
When Fuzzing Meets LLMs: Challenges and Opportunities
Yu Jiang

Tsinghua University

Jie Liang

Tsinghua University

Fuchen Ma

Tsinghua University

Yuanliang Chen

Tsinghua University

Chijin Zhou

Tsinghua University

Yuheng Shen

Tsinghua University

Zhiyong Wu

Tsinghua University

Jingzhou Fu

Tsinghua University

Mingzhe Wang

Tsinghua University

Shanshan Li

NUDT

Quan Zhang

Tsinghua University

ABSTRACT
Fuzzing, a widely-used technique for bug detection, has seen ad-

vancements through Large Language Models (LLMs). Despite their

potential, LLMs face specific challenges in fuzzing. In this paper,

we identified five major challenges of LLM-assisted fuzzing. To

support our findings, we revisited the most recent papers from top-

tier conferences, confirming that these challenges are widespread.

As a remedy, we propose some actionable recommendations to

help improve applying LLM in Fuzzing and conduct preliminary

evaluations on DBMS fuzzing. The results demonstrate that our

recommendations effectively address the identified challenges.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Large Language Model, Fuzzing

ACM Reference Format:
Yu Jiang, Jie Liang, Fuchen Ma, Yuanliang Chen, Chijin Zhou, Yuheng

Shen, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Shanshan Li, and Quan

Zhang. 2024. When Fuzzing Meets LLMs: Challenges and Opportunities.

In Companion Proceedings of the 32nd ACM International Conference on
the Foundations of Software Engineering (FSE Companion ’24), July 15–19,
2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 5 pages. https:

//doi.org/10.1145/3663529.3663784

1 INTRODUCTION
Fuzzing is a promising technique for software bug detection [8,

30, 37, 40, 47]. Large Language Models (LLM) are rapidly gaining

popularity across various applications for their versatility and capa-

bility [17, 18]. From natural language processing [7, 25, 29] to code

generation [22, 27], LLM’s broad utility is making it a prominent

and sought-after solution in diverse domains. This development has

naturally influenced fuzzing research: to help improve the fuzzing

effectiveness, LLM has now become one of the key enablers to assist

the core processes of fuzzing, including driver synthesis [31, 44, 45],

input generation [10, 11, 46], and bug detection [9, 12, 20].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0658-5/24/07

https://doi.org/10.1145/3663529.3663784

While excelling in natural language analysis, LLM encounters

some common pitfalls like limited context length [23] and hallu-

cination problems [19, 26, 34], etc. Consequently, LLM exhibits

limitations in complex program analysis. These pitfalls of LLM

affect the effectiveness of fuzzing, leading to testing performance

degradation, manifesting as high false positives, low test coverage,

and limited scalability.

In this paper, we identify five common challenges when using

LLM-based fuzzing technology: 1) Firstly, they often produce low-

quality outputs in fuzzing driver synthesis, lacking the precision

required for effective bug detection. 2) Secondly, these models

demonstrate a limited scope in their understanding and processing

capabilities, constraining their utility in diverse fuzzing scenarios.

3) Thirdly, LLMs struggle with generating sufficiently diverse in-

puts during the fuzzing process, which is critical for thorough and

effective bug detection. 4) Fourthly, they face challenges in main-

taining the validity of generated inputs, a crucial factor for accurate

and reliable fuzzing. 5) Lastly, LLMs’ inaccurate understanding of

bug detection mechanisms hinders their ability to identify and ad-

dress complex software vulnerabilities effectively, thereby limiting

their overall effectiveness in the fuzzing process. We performed a

comprehensive survey and revisited most recent fuzzing works that

rely on LLM for tackling different problems in the fuzzing process.

To our surprise, the results show that each work encounters at least

one of these challenges.

Although LLMs are widespread, it is more important for us to

avoid its weakness, and at the same time take advantage of its

strengths. To this end, we perform an impact analysis of the impli-

cations in three key fuzzing steps. These findings inspire us with

some opportunities for better usage of LLM in each fuzzing step

according to whether the corresponding corpus and documentation

are rich. Furthermore, we performed some preliminary evalua-

tions according to these opportunities by applying LLM in fuzzing

database management systems(DBMS). The results demonstrate

that the reasonable instantiation of those recommendations can

overcome the challenges in LLM-assisted DBMS fuzzing.

2 CHALLENGES AND OPPORTUNITIES
Despite that LLM have achieved great success, the application of

LLM in fuzzing is often prone to several problems, ranging from

deduction accuracy to adapt scalability. Overlooking these issues

may result in poor seed quality or omitting critical bugs, leading to a

limited fuzzing performance. In this section, we summarize the five

challenges that commonly occur when applying LLM in fuzzing.

