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Abstract
Network protocols are extensively used in a variety of network
devices, making the security of their implementations crucial. Pro-
tocol fuzzing has shown promise in uncovering vulnerabilities in
these implementations. However traditional methods often require
instrumentation of the target implementation to provide guidance,
which is intrusive, adds overhead, and can hinder black-box test-
ing. This paper presents Logos, a protocol fuzzer that utilizes non-
intrusive runtime log information for fuzzing guidance. Logos first
standardizes the unstructured logs and embeds them into a high-
dimensional vector space for semantic representation. Then, Logos
filters the semantic representation and dynamically maintains a
semantic coverage to chart the explored space for customized guid-
ance. We evaluate Logos on eight widely used implementations
of well-known protocols. Results show that, compared to exist-
ing intrusive or expert knowledge-driven protocol fuzzers, Logos
achieves 26.75%-106.19% higher branch coverage within 24 hours.
Furthermore, Logos exposed 12 security-critical vulnerabilities in
these prominent protocol implementations, with 9 CVEs assigned.

CCS Concepts
• Security and privacy→ Network security; Software and ap-
plication security.
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1 Introduction
Protocol implementations are crucial to network infrastructure
and are typically exposed directly to the network. Therefore, it is
essential for them to effectively handle any malformed or malicious
traffic to prevent attackers from exploiting undetected flaws. For
example, the infamous Heartbleed [12] vulnerability discovered
in OpenSSL [40] affected a significant portion of network devices
and services. Identifying and addressing potential vulnerabilities
in protocol implementations prior to their release is essential to
prevent such incidents.

Fuzzing is a widely used testing technique for vulnerability dis-
covery. For testing protocol implementations, fuzzing involves
continuously generating and sending malformed protocol pack-
ets to the under-test implementation while observing for anomalies.
While traditional protocol fuzzing techniques have been widely
adopted and proven effective in identifying various vulnerabilities,
they still have significant limitations. Specifically, while some proto-
col fuzzers use user-defined test models for valid packet generation,
they generate packets randomly without considering the testing
state. As a result, they fail to identify whether the generated pack-
ets trigger new program states, missing opportunities for further
exploration. Recent work attempts to address this limitation by
incorporating feedback mechanisms, with code coverage being a
prevalent choice [35, 38, 45]. Nonetheless, this approach requires
instrumenting the source code or binaries, which can be invasive
and add additional overhead to program execution. It may also be
infeasible for black-box testing scenarios. Conversely, we observe
that programs inherently produce logs, eliminating the need for
additional intrusive procedures. These logs provide information
regarding the program’s state and behavior, which is invaluable
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for protocol testing. More importantly, the points at which logs
are generated are closely scrutinized by developers, as they typ-
ically correlate with error-prone areas, making them crucial for
identifying vulnerabilities.

This paper introduces Logos, a protocol fuzzer that provides a
mechanism for real-time unstructured log modeling and uses it
for guided packet generation. To achieve this approach, we need
to address two challenges: (i) How to model the heterogeneity of
unstructured log formats in a unified way. Since all logs may be
from different protocols and implementations, unified modeling is
the basis for avoiding manual intervention. (ii) How the log infor-
mation can be used to efficiently guide fuzzing. Logs can contain a
significant amount of fuzzing information, such as statistical data
or periodically printed environmental information, which may be
irrelevant to the testing process. In addition, this information must
be processed into a form that the fuzzing framework can use.

For the first challenge, we propose a non-invasive unified proto-
col modeling mechanism. This mechanism first stabilizes numerical
instabilities within the logs and eliminates redundant cyclic print-
ing to obtain a more stable and normalized data source. Then, it
uses deep learning models to extract the semantic meaning of the
logs, thereby transforming various information from heterogeneous
unstructured log formats into a high-dimensional vector represen-
tation called semantic representation. Such a semantic modeling
approach bypasses the limitations imposed by specific log formats
and directly captures the semantic representation. The resulting
semantic representation can adequately express information about
the protocol implementations discovered during a fuzzing round,
as derived from the logs.

To address the second challenge, we propose a guided fuzzing
approach that fully exploits the modeling results. Logos first filters
semantic representation to merge semantically similar logs to dy-
namicallymaintain the historical highest semantic coverage (seman-
tic coverage for short). Semantic coverage can reflect the semantic
coverage of logs generated by this round of the fuzzing process. We
then calculate the new coverage of log messages generated by the
current packet over semantic coverage and semantic representation
and output a low-dimensional value rating representing the diver-
sity of log information. We then perform rating-weighted packet
generation using a packet pool structure specifically designed for
rating to efficiently generate protocol packets and discover addi-
tional bugs in the protocol implementations.

We evaluated Logos’s performance on eight popular implementa-
tions of well-known protocols, including TLS, DNS, and CoAP. We
compared Logos against four state-of-the-art protocol fuzzers, in-
cluding two guided fuzzers (AFLNet [45] and ChatAFL [36]) and two
knowledge-driven fuzzers without testing guidance (BooFuzz [26]
and Peach [16]). The experimental results show that Logos out-
performs these prior works in branch coverage by 39.28%, 26.74%,
106.19% and 40.93% on average, respectively, over 24 hours. Logos
also discovered 12 new bugs in these previously well-tested protocol
implementations. In comparison, AFLNet, ChatAFL, BooFuzz, and
Peach could only expose 5, 5, 4, and 5 of them. Most of these vulner-
abilities are security-critical and 9 CVEs were assigned due to their
severe security influences. In addition, the ablation study demon-
strates that the proposed contrastive learning for log modeling and

the log guidance mechanism is essential for the effectiveness of
Logos. Our main contributions are as follows:
• We propose log data of protocol application to guide protocol
fuzzing, providing a non-invasive and fully automated approach
that requires no expert knowledge.
• We design Log Modeling as a unified approach to model logs by
extracting semantic information and then leverage the modeled
artifacts through Guided Fuzzing to guide the packet generation.
• We implement Logos and evaluate it on previously well-tested
protocol implementations. The results show that Logos outper-
forms traditional coverage-guided fuzzers and manual expert
knowledge-based approaches. It has also discoveredmany security-
critical vulnerabilities.

2 Observation
We use CoAP [1] to demonstrate the System Under Test (SUT) log
information often overlooked by conventional protocol fuzzers.
Figure 1 shows an example log from the libcoap server [39]. In a
log file from a libcoap server, the recorded data includes basic and
advanced details. Basic information includes timestamps, catego-
rization of log types, network identifiers such as IP addresses and
port numbers, and session-specific information. In addition, the
logs also capture more complex, abstract semantic content: events,
actions, and anomalies.

