
Leveraging Binary Coverage for Effective Generation Guidance
in Kernel Fuzzing

Jianzhong Liu
Tsinghua University

Beijing, China
liujz21@mails.tsinghua.edu.cn

Yuheng Shen
Tsinghua University

Beijing, China
shenyh20@mails.tsinghua.edu.cn

Yiru Xu
Tsinghua University

Beijing, China
xuyr21@mails.tsinghua.edu.cn

Yu Jiang
Tsinghua University

Beijing, China
jiangyu198964@126.com

Abstract

State-of-the-art kernel fuzzers use edge-based code coveragemetrics
for novel behavior detection. However, code coverage is not suffi-
cient for operating system kernels, for they contain many untracked
but interesting features, such as comparison operands, kernel state
identifiers, flags, and executable code, within its data segments, that
reflects different execution patterns, and can profoundly increase
the granularity and scope of the coverage metrics.

This paper proposes the use of Kernel Binary Coverage Feedback,
a comprehensive and effective execution feedback method that pro-
vides metrics reflecting the execution coverage status of the entire
binary coverage to kernel fuzzers. Our approach abstracts program
behavior as its memory access pattern during execution, and con-
siders all such relevant behavior, including standard memory reads
and writes, predicate comparisons, etc., to obtain a coverage metric
on the whole kernel binary for input generation guidance.

We implemented a prototype toolKBinCov and integrated it into
a popular kernel fuzzer Syzkaller. We evaluated its effectiveness
against vanilla Syzkaller, as well as certain other approaches, includ-
ing StateFuzz and IJON. Our results show that KBinCov achieves
code and binary coverage increases of 7%, 7%, 9%, and 87%, 34%, 61%,
compared to Syzkaller (using kcov), StateFuzz, and IJON, on recent
versions of the Linux kernels, respectively, while only incurring a
1.74× overhead increase, less than StateFuzz and IJON’s 2.5× and
2.2× figures. In addition, we found 21 previously unknown bugs
using KBinCov with Syzkaller, more than Syzkaller (with kcov),
StateFuzz, and IJON, which found 4, 4, and 2 bugs, respectively.

CCS Concepts

• Security and privacy→ Operating systems security; Vulner-
ability management;

Keywords

kernel fuzzing, coverage-guided fuzzing, operating systems security,
software testing

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690232

ACM Reference Format:

Jianzhong Liu, Yuheng Shen, Yiru Xu, and Yu Jiang. 2024. Leveraging Binary
Coverage for Effective Generation Guidance in Kernel Fuzzing. In Proceed-
ings of the 2024 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3690232

1 Introduction

Kernel fuzzing is a popular and effective technique for finding bugs
in operating system kernels. It feeds large quantities of generated
input to the program-under-test, with operating system kernels
as its targets. To perceive the execution status of the program-
under-test and facilitate effective fuzzing input generation, code
coverage is commonly utilized as feedback guidance for execution
behavior novelty detection. State-of-the-art kernel fuzzers, such as
Syzkaller [27], utilize this technique to keep the interesting inputs,
i.e., those that trigger new kernel execution behavior, for further
analysis and generation.

However, current kernel fuzzing technologies can only allow
fuzzers to explore a less-than-desired amount of the kernel’s code
and logic, typically reaching their limits within several days into a
fuzzing campaign, where it reaches only shallow code, i.e., those
that can be visited by satisfying few constraints, of the kernel’s
logic. This is due to operating system kernels containing very com-
plex logic and an unfathomable number of states, where basic code
coverage can only identify the novelty of a small the proportion of
these execution behaviors, leading to a significantly reduced capac-
ity in input generation, resulting in reduced fuzzing effectiveness
and an inability to detect more intricate bugs efficiently.

There have been some prior research efforts to mitigate such a
deficiency. Initially, fuzzers such as AFL++ [9] incorporated con-
text, i.e. where the state of the program was when the code was
executed, into coverage metrics, thus allowing for slightly higher
effectiveness. However, this is still restricted to covering the code
section alone. Another approach pioneered by Aschermann et al. is
IJON [1], which uses manually specified state variables and their val-
ues to complement code coverage in detecting novel state changes.
While IJON is applicable for smaller projects, the operating sys-
tem kernel’s codebase is too large and complicated for any feasible
application of manual state variable identification, thus rendering
IJON insufficient. StateFuzz [32] is another approach that targets

https://orcid.org/0000-0003-3612-4315
https://orcid.org/0000-0002-2667-5431
https://orcid.org/0000-0002-9386-1453
https://orcid.org/0000-0003-0955-503X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690232
https://doi.org/10.1145/3658644.3690232

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianzhong Liu, Yuheng Shen, Yiru Xu, and Yu Jiang

kernel drivers directly, using manually specified criteria to auto-
matically filter variables that reflect the kernel’s runtime state and
deduce value ranges for its states. While automated deduction is
more applicable, its design cannot be scaled across the entire kernel.

Our observation is that the execution behavior of an operating
system kernel can be abstracted into its temporal and spatial mem-
ory access patterns into the entire region mapped by the kernel
binary. In this sense, traditional code coverage can only cover a sub-
set of such behavior, identifying only the memory access patterns
for control flow features in the code sections, mainly in the form
of accessing a new code block when performing branch, function
call, and return instructions. Memory accesses to data-relevant fea-
tures in the kernel binary are indicative of run-time behavior, such
as feature and status flags, comparison operands, global objects,
etc., allowing the fuzzer to further perceive novel execution traces,
thus guiding the fuzzer towards generating more effective inputs,
consequently exploring more states and discovering more bugs.

In this paper, we propose the use of Kernel Binary Coverage Feed-
back for kernel fuzzers. In essence, this method traces not only
control flow features during the kernel’s execution, such as uncon-
ditional jumps, conditional branches, function entries and exits,
etc., but also memory accesses static values within the binary it-
self, consisting of immediate values, global values, etc. While the
concept is straightforward, effectively increasing a kernel fuzzer’s
feedback efficacy requires both efficiency and accuracy, which are
often mutually contradictory and require making design compro-
mises. For instance, a naïve implementation of coverage storage is
a bit vector with a length of nearly 1.1 × 1012 bytes1, an intractable
amount for efficient executions.

For this method to be feasible in kernel fuzzing, we make the
following design choices to achieve preferable accuracy and ef-
ficiency. First, for data embedded in instructions, we use address
approximation to reduce the complexity required for calculating
its specific address without sacrificing accuracy. Next, for situations
where the instruction semantics differ from the syntax, we perform
specific length calculations, and allowmanually-specified, platform-
dependent calculations extensions for increased precision. Then,
using static analysis during instrumentation, we perform tracing eli-
sion, an optimization that removes tracing points that contribute
redundant coverage information. Finally, for efficient coverage stor-
age, we propose multi-level cache-friendly coverage storage that
preserves accuracy while ensuring efficiency.

We implement a prototype feedback tool KBinCov that uses
Kernel Binary Coverage Feedback for kernel fuzzers, and integrated
it with a state-of-the-art kernel fuzzer Syzkaller. To understand the
effectiveness of our design, we evaluate KBinCov’s effectiveness
compared to vanilla Syzkaller’s code coverage feedback, and State-
Fuzz’s and IJON’s state variable coverage feedback, where the latter
records the state of variables deduced by the former. Our results
show that, KBinCov assists Syzkaller in achieving a 7%, 7%, and 9%
code and 87%, 34%, 61% binary coverage improvement compared to
vanilla Syzkaller, StateFuzz, and IJON, respectively. Furthermore,
our findings show that compared to vanilla Syzkaller, KBinCov
incurs an overhead of 1.74×, which is more efficient than the state

1Contemporary 64-bit kernels generally use effective addresses 48-bits or 57-bits wide,
occupying a bit vector of at least 248 bits ≈ 1.1 × 1012 bytes.

coverage approaches. Ablation tests show that reversing our design
choices or restricting collection metrics incurs overheads (up to
50%), or reduces the capabilities of KBinCov’s feedback mecha-
nisms (the original version leads 7% to 30%). Comparing binary cov-
erage and code coverage also shows that our approach encompasses
code coverage while providing more state information regarding
the kernel’s execution. During the fuzzing campaign, KBinCov
found 21 previously unknown bugs, whereas Syzkaller (with kcov),
StateFuzz, and IJON found 4, 4, and 2 bugs.

Our contributions in this paper are mainly as follows.
• We propose Kernel Binary Coverage Feedback as a new exe-
cution feedback and novelty detection mechanism for kernel
fuzzers to increase their perception into the kernel’s execu-
tion behavior.

• We implement KBinCov, a prototype tool that uses binary
coverage to record the relevant access patterns and detect
novel execution behavior for Syzkaller.

• We evaluate how KBinCov assists Syzkaller in its fuzzing ef-
fectiveness, where our results show that binary coverage can
indeed improve the effectiveness of fuzzing input generation,
through increased coverage statistics and bugs found in con-
trast to previous attempts, while only incurring a reasonable
overhead as a compromise.

2 Background

2.1 Kernel Fuzzing

Fuzzing is a popular program testing technique for detecting con-
crete bugs within software systems with an emphasis on soundness
and scalability. It tests targets by repeatedly feeding randomly or
partially-randomly generated input payloads to the program or
system under test to explore its code space and attempt to trigger
bugs within. Its testings targets range from command-line utili-
ties (e.g. binutils), to large and composite software systems, such as
databases, protocol stack implementations, machine learning frame-
works, and operating system kernels. Fuzzing has achieved great
success in finding various bugs in many real-world software sys-
tems, and has attracted research attention from both academia and
industry. While the inputs of these targets vary, many techniques
remain similar, including feedback-based greybox fuzzing, which
uses execution feedback as guidance for further input generation.

Many researchers have attempted to utilize fuzzing for finding
kernel bugs, thus improving the kernel’s overall security. The cur-
rent state-of-the-art in kernel fuzzing is Google’s Syzkaller, which
is implemented by mainly following the common design paradigms
of userspace program fuzzers. Generally speaking, fuzzing a kernel
involves the following steps: 1) the fuzzer runs the target kernel
within a virtualized or emulated environment; 2) it feeds the target
kernel with generated test cases, usually consisting of system calls
sequences; 3) the fuzzer then leverages kernel feedback information
such as coverage to find bugs and guide further input generation;
4) it also monitors for any exceptional behavior and reports any
crashes found, typically with kernel sanitizers [10, 11].