While these challenges might initially appear straightforward, they

usually stem from small shortcomings that are typical in fuzzing.

We group these challenges with respect to the states of a typical

https://orcid.org/0000-0003-0955-503X
https://orcid.org/0000-0003-1046-0337
https://orcid.org/0000-0002-1360-9814
https://orcid.org/0000-0003-2701-4296
https://orcid.org/0000-0002-6446-247X
https://orcid.org/0000-0002-2667-5431
https://orcid.org/0000-0003-1908-5043
https://orcid.org/0000-0001-9759-878X
https://orcid.org/0000-0002-2153-6766
https://orcid.org/0000-0003-0798-974X
https://orcid.org/0000-0001-7778-4243
https://doi.org/10.1145/3663529.3663784
https://doi.org/10.1145/3663529.3663784
https://doi.org/10.1145/3663529.3663784

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Jiang et al.

fuzzing workflow, as depicted in Figure 1.

Limited Training
Corpus

Limited Long-text
UnderstandingHallucination

C3.1: Inaccurate
Understanding

C2.1: Insufficient
DiversityC1.1: Prone to Error

C2.2: Limited
ValidityC1.2: Limited Scope

Bug DetectionInput GenerationDriver SynthesisTarget
Program

Prompt

Bug
Report

Challenges

Fuzzing Loop

Large Language Model

Figure 1: Fuzzing Workflow with LLM enhanced.

2.1 Driver Synthesis
Description. Recently, several pioneer works have been pro-

posed to utilize LLMs to enhance driver synthesis [12, 13, 31, 43, 44].

Their basic idea is to use API documentation as the prompt context,

and then ask LLMs to generate API invoking sequences as fuzzing

drivers. For example, both TitanFuzz [12] and PromptFuzz [31]

design customized prompt templates to guide LLMs in generating

code that follows programming syntax and semantics.

Challenges. The application of LLMs to driver synthesis can be

ineffective if done directly, as LLMs have a tendency to produce hal-

lucinations [7, 23] and perform less effectively on programs that are

not included in their training corpus [23]. These limitations present

two challenges for driver synthesis. The first one is that the synthe-

sized drivers are prone to error , leading to a non-negligible number

of false positives during fuzzing. For example, according to com-

prehensive evaluation on LLM-based driver synthesis for OSS-Fuzz

projects [44], GPT-4 can correctly generate roughly 40% drivers,

while the rest of the drivers contain errors. Among the erroneous

drivers, 93% exhibit one or more of the following issues: type errors,

mis-initialized function arguments, usage of non-existing identi-

fiers, and imprecise control-flow dependencies. This occurrence

primarily arises due to LLMs relying on pre-trained knowledge for

driver synthesis, leading to the production of hallucinations [19].

The second challenge is that the application of directly using LLMs

for driver synthesis has limited scope because LLMs have limited

knowledge on unseen programs. For those target programs, LLMs

sometimes use training knowledge to fill the gap, thus generating

incorrect API invoking sequences. For example, developers from

Google’s OSS-Fuzz project [39] attempted to leverage LLMs to syn-

thesize drivers. Out of 31 tested OSS-Fuzz projects, 14 successfully

compiled new targets and increased coverage with the synthesized

drivers. The drivers unsuccessfully synthesized by LLMs typically

originated from less common projects like krb5 and rtpproxy. In
contrast, LLMs are more likely to generate compilable and effective

drivers for more common projects, such as tinyxml2 and cjson.
Recommendations. We have the following recommendations:

REC 1.1 Some targets whose code or use cases have been in-

cluded in the training corpus. For these cases, employing LLM for
automated synthesis of fuzz drivers, complemented by error-guided
corrective measures, is a practical approach. Iteratively querying the

LLM based on identified errors and fixing the errors are practical

measures [44], which helps to address the prone-to-error challenge.
For example, libpng is a common library and has already been

seen by GPT4 in its training process. Consequently, it is possible to

directly ask GPT4 to generate a fuzz testing driver for libpng by
giving the prompt “Generating LLVMFuzzerTestOneInput for test

libpng.” However, the generated driver might still contain errors

in grammar or encounter issues during the process of compiling

and linking. Test engineers can subsequently submit individual

LLM queries containing the error messages to rectify these issues,

occasionally necessitating multiple iterations.