1 08:17:01.411 DEBG EVENT: COAP_EVENT_TCP_CLOSED

2 08:17:01.411 DEBG EVENT: COAP_EVENT_SESSION_CLOSED

3 08:17:01.422 DEBG 127.0.0.1:5783 <-> 127.0.0.1:48090 TCP: send 1472 bytes

4 08:17:01.422 DEBG 127.0.0.1:5783 <-> 127.0.0.1:48090 TCP: send 1472 bytes

5 08:17:01.423 DEBG 127.0.0.1:5783 <-> 127.0.0.1:48090 TCP: send 1472 bytes

6 08:17:01.423 DEBG 127.0.0.1:5783 <-> 127.0.0.1:48090 TCP: send 1472 bytes

7 08:17:01.423 DEBG EVENT: COAP_EVENT_SESSION_CONNECTED

8 08:17:01.426 DEBG 127.0.0.1:5783 <-> 127.0.0.1:48090 TCP: recv 92 bytes

9 Exception: timed out

10 CORE DUMP: 17.33.16#2023 -9 -26

Figure 1: Log file example from libcoap (CoAP) server

We observe that the amount of information presented by these
logs can vary significantly, ranging from abundant to minimal.
In addition, the types of information supported by log data are
not consistent, either in terms of basic or semantic content. This
suggests that no assumptions can be made about the specific nature
of log information. However, we have found that logs with different
templates invariably correlate with different branches of code. This
relationship is denoted by the function 𝜙 (·), which maps a log
to the corresponding branch of the code that generates the log.
Assuming that each log entry corresponds to a single line of the
code (otherwise different templates in the same branch will always
appear at the same time, which can be considered as one template),
for two log entries 𝐿1 and 𝐿2, we define the relationship as:

𝐿1 ≠ 𝐿2 ⇒ 𝜑 (𝐿1) ≠ 𝜑 (𝐿2)
The probability of such occurrences is directly proportional to the
density of log statements in the code. Table 1 shows log statements’
line and function coverage in different SUT instances. From this
observation, we can speculate that the coverage of printed logs rela-
tive to the total number of log statements can reflect code coverage.

However, in the scenarios described, if two sibling branches do
not have different log statements to distinguish them, the logs will
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Table 1: The function coverage and line coverage of the log
statement in the selected SUTs

SUT BoringSSL libcoap OpenSSL CycloneDDS

Fun. Cov. 32.93% 27.16% 26.45% 24.33%
Lin. Cov. 19.64% 11.86% 13.22% 11.86%

SUT Mosquitto Dnsmasq DNSPod-sr smartdns

Fun. Cov. 16.21% 28.62% 17.10% 29.37%
Lin. Cov. 10.92% 17.34% 1.66% 5.74%

not reflect their differences. Figure 1 illustrates that lines 1 and
2 contain identical log statements, but these two different events
result in different handling functions, representing two different
branches. Nonetheless, by incorporating semantic information from
these events, it becomes possible to distinguish between subsequent
sibling branches by recognizing the disparities in their semantics.

In particular, we found that common logs can contain several
types of semantic information, including (i) Event. Event informa-
tion is the most important message in reactive processing systems.
The transfer of information from one part of a protocol implementa-
tion to another often relies heavily on the transmission of events. In
such reactive systems, the sequence of events also correlates with
the sequence of system state transitions. The system states repre-
sented by these events provide a direct model of the system state.
(ii) Action. Actions are direct representations of the behavior of the
protocol implementation, and often of the functionality itself. The
appearance of a new action in logs typically indicates that new func-
tionality has been covered by the fuzzer, increasing the likelihood
of vulnerability discovery. For example, actions such as send(line
3) and recv(line 8) are often logged along with certain values to
form the trace of a system, which is the most common method
of logging. (iii) Anomalies. In addition, evidence of anomalies and
inconsistencies within the logs can be used to detect system bugs,
allowing developers to more quickly locate bugs and potentially
modify subsequent branches. Typically, the places where logs are
generated are areas of the code that developers pay close atten-
tion to because they are prone to errors, so covering statements
related to logs is more advantageous for bug detection. In the logs
shown in Figure 1, there are instances of anomaly information such
as timeout and CORE DUMP (line 9-10). Identifying these errors
can effectively extend the coverage of protocol testing to different
scenarios and increase the likelihood of finding vulnerabilities.

Basic Idea. Building on these observations, it is possible to
integrate a mechanism into the protocol fuzzing framework that
effectively exploits the semantics of log data. Such a mechanism can
efficiently serve as a non-intrusive replacement for the traditional
invasive coverage instrumentation: Firstly, accurately reflecting
code branch coverage requires extracting log coverage information
effectively. In addition, for the additional semantic information pro-
vided within the logs, it is necessary to model this information as
comprehensively as possible to improve the accuracy of this cover-
age. This involves identifying a greater number of events, actions,
anomalies, etc. Then, considering the prevalence of irrelevant and
redundant information in the code, it is critical to effectively filter
out such content during the modeling process. The remaining logs,

after filtering, will thus be much more meaningful. However, it is
equally important to avoid excessive filtering to avoid any loss in
the approximation of the code branch coverage.

Challenges. To use log information to guide protocol fuzzing,
we need to address the following two challenges:

C.1: The heterogeneity of unstructured log formats. Differ-
ent protocols have different semantics, and different implementa-
tions produce different logs. Even within the same SUT, different
log printing modes, such as DEBUG or INFO, can change the origi-
nal form of the SUT’s logs. As a result, the log formats of different
SUTs are almost completely different. The variety of log formats
not only makes it difficult to extract information but also poses a
significant challenge to the modeling of semantic information. In
previous work [2], the use of log information was often limited to
a specific domain, such as the Android Execution Logs. This limita-
tion allowed the use of simple and uniform rule-based log parsing
algorithms. Additionally, expert prior knowledge was applied to
categorize potential code points for extraction, thereby streamlin-
ing the subsequent information retrieval processes. In the context
of protocol testing, the variability of unstructured log formats and
the impracticality of experts to pre-categorize information for ex-
traction present considerable challenges. Consequently, the ability
to adapt log modeling to different unstructured formats becomes
critical and a significant challenge.