Syzkaller mainly utilizes code coverage feedback obtained from
the kcov utility, commonly found inmany operating system kernels.
The coverage metric of a kernel is different than that of a userspace
program as kernels are concurrent programs that may run multiple

Leveraging Binary Coverage for Effective Generation Guidance in Kernel Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

tasks during testing, introducing noise into the output. Syzkaller
limits the kernel’s coverage collection to only the current system
call from the input payload, and coalesces the data after finishing
executing the input payload.

2.2 Code Coverage in Fuzzing

Code coverage is the predominant execution feedback mechanism
used by state-of-the-art fuzzers in most testing domains. It provides
fuzzers with a control-flow-centric view of execution behavior
introspection into the target program. Code-based coverage metrics
can be mainly categorized into the following approaches: function
coverage, line coverage, block coverage, and edge coverage. They
track code-based program behavior and produce coverage on the
following metrics, respectively: the number and identity of the
functions executed; the number and identity of source-code-level
lines executed; the number and identity of basic blocks visited
during the program’s execution, and the edges in the control flow
graph visited during the program’s execution.

Kernel fuzzers generally use block- and edge-based coverage
metrics for novelty detection, as these provide more fine-grained
feedback metrics regarding control-flow features during execution.
Edge-based coverage presents a notable advantage, as it also reflects
the direction of block transition, therefore distinguishing between
block transition behaviors such as "A → B" and "B → A", where
block coverage only knows that "A" and "B" have been visited, thus
failing to discern between such behavior.

While code coverage is not fully representative of the states
that the program goes through during execution, is considered to
be somewhat efficient and effective for fuzzers to perceive some
execution behavior changes, allowing inputs that trigger novel
behavior to be preserved for further analysis and generation.

3 Motivation

Code coverage is the current established method of identifying
execution behavior novelty in kernel fuzzers. However, its limita-
tions are significant, in that many novel execution behaviors cannot
be identified purely through the detection of a new code block or
branch. There have been prior research towards addressing this
issue, such as using state coverage in addition to code coverage.
In this section, we discuss the limitations of pure code coverage,
and the limitations of the current research works that attempt to
address this problem.

3.1 Limitations in Pure Code Coverage

Code coverage has limits in execution state novelty detection. A
change in the memory access pattern during execution can affect
the overall outcome of a procedure, thus is a kernel execution state
change, without altering its control flow, which is not perceptible
using code coverage. In the domain of kernel fuzzing, we may have
two invocations of the same system call, for instance ioctl, where
the parameters used can alter kernel state differently, while not
exhibiting a different code path. This affects the detection of novel
kernel states and thus impedes high-quality input generation by
increasing the difficulty of generating more effective input payloads
for exploring kernel states and detecting bugs.

In theory, code and data exhibit duality, thus data in a pro-

gram’s binary representation is also capable of reflecting its

execution behavior. In reality, data in a program’s binary can
contain features, including statically allocated data structures, run-
time state flags, executable binary representations, opcode lookup
tables, comparison operands, etc., whose coverage metrics can re-
flect their execution state. Code coverage is incapable of tracking
the access behavior of such artifacts, as they are not represented as
control-flow features during compilation or dynamic binary instru-
mentation, and in turn cannot provide execution feedback of such
artifacts to the fuzzer during testing.

Kernel Binary Image

Kernel Code Sec�on Kernel Data Sec�on

39 MiB

22 MiB17 MiB

System Call Entry

Device Specific Drivers

File System Drivers

Network Stack

...

Kernel State & Mode Flags

State-Related Magic Values

Implementa�on-Specific Func�on Data

Predicate Comparison Values

...

Code Execu�on
Covers

Kernel Binary Data

Data Accesses
Influence

Code Paths

Figure 1: The composition of a Linux kernel’s binary image,

with relevant artifacts labelled. The kernel code under exe-

cution accesses the binary’s data, which are mapped into the

kernel’s memory space, whereas the value of the accessed

elements can in turn affect the control flow of the kernel’s

subsequent execution.

This is significantly evident in operating system kernels, as the
sheer size of the compiled kernel and the data-relevant artifacts
it contains present many opportunities for detecting new kernel
execution behavior. To justify our claims, we present a quantitative
analysis of the binary file composition of the latest Linux kernel
upon writing, Linux v6.6.8, compiled to the amd64 target with the
default configurations for the OpenSUSE distribution. The results
are shown in Figure 1, where we mainly outline the composition
of sections containing either code or data. Note that this is not an
exact figure, as immediate data are embedded within instructions,
and compilers may insert data within the code section.

As shown in the figure, executable code consists of around 43%
of the binary, while data uses around 57%. Adding data to coverage
feedback potentially allows 2.3× coverage than pure code-based
approaches to convey information for detecting novel behavior.
Among the data, we have found various variables and data struc-
tures useful for further interpreting the kernel’s execution state,
allowing for a multitude of additional indicators, which cannot be
effectively reflected by the use of incidents of control-flow artifacts,
to be used for coverage feedback to the fuzzer for guidance for
further input generation.

We demonstrate such limitations with the following example
as shown in Figure 2. The blocks in the figure are excerpts from
the source code of Linux kernel version 6.9. The code blocks that
turn into code sections in the kernel binary are highlighted in blue,
where those becoming static data are in green. In this case, con-
sider the kernel fuzzer passing a request argument to the Linux

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianzhong Liu, Yuheng Shen, Yiru Xu, and Yu Jiang

SYSCALL_DEFINE3(ioctl, unsigned int, fd,

unsigned int, cmd, unsigned long, arg) {

 struct fd f = fdget(fd);

 int error;

 ...

 error = do_vfs_ioctl(f.file, fd,

cmd, arg);

 ...

}

const struct file_operations

btrfs_file_operations = {

 ...

 .unlocked_ioctl = btrfs_ioctl,

 ...

};

const struct file_operations

ext4_file_operations = {

 ...

 .unlocked_ioctl = ext4_ioctl,

 ...

};

long btrfs_ioctl(struct file *file,

unsigned int cmd, unsigned long arg);

long ext4_ioctl(struct file *file,

unsigned int cmd, unsigned long arg);

IOCTL ENTRY

EXT4 IOCTL HANDLERBTRFS IOCTL HANDLER

FILE STRUCT

BTRFS FILE_OPERATIONS STRUCT EXT4 FILE_OPERATIONS STRUCT

struct file {

 ...

 const struct file_operations *f_op;

 ...

};

Figure 2: Example of the ioctl() system call’s invocation

chain, in which state information in the kernel’s data af-

fects the kernel’s control flow. In this case, when ioctl() is
called, as shown in the top-left, the pre-defined state tran-

sition, embedded as file_operations structures enclosed in

each file structure for each fd argument passed in, deter-

mines the specific handler to run (btrfs_ioctl() for BTRFS

or ext4_ioctl() for ext4). Pure code coveragemakes it harder

to execute different handlers, as the control code is covered

but changes in the data accessed are indistinguishable.

system call ioctl(). As shown in the figure, the f_op member
variable of the file structure, which is a file_operations struc-
ture, determines which code path it takes when a user program
calls into ioctl(). Based on these in-data predefined state tran-
sitions encoded within the static file_operations instance for
each file system and given the in-code transition logic defined in
their processing logic, the fuzzer experiences difficulty in reaching
different states in actual logic as the transition logic, i.e. the entry
code in the top-left block, is easily covered, but the lack of feedback
from the binary data components (file_operations) prevents the
fuzzer from identifying differences in the referenced state transition
table, thus is ineffective in generating effective request arguments,
hindering its efforts in reaching different handlers, such as those in
the lower two frames, thus reducing the states traversed within a
fuzzing campaign.

3.2 Limitations in Kernel State Coverage

The limitations inherent in code coverage have been received with
some research into state coverage, where works attempt to abstract
the execution state of the program under test as feedback for fuzzers
(e.g. IJON and StateFuzz). These approaches currently only attempt
to model the states of specific variables, as an attempt to represent
the running state of programs. We demonstrate an abstracted view
of how state coverage and the actual ground truth calculate the set of
all states (S) as a function of current execution path in the program
(𝑃), expressed in and the individual state-discerning values (𝑠) as a
function of each variable in the program (𝑣𝑘). We also express the
set of all independent variables (V) as a function of 𝑃 .

(Ground Truth) : S(𝑃) = 𝑠 (𝑣1) × 𝑠 (𝑣2) × ... × 𝑠 (𝑣𝑚)
= Π𝑖∈V(𝑃)𝑠 (𝑣𝑖) (1)

(State Coverage) : S𝑐 (𝑃) = 𝑠 (𝑣1) + 𝑠 (𝑣2) + ... + 𝑠 (𝑣𝑛)
= Σ𝑛𝑖=1𝑠 (𝑣𝑖) (2)

In theory, program states, within the context of the automata
model, consist of the Cartesian product of the values of all inde-
pendent variables in in the current path of the program and their
execution context (Equation 1), whereas current approaches only
discern between states of a variable (Equation 2). Such a technique
would only increase the knowledge of certain variables, and signifi-
cantly under-represent the program’s actual execution behavior.

Additionally, these methods rely on manual labor to either iden-
tify or specify rules to identify all state-indicating variables, which
scale poorly due to the complexity involved. Their state-discernible
values of each variable also require specific domain knowledge or
static analysis to determine, which is often error-prone, unsound,
and incomplete rendering the results far from optimal.

Furthermore, as large codebases, such as operating system ker-
nels contain many if not infinite automata states. Any attempt at
precisely measuring the state of a kernel’s execution will, very
rapidly, encounter the problem of state explosion, rendering this
method ineffective when fuzzing.

In the context of kernel fuzzing, these approaches have reversed
the principles of what made code coverage applicable: an effective

set of artifacts that allow for efficient handling and effective

execution behavior representation, therefore do not present a
sufficient feedback mechanism for effective kernel fuzzing. Reflect-
ing on such pitfalls, we wish to avoid such intricacies in designing
coverage feedback mechanisms that increase the scope of execution
behavior conveyed to the fuzzer.

4 Design

We demonstrate the overall architecture of our proposed design in
Figure 3. We use a generalized feedback-based kernel fuzzer archi-
tecture, which matches the runtime organization of state-of-the-art
and openly-available tools (e.g. Syzkaller), to demonstrate our ap-
proach. The overall process starts from the "Fuzzing Executor"
component in the Kernel Fuzzing triggering a fuzzing execution,
and ends when the "Test Case Mutator" passes the next test case
to the executor. Ideally, binary coverage intercepts memory ac-
cesses to static data and code loaded from the kernel’s binary and
compares their access patterns to detect novel behavior. In this
process, we introduce design choices that are aimed at improving
the approach’s accuracy and efficiency.

