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Abstract—Simulink has gained widespread recognition as a
valuable tool for system design. It supports efficient modeling
and synthesis of embedded controllers. Test cases can also be
automatically generated to simulate and verify the correctness
of the Simulink model. Nevertheless, as systems grow increas-
ingly complex, particularly in terms of their internal states,
this complexity poses new challenges for existing model testing
methodologies. Traditional techniques such as constraint solving
and random search encounter difficulties when attempting to
explore the intricate logic embedded within these models.

In this paper, we introduce HSTCG, a state-aware test case
generation method for Simulink models with heuristic strategy.
HSTCG solves only one iteration of the model each time to get
the test input that can cover a target branch, then executes the
model once to obtain and update the new model state based
on the solved input dynamically. Then, it solves the remaining
branches based on the new model state iteratively until all the
coverage requirements are satisfied. To improve the efficiency
of test case generation, we also designed a heuristic strategy
containing heuristic branch searching, repeated state filter and
unreached branch filter to minimize the times of constraint
solving. We implemented HSTCG and evaluated it on several
benchmark Simulink models. Compared to the built-in Simulink
Design Verifier and state-of-the-art academic work SimCoTest,
HSTCG achieves an average improvement of 55% and 103%
on Decision Coverage, 53% and 62% on Condition Coverage
and 192% and 201% on Modified Condition Decision Coverage,
respectively. We also validated the significant improvement of the
heuristic strategy, which can improve the efficiency of test case
generation by 62.2% on average.

Index Terms—Test case generation, Simulink, Constraint solv-
ing, Heuristic strategy

I. INTRODUCTION

Simulink [2] stands as one of the foremost tools in the
realm of model-driven design. Its widespread use extends
increasingly into embedded scenarios [3]–[5]. Simulink has
capabilities for efficient modeling, rapid simulation, and the
generation of high-quality code tailored for embedded control
models [6], [7]. To ensure the security and stability of these
models, comprehensive testing is imperative [8]. However,
manually crafting test cases proves to be a labor-intensive en-
deavor, often falling short of providing exhaustive coverage of
the model’s intricate elements. Automatic test case generation
can save significant efforts and cover a lot of logic that is
difficult to detect manually [9].

This paper is an extended version of a conference paper [1]. Yu Jiang is
the corresponding author.

Presently, a substantial body of work has been dedicated
to the realm of test case generation for Simulink models, as
evidenced by numerous studies [10]–[14]. Broadly speaking,
these endeavors can be categorized into two primary ap-
proaches. The first approach is rooted in the constraint solving
method, exemplified by the Simulink Design Verifier (SLDV),
an integral tool of the Simulink toolkit [15]. In this method,
the Simulink model is typically transformed into a specific
formal representation, followed by the application of a formal
solver to meticulously address the constraints pertaining to the
various branch logic within the model. The ultimate objective
here is to derive model inputs that impeccably satisfy all
constraints. The second approach is grounded in the random
search method, typified by tools like SimCoTest [16]. In this
methodology, input data for the model is generated randomly,
and the model is subsequently executed to capture feedback
coverage information. This feedback data is then employed to
further refine and optimize the test case generation process.

While the prior research endeavors highlighted earlier have
undeniably made significant strides in the domain of Simulink
model testing, a noteworthy challenge remains when it comes
to generating high-coverage test cases for models with intricate
internal states. These models often involve numerous control
conditions that necessitate specific states to be triggered,
posing difficulties for traditional constraint solving methods.
The inherent complexity associated with solving for these
intricate model states often results in extended computation
times, rendering it arduous to identify viable solutions within
a reasonable timeframe. As for the random search method, it is
also difficult to generate test cases that can reach the specific
model states, even harder for the state-dependent conditions.

Figure 1 shows a view of a control model with complex in-
ternal states, which is an AutoSAR CPU task dispatch model.
This model mainly contains a task queue, and the tasks in this
queue are dynamically maintained through four operations,
that is Add, Delete, Modify and Check, respectively. Task
deletion, modification and checking require finding the item
from the task queue that matches the task ID and the task
parameter. Therefore, it is essential for the corresponding task
item to already exist in the task queue before executing these
three operations. For constraint solving methods, it is very
time-consuming to obtain an input test case like “add data
first and then modify data” directly. This is because the entire
model logic and all model states are performed one more
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Fig. 1. An example model with complex internal states. This is an AutoSAR
CPU task dispatch model. It mainly contains the four operations of adding,
deleting, modifying and checking CPU task in the queue.

formal transformation for each additional solving step. These
increased formal statements introduce exponential complexity
to the solver [17]. For random search methods, since they
usually involve random changes to the input data, there is only
a small probability to generate a test input like “the previously
added task ID matches the task ID to be modified later”.

To address the above problem, we propose a state-aware
test case generation method with heuristic strategy. The key
idea is to maintain a state tree to represent the execution
paths, and solve the state-dependent condition based on the
specific model state iteratively to avoid solving for the whole
complex model states. First, it tries to solve one iteration of
the model to obtain the input data that can trigger a target
branch. Then, the input data is fed into the model for dynamic
execution to obtain the new state of the model. The input
data and the state are recorded as a new node in the state
tree. After that, we continue to solve one iteration for the
remaining branches based on the new state node. The loop
will repeat until all coverage requirements are satisfied. In
addition, a random trace is executed dynamically to explore
a new state space when all the tree nodes are unable to be
solved for a new coverage. Based on this state-aware test
case generation method, the difficulty of constraint solving
will be significantly reduced. Because we bring the model
state as a constant into the solving process, the logic that
depends on the model state will be explored easily. To improve
the efficiency of test case generation by reducing the solving
times, we also propose a heuristic strategy. This strategy
involves three aspects, heuristic branch searching, repeated
state filter and unreachable branch filter. The heuristic branch
searching module tries to increase the solving priority of
the branches associated with the new state. The repeated
state filter module avoids duplicate solving by recording and
comparing previous solve objectives. The unreachable branch
filter module utilizes branch implication relations to avoid deep
branch solving.

We implemented and evaluated HSTCG on several bench-
mark Simulink models. Compared to the built-in Simulink
Design Verifier and the academic work SimCoTest, HSTCG

achieves an average improvement of 55% and 103% on
Decision Coverage, 53% and 62% on Condition Coverage
and 192% and 201% on Modified Condition Decision Cover-
age(MCDC), respectively. Meanwhile, experiments show that
the heuristic strategy can reduce the test case generation time
by 62.2% on average.

II. BACKGROUND AND RELATED WORK

A. Model-Driven Design

Model-driven design stands as a widely embraced software
development methodology, especially within the realm of
embedded systems. This approach comprises four fundamental
components: behavior modeling, simulation, testing, and code
generation [3], [18]–[22]. Behavior modeling encompasses the
initial phase, wherein a formal model is constructed using
either textual or graphical representations, tailored meticu-
lously to meet the specific requirements of the user. Simulation
plays a pivotal role in the design phase, serving as a means
for debugging and verifying the functional correctness of
the model, ensuring it aligns with the required functionality.
Testing constitutes an integral step in the model-driven design
process, providing a structured pathway for exhaustive testing
and analyzing the model’s behavior and performance, thereby
assuring its reliability. Code generation represents the critical
stage where the model is converted into executable code,
ready for deployment on embedded devices, thereby trans-
lating abstract concepts into practical, functional applications.
In both academic and industrial contexts, a diverse array of
design tools has emerged to bolster the model-driven design
paradigm. Prominent examples include Ptolemy-II, Tsmart,
and Polychrony in academic circles [23]–[25], as well as
Simulink, SCADE, and DaVinci Developer in the industrial
area [2], [26], [27]. Among these, Simulink, developed by
MathWorks, is the most widely used tool, known for its robust
capabilities in model simulation and code generation. Simulink
also includes an extensive library of blocks carefully tailored
to a wide range of industries, streamlining the system design
and development process with remarkable efficiency.

B. Relevant Concepts of Simulink Model

To better understand the testing of Simulink models, we
need to introduce some concepts about Simulink models,
block, branch and internal state.

Simulink model is essentially a computation graph. As
shown in Figure 1, it reads data from the inports on the left,
performs a series of calculations, and outputs the results to
the outports on the right. Data in the model is usually passed
through the line, but sometimes, for aesthetic reasons, the
“from goto” block pair is also used, such as the “taskId” and
“res1” in the figure.

Block denotes a computation or control unit in a Simulink
model, e.g., an Add block is a computation unit, and the
SwitchCase block in the model of Figure 1 is a control unit.
Alternatively, a composite subsystem that packages multiple
blocks together can also be called a block. e.g., the five
Subsystems in Figure 1. The Stateflow Chart, which allows
state machine modeling, also belongs to the computation
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block. The “TaskId Pool” and “Task State” in the figure are
special blocks, which are of data memory type and are used
to define the global variables.