C.2: Efficient guidance for protocol fuzzing. Efficient pro-
tocol testing requires effective use of modeling results. First, it is
critical to eliminate parts of the protocols that are numerically un-
stable or redundant. In addition, efforts should be made to minimize
the loss of approximation to code branch coverage when filtering
out semantic-independent information. Then we need to effectively
translate the protocol modeling information into scores for generat-
ing packets. In previous research, such as the work done with AFL
[19], fuzzers typically employ coverage-oriented strategies. They
use various statistical metrics, such as whether coverage growth
is triggered or the number of mutation rounds, as parameters for
heuristic functions. These functions then generate specific scores
that guide weighted sampling from the seed pool to select seeds for
testing. In fact, the statistical data generated in traditional fuzzing
processes is typically low-dimensional, making it easily manageable
for heuristic functions. However, log information, once modeled,
contains rich semantics, resulting in inherently high-dimensional
data. The challenge is to effectively map this high-dimensional
semantic information to a low-dimensional probability sampling
space for the heuristic function. This process requires sophisticated
techniques to distill complex, multi-faceted log data into action-
able insights that can efficiently guide the fuzzing process without
losing critical semantic information.

3 System Design
Overview. Figure 2 gives an overview of the Logos framework.
The log modeling module processes logs from the SUT, culminating
in the construction of the semantic representation and semantic
coverage. The guided fuzzing module then uses these modeled
entities to continuously generate and send effective packets to the
SUT, thereby facilitating the effectiveness of fuzzing.
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Figure 2: Logos Overview. Logos consists of two modules: log modeling and guided fuzzing. The log modeling module processes
logs to train and generate a log model. This model is used to infer the vector representation of the log batch (semantic
representation) and dynamically maintain the historical highest semantic coverage (semantic coverage). The guided fuzzing
module uses them to continuously generate low-dimensional rating for structural packet generation aimed at finding more
bugs.

The log modeling module is an integral component of the Logos
framework, tasked with converting logs from the SUT into struc-
tured, modeled entities, specifically semantic representation and
semantic coverage. This transformation is crucial for facilitating the
guided fuzzing module, which subsequently employs these entities
to craft and dispatch effective packets back to the SUT, enhanc-
ing the bug detection process. The procedure commences with log
re-templating, which standardizes logs to counteract the effects of
numerical instability and recurring patterns, which ensures that
the logs maintain a uniform format. Next, the log model is trained
using contrastive learning to capture the semantic information con-
tained in the logs. This self-supervised learning phase aligns the
embeddings with the log semantic space, effectively capturing the
semantic behavior of the SUT. In the model inference phase, the
trained log model infers the semantic representation from real-time
logs. And semantic representation filtering refines the log analysis
by filtering out semantic representation vectors in the embedding
space that is too proximate, thereby reducing redundancy.

The guided fuzzing module is designed to optimize the packet
generation process. This module utilise the information encap-
sulated in the semantic representation and semantic coverage to
increase the effectiveness of fuzzing. Semantic representation esti-
mating converts high-dimensional vector representations of logs
into numerical rating. This mapping is essential for the packet gen-
eration phase, where a rating is required to construct extraction
probabilities. During packet generation, the packet pool is utilized
to manage an evolving set of packet sequences, which are then
processed by the packet generation algorithm. This algorithm aims
to optimize the selection and sequencing of packets based on the
insights gained from the semantic representation estimating eval-
uations. By integrating the semantic representation and semantic
coverage into the guided fuzzing process, the Logos framework
continuously adapts its strategy based on real-time feedback. This
adaptive approach ensures that the fuzzing process remains tar-
geted and efficient.

3.1 Log Modeling
The log modeling module is used to transform logs generated by the
SUT into two modeled entities: semantic representation and seman-
tic coverage. The semantic representation models the information
triggered in the current interaction, whereas the semantic cover-
age represents an accumulated model of the information already
triggered in the system. The module has two primary phases: (1)
During the training phase, the module processes a curated dataset
of logs along with indicators of whether these logs improve cover-
age. This phase involves tuning the semantic space of the model
and training the index for semantic representation filtering. (2) In
the inference phase, the system only analyzes logs generated in
real-time by the SUT without coverage labels.

Log Re-Templating. During each iteration of the process, log
modeling continuously collects logs from the log collector through-
out the execution. The collected logs are then undergo a process of
re-templating into standardized templates. This log re-templating
process ensures uniformity and consistency in log format. To en-
hance the robustness and efficiency of the modeling process, and
to counteract the impact of numerical instability and recurrent pat-
terns in the logs. This step is crucial for maintaining the integrity
of the model in the face of such variances. Figure 1 shows a raw
example log from the CoAP protocol, containing details such as
time, IP address, port, and byte count, along with a repeated display
of transport information (Lines 3-6).

1 %d:%d:%f DEBG EVENT: COAP_EVENT_TCP_CLOSED

2 %d:%d:%f DEBG EVENT: COAP_EVENT_SESSION_CLOSED

3 %d:%d:%f DEBG %a:%d <-> %a:%d TCP: send %d bytes

4 %d:%d:%f DEBG EVENT: COAP_EVENT_SESSION_CONNECTED

5 %d:%d:%f DEBG %a:%d <-> %a:%d TCP: recv %d bytes

6 Exception: timed out

7 CORE DUMP: %d.%d.%d#%d-%d-%d

Figure 3: A libcoap (CoAP) log example after re-templating

To address numerical instability issues, we have introduced a
regex-based matching and replacement method, and the rules are
shown in the Table 2. The primary sources of numerical instability
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are typically items 1, 2, and 3. The separation of hexadecimal and
decimal expressions is due to their different applications. Items
4, 5, and 6 aim to reduce instability caused by random network
and file addresses in multiple tests. Item 7 addresses the impact
of random symbols on the NLP process. To address the issue of
repetitive logs, we have implemented a neighbor merging technique.
After the above replacements are complete, if there are at least two
consecutive logs that are identical, they are merged into a single
entry. Upon completion of the numerical stability and loop printing
processing, the logs will be as concise as shown in Figure 3, thus
facilitating more efficient modeling in subsequent stages.

Table 2: Log templating target and replacement

Target Replaced By
1 Integers %d
2 Floats %f
3 Hexadecimal numbers %x
4 IP addresses %a
5 Port %d
6 File paths %p
7 Other symbols, i.e., %?@!#$&* %r

Contrastive Learning.After the re-templating process, the logs
become relatively stable, providing a foundation for further pro-
cessing. The generated templates are then used to train a log model
through contrastive learning. At this stage, the deep learning model
acquires semantic information from the logs under a self-supervised
signal, including details about events, actions, and anomalies. This
method enables the model to effectively understand and represent
the nuanced information contained in the unstructured log data.