(1) When instrumenting callbacks, we determine whichmemory
uses have coverage semantics synonymous to visiting this
basic block, and perform Tracing Elision to optimize out these
tracing points (§ 4.1).

(2) We filter out variable loads not intended for sections corre-
sponding to the kernel’s binary (§ 4.2).

(3) We approximate addresses, assign context values, and esti-
mate access lengths for valid accesses for both efficiency and
accuracy, subsequently producing an access triple that holds
the essence of the access (§ 4.3).

Leveraging Binary Coverage for Effective Generation Guidance in Kernel Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Memory Access

Variable
Explicit Load

Sta�c
Explicit Load

Immediate
Instruc�ons

Virtual Processor

 match (option) {

 case PR_SET_ALIGN: // 0x6

 ...

Access Interceptor

VM Memory

Fetch Kernel Program

Kernel .textKernel .data

(address, context, length)

Run�me Tracing (§ 4.3)

Kernel Execu�on Harness

Coverage Feedback Run�me

Kernel Fuzzer

Kernel .rodata

Address
Approxima�on

Length
Es�ma�on

Trace Filtering
(§ 4.2)

Instruc�on
pointer

Trace Elision
(§ 4.1)

Kernel Mode Execu�on

Coverage Processing (§ 4.5)

Context
Assignment

Global
Coverage Check &

Update

Novelty
Detec�on

Execute Program
Fuzzing Executor

Kernel Agentsys_prctl()

Triage AnalyzerTest Case Mutator

N
ovel Coverage (§ 4.6)Trace Events

trace_load32()

trace_cmp()

trace_imm()

...

flag = 0x2

r0 = prctl(flag)

Instrumentated Kernel Code

0x81000d8

addr=0x81000d8, ctx=1, len=2

0x810000d8, 1, 2

Novel Coverage
vector

Figure 3: Overview of Kernel Binary Coverage Feedback’s usage during kernel fuzzing. The kernel is instrumented with tracing

callbacks, which intercepts memory accesses and invokes tracing callbacks, and with redundant calls optimized out (§ 4.1).
Trace Filtering is used to filter only accesses to regions from the kernel binary (§ 4.2). The access triple is produced through

Address Approximation, Context Assignment, and Length Estimation (§ 4.3). The access is checked against historical coverage

figures, where we detect novel coverage and save the triple if needed (§ 4.5). After finishing one round, the novel coverage is

sent to the fuzzer along with code coverage for analysis and further generation (§ 4.6).

(4) The runtime takes the access triple and cross-references it
with a global coverage store, which stores global historical
coverage efficiently and accurately (§ 4.5).

(5) The novel access information is enqueued, and passed to the
fuzzer upon finishing the execution, unifying code coverage
in the process (§ 4.6).

The specifics of each design are described in the following sec-
tions. We begin with introducing the runtime monitoring and filter-
ing operations, and then discuss the details regarding the runtime,
especially how our approach takes a data access pattern and pro-
cesses it for novelty detection, and then produces novel behavior
data in the feedback to the fuzzer.

4.1 Access Interception and Trace Elision

The kernel binary is instrumentedwith tracing callbacks that invoke
the coverage processing runtime’s interfaces to capture the pro-
gram’s runtime data access patterns. A straightforward approach to
record the data access information would be to find all instructions
with memory accesses, and insert instrumentation calls that convey
the syntactic information regarding this instruction to the runtime.

However, this loses many of the spatial and temporal execution
behavior that would otherwise provide more fine-grained access in-
formation. We use a corollary of the advantages that block and edge
coverage have over function and line coverage in delivering execu-
tion tracing information. Function and line coverage only represent
coverage information one-on-one with static information present
the .text section of the program’s binary, and as such, loses the
coverage of control-flow features offering spatial and temporal infor-
mation, such as the direction and path of execution during a single

run. This information is conveyed, partially, by block coverage,
which presents spatial features, and more fully by edge coverage,
which delivers more temporal information.

Using this insight gained from collecting control-flow features
in code coverage, we interpret data-flow features from accesses
to static data in the kernel’s binary by instrumenting the direct
use-sites of the static values.

We do not attempt to taint-analyze all locations where the static
values are used, since, primarily, this does not provide substantially
more useful information on the access of static data in the kernel,
and additionally, this is very difficult to achieve with soundness and
completeness guarantees. Instead, we use program transformation
tools that covert the kernel’s source code into Single Static Assign-
ment (SSA) form, allowing us to identify where the static value is
directly used.We limit our analysis scope to the confines of the func-
tion where the instruction belongs. While this may slightly reduce
the completeness of information conveyed in the coverage metrics,
our belief is that this is a good compromise between analysis com-
plexity and accuracy. Our reasoning is that static values, when used
as arguments or return values that go out-of-scope, it is rarely used
in a context of a non-static value (e.g. static flags passed as function
arguments are then compared with another static flag), thus losing
little coverage accuracy. Furthermore, Tracing Elision, which we
will discuss below, will render the rare instances irrelevant.

This is completed in a two-sweep analysis of the function’s code,
which is depicted in Figure 4.

As shown in the figure, during the first sweep, we collect all def-
sites of static data, which are instructions that contain data access
semantics, including instructions containing immediate values and

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianzhong Liu, Yuheng Shen, Yiru Xu, and Yu Jiang

explicit loads, both static and variable, into the set S containing all
such def-sites. We perform an over-approximation by inclusively
recording all explicit memory loads with a variable base address,
since their access targets cannot be determined statically and re-
quires runtime filtering.

Instrumented
Kernel Binary

S: set of def-sites
Kernel Source Files

2nd Pass: Instrument use-sites

Parse
Source

SSA

Find Direct Uses
of def-sites

Instrument

1st Pass: Iden�fy def-sites

Immediate
Instruc�ons

Sta�c
Explicit

Accesses

Variable
Explicit

Accesses

Figure 4: The Two-Sweep Analysis Workflow Diagram. The

first pass takes the kernel’s source files and looks for def-
sites to add to the set S, which is passed to the second pass,

where it finds use-site instructions containing direct usage

of the def-sites. We instrument the relevant callbacks at the

use-sites to track kernel binary access.

Then during the second sweep, we identify and instrument use-
sites based on the SSAs in S, by finding instructions that use the
SSA values as operands. We also assign a use-site ID based on the
order of use in this function context, which is also conveyed to
the runtime to discern between different uses of the same static
data. For each such instance, we instrument an appropriate callback
corresponding to the instruction’s syntax. The second sweep is
needed, as in some SSA languages, the 𝜙 instruction allows using
an SSA that is declared after itself as its operand.

However, data accesses and uses are far more frequent than con-
trol flow altering instructions, therefore incurring a high overhead
in theory.We draw on another observation that many tracing points
are semantically identical to instrument the visit to the basic block
through code coverage. An example would be a statically assigned
integer being used in an arithmetic operation, whose access seman-
tics are identical to covering its parent basic block. Eliminating
such tracing points will be of no consequence to the accuracy of
the coverage metrics provided. We devise Tracing Elision to remove
such tracing points before executing the kernel. The tracing points
that can be removed need to satisfy two conditions: first, their def-
sites are static accesses; second, their access length is invariant in
the use-site. The latter condition is important, as it is associated
with Length Estimation, as discussed in § 4.3. Realistically, Tracing
Elision is done in conjunction with instrumenting access points,
where tracing callbacks are only then instrumented after the elision
process determining the their necessities.

The instrumented tracing callback for each remaining access
point conveys the syntactic information for both the def-site and
the use-site instructions to the runtime. The former is for Trace
Filtering and Address Approximation, while the use-site is for Length
Estimation and Context Assignment, all of which will be discussed
in the following sections.

4.2 Trace Filtering

During execution, the instrumented callbacks convey the access
events to the runtime. However, asmentioned earlier, the instrumen-
tation is an over-approximation of static data use-sites, as variable
address explicit memory accesses can be directed to both static data
and non-static sections.

We further filter access events triggered by uses of explicit load
and store instructions during the kernel’s execution to preserve only
accesses to static data. The filter is derived from a description of the
kernel’s memory layout, provided during the kernel’s initialization
process. For instance, we can use the kernel’s linker script to derive
which locations sections containing static data are loaded into.

Using this information, we construct a bitmap filter, where each
bit represents a unit of alignment for the underlying architecture, as
loaders typically require the start of each section to be aligned. On
amd64 systems, the alignment is usually 8 bytes, thus each bit will
effectively represent the access properties of a consecutive 64-bit
region. On reading the memory layout description, the bits that
correspond to contents in the kernel’s static data sections (.data,
.rodata, etc.) are assigned “1”, where others are left as “0”. The filter
will validate each access event by converting the access address
into the filter’s index, by bitwise shifting the address 3 + 𝑁 bits,
where 𝑁 is the logarithm to the alignment in bytes (𝑁 = log2 8 = 3
for amd64 platforms).

The size of the filter, if naïvely implemented, can reach enormous
sizes. For amd64, which uses 48-bit effective addresses, a direct
allocation will produce a buffer 242 bytes long. Fortunately, we
observe that “1”s in the filter, i.e. valid regions of access, is globally
sparse but locally dense, as sections are loaded into memory as a
whole, and are contiguous in virtual addressing. Therefore, while
we virtually map the same bit vector, we map memory pages that
can contain the vector virtually, but assign their mapping to the
same “0” page. Then, when assigning “1”s to the bitvector, we simply
create new pages on demand.

4.3 Access Pattern Processing

We represent the essence of an access to the kernel’s binary using a
triple: (address, context, length). The first element, address, indicates
the approximate location in memory of the static data access’s def-
site to the kernel’s binary, measured at the byte level. The second
element, context, is a numerical estimation of the call stack state
with the use-site address, allowing for more fine-grained access
behavior interpretation. The last element, length, represents a best-
fit calculation of the length of access at the use-site. The triple
is produced by processing each tracing callback through Access
Approximation, Length Estimation, and Context Assignment.

Access Approximation is the process of producing a unique
address identifier for each access event. Intuitively, we can read the
address of the traced access event’s def-site directly to produce a
straightforward address value.

However, not all memory accesses are explicit load/store instruc-
tions, where the data they access are also not directly conveyed
through their instruction syntax. Immediate instructions are such
an example, where it accesses data embedded within the instruction
itself, requiring specific treatment to approximate addresses that
represent the location of this access.

Leveraging Binary Coverage for Effective Generation Guidance in Kernel Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 ; Subtraction with immediate

sub eax , 0xDEADBEEF ; Hex: 2d ef be ad de, immediate offset by 1

3
; Bitwise shift with immediate offset

5 shl eax , 4 ; Hex: c1 e0 04, immediate offset by 2

7 ; XOR with immediate

xor r11 , 7 ; Hex: 49 83 f3 07, immediate offset by 3

Listing 1: Examples of immediate values in amd64 assembly.