Branch represents all conditions in the model that can
trigger different execution logic. It consists of two main types:
(1) Branches in control blocks, which directly affect the
scheduling of model blocks at the model level, can cause some
blocks to execute or not. For example, the SwitchCase block
can decide which Case subsystem to execute by its control
port. Similarly the IfElse block. (2) Branches in computation
blocks with internal decision logic, which typically make
judgments within the block about the block’s input data or
their own state values to influence the output. For example,
a Saturation block limits the data based on a threshold value,
and a Switch block selects one of two data inports for output
based on the value of the control port. The logical blocks
AND and OR also carry internal branches, and their branch
condition is a judgment on the truth table. The state transitions
in the Stateflow Chart also belong to this type of branch. The
concept of a parent branch is embodied in the control flow
of the model. A branch that can directly influence whether or
not subsequent branches are executed is a parent branch. For
example, assuming that the Task Delete subsystem in Figure
1 has an internal If block that determines whether or not a
taskId exists, then the branch case[2] of the SwitchCase block
in Figure 1 is the parent of the true and false branches of that
If block. It is similar to branch nesting in code.

Internal state is variable data that is continuously retained
by the model as it runs. Many Simulink blocks have internal
states, such as the Delay block is used to delay data to be
output at subsequent model iterations, the Ramp block outputs
incremental data through its internal counter, the Accumulator
block is used to accumulate data, and the current state of
the Stateflow Chart is also an internal state. For the model
as a whole, its internal state is the set of internal states
of all the blocks it contains. Since the state may affect the
execution of branches, this paper focuses on constraint solving
for each branch based on the internal state of the model. For
example, a Switch block makes a judgment on the output of
an Accumulator block, and a Stateflow Chart transition makes
a judgment on the current state.

C. Model Test Case Generation

Before introducing test case generation, we should be clear
about how the model is executed and what the test cases
look like. First, the model is executed iteratively. As in
the CPUTask model in Figure 1, it will execute the logic
from the inports on the left side to the outports on the
right side over and over again. Each execution we call an
iteration or a step. As for the test case, it is a sequence of
data from the inports that will be required for the execution
of each iteration. Each iteration takes the data from the
sequence in turn to execute the model. For example, a se-
quence like {{taskId1, op1, para1},{taskId2, op2, para2}}
allows the CPUTask model to execute two iterations.

Its significance is underscored by its role in ensuring the
quality and dependability of both the model and the ensuing

generated code [28]–[30]. The primary goal of testers often
revolves around achieving comprehensive test coverage for
the model [31]–[34]. In this pursuit, automated tools are
commonly enlisted during the model testing phase, a strategic
move that not only conserves manual effort but also enhances
efficiency. The deployment of these tools facilitates the gen-
eration of an array of diverse test cases, enabling testers to
find potential errors, bugs, and elusive corner cases lurking
within the model. Within the domain of test case generation for
model, two prominent methods emerge as significant players:
constraint solving based test case generation and random
search based test case generation.

(1) Constraint solving based test case generation. It
usually uses formal techniques to obtain input cases that satisfy
the property requirements. An example of such a technique is
Simulink Design Verifier (SLDV) [15], an integrated validation
toolkit within Simulink. SLDV leverages symbolic execution
to automatically generate test cases aimed at fulfilling various
model coverage criteria, such as Decision Coverage, Condition
Coverage, Modified Condition Decision Coverage, and the
derivation of custom test objectives. In the work presented
by He et al. [10], a model checking approach is adopted to
meticulously explore the structure of the target model. This
exploration aims to identify a subset of nodes that maximizes
the observation of mutated model blocks, subsequently leading
to the generation of a concise set of test cases designed to
attain high coverage based on this information. AutoMOTGen
[11] takes a distinctive approach by describing the Simulink
model using a formal language known as SAL [35]. It encodes
coverage specifications within the formal model and utilizes
built-in model checking tools to facilitate test case generation.

One common limitation encountered in these approaches
is their inability to account for internal states when deriving
test cases, particularly when internal states are employed as
conditions. In contrast to these methods, HSTCG takes a novel
approach. It records internal states obtained through dynamic
execution and systematically solves state-aware branch condi-
tions iteratively. This approach enables HSTCG to explore a
more extensive state space and achieve higher coverage levels
at an accelerated pace.

(2) Random search based test case generation. Random
search methods are widely applied in the testing of large
models [12]–[14], [16]. Typically, this approach relies on
dynamic simulation to collect valuable test feedback. Reactis
[13], for instance, employs Monte Carlo methods to generate
test cases for random simulation. It also incorporates the
guided simulation technique to evaluate output values, aiding
in the selection of test cases for exploring uncovered blocks
within the model. Another tool, REDIRECT [12], focuses
on analyzing the feedback derived from the simulation of
generated test cases. It employs a set of heuristics specifically
tailored for non-linear blocks, enhancing its test case genera-
tion capabilities. In contrast, SimCoTest [16] stands out for its
ability to generate test cases suitable for both continuous-time
and discrete-time Simulink models.

However, when dealing with complex blocks and internal
states nested within models, random search approaches often
struggle to generate test cases capable of activating this deep
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Fig. 2. Overview of HSTCG. Two main parts are executed cyclically to obtain test cases. The state-aware solving part focuses on obtaining the one-step input
data by constraint solving on one iteration of the model. The dynamic execution part focuses on obtaining the specific state of the model by executing the
solved input data and outputting test cases. The three modules, which are heuristic branch searching, repeated state filter and unreachable branch filter, aim
to speed up the test case generation process by reducing the solving times.

logic and are unable to satisfy high-standard coverage criteria
like MCDC [12], [14]. Different from them, HSTCG uses the
constraint solving method with internal states to derive precise
requirements for satisfying coverage criteria and generate
corresponding test cases.

Difference from test case generation for regular soft-
ware. Testing tools in the software domain can usually be
classified into three types, dynamic search based methods,
symbolic execution (constraint solving) based methods, and
concolic testing that combines dynamic search and symbolic
execution [36]. They usually target code and aim at coverage
of code blocks (or branches). In contrast, testing of models is
more demanding and considers more coverage metrics, includ-
ing Decision Coverage, Conditional Coverage, and Modified
Condition/Decision Coverage (MCDC). In addition, the exe-
cution logic of models is different from that of conventional
software. Models usually need to be executed iteratively, which
is equivalent to repeating the model logic in a while loop.
The input data required by the model is field repetitive,
which corresponds to the model inports. All these differences
make it difficult for testing tools in the software domain to
work on models. In other words, a lot of adaptation work is
needed to be applied to model testing, such as code generation
for models, test driver generation, model coverage statistics,
model-oriented input data mutation, etc.

III. HSTCG DESIGN

Figure 2 shows an overview of HSTCG. HSTCG takes the
Simulink model as input and generates high-coverage test
cases as output. The two main parts of the framework are
executed iteratively to generate test cases. Part one is State-
Aware Solving, which is mainly used to obtain the one-
step input by state-aware branch constraint solving. It first
initializes a state tree containing only one root node which
represents the default state of the model and sorts the model

branches by their depth. Then, it traverses the model branches
and state tree nodes to perform state-aware solving. If input
data is obtained to take a target branch from a state of interest,
it will be taken to part two for execution. At the same time, the
solved input will be stored in a library. Part two is Dynamic
Execution, which is mainly used to obtain and update the
model’s internal state and synthesize test cases. The solved
input data from part one will be brought into the target model
state for execution. In case there is no result from part one,
a random input sequence will be generated from the solved
input library for multi-step execution on a random state within
the state tree. After execution, the new model states will be
added as a child node to the target state node. Once a new
model branch is covered during the execution, all the input
data on the current state tree path will be synthesized as a test
case. The iteration of the state-aware solving and dynamic
execution will continue until all the coverage requirements
of the model branch are satisfied. Three heuristic strategy
modules in the state-aware solving part are aimed to reduce
unnecessary invocation of the constraint solver. The heuristic
branch searching module searches for some branches related
to new states and adds them to the priority solving queue. The
repeated state filter module avoids repeated solving by deter-
mining whether the current state and branch have already been
solved, i.e., whether the branch has been previously solved on
that state. The unreachable branch filter module utilizes branch
nesting relations to avoid solving branches inside unreachable
branches. The next subsections will introduce the state-aware
solving, the dynamic execution and three heuristic strategy
modules, respectively.

A. State-Aware Solving

Before we introduce the detailed steps of state-aware solving
of branch constraint solving, some important concepts need to
be clarified first.
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Definition 1 (model branch): The model branch B is defined
as a tuple ⟨C,F,D⟩ which represents a decision for a block
of the Simulink model that has condition logic. Among them,
C is the condition to enter this branch, F is the parent branch
of this branch, and D represents the branch depth which is the
number of its all predecessor branches. For example, a Switch
block in Simulink contains two branches, one is the decision
when the value of its control port is true, and the other is
the decision when it is false. In essence, constraint solving
for a model branch is to find a model input that satisfies the
constraints of the model branch and all its ancestor branches.
The detailed method of calculating branch depth: Consider
the model as a directed data flow graph starting from the top-
level inport, find all the paths in the model of the block to
which the branch belongs, and the branch depth is the number
of branches contained in the block that contains the most
branches among all the paths.