REC 1.2 For targets without a dedicated corpus in training, one

can collect valuable materials such as function prototypes, exam-

ple programs, or connection rules between functions. Conducting
prompt engineering which involves embedding these materials, en-
hances the precision in generating logical sequences of function calls
for the creation of drivers. The prompt engineering approach is a

practical solution to tackle the challenge of limited scope.
For example, typst is a new markup-based typesetting system

like LaTex and claims it is more easier to learn and use. To generate

a fuzz driver for it, feed the prompt “Generate LLVMFuzzerTe-

stOneInput for typst” to ChatGPT-3.5 will encounter hallucination

problems and generate a completely non-existent driver. Instead,

the project typst has lots of documents and unit tests. Feeding

these materials that illustrate the usage of the functions is helpful

for LLMs to generate effective drivers [39]. Additionally, it is also

feasible to iteratively query LLMs to address any errors that may

be present in the drivers.

REC 1.3 Sometimes, even with adequate documentation and

examples, LLMs can still encounter challenges in generating valid

drivers at times, especially for extremely complex targets like Linux

kernel. These systems frequently involve intricate dependencies

among their APIs, or there exist implicit dependencies among lower-

level systems that pose challenges for LLM to capture. For these
targets, it is advisable to refrain from relying on LLMs. Instead, it is
more practical and feasible to explore conventional methods.

For example, KSG [36] uses the ebpf to dynamically infer the

kernel’s system call argument type and value constraints, and suc-

cessfully generate 2,433 Syzlang Spec. In contrast, LLM-based ap-

proaches use static inference based on kernel man pages and source

code. But they may find some complex dummy operations. And

it’s hard for them to deduct pointer references.

2.2 Input Generation
Description. Recently, several pioneer works [5, 38, 41, 42]

have been proposed to utilize LLM to enhance input generation.

Their basic idea is to use input specifications and input examples

as the prompt context and then ask LLMs to generate new inputs.

For example, LLMFuzzer [5] feeds input specifications to LLMs to

generate initial seeds for mutation-based fuzzers.

Challenges. The application of LLMs to input generation can

be ineffective if done directly, as LLMs heavily rely on training

corpus and have limited long-text understanding [23, 35]. These

limitations present two challenges for input generation. The first

one is that the generated inputs have insufficient diversity, leading
to inefficient exploration of the input space. This is because LLMs

are pre-trained models and prone to responding to users’ queries in

a similar manner when given the same prompt context. Therefore,

it is difficult for LLMs to generate diverse inputs if they only provide

limited information. For example, when applying ChatAFL [32]

to the RTPS protocol fuzzing directly, if only a limited amount of

protocol information is provided in the prompts, LLMs can only

generate inputs that cover 4 states out of 10 states that the RTPS

protocol supported. This results in a substantial portion of the

RTSP state remaining unexplored. The second challenge is that

the generated inputs often have limited validity, leading to early

termination when the target program executes these inputs. This is

When Fuzzing Meets LLMs: Challenges and Opportunities FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

because LLMs cannot fully understand the long texts of input for-

mats or examples due to limited ability on long text processing [35].

For example, Border Gateway Protocol (BGP) is a complex protocol,

whose document (BGP RFC 9952) has more than 28,000 words to

describe its functionalities. When generating inputs of BGP based

on the RFC description, LLMs usually forget to generate the length

field of the TLV substructures in the BGP message because the de-

scription of the main message structure and the TLV substructures

are a little far, making LLMs hard to totally understand BGP format.

Recommendations. We have the following recommendations:

REC 2.1 Some of the testing inputs to the system are common

and have a large number of examples on the web, and they have

been included in the LLM’s training corpus. It is possible to directly
employ LLM to generate test cases for them, combining methodologies
focused on diversification. These methods encompass internal ap-

proaches, such as meticulously crafted prompts that demand using

diverse features, as well as external methods, such as coverage-

guided genetic algorithms. They both contribute to address the

challenge of insufficient diversity.
For instance, when testing common text protocols such as HTTP

and FTP, where LLM excels in its support for text-based languages,

it is feasible to directly instruct LLM to generate test cases for

these protocols. To increase diversity, for internal approaches, we

can use prompts that encourage LLM to generate HTTP files with

various methods (e.g., GET, POST, PUT), different headers, different

query parameters, URL structures, various payloads, and other

aspects. We can also interactively ask LLM to cover more types of

messages [32]. For external approaches, we can utilize coverage-

guided generation used in conventional fuzzing along with more

real-world examples to enhance LLM.