Immediate values in the instruction and hexadecimal

representation are highlighted.

The accurate locations of these immediate values are platform-
, and, in some cases, instruction-specific. We demonstrate such
instances of immediate values with an example in Listing 1, which
is written in amd64 assembly. In Line 2, the immediate value is
offset from the start of the instruction by 1 byte, whereas for Line 5
and Line 8, they are offset by 2 and 3 bytes, respectively.

To provide an estimate of the immediate values’ locations, we use
the address of their embedding instructions as an approximation of
their addresses. We achieve this by instrumenting a tracing callback,
where the def-site addresses are assigned the program counter at
each such instruction. When the execution reaches this instruction,
the instrumented call invokes the library’s tracing routines, which
reads the instruction pointer from the virtual CPU, or a platform-
specific, ABI-determined location. This is possible for achieving
a precise approximation of the instruction’s address value, as no
other data can overlap with the location of this instruction.

Context Assignment mainly assigns a numerical value repre-
sentative of the use-site, allowing us to distinguish between different
uses of the same static value. While using the direct addresses of the
use-site is possible, the complexity involved in designing storage
structures that preserve accuracy and efficiency when taking two
64-bit addresses as keys is difficult. Instead, as we have already
assigned use-site IDs for each instance during instrumentation, we
directly use the value assigned as the context for each trace event.

Length Estimation takes the traced instruction and the approx-
imated address and estimates the length of access. In many cases,
the syntax of the instruction reflects the actual length of memory
accesses. We use estimations of the actual length for cases where
the actual memory access semantics of the instruction differ from
its syntax.

We show two examples in Listing 2 of such cases in the Linux ker-
nel. The first example is the prctl system call, which matches the
argument option that is passed from user-space, to the numerous
flags with a switch structure. Assuming that initially, an option is
passed as a value of 0b11, and is matched against PR_SET_UNALIGN,
which is 0b101. Assuming that equality comparisons begin with
the least-significant bit and halt at the first differing bit, then in
this comparison, only the least 2 significant bits are compared, in-
stead of the 32-bit integer comparison that the syntax dictates. The
second example is taken from mount system call, which masks the
option bit vector with MS_MGC_MSK, which is 0xffff0000, for use in
a state comparison. The actual bits of the mask used in the bit-wise
operation is dependent on the actual value of the other operand,
and in this case, flags. Consider it to be 0x00010000, then only
one bit is used.

We estimate a semantically-accurate length of accesses for use-
sites that are comparisons and bit-wise operations. Specifically, for

// sys_prctl () definition

2 SYSCALL_DEFINE5(prctl , int , option , ...) {

...

4 switch (option) {

...

6 case PR_SET_UNALIGN: // Immediate value of 5

error = SET_UNALIGN_CTL(me, arg2);

8 break;

case PR_GET_UNALIGN: // Immediate value of 6

10 error = GET_UNALIGN_CTL(me, arg2);

break;

12 ...

}

14 }

16 // Invoked from sys_mount ()

int path_mount(const char *dev_name , struct path *path ,

18 const char *type_page , unsigned long flags , ...) {

if ((flags & MS_MGC_MSK) == MS_MGC_VAL)

20 ...

...

22 if (flags & MS_NOUSER)

return -EINVAL;

24 if (flags & SB_MANDLOCK)

warn_mandlock ();

26 ...

}

Listing 2: Examples of when the length syntax and semantics

differ. Retrieved from the kernel’s prctl and mount system

call implementations.

equality and inequality operations, we use the number of matching
bits in both operands; for partial-order comparisons, we count the
number of matching bits starting from the most-significant bit to
the first differing bit; for bit-wise AND operations, we also count
the number of matching bits; for bit-wise XOR operations, we count
the number of differing bits; and for other bit-wise operations, we
use the syntactic length.

4.4 Access Semantics

We conclude on how memory accesses are traced, processed and
abstracted, and categorize them into access semantics in Table 1.
The first two columns, i.e. the def-site and use-site columns, are the
properties of a specific memory access pattern, and define which
procedure it uses for interception elision, access filtering, address
approximation, context usage, and length estimation. All cases that
our approach is interested in are listed in the table and are assigned
with corresponding callbacks.

4.5 Coverage Storage and Novelty Detection

Global historical coverage is represented conceptually as a map,
where it contains key-value pairs comprising values from the triple,
with the address and context entries serving as keys to the map, and
length as the keyed value. Each address and context indexes to the
historically highest access length. As the addresses are expressed
in bytes, we use one 8-bit integer to represent the coverage length.

To effectively manage coverage data for the entire kernel address
space, we take advantage of the fact that code and data originating
from the kernel’s binary uses a very small and contiguous area in
memory. A naïve approach is to use a linear vector of bytes, indexed
by the address and context’s hash with the length as the element.
We improve on the naïve approach, by limiting the scope of the

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianzhong Liu, Yuheng Shen, Yiru Xu, and Yu Jiang

Table 1: Interception analysis and processing procedures for different memory access patterns

def-site use-site Example Elision Filter Address Context Length

Immediate
Comparison if (flag == 0b0101)... No No def-site Program Counter use-site ID Comparison Estimation

Bit-wise Operation if (flag & 0b0101)... No No def-site Program Counter use-site ID Bit-wise Estimation
Other Usage return x << 4; Yes - - - -

Explicit Load (Static) Same as Immediate

Explicit Load (Variable)
Comparison if (num == array[i])... No Yes def-site Access Address use-site ID Comparison Estimation

Bit-wise Operation if (flag | bitvec[i])... No Yes def-site Access Address use-site ID Bit-wise Estimation
Other Usage int num = buf1[i] * buf2[j]; No Yes def-site Access Address use-site ID Syntactic Length of Access

buffer to the range of possible code and data addresses. The range
is readily available by reading the section headers in the kernel
binary.

For Linux, we use readelf to find the top- and bottom-most ad-
dresses of all code and data sections. The addresses can be expressed
using the least-significant bits of their addresses (26-bits on amd64),
thus we use this as the index.

We further provide better accuracy than the naïve approach
by setting the indexed variable to a pointer, which references a
def-site specific buffer that lengths corresponding to contexts. The
length should be in a range of [0, 128]. This approach is beneficial:
first, memory access lengths are frequently multiple bytes, then
this allows for a single element to contain access metrics for the
following 16 bytes; and second, we can discern between overlapping
accesses to the same region. We also use the most-significant bit as
an indication of full access, therefore bypassing many checks and
arithmetic operations when processing tracing events.

As small and frequent allocations are inefficient, we maintain
multiple pools containing fixed-size buffers, where the sizes are
multiples of the L2 cache line size, which is generally 8 bytes. The
pools are pre-allocated and maintained using a free-list, while a
pointer for each pool points to the next available buffer. Additionally,
the address-indexed buffer is initialized to “0” and is initiallymapped
to one physical page. Specific buffers for each address entry are
allocated from the pool and increased with size on-demand.

When tracing events occur and the previous steps produce a
coverage triple, we check the historical coverage data and determine
if any novel behavior occurs. Within one execution cycle, all novel
memory accesses will be added into a novel set, where each entry
contains the triple of the novel memory access. We then update the
global coverage accordingly for future executions.

In contrast to other collection approaches, where current cover-
age is stored into a local bitmap, and scans for novel behavior com-
mence post-execution and concern the entire buffer, our method
provides better efficiency. Theoretically, traditional methods use
a time complexity of 𝑂 (𝑛) +𝑂 (𝑘), where 𝑛 is the bitmap size and
𝑘 is the number of tracing events. Our approach’s complexity, in
contrast, is 𝑂 (𝑘), as there is no need for post-execution scans.

4.6 Coverage Feedback to Kernel Fuzzers

After one round of execution, we collect novel behavior coverage
from both the novel set and code coverage. We merge the sets and
treat code coverage as a special type of memory access. Using

the program counters of blocks visited, we use a sliding-window
method with a width of 2, through which define the preceding block
as the def-site, and the current block as the use-site. The lengths are
set as one single bit to avoid interfering with actual memory access
traces. The triples are then inserted into the novel set, which is
then conveyed to the fuzzer as execution feedback. This allows the
fuzzer to use the same processing techniques to triage and analyze,
reducing such overheads and design complexities.

5 Implementation

We implement our designs in a kernel binary coverage feedback
tool named KBinCov. To facilitate our evaluation process, we also
implement multiple variants that assist us in assessing the effective-
ness of our design choices. In addition, we also follow the reference
designs IJON to implement versions suitable for providing whole
kernel coverage feedback, kIJON, for comparison.

5.1 KBinCov Implementation

We implement KBinCov upon the state-of-the-art kernel fuzzer
Syzkaller with QEMU as the virtualization platform. Syzkaller and
QEMU mainly support using Kernel Virtual Machine (KVM) for
same-platform guests to achieve near-native execution speeds, and
its Tiny Code Generator (TCG) infrastructure for foreign architec-
tures. To support both KVM and TCG execution modes, we pro-
vide two reference implementations:KBinCov-KVM andKBinCov-
TCG, which correspond to collecting binary coverage on QEMU
running on KVM mode and TCG mode, respectively.

KBinCov-KVM uses LLVM’s SanitizerCoverage (SanCov) frame-
work with extensions to support additional instrumentation points.
The static analysis for determining all necessary trace points is
implemented as an LLVM Pass that runs ahead of SanCov. The
runtime itself runs within the kernel, and interacts with Syzkaller
through a debugfs interface similar to kcov.

KBinCov-TCG modifies TCG’s dynamic translation process and
hooks the point after lifting to TCG’s Intermediate Representation
finishes to perform static analysis and instrumentation. In this case,
the runtime runs in the fuzzing host, and interacts with the fuzzer
through direct shared memory.