Definition 2 (model state): The model state S is defined as
a tuple ⟨G,GV,M,ML, I, IV ⟩ which represents the precise
state of the model after each iteration. Among them, G and
GV are the global variables and their values, respectively. M
and ML are the state machines and their current locations,
respectively. I and IV are the internal states of all actors and
their state values, respectively. For example, the storage data
of the Delay block and the last output value of the Ramp
block in Simulink are recorded as model states. In our state-
aware method, the model state values will be fixed as constants
before each constraint solving.

Definition 3 (state tree node): A state tree node N is defined
as a tuple ⟨P, S, IN, SB,CV ⟩ which represents one of the
possible states of the model. Among them, P is the parent
node, S is the model state, IN is the input data that can cause
the model to switch to state S based on the parent state P .
SB is a set of the model branch, it records all model branches
that have been solved in this state. CV represents the model
branches covered by this state and all ancestor states confirmed
by dynamic execution.

Definition 4 (state tree): The state tree T is a struc-
ture of a tree consisting of a set of state tree nodes
{N0, N1, N2, ..., Nn}. It represents all the model states that
have been explored by HSTCG. The state tree contains a root
node N0 by default. This root node represents the initial state
of the model, while additional nodes are dynamically added
during the execution process. Each path within the tree serves
as a real execution trace for the model, also serving as a
distinct test case.

When the state-aware solving is first performed, the state
tree needs to be initialized with a root node that contains the
default state of the model. Meanwhile, the model branches
need to be sorted by depth to accelerate the test case generation
process. We prefer to perform constraint solving on shallow
model branches. It is usually easier to perform solving for the
shallow branches because the constraint solver will have to
handle simpler logical expressions so that the solution can be
obtained in less time. Moreover, the solved inputs that can
cover shallow branches will sometimes cover deeper branches
in the same execution. Therefore, it can avoid solving for
those deeper branches, which can further reduce the time

Algorithm 1: State-aware solving
Input: Model: The Simulink model for test case generation

BranchList: The model branches after sorting by depth
StateTree: The state tree during test case generation

Output: TargetS: The selected state node in StateTree
TargetB: The selected branch in BranchList
SolvedInput: The solved input of target state and branch

1 SolvedInput = NULL
2 for branch in BranchList do
3 if isBranchCovered(branch) then
4 continue
5 for node in StateTree do
6 if node.isSolved(branch) then
7 continue
8 Model.setState(node.getState()) // Switch model state
9 SolvedInput = solve(Model, branch) // Constraint

solving for a branch on the current model state
10 node.setSolved(branch)
11 if SolvedInput != NULL then
12 // The current state is solvable for target branch
13 TargetS = node
14 TargetB = branch
15 return TargetS, TargetB, SolvedInput

16 return NULL

to reach a solution. More intuitively, e.g., for the CPUTask
model in Figure 1, where the five branches of the SwitchCase
block are the shallowest, solving them only requires making
“op” equal to the corresponding case value. The branches
in the subsystems, on the other hand, need to go through
a more constraint solving process. For example, it takes 0.4
seconds to solve the “op” (that is, case[1]) corresponding to
the Add Task operation of the Switch block of the top-level
model. Solving for “Successfully Add” a CPU task inside the
AddTask subsystem takes 0.5 seconds. But in fact, the result
of both solving is the same. Then, we traverse all model states
in the state tree and all branches of the model to perform state-
aware constraint solving.

The detailed state-aware solving process is shown in Al-
gorithm 1. For the model branches, we only focus on those
that have not been covered yet. The branches that have been
covered by dynamic execution do not need to be solved,
in lines 2-4. For the states in the state tree, we also avoid
duplicate solving by determining whether the branch has
already been solved on that state or not, in lines 5-7. Then,
we try to solve for the state nodes and model branches that
satisfy the above requirements. In line 8, the model state value
will be taken from the state node, and the model state needs to
be switched. We just bring the model state value as constants
rather than variables into the model for solving. In line 9, we
use the constraint solver to solve for the current branch of the
model on the current state to obtain a one-step input. Then,
the current branch is marked as solved on the current state
node. If there is a solution, the current state node, the current
branch, and the solved input will be output directly, lines 11-
15. As no solution is obtained, it may be due to a timeout
for solving or a solver failure. For this reason, we continue
to traverse the state tree nodes and model branches to find a
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valid solution. If no state in the state tree can be solved for new
branch coverage, the algorithm will return NULL. Then, the
dynamic execution part will use the previously solved inputs
to construct a random sequence to expand the state space.

We use Figure 3 as an example to explain the process of
state-aware solving. We abstract the partial CPUTask model,
i.e., the model state is an array, and the model branches
include only the success add task and the success delete task.
Assuming that the Add(Success) branch is currently solved
and the corresponding state S1 is obtained, our goal is to solve
the Delete(Success) branch based on S1. Next, is the specific
state-aware solving process.

root

Add
(Success)

S0

S1

0 0

1 0

S2
Delete
(Success) 0 0

Current 
State Tree

CPU Task Queue
(i.e. Model State)

…

…

…

CPU Task Model 

Set State

<1, 1, 0>

<2, 1, 0>

Uncovered Branch: Delete (Success)

SolverObtain One Step Input

Fig. 3. An example of state-aware solving, corresponds to the CPU Task
model in Figure 1. Assuming that the current state tree has two nodes, the
initial state node and the Add(Success) node, we are now trying to solve the
Delete(Success) branch. The squares to the right of each state node represent
the abstract model state, i.e., the CPU task queue. The link between nodes
represents one-step input. A new state can be obtained by executing one-step
input on top of the source state.

First, for the Delete(Success) branch, we determine whether
it has been solved on state S0. If it hasn’t, we attempt to solve
for one-step input based on the state S0 which can trigger
it. Since no task exists in the CPU task queue on the state
S0, the solving will obviously fail. We will not reflect the
operation of solving failure in Figure 3. Next, we try to solve
the Delete(Success) branch on the state S1. At this point, the
state S1 already contains a CPU task with ID 1. We set the
S1 state into the model. After that together with the model
state, we transform the model into SMT formulas to solve the
Delete(Success) branch. Since there is a task in the CPU task
queue, we successfully solve it and get one-step input i.e. <op:
2, taskId: 1, para: 0>. In the later dynamic execution step,
executing this one-step input can trigger the Delete(Success)
branch and obtain the state S2. Task 1 in the CPU task queue
is also deleted.

B. Dynamic Execution
The dynamic execution part can perform one-step execution

for the solved input data of state-aware solving or multi-step
execution using a random sequence of existing solved inputs
in the library in case of no solutions. Once a set of input
data triggers a new branch, it outputs all the input data on
the current state tree path as a test case. After execution, it
attaches new model states as child nodes to update the state
tree for further iteration.

The detailed dynamic execution process is described in
Algorithm 2. If the SolvedInput from Algorithm 1 is not

Algorithm 2: Dynamic execution
Input: Model: The Simulink model for test case generation

StateTree: The state tree during test case generation
TargetState: The selected state node of Algorithm 1
SolvedInput: The solved input of Algorithm 1
InputLib: All solved inputs from the solver

Output:TestCase: The test case that result in new coverage
1 TestCase = ∅
2 inputSequence = ∅ // Used for dynamic execution
3 newCover = false
4 if SolvedInput != NULL then
5 // When state-aware solving has a solution
6 curState = TargetState
7 inputSequence.append(SolvedInput)

8 else
9 // When state-aware solving has no solution

10 curState = StateTree.getRandomNode()
11 for N times do
12 inputSequence.append(InputLib.getRandInput())

13 for input in inputSequence do
14 Model.setState(curState.getState()) // Switch model state
15 newState = Model.run(input)
16 newCover = newCover ∥ hasNewCover(newState)
17 curState.addChild(newState) // Update state tree
18 curState = newState

19 if newCover then
20 // Get the complete input sequence
21 while curState != StateTree.root do
22 TestCase.addData(curState.getInput())
23 curState = curState.getParentNode()

24 return TestCase

NULL, it will be used for one-step execution along with
the selected state (TargetState). As shown in lines 4-7, this
single input will be regarded as an input sequence. When state-
aware solving has no solution, we construct a random sequence
using the input data that has been previously solved, in lines 8-
12. After that, the solved input from Algorithm 1 or randomly
constructed input sequence will be brought into the model for
dynamic execution. It is worth noting that when SolvedInput
is valid, we use the target state from Algorithm 1 as the current
state for dynamic execution, in line 6. When SolvedInput is
invalid, we randomly select a state in the state tree, in line
10. The dynamic execution of the input sequence is shown in
lines 13-18. It first switches the state data of the model to the
current state. Then, it brings one input from the input sequence
to execute the model once. A new model state and whether a
new coverage can be triggered will be returned. The new state
will be added as a child node of the current state so that the
state tree is updated. The current state will be replaced with
the new state to continue executing the input sequence. After
execution, if a new coverage is found, the input data of the
current node and all its parents will be output as a test case,
as shown in lines 19-23.