REC 2.2 In many cases, the LLM is not trained with a dedicated

training corpus specifically tailored for the test subjects. Rather than
employing LLM directly for generating the final test cases, we suggest
utilizing LLM to transform well-known knowledge to formulate the
input specifications or build initial test cases. The input specification
helps address the challenge of limited validity, and the initial test

cases help address the challenge of insufficient diversity.
For instance, in the case of protocol implementations lacking

machine-readable grammar, generating valid test inputs automati-

cally to adhere to the necessary structure and order becomes chal-

lenging. In such scenarios, leveraging that LLM has been trained

on established protocols, allows the transfer of grammars from

these protocols with the assistance of LLM and recorded message

sequences. The grammar can enhance the validity of the generated

test cases. With the grammar, conventional grammar-based fuzzers

could be utilized to generate more test cases [15, 16, 32]. Another

instance is transforming test cases of popular database systems to

initial seeds for the tested database system. The SQL queries of

popular database systems like PostgreSQL have rich diversity and

they have already been trained for LLM. Therefore, leveraging the

knowledge of LLM to transform them into the format of the target

database system is feasible. Providing them to the fuzzer as the

initial seed helps enhance the diversity of generated test cases.

2.3 Bug Detection
Description. Recently, several pioneer works [24, 28] utilize

LLM to enhance bug detection. Their basic idea is to use function-

ality descriptions of the target program as the prompt context, and

then ask LLMs to generate code that implements the same func-

tionalities with the target program. By comparing the execution

results of the two functionally equivalent programs, they can detect

logic bugs in the target program. For example, Differential Prompt-

ing [28] queries LLMs about the intention of a piece of provided

code and then uses the obtained intention as a new prompt context

for LLMs to generate code with the same intention.

Challenges. The application of LLMs to bug detection can be

ineffective if done directly, as LLMs have limited long-text under-

standing [35], posing a challenge to inaccurate understand of the se-

mantics of the target program. For example, researchers [28] found

that LLMs may misconstrue code designed to identify the longest

common substring as being intended for finding the longest com-

mon subsequence. This misinterpretation can occur even though

these two problems require entirely distinct code solutions. As

a result, LLMs may generate code whose functionality deviates

from the target program, thus leading to an inaccurate test oracle.

According to the experiment results of Differential Prompting [28],

it achieves 66.7% success rate when generating reference imple-

mentation for programs from the programming contest website

Codeforces. While this is substantially better than its baseline,

it still results in a false-positive rate of 33.3%, which is still not

sufficient for practical usage.

Recommendations. We have the following recommendations:

REC 3.1 Defining test oracles is highly dependent on specific tar-

gets and scenarios, presenting themost formidable aspect of fuzzing.

For complicated targets, we suggest to avoid analyzing results with
LLM directly. Instead, consider employing LLM to extract features or
patterns associated with a specific bug type, leveraging domain knowl-
edge. Subsequently, monitoring the system using these patterns

aids in addressing the challenge of inaccurate understanding.
For example, many time-series databases like IoTDB implicitly

handle exceptions. Consequently, the system will not crash or

exhibit other abnormal behaviors. Nevertheless, these database sys-

tems generate extensive logs, and errors manifest as exceptions in

these logs. Therefore, it becomes feasible to use LLM for analyzing

the logs to discern error patterns. In such scenarios, we recommend

employing LLM to scrutinize the logs, identify error patterns, and

subsequently leverage these patterns for detecting logic errors.

REC 3.2 Some targets or projects contain well-defined documen-

tations, where the expected behaviors are clearly described, like the

RFCs for protocols. For these cases, we suggest to leverage the natural
language understanding ability of LLM to extract the expected be-
haviors from the documentations for test oracle definition. This helps
LLM to understand the intention and design of the target programs,

thus addressing the challenge of inaccurate understanding.
For example, the RFCs for protocols usually contain detailed

descriptions of the protocol’s expected behaviors. Take the RFC

854 [4] for Telnet protocol as an example. It specifies expected be-

haviors during the negotiation of some disabled command options

or unnegotiated commands. These can be used as test oracles and

can be further used to uncover CVE-2021-40523 [33].

3 POTENTIAL SOLUTIONS
To demonstrate the practicality of our recommendations, we use

the Database Management System (DBMS) as the target for LLM-

assisted fuzzing. Addressing challenges in driver synthesis, input

generation, and bug detection, we propose three potential solu-

tions: state-aware driver synthesis, cross-DBMS SQL transfer, and

log-based Oracle definition. These solutions are compared with

rudimentary uses of LLM, where it is directly employed.

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Jiang et al.

3.1 LLM-Enhanced Connector Synthesis
Obstacle: Database connectors or database drivers link applica-

tions to databases via defined interfaces including functions and

parameters. Fuzzing drivers consist of these interface sequences.

Directly using LLM to generate database drivers faces two chal-

lenges. First is prone to error : API sequences hold semantic details

within the connector’s state, and directly generating sequences

may import errors. Second is limited scope: LLM lacks the state

transition knowledge of the connectors due to limited training data.