As highlighted in section §2, protocol implementations have het-
erogeneous protocol formats. To effectively navigate these complex
rules, we employ Natural Language Processing (NLP) methods for
modeling, which are better suited to adapt to such subtleties. Our
proposed methodology utilizes a pre-trained BERT [13] as the base
model and integrates contrastive learning [8] to further align the
distances between embedding vectors with the differences in code
coverage. This approach leverages BERT’s language understand-
ing capabilities to effectively process the logs. Using contrastive
learning, we introduce self-supervised signals as cues, allowing the
distances within semantic representation to represent differences in
code coverage. It is used to pair the embedding information output
by BERT with the code coverage bitmap of the SUT at the time
of protocol generation, forming a single training sample. The loss
function is constructed using a triplet formulation:

𝐿(𝑠𝑎, 𝑠+, 𝑠−, 𝜃 ) = max (0,𝑚 + 𝜃 (𝑠𝑎, 𝑠+) − 𝜃 (𝑠𝑎, 𝑠−))

𝑠𝑎 denotes the current log sample, 𝑠+ represents a sample sharing
the same coverage with 𝑠𝑎 , and 𝑠− signifies a randomly selected
sample possessing different coverage. The function 𝜃 (𝑎, 𝑏) calcu-
lates the distance between samples 𝑎 and 𝑏 after mapping them
into the embedding space. The margin𝑚 is employed to regulate
the distance between 𝑠+ and 𝑠− . It allows our model to further align
the distance of log embeddings with the distance of code coverage.
Furthermore, contrastive learning eliminates the need for manual
annotation, thereby increasing the efficiency of model training.

Contrastive learning and coverage labels are used only during
the training phase, to develop a model that further aligns log embed-
ding information with code coverage. In subsequent applications,
it is sufficient to set the model parameters and perform inference
directly on the model. This component is deactivated during the
inference phase to maximize efficiency, ensuring that the log model
generated by the contrastive learning component is used effectively

Model Inference.Model inference occurs in two distinct phases:
(i) During the training phase, the log model from the current it-
eration of contrastive learning is used for inference to generate
training semantic representation. These semantic representation
are then used to train the semantic representation filter index and to
generate packets in the downstream guided fuzzing module. (ii) In
the inference stage, the fully trained log model developed by con-
trastive learning is used for inference. No further updating of the
model is required at this stage. The logs for inference are obtained
exclusively from the SUT in real-time.

As shown in Figure 4, the semantic representation, a vector rep-
resentation of logs, is conceptualized as a high dimensional tensor
of the form R𝑛×𝑒𝑚𝑏𝑒𝑑 , where 𝑛 is the number of log entries gener-
ated by SUT, meaning that each tensor can be associated with a
distinct log entry. Meanwhile, 𝑒𝑚𝑏𝑒𝑑 represents the dimensionality
of the semantic space R𝑒𝑚𝑏𝑒𝑑 in which each log entry is modeled.
Overall, this tensor represents the collective embedding of all logs
during a single interaction.

∈

∈ ℝ

Semantic Representationn

Sep 27 08:17:01.422 DEBG ***EVENT:
COAP_EVENT_SERVER_SESSION_NEW

Modeling

embed

n × embed

ℝ

Figure 4: The shape of the semantic representation consists
of 𝑛 tensors, each of which is an 𝑒𝑚𝑏𝑒𝑑-dimensional tensor

Semantic Representation Filtering. Semantic representation
filtering is an essential part of the log analysis process, designed to
filter out logs in the embedding space that are too close together.
By filtering and removing redundant states, it reduces instability
in the subsequent use of the semantic representation. This process
effectively extracts a collection of different semantic representation
vectors, which ultimately form a semantic coverage for subsequent
packet generation. As shown in Figure 5, the semantic coverage
dynamically maintains a subset of the semantic representation con-
sisting of vectors that are distinct from each other. In subsequent
scheduling processes, it helps guide the packet generation to un-
cover states that are markedly different from the current ones.

During the training phase, semantic representation filtering uses
all collected semantic representation for index training. This en-
sures that subsequent phases of storage and retrieval during infer-
ence are highly efficient. During the inference phase, as shown in
Figure 5, semantic representation filtering decomposes logs asso-
ciated with multiple semantic representation entries and queries
each corresponding semantic representation against the semantic
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coverage. If any queried semantic representation scores fall below
a certain threshold, they are not stored in the semantic coverage;
otherwise, they are added. Given the extremely sparse nature of
this semantic space, the threshold for error tolerance in selection is
quite broad. Consequently, the process of deciding whether to store
logs in the semantic coverage effectively completes the semantic
representation filtering. Logs retained in the semantic coverage
represent those that are significantly away from the current state,
reflecting an approximation of code coverage and diverse semantics.

Semantic CoverageSemantic Representation

Sep 27 08:17:01.423 DEBG ***127.0.0.1:5783 <->
127.0.0.1:48090 TCP : session connected

Sep 27 08:17:01.423 DEBG ***EVENT:
COAP_EVENT_SESSION_CONNECTED

Sep 27 08:17:01.422 DEBG ***EVENT:
COAP_EVENT_SERVER_SESSION_NEW

Sep 27 08:17:01.411 DEBG ***127.0.0.1:5783 <->
127.0.0.1:48060 TCP : session disconnected

(COAP_NACK_NOT_DELIVERABLE)

Sep 27 08:17:01.411 DEBG ***EVENT:
COAP_EVENT_TCP_CLOSED

Sep 27 08:17:01.411 DEBG ***EVENT:
COAP_EVENT_SESSION_CLOSED

Figure 5: The semantic coverage dynamically maintains a
subset of semantic representation

3.2 Guided Fuzzing
After completing training with the Log Modeling module, a trained
log model and a semantic coverage are obtained. The former con-
tinuously transforms real-time logs generated by the SUT into
semantic representation, while the latter preserves the current log
information. To effectively use the information from these two com-
ponents for fuzzing, the guided fuzzing module has been designed.