C. Heuristic Strategy

1) Heuristic Branching Searching:
If only the exploration method of traversing all states and

all unsolved branches as in Algorithm 1 is used, a lot of time
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may be wasted on meaningless solving. When we explore a
new model state (which also means a new model branch is
found), if we can learn which uncovered branches may be
triggered based on this new state, we can prioritize solving it.
However, for those branches that are not covered, it is difficult
to directly know which of them can be triggered by a single
step of execution based on that new state. So we can only use
some potential indirect relationships to find those branches
that are related to the new state. For this purpose, we design a
heuristic branch search algorithm. With this heuristic method,
those potentially related branches will be solved in advance,
thus avoiding a lot of meaningless solving attempts.

As shown in Figure 2, when we obtain a new coverage state
through dynamic execution, we search for uncovered branches
of the model that may be related to this state to join the priority
solving queue. Note that, the priority solving queue is not a
concept from the field of computer science. It is just a first-in-
first-out queue. After that, the state-aware solving step goes
to solve the branches in the queue in priority based on the
new state. To obtain the branches that are potentially related,
we record those internal state variables that have changed
since the last model execution and then traverse all branches
of the model to check which branch decisions depend on
those changed states. For example, in the CPU task dispatch
model in Figure 1, when it successfully adds a task, the task
modification needs to be performed based on the new state.
What is reflected in the model is that the model rewrites an
array of global variables in one iteration, and then this array of
global variables has to be read and judged by another branch
in the next iteration.

Algorithm 3: Heuristic branch searching
Input: Model: The Simulink model for test case generation

BranchList: The model branches after sorting by depth
NewState: The new state that covers new branches

Output:PSQueue:The queue for priority solving
1 PSQueue = ∅ // Each element is a key/value pair
2 parentState = NewState.parent
3 dataflow = Model.getDataflow()

// Is used to find the data sources of branch blocks
4 for v in Model.StateVarList do
5 // Find model states (global variables) that have changed
6 if NewState.value(v) == parentState.value(v) then
7 continue
8 for branch in BranchList do
9 if isBranchCovered(branch) then

10 continue
11 dependentVarList = dataflow.getSrc(branch)

// Get variables that the branch condition depends on
12 if dependentVarList.find(v) == NULL then
13 // Only focus on model state (global variable)
14 continue
15 PSQueue.add(NewState, branch)

16 return PSQueue

Algorithm 3 shows the specific process of heuristic branch
searching. First, we define an empty priority solving queue,
each element of which is in the form of “key-value”. “key” is
the model state and “value” is the branch, indicating that the

branch will be solved based on that model state in priority.
After that, all state variables (global variables) of the model
are traversed and the state values in the new state and the
parent state are compared to find out which state variables
have changed, as shown in lines 4-7. If we find a changed
state variable, then we should add those uncovered branches
whose condition depends on that state variable to the priority
solving queue, as shown in lines 8-15. In detail, as shown in
lines 11-14, we find out all the data sources of the block with
branching judgment through the model’s dataflow and then
determine whether the state variable being changed is in it.
Finally, we pack the new state and the branch related to it
into a key-value pair and add it to the priority solving queue
without duplication, as shown in line 15.

In <5
V

Global
Variable

7 V

==6

==7
AND

V

If

If

Changed	State
Variable

Related
Branch

…

B1

B2

Assign

Fig. 4. Example of heuristic branch searching. V is a global variable. B1 is
the branch that is currently solved. B2 is the branch that is affected by the
variable V. B2 will be added to the priority solving queue.

Figure 4 shows an example demonstrating heuristic branch
searching. This example contains a global variable V. Suppose
we have solved B1 so far. Based on the results of the dynamic
execution, we can learn that the variable V has been changed.
Then we need to find those branches related to the variable
V for priority solving. As shown in the block marked in red
in the figure, B2 is the branch related to the variable V. It
requires at least the value of V to be 7. Once B2 is added to
the priority solving queue, it will be easily covered because V
is assigned to be 7. Conversely, it will be impossible to solve
B2 on states where the value of V has not been changed.

2) Repeated State Filter:
Throughout the HSTCG constraint solving process, the same

branch may be solved on the same model state. This is because
sometimes new branches are triggered that do not affect the
internal state of the model, creating a new node with duplicate
state in the state tree. For example, if the error branch of the
CPU task model in Figure 1 is triggered, a new state node will
be created. Its internal state is the same as that of the parent
node because the error handling process only returns an error
code. We cannot give up on creating these nodes with duplicate
states, because each state node represents one execution step
of the model. Therefore, we need to find out which solving
can be skipped.

Figure 5 shows the details of the repeated state filter module.
This module receives a target state node and a target branch ID
that will be solved. They may come from the priority solving
queue mentioned in the previous subsection, or obtained from
the state tree. The Hash value of the model state (all variables)
stored in the state node is computed first. We consider the
set of those variable data as a byte array to perform the
Hash operation. In this way, state nodes with the same Hash
value can be considered to have the same state. After that,
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Fig. 5. Repeated State Filter. It avoids repeated solving by determining
whether the target state and target branch have been solved.

we search for the pair of hash value and branch ID in the
solving history. If found, we skip one solving by directly
outputting the result saved in the solving history. If not found,
we pass the target state node (Hash) and target branch ID to the
subsequent modules which are unreachable branch filters and
branch constraint solving. It is worth noting that this repeated
state filter module enables successive test case generation
functionality of HSTCG. Since the solving histories are stored
in the form of files, these solving results can be used directly
if test case generation is performed on the same model again.

3) Unreachable Branch Filter:
To further optimize the solving step in the test case gen-

eration process, we also exploit the implication relationship
between the parent and child branches of the model to avoid
solving unreachable branches. For example, when we fail to
solve a branch on a specific state, then solving all the sub-
branches of this branch on that state will fail. Since the solving
for these sub-branches is meaningless, we should skip them.

Target
Branch Id

Target State 
Node (Hash)

Get Branch
Parent List

Search Hash and
Parent Branch Id

Skip
Solving

Branch Constraint 
Solving

Found

Not
Found

Parent
Branches

<Node Hash,
Branch>

Unsolvable
Branch Table

Simulink
Model

Unreachable Branch Filter

Fig. 6. Unreachable Branch Filter. It uses the implication relation of
unreachable parent branch to avoid invalid solving.

Figure 6 shows the details of the unreachable branch filter
module. It receives the state node (Hash) and branch ID passed
from the previous modules. For a target branch, this module
gets all its parent branches (ancestor branches) based on its
structural relationship in the model. For example, the parents
of the branch that determines whether the task queue is full
in the “Task Add” subsystem in Figure 1 contains the Switch-
Case branch at the outermost level of the model. After that,
we search for each pair of target state Hash and parent branch
ID from the unsolvable branch table. The pair to be searched
for is like: < N1, B1 >, < N1, B2 >, < N1, B3 >, where N1

denotes the state node hash value and Bx denotes the branch.
Once a pair is found in the unsolvable branch table, then it

is confirmed that the current target branch is unsolvable on
the target state, and the solving of that branch can be skipped.
Otherwise, it goes to the branch constraint solving module.

D. An Running Example of HSTCG Workflow

To illustrate the working process of HSTCG more clearly,
we use the CPU Task model in Figure 1 as an example for
analysis. Figure 7. (a) shows a simplified branch structure of
the model. Since the model is based on opcodes to accomplish
the corresponding functions, there are five branches at the first
level, including the add, delete, modify, check operation of
CPU tasks and the invalid operation. For each of the four
operations, there are also two sub-branches, that is, operation
success and operation failure. Note that the add operation will
only fail when the CPU task queue is full, and the success
of the delete, modify and check operation requires that there
is a matched task in the queue. For this model, a possible
state tree constructed by HSTCG is shown in Figure 7. (b).
The corresponding test case generation process with heuristic
strategy is shown in Table I.