Solution: Following REC 1.2 , we propose LLM-enhanced state-

aware database connector synthesis. We first collect JDBC func-

tion prototypes and example programs that utilize JDBC. Then

we model the connection relationships between JDBC functions

as state-transition rules. Next, we gather the function prototypes,

example programs, and connection rules as input for LLM. The

prompt we give is like “ Based on the state-transition rules and

state description of functions, please generate a sequence of APIS

within length 15. It is required to cover a different combination of

state transitions than before.”

Result: We implement LLM-enhanced connector synthesis into

Wingfuzz
𝑐𝑜𝑛𝑛

and compare it against LLM
𝑐𝑜𝑛𝑛

, which directly

utilizes LLM to generate drivers for MySQL Connector/J [3], Mari-

aDB Connector/J [2], and AWS JDBC Driver for MySQL [1]. We

perform fuzzing on ClickHouse for each tool. Table 1 shows the

driver correctness ratios and branch coverage by LLM
𝑐𝑜𝑛𝑛

and

Wingfuzz
𝑐𝑜𝑛𝑛

on three selected DBMSs in 12 hours. These statis-

tics show that Wingfuzz
𝑐𝑜𝑛𝑛

always performs better in both driver

correctness ratio and branch coverage than LLM
𝑐𝑜𝑛𝑛

. The main

reason is that the state-transition rules embed semantic informa-

tion, and it also helps LLM generate API sequences that account

for the diverse states within the database connector.

Table 1: Driver Correctness Ratios and Branch Coverage.

DBMS

Driver Correctness Ratios Branch Coverage

LLM
𝑐𝑜𝑛𝑛

Wingfuzz
𝑐𝑜𝑛𝑛

LLM
𝑐𝑜𝑛𝑛

Wingfuzz
𝑐𝑜𝑛𝑛

MariaDB Connector/J 0.142 0.331 583 843

MySQL Connector/J 0.216 0.367 1256 1982

AWS MySQL JDBC 0.203 0.394 1382 2293

3.2 Cross-DBMS SQL Transfer
Obstacle: SQL queries, as the inputs of DBMS, are vital to DBMS

fuzzing. Generating SQL queries directly via LLM faces two main

challenges: ensuring semantic correctness and promoting query di-

versity. The intricate SQL grammar, encompassing various clauses,

expressions, and rules, poses a challenge for LLM in achieving

semantic correct, which is vital for triggering complex DBMS be-

haviors. Furthermore, diversity in SQL queries is crucial for probing

deep DBMS logic. However, LLM’s constrained variety limits the

exploration of diverse query structures.

Solution: We introduce the cross-DBMS SQL transfer approach,

following recommendation REC 2.2 , for SQL generation. Instead

of directly creating SQL queries, we utilize LLM to transfer test

cases from other DBMSs as initial seeds to fuzz the target DBMS. It

contains three steps. First, executing existing test cases in their na-

tive DBMS to capture schema information; second, feeding schema

information to LLMs to generate new test cases; third, temporarily

commenting out unparsable sections, ensuring proper parsing, and

subsequently uncommenting them after mutation.

Result: We implement the solution called Wingfuzz
𝑖𝑛𝑝𝑢𝑡

and

compare it with LLM
𝑖𝑛𝑝𝑢𝑡

, which directly uses LLM to generate

the SQL queries. We run two tools on three DBMS: MonetDB

[6], DuckDB [14], and ClickHouse [21]. Table 2 shows seman-

tic correctness ratios and covered branches of two tools on three

DBMSs in 12 hours. It is found that Wingfuzz
𝑖𝑛𝑝𝑢𝑡

performs better

than LLM
𝑖𝑛𝑝𝑢𝑡

on DBMS fuzzing. Specifically, the test cases gener-

ated by Wingfuzz
𝑖𝑛𝑝𝑢𝑡

contain 159.35%, 36.65%, and 112.14% more

semantic-correct SQL statements, and cover 55.96%, 21.83%, and

16.41% more branches than that of LLM
𝑖𝑛𝑝𝑢𝑡

across three DBMS,

respectively. It indicates that LLM cannot directly generate high-

quality SQL queries for DBMS fuzzing. The main reason is that the

transfer seeds improve the diversity of mutated test cases, and the

fuzzer’s mutator promises the semantic correctness of SQL queries.

Table 2: Semantic Correctness Ratios and Branch Coverage.