5.2 Variants for Comparisons

We also implement the following variants of KBinCov for compar-
ative evaluation purposes. We show an outline of our implemented
variants below in Table 2. Each variant has either 1) one design

Leveraging Binary Coverage for Effective Generation Guidance in Kernel Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

0 12 24 36 48 60 72

0.3

0.6

0.9

1.2
·105

Time [h]

N
um

be
ro

fB
ra
nc
he
sC

ov
er
ed

Linux 6.4 - TCG

KBinCov-TCG
Syzkaller
StateFuzz
kIJON

0 12 24 36 48 60 72

0.3

0.6

0.9

1.2
·105

Time [h]

N
um

be
ro

fB
ra
nc
he
sC

ov
er
ed

Linux 6.5 - TCG

KBinCov-TCG
Syzkaller
StateFuzz
kIJON

0 12 24 36 48 60 72

0.3

0.6

0.9

1.2
·105

Time [h]

N
um

be
ro

fB
ra
nc
he
sC

ov
er
ed

Linux 6.6 - TCG

KBinCov-TCG
Syzkaller
StateFuzz
kIJON

0 12 24 36 48 60 72

0.3

0.6

0.9

1.2

1.5
·105

Time [h]

N
um

be
ro

fB
ra
nc
he
sC

ov
er
ed

Linux 6.4 - KVM

KBinCov-KVM
Syzkaller
StateFuzz
kIJON

0 12 24 36 48 60 72

0.3

0.6

0.9

1.2

1.5
·105

Time [h]

N
um

be
ro

fB
ra
nc
he
sC

ov
er
ed

Linux 6.5 - KVM

KBinCov-KVM
Syzkaller
StateFuzz
kIJON

0 12 24 36 48 60 72

0.3

0.6

0.9

1.2

1.5
·105

Time [h]

N
um

be
ro

fB
ra
nc
he
sC

ov
er
ed

Linux 6.6 - KVM

KBinCov-KVM
Syzkaller
StateFuzz
kIJON

Figure 5: Branch coverage statistics of Syzkaller withKBinCov, Syzkaller (kcov), StateFuzz, and kIJON for Linux kernel versions

of 6.4 to 6.6 for 72 hours. Statistics for both KVM and TCG modes are shown. Higher statistics are better.

choice reversed (KBinCov-NoElision to KBinCov-NaïveArray), or
2) only one type of feedback collection method enabled (KBinCov-
Imm to KBinCov-Variable). As these are intended only for evalu-
ating the effectiveness of our approach, their implementations are
based on KBinCov-KVM only.

Table 2: List of KBinCov evaluation variants and their corre-

sponding design changes.

Variant Design Difference

KBinCov-NoElision No Tracing Elision During Instrumentation
KBinCov-NoTraceFilter Disable Filtering of Non-Static Accesses
KBinCov-PrecImm No Address Approximation During Processing
KBinCov-NoLenEst No Access Length Estimation During Processing
KBinCov-NoContext No Context Calculation During Processing
KBinCov-NaïveArray Naïve Coverage Storage Implementation
KBinCov-Imm Only Immediate Value Access Collected
KBinCov-Static Only Static Memory Access Collected
KBinCov-Variable Only Variable Memory Access Collected

As the original version of IJON is designed for coverage feedback
on userspace programs only, we manually implemented a version
of IJON, named kIJON, for comparative evaluation purposes with
our approach. Specifically, we re-used its original variable anno-
tation method, but replaced their runtime implementations with
custom-written routines, which are intended for sending the cov-
erage feedback to the kernel fuzzer in conjunction with the code
coverage metrics for execution novelty detection.

6 Evaluation

We wish to understand the effectiveness of our approach in the
sense of assisting kernel fuzzers achieve better performance. Addi-
tionally, we are especially interested in the qualities of our design
choices. To this end, we list the following four evaluation criteria
to assess: overall effectiveness in coverage improvements (§ 6.2),
overall efficiency and accuracy (§ 6.3), effectiveness of our individ-
ual and component-wise design choices (§ 6.4), and real-world bug
detection capabilities (§ 6.5).

6.1 Experiment Setup

Our experiments are conducted on a server running dual-socket
AMD EPYC 7742 CPUs, 256GiB of DDR4 RAM, with Debian Book-
worm as the host operating system. All fuzzing instances are con-
tainerized with reasonable resource constraints.

The kernels used in our evaluation are Linux v6.4, v6.5 and v6.6.8,
all recent releases of the kernel. The tarballs of the kernel are down-
loaded from kernel.org and its affiliated mirrors, with checksums
matching the officially provided values. The kernel compilation
configuration used is based on Debian’s kernel configuration file,
where specific parameters (e.g. CONFIG_KCOV=y) were adjusted for
vanilla Syzkaller to achieve parity with Syzbot’s configuration [26].
The target architecture for compilation is amd64.

We evaluated the performance of KBinCov integrated with
Syzkaller, and added vanilla Syzkaller, StateFuzz, and kIJON with
Syzkaller for comparison. The version of Syzkaller used is Git com-
mit 83b32fe, the latest commit prior to evaluation. The version
of StateFuzz is Git commit e4fd485, the current open-source ver-
sion, with our own bugfix patches applied. The kernels for testing
are hosted under both KVM and TCG for evaluation of the two

kernel.org

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianzhong Liu, Yuheng Shen, Yiru Xu, and Yu Jiang

implementations. Each fuzzing instance is allocated 2 concurrent
fuzzers, each with 2 executors and 4GiB of VMmemory. We enabled
KASAN [10] and KCSAN [11] for alternating instances, ensuring
that each fuzzing setting has both types of instances running.

The coverage experiments are conducted for 72 hours. All bugs
listed were found in this experiment. Each experiment was repeated
5 times to reduce statistical errors.We used statistical testing (Mann-
Whitney U Test) to establish the significance of the evaluation data.

6.2 Overall Effectiveness

To understand the effect of using binary coverage in kernel fuzzing,
we deployed six evaluation scenarios, specifically the cartesian
product of the three Linux versions, v6.4, v6.5 and v6.6, through us-
ing both KVM virtualization and TCG translation. In each scenario,
we compared the coverage metrics of Syzkaller using the following
coverage feedback techniques: KBinCov, Syzkaller’s code coverage
through kcov, StateFuzz, and kIJON. During this campaign, we col-
lected memory usage and execution throughput metrics by polling
every 5 minutes. After the fuzzing run, we collected the seeds col-
lected by each instance to analyze KBinCov and the comparison
tools’ ability to discern between execution states marked as novel
by the seeds.

6.2.1 Code Coverage. The 72-hour experiment results on code cov-
erage metrics over time for KBinCov, Syzkaller, StateFuzz and
kIJON are shown in Figure 5. Overall, our implementations of
KBinCov-TCG and KBinCov-KVM achieve better coverage sta-
tistics than Syzkaller’s kcov, StateFuzz, and kIJON over 72 hours on
both TCG and KVM execution modes. This is no small feat, as the
TCG and KVM implementations differ greatly due to the different
toolchains used to construct our method. Being able to challenge
not only traditional code coverage, but also state coverage tools
further demonstrates the versatility and robustness of our design.

The statistics are listed as follows: on QEMU-KVM, KBinCov-
KVM achieves an average coverage of 124141 branches on the
three versions, with a standard deviation of 215. On QEMU-TCG,
KBinCov-TCG achieves a branch coverage metric of 83532, with
a standard deviation of 443. This puts KBinCov on a 7%, 7%, and
9% lead compared to Syzkaller (KVM average=116020 w/ stddev=77,
TCG average=78067w/ stddev=253), StateFuzz (KVMaverage=116490
w/ stddev=541, TCG average=77952 w/ stddev=253), and kIJON
(KVM average=113891 w/ stddev=79, TCG average=76635 w/ std-
dev=121).

An obvious trend for KBinCov in both execution modes is that
KBinCov’s coverage metrics tend to overtake the comparison tools
relatively late into the campaign. This can be mainly explained
through an increase in overhead for KBinCov, as we will delve
into shortly, thus fewer fuzzing cycles executed as a whole, and
an increase in novel states found, increasing the need for tasks
such as triage, seed maintenance, etc. While this may have initially
put KBinCov at a disadvantage, the new execution states that our
method can detect contributes to KBinCov’s eventual lead.

Under QEMU-KVM,we find that the coverage statistics are signif-
icantly higher for the tools than on QEMU-TCG. Our investigations
into the configurations show that the emulator enabled a different
set of devices under the two modes, thus affecting the number of
modules the kernel loads during initialization, and in turn resulting

in a difference in the figures when saturated. Therefore, it is not
indicative of the limitations of KBinCov-TCG.

6.2.2 Binary Coverage. We alsomeasuredKBinCov’s effectiveness
in actually covering the kernel’s binary by comparing the binary
coverage statistics with that of Syzkaller, StateFuzz, kIJON. Like the
previous metric, we collect the their seeds at the end of their respec-
tive 72 hour trials and use a dry-run of Syzkaller with KBinCov to
identify unique seeds, and then calculate their accumulated binary
coverage statistics by coalescing the coverage information of each
individual seed, where overlapping accesses are counted only once,
similar to that of code coverage. The unit of the statistics are mea-
sured in KiB of memory read from the kernel’s binary loaded into
memory during execution over their respective 72-hour trials.

Table 3: Binary Coverage Statistics of KBinCov on the tested

Linux kernels, compared to that of Syzkaller, StateFuzz, and

kIJON. Units are in KiB of binary accessed

Coverage Linux-6.4 Linux-6.5 Linux-6.6
Mechanism KVM TCG KVM TCG KVM TCG
KBinCov 15730 9856 14262 9325 17273 12152

Syzkaller (kcov) 7536 6465 8102 6327 7327 5982
StateFuzz 11780 7589 10510 6621 13672 8808
kIJON 8791 7021 8342 7142 8804 8319

The results are shown in Table 3. As we observe from the sta-
tistics, KBinCov achieves a significantly higher binary coverage
statistic than the comparison. Specifically, KBinCov shows a 76% to
108% increase on QEMU-KVM and 47% to 103% increase on QEMU-
TCG over Syzkaller’s vanilla kcov implementation, a 26% to 35%
increase on QEMU-KVM and a %30 to 40% increase on QEMU-TCG
over StateFuzz, and a 71% to 96% increase on QEMU-KVM and a
30% to 46% increase on QEMU-TCG over kIJON.

These statistics demonstrate that: 1) our approach is effective
in providing binary coverage feedback, where the semantics of
such feedback differ greatly from pure code coverage, as well as
state coverage from previous research; and 2) our design and im-
plementation is effective in assisting kernel fuzzers to achieve a
significantly greater statistic than the comparison with the same
time constraint.

6.2.3 Binary Coverage vs. Code Coverage. We further compare the
statistics of binary coverage, i.e. Syzkaller withKBinCov, with code
coverage, i.e. vanilla Syzkaller, to demonstrate the similarities and
differences between the two execution feedback mechanisms. The
results are shown in Figure 6.