Inputs

Success

Failure

Success

Failure

Success

Failure

Success

Failure

Add Delete Modify Check

Invalid

ErrorB1 B2 B3 B4 B5

B6 B7 B8 B9 B10 B11 B12 B13

Operation 
Dispatch

(a) Simplified Simulink model branches

root

Add
(Success) S8

Error

Sk Add
(Success)

Sn

Add
(Failure)

S0

S2

Delete
(Success)

S3

Delete
(Failure)

S4

Modify
(Success)

S5 S6

Check
(Success)

S7

Check
(Failure)

Modify
(Failure)

S1

B1

B8 B9 B10 B11
B12 B13

B5

(b) State tree constructed by HSTCG

Fig. 7. An example of HSTCG corresponding to the model in Figure 1. (a)
shows the simplified model branches, which contain a total of 13 branches.
The triangle represents a judgement and each line below the triangle represents
a branch. Among them, B1-B5 are shallow branches and B6-B13 are deep
branches. (b) illustrates the state tree with the full coverage explored. S0-S8-
Sk-Sn indicates the state nodes created in order. Nodes colored in green and
blue in the state tree indicate that they have the same internal state ({S0, S2,
S8}, {S1, S3, S5, S6, S7})

First, since the priority solving queue is empty, the B1 is
solved on the root state S0. The execution condition of B1 is
simple and only requires the opcodes of the input data to be
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TABLE I
THE MAIN PROCESS OF TEST CASE GENERATION PROCESS WITH HEURISTIC STRATEGY

Stage Target
Branch

Target
State

Achieved
Branch

New
State Priority Solving Queue Total Achieved

Branch

1 B1 S0 B1, B6 S1 <S1: B7-B13> I....I.......

2 Try to solve B7 on state S1, but failed. <S1: B8-B13> I....I.......

3 B8 S1 B2, B8 S2 <S1: B9-B13>, <S2: B7, B9-B13> II...I.I.....

4 B9 S1 B9 S3 <S1: B10-B13>, <S2: B7, B10-B13> II...I.II....

5 B10 S1 B3, B10 S4 <S1: B11-B13>, <S2: B7, B11-B13>, <S4: B7, B11-B13> III..I.III...

6 B11 S1 B11 S5 <S1: B12-B13>, <S2: B7, B12-B13>, <S4: B7, B12-B13> III..I.IIII..

7 B12 S1 B4, B12 S6 <S1: B13>, <S2: B7, B13>, <S4: B7, B13> IIII.I.IIIII.

8 B13 S1 B13 S7 <S2: B7>, <S4: B7> IIII.I.IIIIII

9 Try to solve B7 on state S2, but failed. <S4: B7> IIII.I.IIIIII

10 Try to solve B7 on state S4, but failed. ∅ IIII.I.IIIIII

11 B5 S0 B5 S8 ∅ IIIIII.IIIIII

12 Skip solving B7 on S0, because the states of S0 and S2 are same. ∅ IIIIII.IIIIII

13 Skip solving B7 on S3, because the states of S3 and S1 are same. ∅ IIIIII.IIIIII

14 Skip solving B7 on S5, because the states of S5 and S1 are same. ∅ IIIIII.IIIIII

15 Skip solving B7 on S6, because the states of S6 and S1 are same. ∅ IIIIII.IIIIII

16 Skip solving B7 on S7, because the states of S7 and S1 are same. ∅ IIIIII.IIIIII

17 Skip solving B7 on S8, because the states of S8 and S0 are same. ∅ IIIIII.IIIIII

18 Failed to solve B7 on all state tree nodes. ∅ IIIIII.IIIIII

19 Random execution on S8. B7 S9 - Sn ∅ IIIIIIIIIIIII

* The “I” in the last column represents the corresponding branch is covered, and the “.” represents uncovered. In the priority solving queue, a shorthand is used
to express a series of elements, for example, “<S1: B10-B13>” should mean “<S1: B10>, <S1: B11>, <S1: B12>, <S1: B13>”.

the target values. Therefore, based on the root state S0, it is
easy to obtain the corresponding input data from the constraint
solver. The deep branch B6 will also be covered following B1
due to dynamic execution. At this point, as a new state S1 is
generated and the CPU task queue variable is changed, some
related branches will be added to the priority solving queue.
Specifically, except for the covered B6, all other branches of
the success or failure operation, that is B7-B13, should be
added to the priority solving queue. In contrast, B2-B5 are
related only to the opcode and not to any model state, so they
will not be added to the priority solving queue. Because a task
exists in the CPU task queue in the S1 state, any add, delete,
modify, or check operation on the task queue in the following
stage is possible.

Then in stage 2, according to the priority solving queue, B7
is solved based on S1 in priority. However, we cannot get a
valid solution from state S1 because the CPU task queue needs
to be added more tasks to fill it up. In stage 3, according
to the priority solving queue, B8 is solved based on S1 in
priority. B2 will also be covered following B8 due to dynamic
execution. Since a task in the CPU task queue was successfully
deleted, some S2 state-related branches should be added to
the priority solving queue. At the same time, S2 reverts to the
same internal state as S0 since its task queue is also empty.
In stage 4, since the B9 branch indicates a failure to delete a
task, it does not affect the task queue, so there is no need to
add any branch to the priority solving queue. Since the task
queue is not modified, the internal states of S3 and S1 are the
same. Similarly, B10-B13 can also obtain valid solutions on
state S1.

In stages 9 and 10, according to the priority solving queue
to solve B7 based on S2 and S4, but failed. In stage 11, since
the priority solving queue is empty, we solve for B5 based
on S0. Then in stages 12-17, we were originally supposed to
try to solve B7 on the states that have not been solved for
B7. However, since we have already solved on those nodes
that have the same internal state, we just skip those solving
that are certain to fail. When only B7 is left unsolvable on all
state nodes, a random input sequence is constructed to execute
dynamically using the previously solved inputs. Assuming that
state S8 is chosen as the start state for random execution and
the constructed sequence contains enough operations of adding
CPU tasks, then we are able to cover B7 on the state Sn node
eventually, as shown in stage 19. During the execution process
of HSTCG, stages 1, 3-8, 11 and 19 will output the test cases.

To demonstrate the improvements brought by the heuristic
strategy, we show in Table II the stages of the running example
without the heuristic strategy. By comparing the two tables,
we can find that the heuristic strategy reduces the number of
solving times by 9 (from 20 to 11) than without the heuristic
strategy. Among them, stage 12 (solve B8 on state S0), stage
15 (solve B10 on state S0) and stage 18 (solve B12 on state
S0) in Table II is reduced by the heuristic branch searching
module. The specific reason is that in the heuristic strategy,
B8, B10 and B12 are added to the priority solving queue as
soon as the S1 state appears. They can be solved directly based
on the S1 state. The solving in stages 12-17 of the model Table
I is reduced by repeated state filter module. Due to the model
structure itself, the unreachable branch filter module is not
used for this model.
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TABLE II
THE MAIN PROCESS OF TEST CASE GENERATION PROCESS WITHOUT

HEURISTIC STRATEGY

Stage Target
Branch

Target
State

Achieved
Branch

New
State

Total Achieved
Branch

1 B1 S0 B1, B6 S1 I....I.......

2 B2 S0 B2, B9 S2 II...I..I....

3 B3 S0 B3, B11 S3 III..I..I.I..

4 B4 S0 B4, B13 S4 IIII.I..I.I.I

5 B5 S0 B5 S5 IIIIII..I.I.I

6 Try to solve B7 on state S0, but failed. IIIIII..I.I.I

7 Try to solve B7 on state S1, but failed. IIIIII..I.I.I

8 Try to solve B7 on state S2, but failed. IIIIII..I.I.I

9 Try to solve B7 on state S3, but failed. IIIIII..I.I.I

10 Try to solve B7 on state S4, but failed. IIIIII..I.I.I

11 Try to solve B7 on state S5, but failed. IIIIII..I.I.I

12 Try to solve B8 on state S0, but failed. IIIIII..I.I.I

13 B8 S1 B8 S6 IIIIII.II.I.I

14 Try to solve B7 on state S6, but failed. IIIIII.II.I.I

15 Try to solve B10 on state S0, but failed. IIIIII.II.I.I

16 B10 S1 B10 S7 IIIIII.IIII.I

17 Try to solve B7 on state S7, but failed. IIIIII.IIII.I

18 Try to solve B12 on state S0, but failed. IIIIII.IIII.I

19 B12 S1 B12 S8 IIIIII.IIIIII

20 Try to solve B7 on state S8, but failed. IIIIII.IIIIII

21 Failed to solve B7 on all state tree nodes. IIIIII.IIIIII

22 Random execution on S8. B7 S9 - Sn IIIIIIIIIIIII

* The “I” in last column represents the corresponding branch is covered,
and the “.” represents uncovered.

IV. EVALUATION

A. Tool Implementation

HSTCG1 is implemented in C++, with 29,030 lines of code.
We defined a C++ struct to represent the state tree node. In
this struct, we use a “vector” structure to store the child nodes
and dynamically allocated memory to store the state and input
value of each iteration of the model. All state elements, such
as global variables and state machine locations of the model,
are stored in a “map” structure in the form of “key-value”.
The “key” represents the name of the state element (usually
described using the full path of the element in the model).
The “value” represents the attributes of the state element, such
as data type, array length, etc. Only the values of the model
states are stored in each state tree node, and they are stored in
sequence to speed up the memory data access. When we need
to switch the model state, we just need to read the state values
in memory in order and set them to the corresponding elements
of the model by mapping the “key-value” structure. Similarly,
the inputs for each iteration of the model are stored in the
state tree nodes by linear memory. As for constraint solving,
we utilize the CBMC tool to convert the code of the Simulink
model into SMT formulas, and then employ the MINISAT
constraint solver to implement one-step-input solving.