Semantic Representation Estimating. It is a critical step in the
log analysis process where the goal is to map the high-dimensional
vector representations extracted in semantic representation to a
number.This transformation is pivotal for the packet scheduling
phase, where a numerical rating is necessary to construct extraction
probabilities. To address the challenges of efficiently generating data
packets from high-dimensional data, we have introduced a mapping
technique that effectively uses the semantic coverage to ensure that
the generated values accurately reflect the semantic information
of the logs corresponding to the current packets. This technique
facilitates the precise translation of complex data structures into
actionable and meaningful packet data, optimizing the process for
accuracy and efficiency.

In practice, each semantic representation is cross-referencedwith
the semantic coverage. If no similar vector is found, the correspond-
ing semantic representation is added to the semantic coverage, and
the number of additions is recorded as the semantic representation’s
rating. The magnitude of this rating reflects the number of new
log entries covered by the semantic representation, meaning that
a higher rating indicates more new log information is covered. In
addition, the semantic representation estimating process transmits
its evaluation results to the packet pool and facilitates the provision
of historical guidance for subsequent scheduling decisions.

Packet Pool and Scheduling. A packet pool is designed to
use the results of semantic representation estimation during packet

1 2 3 4 5

2' 3'
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Figure 6: The structure of the packet pool is composed of
multiple packet sequences

generation. Packet scheduling aims to optimize the selection and se-
quencing of packets based on insights from the evaluations, which
is essential for the construction of effective packet sequences. Tradi-
tional fuzzing methods, such as AFL[19], use seed queue scheduling
to determine the next seed for mutation. Similarly, our packet pool
represents a collection of packet sequences, where each seed corre-
sponds to an independent packet session. At the start of a session
with SUT, packet scheduling extracts seeds from the packet pool
based on their ratings.

The structure of the packet pool is shown in Figure 6. If a packet
P is mutated to P′, and sending P′ generates a rating greater than
0, then P′ is added to the packet pool. Also, P′ is connected with
a solid line to the previously sent packet P𝑝𝑟𝑒𝑣 , and with a dashed
line to the subsequent packets of P. For example, the sequence
(1 2 3 4 5) represents the initial seed. The sequence (1 2′ 3 4 5) is
generated by mutating p2, resulting in a rating greater than 0. In
this sequence, after sending p1 and p2′, if mutating and sending p3
results in a rating greater than 0, then p3′ is added to the pool. P3′
is connected to p2′ with a solid line and to p4 with a dashed line.

By exploiting the structure of the packet pool, we have designed
a packet generation algorithm 1, to efficiently generate packets
based on their ratings. The packet generation starts with the packet
pool and first computes a path, which represents a basic sequence
of packets. Before transmitting this packet sequence, mutations
are applied. If a mutated packet generates a rating > 0, it is kept in
the packet pool. The process of calculating a path is described in
(lines 13-18). For each selected packet node 𝑃 , a child packet node is
selected based on the ratings and added to the path. This iterative,
weighted selection process ensures that the path is likely to consist
of sequences with higher ratings while preserving the possibility
of exploring paths with lower ratings. After packet scheduling, and
before packets are sent to the SUT by the Packet Sender, a decision
is made on whether to mutate the packets. If a packet is mutated
and the mutated version gives a rating greater than zero, it is then
inserted into the packet pool (line 10). After acquiring a mutated
packet 𝑃 ′ with a rating greater than 0, it is necessary to insert 𝑃 ′
into the packet pool. The insertion method, as shown in Figure 6.
In addition, it is imperative to update the rating of the packet 𝑃 and
its ancestors, where the update is done by selecting the maximum
value at each node with the new rating R.



Logos: Log Guided Fuzzing for Protocol Implementations ISSTA ’24, September 16–20, 2024, Vienna, Austria

Algorithm 1: Packet Generation
Input :Packet Pool Q

1 Algorithm
2 path← CalculatePath(Q), mutated← 0
3 foreach Packet 𝑃 of path do
4 if mutated < limit and Random() < P𝑀𝑈𝑇𝐴𝑇𝐸 then
5 𝑃 ′ ← Mutate(𝑃)

6 resp← Send(𝑃 ′)

7 R ← CalculateRating(resp)
8 if R > 0 then
9 mutated← mutated + 1

10 InsertPacket(𝑃 ′ , R)

11 else
12 Send(𝑃)

13 Procedure CalculatePath(Q)
14 𝑃 ← Root(Q)
15 while 𝑃 do
16 𝑃 ← ChooseNextPacket(𝑃)

17 path← path ∪ 𝑃

18 return path

4 Evaluation
In this section, we implement and evaluate Logos to answer the
following two research questions:
RQ1 How does the performance of Logos compare to state-of-

the-art protocol fuzzers? (§4.3)
RQ2 How does each component contribute to the effectiveness

of Logos? (§4.4)

4.1 Implementation
We develop a prototype of Logos in Python 3 to demonstrate the
effectiveness of the proposed approach.

Log Modeling. Using PyTorch 2, we develop a log model and
train it on the Sentence Transformers framework, a Python frame-
work for state-of-the-art sentence embedding, to ensure compatibil-
itywith its interface. Ourmodel structure is based on nli-distilroberta-
base-v2 [47] and with a 250 dimension of semantic space. Given the
log file with the corresponding coverage bitmap, we add a contrast
learning layer(with a margin of 1.0) after the base model and use a
loss mentioned in §3.1. We use ptrace[27] to get a transient code
coverage bitmap as the coverage label. Then we use faiss[17], a
library for efficient similarity search and clustering of dense vec-
tors, to build a vector index with an inverted file with an exact
post-verification algorithm to filter out similar embeddings(with
Euclidean distance as the metric of distance) and emit a semantic
coverage.

Guided Fuzzing. To exploit the results of the protocol modeling
module, we implement a protocol fuzzing framework using Python
3 and Scapy, a Python framework that allows the user to send, sniff,
analyze, and forge network packets. First, we implement the packet
mutation operators, including number, string, list, enumeration,
and length, using Scapy’s field identification support. Second, fol-
lowing the strategy in §3.2, we implement the packet pool with the

mutation operators. Using the packets generated by the mutation
operators and the packet pool, we construct a runtime to collect
logs, generate packets, send packets, and monitor vulnerabilities
with SUT. Besides the widely used local process monitoring, we
also implement several network monitors that can remotely detect
system crashes to support black-box fuzzing.

4.2 Experiment Setup
Dataset. The dataset D used for contrastive learning training is
derived from the set of protocol implementations P as selected
in §4.2. For the protocols D𝑝 of each protocol implementation 𝑝 ,
we have D = {D𝑝 | ∀𝑝 ∈ P}. For the modelM𝑝 corresponding to
each protocol implementation 𝑝 , the datasetD−{D𝑝 } is used. This
approach aims to reduce the dependency of our model on specific
protocols. The methodology for collecting protocols involves using
basic examples provided by the protocol implementations.