As shown in the plot, the growth of binary coverage is different
compared to that of code coverage, as there are durations during
which the statistics for binary coverage grows while code coverage
remains constant. Additionally, we also see that when code coverage
grows, especially when code coverage jumps, such as when an
entire module is executed for the first time, we see that KBinCov’s
statistics also show a corresponding significant increase, indicating
that code coverage metrics are reflected as binary coverage. These
characteristics show that on the one hand, binary coverage captures
all code coverage metrics, which is in accordance with our design,

Leveraging Binary Coverage for Effective Generation Guidance in Kernel Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

0 12 24 36 48 60 72

0.3
0.6
0.9
1.2
1.5 ·105

Time [h]

Co
ve
ra
ge

Linux 6.4 - TCG

Branch Coverage
Binary Coverage

0 12 24 36 48 60 72

0.3
0.6
0.9
1.2
1.5 ·105

Time [h]

Co
ve
ra
ge

Linux 6.5 - TCG

Branch Coverage
Binary Coverage

0 12 24 36 48 60 72

0.3
0.6
0.9
1.2
1.5 ·105

Time [h]

Co
ve
ra
ge

Linux 6.6 - TCG

Branch Coverage
Binary Coverage

0 12 24 36 48 60 72
0.3
0.6
0.9
1.2
1.5
1.8 ·105

Time [h]

Co
ve
ra
ge

Linux 6.4 - KVM

Branch Coverage
Binary Coverage

0 12 24 36 48 60 72
0.3
0.6
0.9
1.2
1.5
1.8 ·105

Time [h]

Co
ve
ra
ge

Linux 6.5 - KVM

Branch Coverage
Binary Coverage

0 12 24 36 48 60 72
0.3
0.6
0.9
1.2
1.5
1.8 ·105

Time [h]

Co
ve
ra
ge

Linux 6.6 - KVM

Branch Coverage
Binary Coverage

Figure 6: Binary coverage statistics (102 Bytes Data Accessed) compared to branch coverage statistics (Branches) of Syzkaller

with KBinCov for Linux kernel versions of 6.4 to 6.6 for 72 hours. Statistics for both KVM and TCG modes are shown. The two

coverage statistics exhibit different growths and binary coverage grows even when branch coverage does not.

and on the other hand, discerns more execution state changes than
code coverage, which is our eventual design goal.

6.2.4 Summary. Considering both that the code coverage metric
does not account for the new novel behavior that our method deliv-
ers, whileKBinCov achieves better code coverage statistics, and that
KBinCov achieves significantly higher statistics when using binary
coverage as the evaluation statistic, it is certain that KBinCov is
capable of achieving better coverage feedback to the fuzzer, leading
the comparison tools in coverage statistics consistently.

6.3 Accuracy and Efficiency

All major design considerations for kernel binary coverage were
about the compromise between accuracy and efficiency. Here, we
wish to understand how well we reached our goals as a whole, by
breaking down the overhead statistics, both in memory usage and
runtime slowdowns, in addition to analyzing whether the compro-
mises satisfy fuzzing needs.

kbincov syzkallerstatefuzz kijon noelision nofilter precimmnolenest noctx naivearr
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Figure 7: Memory Overhead Analysis of KBinCov-KVM,

Syzkaller (kcov), StateFuzz, and kIJON, alongwithKBinCov’s

variants. We use Syzkaller as the baseline. Lower is better.

6.3.1 Memory Overhead. We first analyze memory overheads po-
tentially from implementing kernel binary coverage and compare
the increase in memory usage against Syzkaller with kcov, in con-
junction with StateFuzz and kIJON. Note that we measure the entire
fuzzing harness’s memory footprint, as coverage feedback cannot
be easily measured alone. We set Syzkaller as the baseline and com-
pare all tools with modified coverage feedback with it to understand
the overhead increases that each approach delivers. In addition, we
add KBinCov’s variants in this Using the memory usage metrics

sampled over the 72-hour fuzzing campaign, we average the values
for each scenario, and plot the 5 average values in Figure 7. As is
apparent in the plot, KBinCov’s memory usage increase is notice-
able, but acceptable, as it is only around 35% more memory usage,
10% higher than StateFuzz’s, and 8% higher than kIJON.

kbincov syzkallerstatefuzz kijon noelision nofilter precimmnolenest noctx naivearr
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 8: Runtime Overhead Analysis of KBinCov-KVM,

Syzkaller (kcov), StateFuzz, and kIJON, alongwithKBinCov’s

variants. We use Syzkaller as the baseline. Lower is better.

6.3.2 Runtime Overhead. We then analyze the runtime overhead
increases of using kernel binary coverage. To assess the added cost
from incorporating full kernel binary coverage into kernel fuzzing,
and through using the execution data collected during fuzzing, we
measure the metric of total number of fuzzing executions in 72
hours to assess the actual performance of the fuzzer, and in turn
compare the runtime overhead between the tools to understand the
efficiency of kernel binary coverage. Similarly, we set Syzkaller’s
average performance as a baseline and observe how the different
approaches affect runtime overheads. The results are plotted in Fig-
ure 8. It is evident that, while KBinCov exhibits obvious overheads
of up to 90%, its runtime overhead statistics are, in comparison,
on-par or better than StateFuzz or kIJON, which may reach over
2× execution time compared to vanilla Syzkaller. In addition, as
previous statistics have demonstrated, fuzzing effectiveness cannot
be measured entirely on the execution throughput figure, but rather
a comprehensive set of factors. Syzkaller’s faster execution speed,
and, in contrast, StateFuzz’s and kIJON’s slower approach, both
yielded inferior figures in coverage statistics, thus demonstrating
that our approach reaches a better balance than the comparison in
fuzzing efficiency.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianzhong Liu, Yuheng Shen, Yiru Xu, and Yu Jiang

kbincov syzkallerstatefuzz kijon noelision notrace precimmnolenest noctx naivearr
variable

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

v6.4 v6.5 v6.6

Figure 9: Recall rates comparison for KBinCov-KVM,

Syzkaller (kcov), StateFuzz, kIJON, and the KBinCov vari-

ants. Higher is better.

6.3.3 Accuracy. To understand the accuracy of our approach in
comparison to the other tools, we use the recall rate metric, which,
in this case, refers to the proportion of seeds that the fuzzer can
find novel behavior in, and as such identifies more or less behav-
ioral characteristics in the kernel. We obtain this metric for the
comparison tools using the following procedure. First, we collect
the seeds accumulated by each fuzzing instance during the fuzzing
campaign. We then perform a dry-run on each seed set for each tool
and count the number of seeds that the fuzzer recognizes as “inter-
esting” based on detecting novel behavior through using coverage
feedback. For each seed set, we calculate a set-local recall rate that
reflects how large of a proportion a specific coverage feedback tool
can be identified as novel. Finally, we calculate a weighted average
for each coverage tool, with weights determined by the size of the
individual seed set.

We show the results in Figure 9. As is evident in the graph,
KBinCov’s recall rate is not only significantly higher than both
vanilla Syzkaller, increasing by 7 percentage points, but is also
higher than that of StateFuzz and kIJON by a significant margin,
measuring at around 10 and 20 percentage points. While it is possi-
ble that, as KBinCov covered the most branches, it has a lead in the
number of seeds contributed to this cause, it is more probable that
these approaches, while focusing on the specific values of variables,
did not put enough emphasis on using static program variables
in the kernel’s binary, thereby bypassing many state information.
Nevertheless, we find that KBinCov’s accuracy exhibits excellent
performance, as demonstrated by its high recall rate.

6.3.4 Ablation Tests for Collection Criteria. We further conduct an
ablation test to better understand the effect on coverage statistics
and fuzzing performance as a whole that each collected metric con-
tributes, as outlined in Table 1. Specifically, we are concerned with
how collecting only either immediate values, static explicit loads,
and variable explicit loads affect fuzzing performance, i.e. code
coverage statistics. We use KBinCov, KBinCov-Imm, KBinCov-
Static, KBinCov-Variable to denote the variants of KBinCov that
are, respectively, KBinCov’s original version, KBinCov with only
immediate value collection enabled,KBinCovwith only static value
collection enabled, and KBinCov with only dynamic value collec-
tion enabled. The code coverage (branch) of each instance is cal-
culated post experimentation and the average of its performance
on the Linux kernels v6.4, v6.5 and v6.6 are taken. The results are

shown in Figure 10, where the statistics for individual kernels are
shown as bars, while the average statistics are shown as the line.

KBinCov KBinCov-
Imm

KBinCov-
Static

KBinCov-
Variable Syzkaller

0

0.5

1

·105

Co
de

Co
ve
ra
ge

v6.4 v6.5 v6.6

Figure 10: Results of ablation test regarding each individ-

ual coverage metric compared with the original version of

KBinCov and Syzkaller. Higher is better.

As shown in the figure, KBinCov leads Syzkaller in coverage
metrics by 7%, which is consistent with our previous findings re-
garding code coverage gains. For the individual collection metrics,
we find that collecting only immediate values, i.e. KBinCov-Imm,
delivers lower coverage statistics than KBinCov, where the orig-
inal version leads this case by 5% but has a higher statistic than
vanilla Syzkaller. This is because all code coverage statistics are
mapped into immediate value accesses, thus providing feedback
function parity with code coverage in this regard, whereas other
immediate values, such as those used in branching predicates, al-
lows for more fine-grained execution state feedback, which allows
the fuzzer to save more meaningful seeds, and gain more coverage
over time. Without such mapping, as in the case of KBinCov-Static
and KBinCov-Variable, we find lower performance when compared
to either KBinCov or Syzkaller (KBinCov performs 26% and 30%
better than the two cases, respectively). While static explicit loads
and variable explicit loads are commonplace, the data shows that
they cannot collect feedback even on the degree of code coverage
themselves.

6.3.5 Summary. We conclude that KBinCov achieves an excellent
balance between accuracy and efficiency as a whole, performing
better than the baseline approach and the reference state cover-
age approaches, further demonstrating the effectiveness of our
approach.

6.4 Design Choice Effectiveness

We further analyze the effectiveness of our design choices on a
case-by-case basis according to the evaluation statistics shown in
Figures 7, 8, and 9.

6.4.1 Tracing Elision: KBinCov-NoElision does not compromise
on accuracy, as the recall rates are very close to the reference
implementations of KBinCov. This is to be expected, as KBinCov-
NoElision generates a super-set of KBinCov’s trace points. For
efficiency, removing tracing elision does not significantly impact
memory footprint, even though the code sections in the kernel have
grown bigger as a result of the excess instrumentation. However,
its performance exhibits severe degradation, seeing an increase at
around 30%.