The heuristic strategy is introduced before the branch
constraint solving module in the state-aware solving step.

1The implementation and the benchmark models are uploaded on the
anonymous website: https://anonymous.4open.science/r/STCG-9BB3.

The “state-branch” pairs in the priority solving queue are
prioritized for solving before traversing all nodes in the state
tree and all branches. In the implementation, the hash values
used in the heuristic strategy are computed using the CRC64
algorithm [37] on the state variables at the time of state node
creation. When dynamic execution is performed, the input
data are sequentially parsed to the corresponding ports of the
model. If a test case needs to be output for a state tree node,
we can find a path to the root node directly through the node’s
parent pointer, and then merge all the input data stored at the
nodes on the path and write it to a file. Test case files in text
format can also be exported by HSTCG, so that a fair coverage
comparison can be performed by using the Simulink test block
named “Signal Builder” [38].

B. Experiment Setup

To evaluate the effectiveness of HSTCG, we conduct com-
parison experiments with the Simulink built-in validation
toolkit SLDV and academic tool SimCoTest in terms of
coverage results. Since other academic and commercial tools
are not publicly available, we can not compare HSTCG with
them. Besides, we conducted an in-depth investigation of the
practical effects of our state-aware method. All experiments
are performed on the same environment (Windows 10, In-
tel i7-8550U CPU, 16GB RAM, Simulink 2022b, Simulink
Design Verifier 4.8) with the same duration (1 hour). Since
SimCoTest and HSTCG include random strategies, we repeat
the experiment 10 times to obtain the average coverage result
for a fair comparison. It is worth noting that these tools
end up achieving almost unchanged coverage over multiple
repetitions of the experiment. This is because HSTCG’s random
execution simply repeats the execution of existing data quickly,
and there is no additional distribution of data to explore new
branches. Whereas SimCoTest was able to cover the shallow
model branches every time, the deeper branches had more
stringent constraints that it never managed to cover. In terms of
coverage efficiency, HSTCG has almost no difference between
each repeated execution, as most of its time is spent on
constraint solving, while random execution is very fast in
comparison. SimCoTest’s efficiency is quite different, but the
overall trend of its coverage folds is basically the same. Since
a single test case may result in a larger percentage increase in
coverage, we have not plotted the spread of values in the folded
line plot, given the image carrying capacity and aesthetics.
All benchmark models are from Huawei’s model library and
they are deployed in embedded scenarios. Table III shows
the detailed description of these models, including model
functionality, number of branches, and number of blocks.

C. Evaluation on Coverage Rate

We used the most widely used Decision Coverage, Con-
dition Coverage, and Modified Condition Decision Coverage
(MCDC) to measure the effectiveness of test case generation
for different tools [39], [40]. Decision coverage analyzes
elements that represent decision points in a model, such as a
Switch block or Stateflow states. It is concerned with whether
different branches of a block with branching logic can be
executed. Condition coverage analyzes blocks that output the
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TABLE III
THE DESCRIPTION OF BENCHMARK MODELS

Model Functionality #Branch #Block

CPUTask AutoSAR CPU task dispatch system 107 275

AFC Engine air-fuel control system 35 125

TWC Train wheel speed controller 80 214

NICProtocol Vehicle NIC communication protocol 46 294

LANSwitch LAN Switch controller 131 570

UTPC Underwater thruster power control 92 214

LEDLC LED matrix load control 94 270

TCP TCP three-way handshake protocol 146 330

RAC Robotic arm controller 179 667

SolarPV Solar PV panel output control 55 131

EVCS Electric vehicle charging system 72 163

FMTM Factory Multi-point Temperature Monitor 89 152

logical combination of their inputs (for example, the Logical
Operator block) and Stateflow transitions. A test case achieves
full coverage when it causes each input to each instance of a
logic block in the model and each condition on a transition
to be true at least once during the simulation, and false at
least once during the simulation. MCDC analyzes blocks that
output the logical combination of their inputs and Stateflow
transitions to determine the extent to which the test case
tests the independence of logical block inputs and transition
conditions. A test case achieves full coverage for a block
when a change in one input, independent of any other inputs,
causes a change in the block output. A test case achieves full
coverage for a Stateflow transition when there is at least one
time when a change in the condition triggers the transition
for each condition. A higher coverage metric means a more
comprehensive examination of the model.

Table IV shows the coverage of the test cases generated
by the different tools for benchmark models. Compared to
SLDV and SimCoTest, HSTCG improves the Decision Cover-
age for 12%-127% (avg. 55%) and 15%-513% (avg. 103%),
Conditional Coverage for 15%-144% (avg. 53%) and 16%-
144% (avg. 62%), and MCDC for 25%-900% (avg. 192%)
and 51%-400% (avg. 201%), respectively. It can be seen that
our method achieves good results on these control models
with complex internal states. For example, HSTCG achieves
100% Decision Coverage and 100% Condition Coverage on
the CPUTask and the UTPC model. As mentioned earlier, it is
easy to obtain a solution like “add data first and then modify
data” using a state-aware method, which is difficult to obtain
by other methods. On several Simulink models, such as TWC,
NICProtocol and LEDLC, HSTCG obtained coverage of 90%-
98%, which is close to 100%. By dynamically debugging the
models using test cases, we found that most of them were
missed due to dead logic. For example, there is an unreachable
branch in the model named LEDLC. This is mainly because
there are only four LED states, and the Switch-Case block,
which performs different control logic based on the LED
states, has an additional default port that is never used beside
the corresponding four ports.

TABLE IV
COMPARISON OF THE TEST COVERAGE OF DIFFERENT TOOLS

Model Tool Decision
Coverage

Condition
Coverage MCDC

SLDV 89% 72% 42%

CPUTask SimCoTest 72% 56% 21%

HSTCG 100% 100% 100%
SLDV 67% 64% 11%

AFC SimCoTest 72% 68% 11%

HSTCG 83% 79% 22%
SLDV 46% 68% 40%

TWC SimCoTest 15% 57% 20%

HSTCG 92% 97% 100%
SLDV 75% 83% 10%

NICProtocol SimCoTest 30% 43% 33%

HSTCG 95% 98% 100%
SLDV 72% 76% 15%

LANSwitch SimCoTest 78% 81% 15%

HSTCG 100% 98% 55%
SLDV 44% 59% 44%

UTPC SimCoTest 40% 58% 44%

HSTCG 100% 100% 100%
SLDV 55% 41% 43%

LEDLC SimCoTest 55% 41% 43%

HSTCG 98% 100% 100%
SLDV 63% 64% 33%

TCP SimCoTest 82% 74% 17%

HSTCG 99% 100% 67%
SLDV 64% 71% 12%

RAC SimCoTest 71% 76% 12%

HSTCG 98% 98% 23%
SLDV 78% 83% 57%

SolarPV SimCoTest 74% 73% 47%

HSTCG 89% 95% 71%
SLDV 43% 37% 23%

EVCS SimCoTest 54% 62% 23%

HSTCG 89% 87% 77%
SLDV 76% 77% 25%

FMTM SimCoTest 64% 55% 15%

HSTCG 95% 95% 35%

Average
Improvement

vs SLDV ↑ 55% ↑ 53% ↑ 192%

vs SimCoTest ↑ 103% ↑ 62% ↑ 201%

D. Test Case Generation Time

We also recorded the timestamp of each generated test case
of three tools, HSTCG, SLDV and SimCoTest. Figure 8 shows
the folded line of the Decision Coverage versus time for each
Simulink model. To demonstrate the effectiveness of the state-
aware method, we marked those test cases that were obtained
by constraint solving based on internal model states (marked
with “×”) and those obtained from random sequence execution
(marked with “◦”).