Subjects. Our subject selection criteria prioritize diversity in
protocol types, implementations with different protocol formats,
and implementations with different log statement coverage (includ-
ing the function coverage and line coverage of the log statement).
Guided by the selection criteria outlined, eight protocol implemen-
tations were identified, as shown in Figure 7. The protocols selected
for this study cover several categories, including security, mes-
saging, transport, and industrial control systems. These protocols
are not only emblematic of their respective categories but are also
widely used in real-world scenarios. And to test the effectiveness of
Logos on different implementations of the same protocol, we specif-
ically chose three different implementations of the DNS protocol:
dnsmasq [51], dnspod-sr [14], and smartdns [46]. The function
coverage and line coverage of the log statement in these selected
subjects are also quite diverse, ranging from 16.21% to 32.92% and
from 1.66% to 19.64%, respectively.

Compared Fuzzers. Since Logos is a protocol fuzzer, we se-
lect four typical protocol fuzzers, Peach [16], AFLNet [45], Boo-
Fuzz [26] and ChatAFL [36], prevalent in academia and industry
as baselines. We used server utilities associated with SUTs to eval-
uate the effectiveness of various protocol fuzzers. Adapting these
fuzzers to our chosen subjects involved a meticulous configura-
tion process, closely following the guidelines provided in their
tutorials[16, 26, 36, 44]. This configuration was two fold: (1) For
generation-based fuzzers Peach and BooFuzz, we developed a de-
tailed test model for each SUT. The test model consists of two key
aspects: the data model, which outlines the format and types of pro-
tocol messages, and the state model, which defines their sequence
and state transitions within a session. To ensure the fairness of the
mutation-based fuzzer, we chose the model corresponding to the
seed that the mutation-based fuzzer is equipped with. For the data
model, we chose the message type contained in the seed; for the
state model, we used the state transition contained in the seed. The
preparation of the data model and the state model was done ac-
cording to the Request for Comments(RFC). (2) For mutation-based
fuzzers, including AFLNet, ChatAFL, and Logos, our approach was
to prepare an initial set of seed inputs. These seed inputs were
collected by executing the off-the-shelf utilities in the SUT and
simultaneously capture the network traffic to prepare the initial
packet seeds. This corpus of initial inputs is critical to the effective
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mutation-based fuzzing process. For protocols supported byAFLNet
and ChatAFL, the default configuration was used. At the same time,
we extend AFLNet and ChatAFL to support the CoAP, MQTT, and
RTPS protocols with the corresponding protocol specifications and
the tools’ extension tutorials.

Experiment Settings. Each fuzzing tool was run on the se-
lected projects for 24 hours to account for the inherent variability
in fuzzing performance. This duration was chosen to provide a
comprehensive evaluation period for each tool. Recognizing the
impact of randomness on the results, we replicated each 24-hour
experiment five times. This repetition was critical to ensure the
statistical significance of our results, as described in reference [29].
Each fuzzing session was run in a standardized environment. Specif-
ically, we used Docker containers, each configured with identical
resources: 1 CPU core and 1 GB of RAM. This uniform setup was
essential to ensure that any observed differences in the performance
of the fuzzing tools were due to their inherent characteristics rather
than variations in the test environment.

4.3 Comparison with Prior Work
We evaluate the effectiveness of Logos by comparing its code cover-
age and the number of unique bugs detected against those achieved
by existing state-of-the-art protocol fuzzers.

Code Coverage. Given the variety of fuzzing methodologies
being compared, the adoption of consistent and fair evaluation
metrics is critical. Branch coverage is widely accepted and used
in software testing to evaluate the effectiveness of fuzzers. It pro-
vides a quantifiable measure of the extent to which fuzzers test
different code paths in a program. Therefore, we chose it as the
primary metric for comparing the effectiveness of different fuzzers.
To accurately measure branch coverage, we used LLVM Sanitizer-
Coverage [31]. This tool facilitates the calculation of the unique
branches covered by each fuzzer in the target program. In our re-
search, this approach provided standardization and objectivity in
evaluating and comparing the performance of different fuzzers.

To ensure the reliability of the experiment, each fuzzer was run
five times on the protocol implementations under test. Figure 7 high-
lights the 24-hour average branch coverage and its range of Logos
and four compared fuzzers across eight protocol implementations
through different colors. On average, Logos outperformed AFLNet,
Peach, BooFuzz, and ChatAFL in branch coverage by 39.28%, 40.93%,
106.19%, and 26.74%, respectively, within five 24-hour test runs. In
all cases, the minimum branches achieved by Logos exceed the max-
imum branches of the previous approaches. The Mann-Whitney U
test (p<0.01) recommended by Klees et al. [29] and Vargha-Delaney
(>0.7) [5] verified the statistical significance of these results, indi-
cating that the superiority of Logos branch coverage is not caused
by random changes.

For the DNS protocol, we deliberately chose three different imple-
mentations to observe the behavior of Logos under different imple-
mentations of the same protocol. We found that for DNSPod-sr and
smartdns, the two projects with low log statement line coverage,
only 1.66% and 5.74% respectively, Logos’s exploration of semantic
diversity allowed the potential increase in code coverage to be mit-
igated. And for dnsmasq, although it did not significantly improve
coverage, it found new CVEs that these fuzzers did not find because

of its exploration of log semantics. For Mosquitto, libcoap, and
CycloneDDS, it is difficult to test the deeper logic, since these pro-
tocols are concerned with special semantic sequences rather than
sequences of states, and neither the expert knowledge fuzzers nor
the code instrumentation fuzzers generate packets at the semantic
level. However, Logos compensates well for this by introducing
the packet pool, which makes it possible to generate packets in the
direction of exploring richer log semantics.

For tools based on the code instrumentation technique, including
AFLNet and ChatAFL, since code coverage is treated the same
for all branches, it may take too much time to test meaningless
branches. It is more efficient to test a semantically relevant subset
of code coverage with high weights. For the expert knowledge-
based fuzzers Peach and BooFuzz, the data model and state model
written by experts have a large generation space but a limited
semantic space, and it is difficult to break through the coverage
to the bottleneck due to the lack of SUT’s feedback to guide it.
Especially on DNS protocol, due to its protocol message format
being simple, and expert knowledge-based fuzzers are difficult to
model complex semantics, the performance on DNS and coverage-
guided tools produce differences.