DBMS

Semantic Correctness Ratios Branch Coverage

LLM
𝑖𝑛𝑝𝑢𝑡

Wingfuzz
𝑖𝑛𝑝𝑢𝑡

LLM
𝑖𝑛𝑝𝑢𝑡

Wingfuzz
𝑖𝑛𝑝𝑢𝑡

MonetDB 0.1594 0.4134 26,828 41,840

DuckDB 0.2551 0.3486 57,937 70,583

ClickHouse 0.1458 0.3093 124,887 145,383

3.3 Monitor-Based DBMS Bug Detection
Obstacle: The most critical step for DBMS bug detection is to con-

struct the test oracles to identify the logic or performance bugs. A

test oracle determines the correctness or validity of the DBMS’s be-

haviors. Directly using LLMs to construct test oracles is challenging

as LLMs lack specific knowledge about DBMS’s behaviors.

Solution: To address the challenges, we propose the Runtime

Monitor-Based DBMS Bug Detection following the REC 3.1 , which
detects the anomalies of DBMS by analyzing the runtime infor-

mation of DBMS. DBMS usually contains the implicit exception

handler mechanism to avoid system crashes, which usually out-

put key internal states of DBMS. Unlike constructing the oracle

by checking the execution result of the SQL query, our approach

involves using LLM to analyze the runtime information for bug de-

tection. The process contains two main steps. First, it instruments

an agent to extract the runtime information of DBMS. Then, it uses

LLM to detect the anomaly with predefined error patterns.

Table 3: Number of Reported Bugs and Real Bugs.

DBMS LLM
𝑏𝑢𝑔

Wingfuzz
𝑏𝑢𝑔

Name Reported Real Reported Real

MonetDB 61 0 6 3

DuckDB 54 0 5 3

ClickHouse 67 1 3 3

Result: To evaluate the effectiveness of our recommendation,

we implement the solution with Wingfuzz
𝑏𝑢𝑔

and compare it with

LLM
𝑏𝑢𝑔

, which directly uses LLM to determine whether the execu-

tion of the SQL query is right during the fuzz loop. Table 3 shows

the number of reported bugs and real bugs by two tools in 12 hours

on MonetDB, DuckDB and ClickHouse. It shows Wingfuzz
𝑏𝑢𝑔

can

detect more anomalies with fewer false positives than LLM
𝑏𝑢𝑔

. It

is because that the runtime information contains the error message

of DBMS, which helps LLM to analyze and detect bugs.

4 CONCLUSION
We systematically analyze five challenges when using LLM in

fuzzing and confirm their prevalence through a review of recent

top-tier conference papers. These challenges affect the effective-

ness of the LLM-based fuzzing technologies. To address them, we

provide recommendations to assist the main steps in fuzzing, which

have demonstrated effectiveness in our preliminary experiments.

When Fuzzing Meets LLMs: Challenges and Opportunities FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] 2023. aws-mysql-jdbc. https://github.com/awslabs/aws-mysql-jdbc. Accessed:

May 6, 2024.

[2] 2023. mariadb-connector-j. https://github.com/mariadb-corporation/mariadb-

connector-j. Accessed: May 6, 2024.

[3] 2023. mysql-connector-j. https://github.com/mysql/mysql-connector-j. Ac-

cessed: May 6, 2024.

[4] 2023. Rfc854. https://datatracker.ietf .org/doc/html/rfc854. Accessed: May 6,

2024.

[5] Joshua Ackerman and George Cybenko. 2023. Large LanguageModels for Fuzzing

Parsers (Registered Report). In Proceedings of the 2nd International Fuzzing Work-
shop. 31–38.

[6] MonetDB B.V. 2023. MonetDB Website. https://www.monetdb.org. Accessed:
May 6, 2024.

[7] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi

Yang, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2023. A survey on

evaluation of large language models. arXiv preprint arXiv:2307.03109 (2023).
[8] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou,

Xun Jiao, and Zhuo Su. 2019. EnFuzz: Ensemble Fuzzing with Seed Synchro-

nization among Diverse Fuzzers. In 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA, 1967–1983.

[9] Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Yu Jiang, Ting Chen, and Jiaguang

Sun. 2023. Tyr: Finding Consensus Failure Bugs in Blockchain System with

Behaviour Divergent Model. In 2023 IEEE Symposium on Security and Privacy
(SP). 2517–2532. https://doi.org/10.1109/SP46215.2023.10179386

[10] Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh,

and Michel C Desmarais. 2023. Effective test generation using pre-trained large

language models and mutation testing. arXiv preprint arXiv:2308.16557 (2023).

[11] Victor Dantas. 2023. Large Language Model Powered Test Case Generation for

Software Applications. (2023).

[12] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming

Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-learning

libraries via large language models. In Proceedings of the 32nd ACM SIGSOFT
international symposium on software testing and analysis. 423–435.