In Figure 8, we can see that in most cases, HSTCG is able
to achieve higher coverage at a faster speed, and obtain new



12

0%

20%

40%

60%

80%

100%

0 12 24 36 48 60
STCG HSTCG SLDV SimCoTest

1h

(a) CPUTask

0%

20%

40%

60%

80%

100%

0 4 8 12 16 20
STCG HSTCG SLDV SimCoTest

1h

(b) AFC

0%

20%

40%

60%

80%

100%

0 40 80 120 160 200
STCG HSTCG SLDV SimCoTest

1h

(c) TWC

0%

20%

40%

60%

80%

100%

0 600 1200 1800 2400 3000 3600
STCG HSTCG SLDV SimCoTest

1h

(d) NICProtocol

0%

20%

40%

60%

80%

100%

0 30 60 90 120 150
STCG HSTCG SLDV SimCoTest

1h

(e) LANSwitch

0%

20%

40%

60%

80%

100%

0 70 140 210 280 350
STCG HSTCG SLDV SimCoTest

1h

(f) UTPC

0%

20%

40%

60%

80%

100%

0 160 320 480 640 800
STCG HSTCG SLDV SimCoTest

1h

(g) LEDLC

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50
STCG HSTCG SLDV SimCoTest

1h

(h) TCP

0%

20%

40%

60%

80%

100%

0 130 260 390 520 650
STCG HSTCG SLDV SimCoTest

1h

(i) RAC

0%

20%

40%

60%

80%

100%

0 120 240 360 480 600
STCG HSTCG SLDV SimCoTest

1h

(j) SolarPV

0%

20%

40%

60%

80%

100%

0 30 60 90 120 150
CFTCG HSTCG SLDV SimCoTest

1h

(k) EVCS

0%

20%

40%

60%

80%

100%

0 30 60 90 120 150
STCG HSTCG SLDV SimCoTest

1h

(l) FMTM

Fig. 8. The folded line plot of the Decision Coverage versus time. The X-axis is time (s) and the Y-axis is Decision Coverage (%). STCG is without heuristic
strategy and HSTCG is with heuristic strategy. The yellowish areas in the background indicate the improvement impact of the heuristic strategy. “×” indicates
test cases generated by constraint solving based on internal model states, and “◦” indicates test cases generated by executing the random input sequence.

test cases continuously. In contrast, SLDV outputs test cases
only once on most models. Although SLDV outputs test cases
more consistently on the NICProtocol model, it is harder and
harder to output new test cases due to the complexity of the
deeper state of the model. Since SimCoTest does not require
time-consuming constraint solving, it will obtain relatively
high coverage at the beginning of the test, while it will
be difficult to achieve coverage of state-dependent branches
subsequently. More importantly, as seen from our mark of the
test cases generated by HSTCG, the higher coverage fraction is
almost always obtained by our state-aware branch solving. For
example, on the TCP model, HSTCG can obtain the various
handshake states of the client IP. Therefore, it is easy to solve
the relevant branches of the second or the third handshake
based on the existing handshake states.

E. Effectiveness of Heuristic Strategy

To better illustrate the effectiveness of the heuristic strat-
egy, we also show the folded line plot of STCG (without
heuristic strategy) in Figure 8. We use the yellowish areas
in the background to indicate the improved effects of the
heuristic strategy. We can see that all the experimental models
benefit from the heuristic strategy. The time spent on test
case generation for each experimental model is significantly
reduced. The specific improvements in test case generation
efficiency on each experimental model are shown in Table V.

According to Table V, we can see that the heuristic strategy
reduces the test case generation time by 62.2% on average
on these benchmark models. To explore whether these im-
provements were brought about by the heuristic strategy, we
also recorded the number of solving of each model in the
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TABLE V
HSTCG VS. STCG, THE NUMBER OF SOLVING AND SOLVING TIMES REDUCED BY THE THREE HEURISTIC STRATEGIES

Model Reduced # of Solving
Rate (Before → After)

Reduced # by
Repeated Solving

Reduced # by
Invalid Solving

Reduced # by
Heuristics Search

Reduced Time of Solving
Rate (Before → After)

CPUTask 68.8% (44 → 15) 7 0 22 74.0% (29.2s → 7.6s)

AFC 72.7% (44 → 12) 0 0 7 53.6% (16.6s → 7.7s)

TWC 80.1% (357 → 68) 38 210 41 79.4% (197.1s → 40.7s)

NICProtocol 45.3% (95 → 52) 6 0 37 65.2% (3758.3s → 1308.4s)

UTPC 84.2% (646 → 102) 32 502 10 72.0% (309.6s → 86.8s)

LANSwitch 75.4% (175 → 43) 33 79 20 73.9% (155.4s → 40.6s)

LEDLC 75.2% (343 → 85) 8 244 6 68.5% (801.1s → 252.2s)

TCP 62.4% (101 → 38) 15 41 7 40.5% (50.4s → 30.0s)

RAC 80.7% (990 → 191) 174 559 66 65.0% (672.9s → 235.7s)

SolarPV 44.4% (36 → 20) 13 0 3 45.8% (312.8s → 169.4s)

EVCS 50.5% (111 → 55) 50 1 5 39.5% (114.5s → 69.3s)

FMTM 66.0% (197 → 67) 20 15 95 68.7% (116.3s → 36.4s)

Average 67.1% - - - 62.2%

* Columns 3-5 denote the number of reductions in the number of solving by the three heuristics proposed in this paper, respectively.

experiment, as shown in Table V. We can find a positive
correlation between the time reduction in test case generation
and the reduction in the number of solving. Further, we also
recorded the number of repeated solving and the number of
invalid solving that was reduced, corresponding to the repeated
state filter module and the heuristic branch searching module,
respectively. The reduced number of solving attempts due to
heuristic search is also calculated by subtraction and is shown
in the “Reduced # by Heuristics Search” column in Table V.
We can see that each of these heuristic strategy modules plays
an important role on different experimental models. Just as
we envisioned in the design section, the heuristic strategy can
reduce a large number of solving.

F. The Comparison with TCG methods in Software Domain

There are numerous works on test case generation, es-
pecially for software or code. So, we would like to know
if it is possible to achieve better results using advanced
testing works in the software domain to test the model. To
address this question, three well-known testing tools Libfuzzer,
Angora, and Driller were selected for additional comparative
experiments [41]–[43]. To make them possible to generate test
cases against the model, we utilized the code generated by
the model for testing. We handwrote the corresponding test
drivers and rewrote the interface to the model code so that
the test tools can automatically provide test files for executing
the code. After executing the test case generation process, we
converted the binary test case files into Excel format to provide
coverage statistics to Simulink. The results of the comparison
with the test case generation works in software domain are
shown in Figure 9. Compared to Libfuzzer, HSTCG was on
average 39%, 40% and 47% higher in Decision Coverage,
Condition Coverage, and MCDC, respectively. Compared to
Angora, HSTCG was on average 42%, 45% and 59% higher,

respectively. Compared to Driller, HSTCG was on average
48%, 50% and 54% higher, respectively.

This result shows that the testing methods in software
domain are not suitable for testing Simulink models. We
concluded that this is due to the following reasons. First, the
test methods in software domain are not effective in generating
test cases for the coverage metrics in the model. For example,
the ABS block in Simulink has two decision coverage metrics,
value<0 and value≥0. The abs statement does not reflect any
branch jumps, either in C code or assembly language. There
are many similar cases, such as AND and OR operations,
which result in a large number of missing coverage metrics
for these works. Second, the random strategy of these works
makes it difficult to guarantee the validity of the model inputs.
Because the input data to the model is received through ports
and the model is executed iteratively, the data inside the file we
provide to the model-generated code is compactly arranged in
the order of ports. Then, as soon as some bytes are inserted or
removed from it, the data that follows will not correspond to
the original ports anymore. This makes the random mutation
approach of these works ineffective.

Based on the above analyzes, we think that a lot of ad-
ditional work needs to be done to effectively apply software
testing methods to models. We briefly tried the idea based on
Libfuzzer. This involved manually instrumenting model cov-
erage metrics that were missing from the code, and adapting
Libfuzzer’s mutation strategy to align to the input length of
each iteration of the model. Preliminary experimental results
show that this method achieves average coverage 15%, 14%,
and 6% lower than HSTCG on Decision Coverage, Condition
Coverage, and MCDC, respectively, on the benchmark mod-
els. The results demonstrate that it is useful for improving
traditional software testing methods. As for those model
metrics that are still not covered, they generally have higher
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Fig. 9. Comparison of coverage with test case generation methods in the software domain. Libfuzzer is an in-process coverage-guided fuzzing tool. Angora
is a fuzzing tool that integrates taint analysis technique. Driller is a concolic testing tool that combines fuzzing with symbolic execution.

requirements on the model state. To further improve coverage,
perhaps it need to introduce constraint solving techniques to
explore those complex logics.

Despite the lower coverage on the model of the software test
methods, it is worth noting that most of the coverage obtained
by these works is obtained at the moment the tool is launched,
which is faster compared to HSTCG at the beginning. This
shows that random algorithms can be very useful in the early
stages of test case generation. For this reason, the random
strategy will be integrated into our future work.

G. The Scalability on Larger Simulink Model

In real industrial scenarios, a complete model is usually
a combination of multiple subsystems. For example, in the
AutoSAR standard for vehicles, one SWC can contain several
Runables, and developers often need to test the entire system in
order to test whether the subsystems work in coordination with
each other. The size of the complete model can be very large
and can even contain thousands of model blocks. This poses
a potential threat to our work. After all, HSTCG mainly uses
formal constraint solving method. This is because the larger
the solving object is the less friendly it is to constraint solving
methods. To verify the capability of HSTCG on large Simulink
models, we found three large models on the publicly available
model set [44]. As shown in Table VI, TCS1 (containing 1743
blocks) and TCS2 (containing 7196 blocks) are control models
dedicated to testing and analysis from the Simulink website.
SVPWM (containing 1233 blocks) is a space vector pulse
width modulation model commonly used for motor control.