Comparing AFLNet, Peach, BooFuzz, and ChatAFL, Logos can
approximate the effect of the existing SOTA works of code branch
coverage by exploring the variety of protocols implemented by the
protocol and without intrusive and expert knowledge. And because
Logos gives extra weight to log semantics, it actually produces
better results than existing tools in OpenSSL and Mosquitto.

Capability of Bug Discovery. To fairly compare the ability of
each tool to trigger vulnerabilities, we chose the number of memory
security issues as the unified metric. Traditional protocol fuzzing
test tools have different abilities to monitor vulnerabilities. For
example, Peach mainly detects vulnerabilities through active port
scanning or ICMP ping. However, this approach may not trigger
all types of vulnerabilities, such as buffer overflows, and other
vulnerabilities that do not cause the program or host to crash may
not be detected. Therefore, we choose AddressSanitizer [49] and
UndefinedBehaviorSanitizer [10] (referred to as ASan and UBSan,
respectively) as metrics to detect individual SUT vulnerabilities.

Logos has discovered 12 new vulnerabilities in widely used
implementations of protocols, resulting in the assignment of 9
CVE identifiers through a coordinated disclosure process. Some
SUTs have been extensively tested. In particular, implementations
such as Dnsmasq[21] and libcoap[20] have been integrated into
OSS-Fuzz[22], highlighting the ability of Logos to generate error-
triggering packets. Table 3 summarizes the vulnerabilities discov-
ered by Logos and the ability of other fuzzers to detect these prob-
lems. Notably, Peach, AFLNet, BooFuzz, and ChatAFL were only
able to trigger a subset of the vulnerabilities found by Logos. The
concentration of vulnerabilities identified by these tools suggests
that the reasons for their discovery are likely to be similar. Con-
versely, the CVE in dnsmasq, introduced as early as 2021 and tested
by OSS fuzz, went undetected because of their deep logical com-
plexity. Fuzzers that rely on expert knowledge typically do not
model this complex logic. In addition, fuzzers that use code instru-
mentation often miss this deeper logic because they do not even
improve coverage, leading to its neglect. However, by focusing on
exploring broader log coverage, Logos facilitates the formation of
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Table 3: Previously unknown vulnerabilities exposed by Logos and the statistics of the compared fuzzers

Subject Information AFLNet Peach Boofuzz ChatAFL Logos Status
libcoap Remote DoS attack caused by the coap_context_t. • CVE-2023-51847
dnsmasq Malformed data in forward_query causes integer overflow. • CVE-2023-49441
dnspod Global buffer overflow occurs in create_new_log function. • CVE-2024-22524
dnspod SEGV caused by using strcpy for an abnormal send_buf. • CVE-2024-22525
robdns lock size overflow causing heap information leakage. • CVE-2024-24192
robdns Undefined behavior caused by misaligned type casting of &buf. • • • • • CVE-2024-24195
robdns Undefined behavior caused by applying zero offset to null pointer &token. • CVE-2024-24194
robdns parser size overflow causing in global information leakage. • CVE Requested
smartdns Undefined behavior caused by misaligned type casting of &sa_family_t • • • • CVE Requested
smartdns Undefined behavior caused by misaligned type casting of &buffer • • • • • CVE-2024-24199
smartdns Accessing of a misaligned variable sockaddr_storage • • • • • CVE-2024-24198
smartdns Undefined behavior caused by misaligned type casting of &buffer • • • • • CVE Requested

SUM 5 5 4 5 12 9 CVEs
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Figure 7: The number of unique branches covered by different fuzzers on each protocol server over ten 24-hour runs.
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Figure 8: Ablation experiment for Logos, the number of unique branches covered by different variants of Logos on each protocol
implementation over five 24-hour runs.

new semantic sequences logs that generate novel log coverage, even
without increasing the overall code coverage. This approach allows
the guided fuzzing module to pay more attention to the generation

of such message types, improving the ability to detect complex
logical errors that other tools may miss.

Answer to RQ1. Overall, Logos can achieve higher coverage
and discover more vulnerabilities than existing state-of-the-art
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protocol fuzzers, which means that Logos can perform well even
under non-intrusive conditions.

4.4 Ablation Studies
We use ablation experiments to investigate the contribution of
individual components to the effectiveness of Logos. Specifically,
we will use a version of Logos_rand that is generated without
Logos by bootstrapping randomized packets, and a version of Lo-
gos_basemodel that has only pre-trained models but has not done
any comparative learning as comparisons for the ablation exper-
iments. We will illustrate the contribution of the different com-
ponents of Logos to the overall validity from the following two
perspectives: (i) the validity of the most central step of the log
modeling module, contrast learning and model inference, is tested
by ablating the experimental observations of the coverage perfor-
mance of both Logos and Logos_basemodel; and (ii) the validity
of guided fuzzing, is demonstrated by observing Logos_basemodel
and Logos_rand comparisons, as well as the relationship between
coverage growth and rating growth to demonstrate the effective-
ness of semantic representation estimation. It is the most central
step of guided fuzzing.

Figure 8 presents the outcomes of the ablation experiments. Lo-
gos always outperforms Logos_basemodel and Logos_rand in the
above experiments, and even though Logos_basemodel has already
improved over Logos_rand, the average improvement brought
about by the introduction of contrastive learning can also reach as
high as 44.17%, and for the item with the highest improvement, the
introduction of contrastive learning brought about a 92.7% improve-
ment. Such a fact fully proves the effectiveness of the contrastive
learning step. For the dnsmasq project, it has been observed that the
results of various versions of Logos are closely aligned. Similarly, it
is noted that the results of different tools depicted in Figure 7 also
show comparable closeness. This phenomenon suggests a tendency
towards coverage saturation within the dnsmasq project. Conse-
quently, it is concluded that coverage alone may not effectively
reflect the testing effectiveness of tools in this project, especially
given that only Logos has identified the CVE in the dnsmasq project.

To examine the relationship between coverage and ratings, their
association was quantified using the Pearson correlation coefficient.
The results showed a positive correlation between coverage and
ratings (p<0.01), indicating a significant association. This correla-
tion suggests that guidance based on ratings can improve coverage,
similar to the improvements with coverage-based guidance.