[13] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming

Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-learning

libraries via large language models. In Proceedings of the 32nd ACM SIGSOFT
international symposium on software testing and analysis. 423–435.

[14] DuckDB. 2023. DuckDB WebSite. https://www.duckdb.org/. Accessed: May 6,

2024.

[15] J. Fu, J. Liang, Z. Wu, and Y. Jiang. 2024. Sedar: Obtaining High-Quality Seeds

for DBMS Fuzzing via Cross-DBMS SQL Transfer. In 2024 IEEE/ACM 46th Inter-
national Conference on Software Engineering (ICSE). IEEE Computer Society, Los

Alamitos, CA, USA, 1799–1810. https://doi.ieeecomputersociety.org/
[16] Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2023. Griffin:

Grammar-Free DBMS Fuzzing. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’22). New York, NY, USA,

Article 49, 12 pages. https://doi.org/10.1145/3551349.3560431
[17] Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas

Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al.

2023. Large language models: a comprehensive survey of its applications, chal-

lenges, limitations, and future prospects. Authorea Preprints (2023).
[18] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,

David Lo, John Grundy, and Haoyu Wang. 2023. Large language models for soft-

ware engineering: A systematic literature review. arXiv preprint arXiv:2308.10620
(2023).

[19] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Hao-

tian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al.

2023. A survey on hallucination in large language models: Principles, taxonomy,

challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023).
[20] Ali Reza Ibrahimzada, Yang Chen, Ryan Rong, and Reyhaneh Jabbarvand. 2023.

Automated Bug Generation in the era of Large Language Models. arXiv preprint
arXiv:2310.02407 (2023).

[21] ClickHouse Inc. 2023. ClickHouse Website. https://clickhouse.com. Accessed:

May 6, 2024.

[22] Zhenlan Ji, Pingchuan Ma, Zongjie Li, and Shuai Wang. 2023. Benchmarking and

Explaining Large Language Model-based Code Generation: A Causality-Centric

Approach. arXiv preprint arXiv:2310.06680 (2023).
[23] Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta

Raileanu, and Robert McHardy. 2023. Challenges and applications of large

language models. arXiv preprint arXiv:2307.10169 (2023).
[24] Siva Kesava Reddy Kakarla and Ryan Beckett. 2023. Oracle-based Protocol Testing

with Eywa. arXiv preprint arXiv:2312.06875 (2023).
[25] Prateek Kumar and Sanjay Kathuria. 2023. Large language models (LLMs) for

natural language processing (NLP) of oil and gas drilling data. In SPE Annual
Technical Conference and Exhibition? SPE, D021S012R004.

[26] Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fannjiang, and David Sussillo.

2018. Hallucinations in neural machine translation. (2018).

[27] Jia Li, Ge Li, Chongyang Tao, Huangzhao Zhang, Fang Liu, and Zhi Jin. 2023.

Large Language Model-Aware In-Context Learning for Code Generation. arXiv
preprint arXiv:2310.09748 (2023).

[28] Tsz-On Li, Wenxi Zong, Yibo Wang, Haoye Tian, Ying Wang, Shing-Chi Cheung,

and Jeff Kramer. 2023. Nuances are the Key: Unlocking ChatGPT to Find Failure-

Inducing Tests with Differential Prompting. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 14–26.

[29] Zhengliang Liu, Tianyang Zhong, Yiwei Li, Yutong Zhang, Yi Pan, Zihao Zhao,

Peixin Dong, Chao Cao, Yuxiao Liu, Peng Shu, et al. 2023. Evaluating large

language models for radiology natural language processing. arXiv preprint
arXiv:2307.13693 (2023).

[30] Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang, Ting Chen,

Abhik Roychoudhury, and Jiaguang Sun. 2023. Bleem: Packet Sequence Oriented

Fuzzing for Protocol Implementations. In 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA, 4481–4498.

[31] Yunlong Lyu, Yuxuan Xie, Peng Chen, and Hao Chen. 2023. Prompt Fuzzing for

Fuzz Driver Generation. arXiv preprint arXiv:2312.17677 (2023).

[32] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.

Large Language Model guided Protocol Fuzzing. In Proceedings of the 31st Annual
Network and Distributed System Security Symposium (NDSS).

[33] MITRE. 2021. CVE-2021-40523. (2021).

[34] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and

Kate Saenko. 2018. Object hallucination in image captioning. arXiv preprint
arXiv:1809.02156 (2018).

[35] Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. 2023. Zero-

SCROLLS: A Zero-Shot Benchmark for Long Text Understanding. arXiv preprint
arXiv:2305.14196 (2023).

