society, may 2024, pp. 50–50. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00051

[32] H. Sun, Y. Shen, C. Wang, J. Liu, Y. Jiang, T. Chen, and A. Cui,
HEALER: Relation Learning Guided Kernel Fuzzing. New York,
NY, USA: Association for Computing Machinery, 2021, p. 344–358.
[Online]. Available: https://doi.org/10.1145/3477132.3483547

[33] Y. Shen, H. Sun, Y. Jiang, H. Shi, Y. Yang, and W. Chang,
“Rtkaller: State-Aware Task Generation for RTOS Fuzzing,” ACM
Trans. Embed. Comput. Syst., vol. 20, no. 5s, sep 2021. [Online].
Available: https://doi.org/10.1145/3477014

[34] Y. Shen, S. Chen, J. Liu, Y. Xu, Q. Zhang, R. Wang, H. Shi,
and Y. Jiang, “Brief industry paper: Directed kernel fuzz testing
on real-time linux,” in 2023 IEEE Real-Time Systems Symposium
(RTSS). Los Alamitos, CA, USA: IEEE Computer Society, dec 2023,
pp. 495–499. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/RTSS59052.2023.00059

https://www.wired.com/story/vxworks-vulnerabilities-urgent11/
https://www.wired.com/story/vxworks-vulnerabilities-urgent11/
https://www.bleepingcomputer.com/news/security/zephyr-rtos-fixes-bluetooth-bugs-that-may-lead-to-code-execution/
https://www.bleepingcomputer.com/news/security/zephyr-rtos-fixes-bluetooth-bugs-that-may-lead-to-code-execution/
https://doi.org/10.1145/3623375
https:https://github.com/aflgo/aflgo
https:https://github.com/aflgo/aflgo
https://doi.org/10.1145/3519939.3523428
https://www.usenix.org/conference/atc21/presentation/wang-mingzhe
https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://arxiv.org/abs/2207.10397
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://www.raspberrypi.com/documentation/computers/os.html
https://www.raspberrypi.com/documentation/computers/os.html
https://openwrt.org/
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597926.3598067
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00137
https://doi.org/10.1109/TCAD.2022.3198910
https://doi.org/10.1109/TCAD.2022.3198910
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00051
https://doi.org/10.1145/3477132.3483547
https://doi.org/10.1145/3477014
https://doi.ieeecomputersociety.org/10.1109/RTSS59052.2023.00059
https://doi.ieeecomputersociety.org/10.1109/RTSS59052.2023.00059

	Introduction
	Background
	Embedded Operating System and Kernel Fuzzing
	LLM Assisted Testing

	Motivation
	ECG Design
	Specification Construction
	Constraint Extraction
	Program Generation and Refinement
	Specification Extraction

	Runtime Input Payload Generation
	Direction Checker
	Multi-staged Generation

	Implementation
	Evaluation
	Evaluation Setup
	Bug Detection Capabilities
	Coverage Improvement of ECG
	Effectiveness of LLM-Assisted Generation

	Related Work
	Discussion
	Conclusion
	References