Leveraging Binary Coverage for Effective Generation Guidance in Kernel Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

6.4.2 Trace Filtering: We observe that disabling trace filtering does
not have a significant impact on the accuracy of coverage feed-
back, as demonstrated by the close recall rates that the reference
design and KBinCov-NoTraceFilter both exhibit. This is also to be
expected, as disabling tracing does not affect the effective tracing
callbacks that detect the novel behavior. While its memory footprint
does not increase significantly, runtime efficiency is moderately
affected, as removing tracing filters but increasing the number of
callbacks executed results in a net increase in execution time on
tracing callbacks.

6.4.3 Address Approximation: Removing address approximation
requires an additional step for immediate instructions, where the
precise location of an immediate value access is calculated. While,
in theory, this process will provide a address with byte-level pre-
cision, we do not see significant improvements in the recall rate,
demonstrating that such approximation provides sufficient preci-
sion to identify different execution states. In contrast, the runtime
overhead shows a slight increase, whereas memory usage shows
no significant improvement.

6.4.4 Context Assignment: The removal of context assignment
shows obvious drops in recall rates, indicating that the effectiveness
of our approach is hindered without context information, whereas
efficiency has not improved, either in memory usage or runtime
overheads, thus its inclusion is a purely positive decision. This is to
be expected, as the removal of use-site context will not allow the
fuzzer to discern between different uses of the same kernel data.

6.4.5 Length Estimation: Removing length estimation also degrades
fuzzing effectiveness, which is reflected by its slightly lower recall
rates. Efficiency gains are also not apparent, with only a slight re-
duction in average runtime overhead. This is also to be expected, as
many behavioral characteristics, such as comparisons and bit-wise
operations, will be lost and not counted as novel behavior.

6.4.6 Coverage Storage: Using the naïve approach towards storing
coverage data results in disastrously bad performance statistics,
specifically with a significant increase in both memory and runtime
overhead. Therefore, it is meaningless to analyze its accuracy as
this choice is simply not practical for actual kernel fuzzing use.

6.4.7 Summary: Using the assessment above, we demonstrate,
through the statistics of altering one component only, that all design
choices in our approach all contribute towards improving either or
both the accuracy and efficiency of reflecting the coverage statistics
of the kernel under test.

6.5 New Bugs Detected

During testing,KBinCov assisted Syzkaller in finding 21 previously
undetected bugs in the Linux kernel versions v6.4, v6.5, and v6.6,
which are listed in Table 4. In contrast, of the total 21 found with
Syzkaller and KBinCov, Syzkaller using (kcov) found 4, StateFuzz
found 4, and kIJON found 2. All listed bugs have been responsi-
bly reported with anonymous accounts. Interestingly, Syzkaller
under other coverage feedback methods, i.e. code coverage, State-
Fuzz and kIJON, either could only find bugs previously detected by
Syzbot [26], or detected the bug with time consistently exceeding
that of KBinCov. We believe that this is due to most of the bugs

persisting in the kernel requiring many conditions to meet before
being triggered, where our approach allows for more fine-grained
feedback of the execution of such conditions, thus being able to
discover the buggy condition sooner.

Table 4: List of the 21 new bugs found by Syzkaller using

KBinCov as feedback during the evaluation.

ID Location Description

1 drivers/hid/usbhid/hid-core.c UBSAN: array-index-out-of-bounds in usbhid_parse

2 net/netlink/af_netlink.c BUG: soft lockup in ipv6_list_rcv

3 kernel/rcu/tree.c BUG: soft lockup in rcu_core

4 kernel/events/core.c possible deadlock in __perf_install_in_context

5 fs/ext4/move_extent.c WARNING: locking bug in __ext4_ioctl

6 net/9p/protocol.c memory leak in p9pdu_readf

7 kernel/sched/core.c INFO: task hung in perf_event_free_task

8 kernel/entry/common.c INFO: rcu detected stall in syscall_exit_to_user_mode

9 fs/open.c BUG: soft lockup in sys_openat

10 mm/madvise.c BUG: soft lockup in sys_madvise

11 arch/x86/kernel/time.c KASAN: stack-out-of-bounds Read in profile_pc

12 fs/buffer.c KASAN: out-of-bounds Write in end_buffer_read_sync

13 fs/ntfs3/inode.c KASAN: global-out-of-bounds Read in ntfs_iget5

14 fs/btrfs/free-space-tree kernel BUG in populate_free_space_tree

15 net/ipv4/tcp_input.c BUG: soft lockup in ip_list_rcv

16 fs/ext4/mballoc.c divide error in mb_update_avg_fragment_size

17 fs/ext4/mballoc.c KCSAN: data-race in ext4_mb_regular_allocator / mb_mark_used

18 fs/kernfs/inode.c KCSAN: data-race in kernfs_refresh_inode / kernfs_refresh_inode

19 mm/page-writeback.c WARNING in ext4_dirty_folio

20 drivers/tty/tty_ioctl.c KCSAN: data-race in n_tty_lookahead_flow_ctrl / tty_set_termios

21 fs/ntfs3/record.c WARNING in mi_init

Qualitative Analysis: To understand how using KBinCov al-
lowed kernel fuzzers to trigger the the bugs found, we reproduced
the bugs under the conditions where they were discovered, and
verified the following criteria: 1) whether Syzkaller’s coverage feed-
back mechanisms, i.e. kcov, were able to reach the bug’s location,
and, within 7 days of testing, can eventually trigger the bugs. Our
analysis that the bugs can be classified into the following three cat-
egories, according to whether code coverage is capable of reaching
the relevant bug’s location in the kernel, and its ability to trigger
the bug eventually: 1) KBinCov uniquely covers the bug’s location
in code (bugs 4, 6, 9, 12, 13, 16, and 21), and thus code coverage is
incapable of assisting the fuzzer in triggering the bug; 2) the buggy
code is covered by code coverage, but the fuzzer cannot trigger
the bug in the allotted amount of time (bugs 1, 2, 7, 8, 10, 11, 14,
17, 18, and 20), therefore demonstrating that KBinCov uniquely
provides the fuzzer with required feedback to progress towards the
buggy state; 3) KBinCov helps fuzzers trigger the bugs within less
amounts of time than using code coverage (remaining new bugs),
thus the new execution states identified by KBinCov allows fuzzers
to explore the kernel’s state space more efficiently, thus identifying
buggy states faster. For the first case, KBinCov uniquely covers
the buggy code, while for the latter two, code coverage reaches the
location, but is handicapped in triggering the bugs,
Summary: Through finding new and real-world bugs in the Linux
kernel, we show that our approach is readily applicable and can
assist kernel fuzzers in detecting bugs.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianzhong Liu, Yuheng Shen, Yiru Xu, and Yu Jiang

7 Discussion

7.1 Threats to Validity

Our design and evaluation process, however careful, may include
inaccuracies, in the following possible cases.

First, our implementations of previous research IJON may differ
from its specific reference implementations, if applicable, and may
be a source of inaccuracies, as its actual implementations are not
directly applicable to kernel fuzzing at the time of writing. We have
implemented kIJON to the best of our abilities, and have matched
the performance of our implementations with its original papers.

Additionally, our evaluations show that KBinCov performs fa-
vorably when compared with state coverage approaches StateFuzz
and IJON. However, as our approach is not a direct attempt to ad-
dress the issue of tracking state transitions, there are cases where
this method will have difficulty being applied, such as interpreters
and JIT compilers that read foreign programs. In theory, state-based
coverage in theory can achieve better coverage metrics, but their
current implementations are also ill-equipped to do so.

7.2 Generality of Method

The essence of kernel binary coverage is not limited to assisting in
kernel fuzzing. Our approach, can be tailored to be used in userspace
application testing through a number of steps, including migra-
tion of kernel-space instrumentation to userspace, implementing
a userspace-specific coverage collection and processing runtime,
etc. This is because while operating systems kernels and userspace
applications differ greatly in form and function, both kernels and
userspace programs contain code and data sections that have highly
similar implications towards improving fuzzing feedback.

Furthermore, all program testing methods can benefit from uti-
lizing binary coverage, regardless of the target program’s size or
complexity, as our method does not remove the semantics of code
coverage, but builds upon such feedback through mapping such
behavior as memory accesses, while increasing the execution in-
formation collected through collecting the other memory accesses,
such as static explicit accesses.

8 Related Work

8.1 Kernel Fuzzing

Syzkaller is a state-of-the-art kernel fuzzer designed for general
purpose operating systems such as Linux, macOS, and Windows.
Aside from Syzkaller, there has been much research effort [23, 29,
33] on developing efficient kernel fuzzing technologies.

First, efficient kernel fuzzing requires highly effective input gen-
eration methods. HEALER [25] is a Syzkaller-inspired kernel fuzzer
that uses a relation-learning technique to continuously learn the
relations (i.e. correlation) between system calls at runtime and
then generate high-quality system call sequences. Moonshine [17]
uses seed distillation on real-world traces to produce quality seeds.
KSG [24] uses static analysis to find the entry points of specific
kernel modules and generate specific system calls grammar. There
are also attempts at avoiding the use of such grammar, a.k.a. no-
grammar fuzzing. FuzzNG [3], for example, tackles this problem by
inferring the interface of system calls using real-world examples
and runtime information.

Apart from common memory bugs in system call interfaces,
there are efforts in finding other types of bugs and bugs located
in different kernel modules. Razzer [12] targets kernel race bugs
by directing fuzzing probable race locations and interleave kernel
threads to trigger race bugs. Certain components in the kernel, like
driver modules, tend to receive less scrutiny. Saturn [30] targets to
cover the entire handling chain throughout the USB communica-
tion. Furthermore, there are works that analyze the detected bugs’
severity. SyzScope [34] aims to analyze thousands of seemingly
“low risk” kernel bugs and found hundreds that were, in fact, of
high severity. GREBE [13] proposes an object-driven kernel fuzzing
technique to explore various contexts to trigger reported bugs and
detect various error behaviors.

Efficiency is just as important as input generation techniques
when your test target is hosted in a virtualized environment. kAFL [20]
is a kernel fuzzer that utilizes hardware extensions in modern pro-
cessors to greatly increase the efficiency in coverage collection
processes, therefore effectively increasing its execution through-
put. Horus [14] leverages accelerates fuzzing-related data transfers,
thereby improving overall fuzzing efficiency.

Different OS targets are also an area of research interest. For
example, embedded operating systems have also received attention
from various researchers in recent years. SFuzz [5], RtKaller [21],
Gustave [8], and Tardis [22] are all works which tackles the problem
of efficient and effective testing of embedded operating systems.