[36] Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu, and Yu Jiang. 2022. {KSG}:
Augmenting Kernel Fuzzing with System Call Specification Generation. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). 351–366.

[37] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting Chen, and

Aiguo Cui. 2021. HEALER: Relation Learning Guided Kernel Fuzzing. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(Virtual Event, Germany) (SOSP ’21). New York, NY, USA, 344–358. https:

//doi.org/10.1145/3477132.3483547
[38] Elwin Tamminga, Bouwko van der Meijs, and Ultraware Stjepan Picek. 2023.

Utilizing Large Language Models for Fuzzing: A Novel Deep Learning Approach

to Seed Generation. (2023).

[39] Google Open Source Security Team. [n. d.]. AI-Powered Fuzzing: Breaking

the Bug Hunting Barrier. https://security.googleblog.com/2023/08/ai-powered-

fuzzing-breaking-bug-hunting.html. Accessed: May 6, 2024.

[40] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang,

and Yu Jiang. 2021. Industry practice of coverage-guided enterprise-level DBMS

fuzzing. In Proceedings of the 43rd International Conference on Software Engi-
neering: Software Engineering in Practice (Virtual Event, Spain) (ICSE-SEIP ’21).
328–337. https://doi.org/10.1109/ICSE-SEIP52600.2021.00042

[41] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Ling-

ming Zhang. 2023. Universal fuzzing via large language models. arXiv preprint
arXiv:2308.04748 (2023).

[42] Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbar-

vand, and Lingming Zhang. 2023. White-box compiler fuzzing empowered by

large language models. arXiv preprint arXiv:2310.15991 (2023).
[43] Chenyuan Yang, Zijie Zhao, and Lingming Zhang. 2023. KernelGPT: Enhanced

Kernel Fuzzing via Large Language Models. arXiv preprint arXiv:2401.00563
(2023).

[44] Cen Zhang, Mingqiang Bai, Yaowen Zheng, Yeting Li, Xiaofei Xie, Yuekang Li,

Wei Ma, Limin Sun, and Yang Liu. 2023. Understanding large language model

based fuzz driver generation. arXiv preprint arXiv:2307.12469 (2023).
[45] Mingrui Zhang, Chijin Zhou, Jianzhong Liu, Mingzhe Wang, Jie Liang, Juan

Zhu, and Yu Jiang. 2023. Daisy: Effective Fuzz Driver Synthesis with Object

Usage Sequence Analysis. In 2023 IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). 87–98. https:

//doi.org/10.1109/ICSE-SEIP58684.2023.00013
[46] Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiy-

ong Wu, Shanshan Li, and Bin Gu. 2023. Towards Better Semantics Exploration

for Browser Fuzzing. Proc. ACM Program. Lang. 7, OOPSLA2, Article 243 (oct
2023), 28 pages. https://doi.org/10.1145/3622819

[47] Chijin Zhou, Quan Zhang, MingzheWang, Lihua Guo, Jie Liang, Zhe Liu, Mathias

Payer, and Yu Jiang. 2022. Minerva: browser API fuzzing with dynamic mod-ref

analysis. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2022). New York, NY, USA, 1135–1147. https://doi.org/10.1145/3540250.3549107

Received 20-JAN-2024; accepted 2024-04-09

https://github.com/awslabs/aws-mysql-jdbc
https://github.com/mariadb-corporation/mariadb-connector-j
https://github.com/mariadb-corporation/mariadb-connector-j
https://github.com/mysql/mysql-connector-j
https://datatracker.ietf.org/doc/html/rfc854
https://www.monetdb.org
https://doi.org/10.1109/SP46215.2023.10179386
https://www.duckdb.org/
https://doi.ieeecomputersociety.org/
https://doi.org/10.1145/3551349.3560431
https://clickhouse.com
https://doi.org/10.1145/3477132.3483547
https://doi.org/10.1145/3477132.3483547
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://doi.org/10.1109/ICSE-SEIP52600.2021.00042
https://doi.org/10.1109/ICSE-SEIP58684.2023.00013
https://doi.org/10.1109/ICSE-SEIP58684.2023.00013
https://doi.org/10.1145/3622819
https://doi.org/10.1145/3540250.3549107

	Abstract
	1 Introduction
	2 Challenges and Opportunities
	2.1 Driver Synthesis
	2.2 Input Generation
	2.3 Bug Detection

	3 Potential Solutions
	3.1 LLM-Enhanced Connector Synthesis
	3.2 Cross-DBMS SQL Transfer
	3.3 Monitor-Based DBMS Bug Detection

	4 Conclusion
	References