The comparison results on the large Simulink model are
displayed in Table VI. Compared to SLDV, HSTCG shows an
average improvement of 32%, 35% and 135% in Decision
Coverage, Conditional Coverage, and MCDC, respectively.
Compared to SimCoTest, HSTCG shows an average improve-
ment of 28%, 17% and 55%, respectively. It can be seen
that HSTCG can still work well on large models. It is worth
noting that HSTCG’s average solving time on large models
has increased. For the models in Table III, the average single
solving time for HSTCG is 0.7 seconds, but the average single
solving time on the three large models is 3.6 seconds. This
illustrates that the large models indeed introduce more time
overhead to HSTCG. However, the percentage increase in
solving time is less than the model size. The average number
of blocks for the models in Table III is 283, while the average

TABLE VI
COMPARISON OF THE COVERAGE ON LARGER SIMULINK MODELS

Model Tool Decision
Coverage

Condition
Coverage MCDC

TCS1
1,743 blocks

SLDV 60% 65% 16%

SimCoTest 86% 68% 28%

HSTCG 99% 85% 41%

TCS2
7,196 blocks

SLDV 79% 83% 43%

SimCoTest 79% 87% 56%

HSTCG 85% 94% 92%

SVPWM
1,233 blocks

SLDV 45% 55% -

SimCoTest 34% 75% -

HSTCG 55% 89% -

Average
Improvement

vs SLDV ↑ 32% ↑ 35% ↑ 135%

vs SimCoTest ↑ 28% ↑ 17% ↑ 55%

* Since the SVPWM model does not contain condition combinations, it
has no MCDC metric.

number of blocks for the three large models is 3,390. HSTCG
only increases the solving time by about 5x for a nearly
12x increase in model size. This is mainly because when we
formally transformed the model, we removed as many blocks
as possible that were not relevant to the current solving goal.
This allows HSTCG to remain workable on large models.

V. DISCUSSION

A. The limitation on Unreachable Branches

In our experiments, we found that some branches in the
model, such as the TWC and LEDLC model, could not be
triggered even after a long solving time and random execution.
This problem exists in both HSTCG and STCG. After analyzing
the models manually, we found that this situation is caused
by the branch conditions being perpetually false (perpetually
unreachable, unreachable in any state or dead logic). For
example, if a Saturation block with lower and upper limits
set to 0 and 5 is followed by another Saturation block with
an upper limit of 6, then the branch of “value greater than 6”
in the following Saturation block is an unreachable branch.
Because these branches will be solved on each state in the
state tree to determine if they are reachable on a known model
state, HSTCG and STCG perform multiple solving for this type
of branch, resulting in a lot of wasted time. However, this
problem has been mitigated due to HSTCG’s heuristic strategy.
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This is because the solving of the same unreachable branch
on the repeated state has been filtered and the sub-branches of
the unreachable branch are skipped for solving. Nevertheless,
to further address this problem, it is advisable to verify the
unreachable branches using formal methods to get branches
that are unsolvable on any state in advance. In this way, invalid
solving can be further avoided.

B. The Selection of Constraint Solver

Since our tool employs a constraint solver and the constraint
solving takes up most of the time in the tool run. So we
also tried other solvers other than MINISAT to see if we
could get faster results. We experimented with Z3 [45] and
CVC4 [46] solvers respectively. We do not use solvers such
as SPIN [47] and SMV [48] because we target concrete model
logics and thus we would not need to abstract the model. The
results showed that the average time per solving increased by
28% after replacing Z3. Z3 was faster compared to MINISAT
only on 3 models. After replacing CVC4, the average time
per solving increased by 19%. CVC4 was faster compared to
MINISAT only on 2 models. According to our analysis, Z3
and CVC4 contain a lot of advanced features that are more
suitable for more complex problems involving various theories
and logic. Simulink is inherently limited by its modeling
capabilities and does not contain data representations such as
pointers or complex logic such as function calls and while-
break loop. In contrast, MINISAT is a lightweight and efficient
solver that is a better choice than Z3 and CVC4 for solving
simpler problems.

C. The Possible Further Optimization

By comparing with SimCoTest, Libfuzzer, Angora and
Driller, we found that the random search method is usually
able to explore some coverage earlier than HSTCG, as shown
in Figure 8. This is due to the random generation of test cases
is faster than constraint solving. Meanwhile, since the random
strategy of our algorithm is performed when all uncovered
branches are unsolvable on all states, it results in the random
strategy only working after a long time when testing the large
Simulink models. If the random method can be introduced
into HSTCG to perform the random generation process first and
then use the constraint solver to solve the remaining uncovered
branches, the efficiency of HSTCG can be further improved.

In addition, we found that there are cumulative logics in
some models, such as statistics of cumulative errors and
numerical cumulative overflow. Most of them require so many
model iterations to trigger. With the state exploration approach
of HSTCG, it is difficult to trigger those logics that require a
long time to accumulate, even with a random sequence gen-
eration. For this reason, designing a long test case generation
method for cumulative logic is also our future work.

VI. DIFFERENCES FROM PRELIMINARY PAPER

This paper is an extended and revised version of a pre-
liminary conference paper [1] (STCG). In terms of paper
contributions, this paper adds a heuristic strategy to improve
the efficiency of test case generation. This heuristic strategy
contains three modules, heuristic branch searching, repeated

state filter and unreachable branch filter. First, the heuristic
branch searching module prioritizes branch solving based on
the global variables that have changed in the new state and
their associated branches. Second, the repeated state filter
module avoids repeated solving by recognizing whether the
state is to be solved and the target branch has been solved
previously. Third, the unreachable branch filtering module
avoids invalid solving by detecting whether an ancestor branch
of the current target branch is unreachable in the current state.
Not only that, we have added more experimental models to
further validate the effectiveness of our tool. The experiments
show that the state-aware test case generator with heuristic
strategy achieves a significant efficiency improvement over
previous work, reducing the number of constraint solving
times by 67.1% and the test case generation time by 62.2%
on average.

Heuristic Branch Searching: In comparison, STCG blindly
traverses the state nodes on the state tree and all unsolved
branches when performing stepwise constraint solving. In con-
trast, this paper proposes a heuristic branch searching module
that effectively reduces the number of constraint solving times,
thereby enhancing the efficiency of test case generation. When
a new model state is triggered, we add the branches that are
related to the new state at the model dataflow level to the
priority solving queue. Specifically, to obtain the branches that
are potentially related, we record those internal states of the
model that have changed and then traverse all branches of
the model to check which branch decisions depend on those
changed states.

Repeated State Filter: In previous work (STCG), we did
not ensure that the model states recorded in each state node
on the state tree were different. That is, when a new branch
is successfully explored, a state node is added to the state
tree. However, if the triggering of this branch does not affect
any global variables in the model, then two nodes with the
same state will exist in the state tree. This makes it possible
to solve on the same state multiple times when solving for
a branch, which is obviously very time-consuming. For this
reason, we designed the repeated state filter module to address
this problem. It avoids time-consuming constraint solving by
recording the solved state and branch pairs and comparing
the model state recorded in the state node, and obtaining the
previous solving results directly once the current target state
and target branch have been solved.

Unreachable Branch Filter: In previous work (STCG), we
may have solved for multiple branches on the same state,
where some of the branches may not have been necessary due
to the implication of unreachable branches. For example, if a
branch is unreachable on the current state, then all the sub-
branches contained in that branch must also be unreachable on
the current state. For this reason, we design the unreachable
branch filter module. It avoids invalid solving by recording
those unreachable branches that are solved and comparing
whether the branch to be solved is a sub-branch of those
unreachable branches. In addition, since the branches are
solved in order from shallow to deep, invalid solving can be
avoided as much as possible.
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VII. CONCLUSION

In this paper, HSTCG is proposed to optimize the test
case generation of Simulink models with state-aware solving,
especially for the control models that have complex internal
states. More specifically, solving for only one iteration of a
model state can simplify the solving difficulty and complexity.
We can obtain model inputs for new coverage based on specific
model states more easily. Dynamic execution using random
input sequences in the absence of a solved result can further
expand the exploration space. Three heuristic strategy modules
are used to improve testing efficiency by reducing the number
of solving in the test case generation process. Experiments
show that HSTCG can perform well on benchmark Simulink
models. Compared to SLDV and SimCoTest, the Decision
Coverage from HSTCG can be improved by 55% and 103%,
the Condition Coverage can be improved by 53% and 62%,
and the MCDC can be improved by 192% and 201%, respec-
tively. In addition, the heuristic strategy can avoid many times
of solving, thus speeding up the test case generation process
and reducing the time by about 62.2% on average. Our future
work includes the use of formal techniques to avoid the solving
of unreachable branches and the use of random strategies to
reduce the number of solving times.
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