Our work is designed to assist in enhancing the feedback mech-
anisms of current kernel fuzzers. Therefore, the related works in
kernel fuzzing listed above all can potentially benefit from adapting
KBinCov to their execution feedback workflows.

8.2 Execution Feedback Mechanisms

Current state-of-the-art fuzzers are designed to utilize either sin-
gle or multiple execution feedback mechanisms [15, 16, 18, 28] to
extract and interpret the underlying details of a program’s execu-
tion behavior, which is then used to guide input generation, bug
reproduction, execution calibration, branch predicate solving, etc.

Taint analysis is frequently used by fuzzers that employ hybrid
fuzzing techniques to gain additional insight into how the gen-
erated inputs affect its execution behavior. Fuzzers can use this
information to manipulate the bytes that correspond to a part of
the program’s execution that it is interested in. VUZZER [19] is
an early adopter of this technique, and proposes to mutate input
bytes corresponding to a target comparison expression. Angora [6]
improves upon this approach by using gradient descent to move
the comparison operand to let the conditional jump move towards
the other branch. Matryoshka [7] improves upon Angora’s method
by including the predicates of path constraints into the equation
and solving them together. In contrast to using taint propagation,
Redqueen [2] probes the bytes to identify which bytes correspond
to which variable in the program.

Symbolic execution and concolic execution are another form
of feedback. These methods generally collect symbolic path con-
straints and utilize a solver to produce satisfying inputs. KLEE [4]
is a dynamic symbolic execution engine using the LLVM compiler
framework. However, these methods frequently encounter prob-
lems such as path explosion and solver’s inability to solve problems.

Leveraging Binary Coverage for Effective Generation Guidance in Kernel Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Research works like QSYM [31] combine concolic execution with
greybox fuzzing to mitigate this issue.

State coverage is another field of research that attempts to model
the program’s execution behavior through tracing its state transi-
tions. IJON and StateFuzz are two recent works that focus on state
coverage, but focus more on recording the states of specific values.
Finding such values require human input or specific program anal-
ysis, both are not easily scalable. In IJON’s case, it requries manual
labor in identifying state variables and their values, which is not ap-
plicable for large codebases such as the Linux kernel. For StateFuzz,
it utilizes heavy static analysis, which requires heavy resources
and may introduce false positives. In contrast, our approach uses a
lightweight analysis routine that detects the definition and usage of
static data within the kernel’s binary to perform coverage feedback,
resulting in better effectiveness, as shown in the previous section.

9 Conclusion

In this paper, we introduce the use ofKernel Binary Coverage, a novel
coverage feedback mechanism for kernel fuzzers that increases the
scope of coverage feedback to memory access patterns to the whole
kernel binary. We propose a design that utilizes multiple mecha-
nisms to be accurate and efficient, and in the process raises multiple
design considerations and choices to balance efficiency and accu-
racy to satisfy the needs of kernel fuzzers. We implemented our
approach as KBinCov and evaluated its performance, where statis-
tics show that it outstrips Syzkaller and our own implementations
of StateFuzz and IJON. In addition, we found 21 new bugs using
KBinCov and Syzkaller in a fuzzing campaign.

Acknowledgements

We thank the anonymous reviewers for their insightful feedback.
This research is sponsored in part by the National Key Research
and Development Project (No.2022YFB3104000) and NSFC Program
(No.92167101,62021002).

References

[1] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. Ijon:
Exploring deep state spaces via fuzzing. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 1597–1612, 2020.

[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. Redqueen: Fuzzing with input-to-state correspondence. In NDSS,
volume 19, pages 1–15, 2019.

[3] Alexander Bulekov, Bandan Das, Stefan Hajnoczi, andManuel Egele. No grammar,
no problem: Towards fuzzing the linux kernel without system-call descriptions.
In NDSS, 2023.

[4] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209–224, 2008.

[5] Libo Chen, Quanpu Cai, Zhenbang Ma, Yanhao Wang, Hong Hu, Minghang
Shen, Yue Liu, Shanqing Guo, Haixin Duan, Kaida Jiang, et al. Sfuzz: Slice-based
fuzzing for real-time operating systems. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 485–498, 2022.

[6] Peng Chen and Hao Chen. Angora: Efficient Fuzzing by Principled Search. In
2018 IEEE Symposium on Security and Privacy (SP), pages 711–725, 2018.

[7] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka: fuzzing deeply nested
branches. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 499–513, 2019.

[8] Stéphane Duverger and Anaïs Gantet. Gustave: Fuzz it like it’s app. In Proc. DMU
Cyber Week, pages 1–25, 2021.

[9] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. AFL++: Com-
bining incremental steps of fuzzing research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, August 2020.

[10] Google. Kernel address sanitizer. https://www.kernel.org/doc/html/latest/dev-
tools/kasan.html.

[11] Google. Kernel concurrency sanitizer. https://www.kernel.org/doc/html/latest/
dev-tools/kcsan.html.

[12] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik
Shin. Razzer: Finding Kernel Race Bugs through Fuzzing. In IEEE Symposium on
Security and Privacy, pages 754–768. IEEE, 2019.

[13] Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Dongliang Mu, Chensheng Yu, Xinyu
Xing, and Kang Li. Grebe: Unveiling exploitation potential for linux kernel bugs.
In 2022 IEEE Symposium on Security and Privacy (SP), pages 2078–2095, 2022.

[14] Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang. Horus: Accelerating
kernel fuzzing through efficient host-vm memory access procedures. ACM Trans.
Softw. Eng. Methodol., 33(1), nov 2023.

[15] Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang, Ting Chen,
Abhik Roychoudhury, and Jiaguang Sun. Bleem: packet sequence oriented fuzzing
for protocol implementations. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 4481–4498, 2023.

[16] Zheyu Ma, Bodong Zhao, Letu Ren, Zheming Li, Siqi Ma, Xiapu Luo, and Chao
Zhang. Printfuzz: fuzzing linux drivers via automated virtual device simulation.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 404–416, 2022.

[17] Shankara Pailoor, Andrew Aday, and Suman Jana. MoonShine: Optimizing OS
Fuzzer Seed Selection with Trace Distillation. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 729–743, Baltimore, MD, August 2018. USENIX
Association.

[18] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Aflnet: a greybox
fuzzer for network protocols. In 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pages 460–465. IEEE, 2020.

[19] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing. In NDSS,
volume 17, pages 1–14, 2017.

[20] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels. In
26th USENIX Security Symposium (USENIX Security 17), pages 167–182, Vancouver,
BC, August 2017. USENIX Association.

[21] Yuheng Shen, Hao Sun, Yu Jiang, Heyuan Shi, Yixiao Yang, and Wanli Chang.
Rtkaller: State-Aware Task Generation for RTOS Fuzzing. ACM Trans. Embed.
Comput. Syst., 20(5s), sep 2021.

[22] Yuheng Shen, Yiru Xu, Hao Sun, Jianzhong Liu, Zichen Xu, Aiguo Cui, Heyuan
Shi, and Yu Jiang. Tardis: Coverage-guided embedded operating system fuzzing.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
41(11):4563–4574, 2022.

[23] Zekun Shen, Ritik Roongta, and Brendan Dolan-Gavitt. Drifuzz: Harvesting bugs
in device drivers from golden seeds. In 31st USENIX Security Symposium (USENIX
Security 22), pages 1275–1290, 2022.

[24] Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu, and Yu Jiang. {KSG}: Augmenting
kernel fuzzing with system call specification generation. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22), pages 351–366, 2022.

[25] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting Chen, and
Aiguo Cui. HEALER: Relation Learning Guided Kernel Fuzzing, page 344–358.
Association for Computing Machinery, New York, NY, USA, 2021.

[26] Dmitry Vyukov and Andrey Konovalov. Syzbot, 2015. https://syzkaller.appspot.
com/upstream.

[27] Dmitry Vyukov and Andrey Konovalov. Syzkaller: an unsupervised coverage-
guided kernel fuzzer, 2015. https://github.com/google/syzkaller.

[28] Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Chengnian Sun, and
Jiaguang Sun. RIFF: Reduced Instruction Footprint for Coverage-Guided Fuzzing.
In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 147–159.
USENIX Association, July 2021.

[29] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace: Data race
fuzzing for kernel file systems. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1643–1660. IEEE, 2020.

[30] Y. Xu, H. Sun, J. Liu, Y. Shen, and Y. Jiang. Saturn: Host-gadget synergistic usb
driver fuzzing. In 2024 IEEE Symposium on Security and Privacy (SP), pages 51–51,
Los Alamitos, CA, USA, may 2024. IEEE Computer Society.

[31] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. {QSYM}: A
practical concolic execution engine tailored for hybrid fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18), pages 745–761, 2018.

[32] Bodong Zhao, Zheming Li, Shisong Qin, Zheyu Ma, Ming Yuan, Wenyu Zhu,
Zhihong Tian, and Chao Zhang. StateFuzz: System Call-Based State-Aware linux
driver fuzzing. In 31st USENIX Security Symposium (USENIX Security 22), pages
3273–3289, Boston, MA, August 2022. USENIX Association.

[33] Wenjia Zhao, Kangjie Lu, Qiushi Wu, and Yong Qi. Semantic-informed driver
fuzzing without both the hardware devices and the emulators. In Network and
Distributed Systems Security (NDSS) Symposium 2022, 2022.

[34] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun Qian.
{SyzScope}: Revealing {High-Risk} security impacts of {Fuzzer-Exposed} bugs
in linux kernel. In 31st USENIX Security Symposium (USENIX Security 22), pages
3201–3217, 2022.

https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://github.com/google/syzkaller

	Abstract
	1 Introduction
	2 Background
	2.1 Kernel Fuzzing
	2.2 Code Coverage in Fuzzing

	3 Motivation
	3.1 Limitations in Pure Code Coverage
	3.2 Limitations in Kernel State Coverage

	4 Design
	4.1 Access Interception and Trace Elision
	4.2 Trace Filtering
	4.3 Access Pattern Processing
	4.4 Access Semantics
	4.5 Coverage Storage and Novelty Detection
	4.6 Coverage Feedback to Kernel Fuzzers

	5 Implementation
	5.1 KBinCov Implementation
	5.2 Variants for Comparisons

	6 Evaluation
	6.1 Experiment Setup
	6.2 Overall Effectiveness
	6.3 Accuracy and Efficiency
	6.4 Design Choice Effectiveness
	6.5 New Bugs Detected

	7 Discussion
	7.1 Threats to Validity
	7.2 Generality of Method

	8 Related Work
	8.1 Kernel Fuzzing
	8.2 Execution Feedback Mechanisms

	9 Conclusion
	References