Answer to RQ2. The ablation studies and the relationship be-
tween rating and coverage growth demonstrate that the proposed
log modeling significantly contributes to the overall performance.
The positive correlation between rating and coverage also suggests
that modeling results can effectively guide fuzzing.

5 Discussion
Log Accessibility. The effectiveness of Logos depends on the
availability of log information. Since the protocol implementations
are generally employed in critical areas and require rigorous testing,
they are often equipped with log information, which is essential for
debugging and maintenance. Therefore, our method is applicable to
most protocol implementations. Besides, the log information can be

obtained from various sources, such as the console, log files, serial
ports, or network interfaces. Even for embedded systems such as
IoT devices, developers often provide the way to access logs in the
official documentation. For example, for the Azure IoT devices, the
logs can be obtained through the logtrace option provided by the
Azure IoT Hub client [37].

Log Quality. The quality of the log information is also a critical
factor in our method. In the case of low coverage of log statements,
we try to compensate for the lack of code coverage approximation
by exploring the semantic diversity of logs. Even if several sibling
branches lack log coverage, it is feasible to explore more sibling
branches if specific events, operations, or exceptions in the previous
branches can shed light on the branch’s transition logic. For the case
where logs lack semantics, we use code coverage approximation as
a basic form of log semantics, and as long as there is no shortage of
log statements in the project, even lower-quality logs can improve
the code coverage approximation. For the case of simultaneous
low log statement coverage and lack of semantics, based on Figure
8, we can still improve results beyond the random approach. For
cases where logs are unavailable or extremely inefficient, we can
use system call trace tools (e.g. strace[28]) to get logs of system
calls, or corresponding syslog/device logs as alternatives. This can
be discussed as future work in the revision.

Overhead. Traditional intrusive methods(e.g. instrumentation-
based approaches) impose performance overhead on the SUT. In
contrast, Logos’ non-intrusive approach imposes no overhead on
the SUT itself. Instead, we use log analysis to replace the instru-
mentation to obtain runtime execution information.

Table 4 count the execution time ratio of the log modeling com-
ponent as follows. As shown in the above experiments on fuzzing
rounds, even though log modeling introduces some execution time,
it does not affect the fuzzing throughput because log model analysis
shares the time waiting for the server’s response.

Table 4: Execution time ratio of the log modeling component

BoringSSL libcoap OpenSSL CycloneDDS

Texec/Ttotal 19.7% 2.2% 2.1% 3.4%

Mosquitto Dnsmasq DNSPod-sr smartdns

Texec/Ttotal 2.3% 2.2% 2.2% 2.2%

Dataset Impact. Table 5 show the impact of the dataset on the
the model, we constructed datasets of 0/10/100/300(The size of 300
is close to the experimental scale) logs. We use these datasets to
train our semantic model and show the average code coverage that
Logos can be achieved in the 24-hour fuzzing campaign as follows.

As the dataset size becomes larger, the coverage of each under-
test target increases accordingly, which means that the accuracy
of the semantic representation improves. For most targets, the
coverage improvement from 0 to 100 is greater than that from
100 to 300, which means that the effect of data size on the model
gradually stabilizes after reaching a certain size.
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Table 5: Dataset size impact to the semantic model

BoringSSL libcoap OpenSSL CycloneDDS

0 3605 1067 1298 307
10 3655 1087 1308 315
100 4272 1363 1318 397
300 4481 1481 1387 414

Mosquitto Dnsmasq DNSPod-sr smartdns

0 7188 1228 4791 1091
10 7307 1286 4834 1110
100 11071 2213 5504 1776
300 11120 2226 5672 1856

6 Related Work
Protocol Fuzzing. Numerous studies demonstrate the extensive
use of fuzzing in protocol implementation testing [18, 25, 33, 34, 38,
45, 53, 55, 57, 58]. However, traditional protocol fuzzing methods
ignore real-time feedback such as coverage data, packet details, and
log insights, relying instead on rule-based packet delivery. Tools
such as Peach and BooFuzz require up-front state modeling of pro-
tocol packets, which requires expert knowledge or protocol reverse
techniques such as DynPRE[32] to model the protocol details. The
most common approach to incorporating feedback into fuzzing is to
use coverage feedback to guide packet generation, using methods
such as source code instrumentation [35, 45], dynamic instrumenta-
tion via QEMU [15], and compile-time coverage feedback via Intel
PT [48]. Despite the effectiveness of coverage feedback in reflecting
code state, it introduces intrusiveness (in the case of source code
instrumentation) or significant overhead (for dynamic instrumenta-
tion with QEMU), resulting in potential performance degradation of
the SUT and additional recompilation and customization costs. An
alternative method of utilizing feedback is to introduce real-time
state information. For instance, AFLNet allows to employ man-
ually crafted state regions to explore the state space [45], while
SGFuzz[6] guides fuzzing through program state information ob-
tained through source code analysis, and StateAFL[38] identifies
SUT states through runtime memory conditions obtained through
source code instrumentation. Although state-aware approaches
can accurately capture state information, they often require ex-
pert knowledge or source code. Integrating log feedback, Logos
effectively captures real-time information during protocol fuzzing
and removes the necessity for modifications to the SUT or expert
modeling knowledge. This non-intrusive feature allows Logos to
easily adapt and test the SUT, highlighting the benefits of using
real-time feedback in protocol fuzzing without the drawbacks of
other feedback mechanisms.

While there has been significant advancement in techniques
that guide the fuzzing process [11, 24, 41, 50, 52, 54, 56], many of
these methods recourse to potentially invasive information, such
as memory accessing and instrumentation, which can can brings
challenges to seed scheduling. To address these complexities, [9]
introduced multiple fuzz queues to handle the different packet
formats at different stages. AFLGo [7] uses a simulated annealing
algorithm to optimize seed scheduling dynamically, improving seed

selection and prioritization through this heuristic approach and
allowing targeted exploration of specific program segments. [30]
optimizes the scheduler’s decisions by reducing excessive testing of
specific seeds. Building on these developments, Logos has developed
a packet pool structure tailored for protocol fuzzing, as shown
in Figure 6. This structure not only allows for effective unified
testing of packet sequences but also incorporates unstructured
log information into the generation process on a per-packet basis,
demonstrating a strategic approach to overcoming the challenges
associated with seed scheduling and information invasiveness.

Log Based Testing. The log information utilization has become
a common practice in software testing, and numerous studies em-
ploy log data to identify bugs in the SUT. For example, research
[3, 4] has demonstrated the effectiveness of analyzing event logs
to check for errors indicated by program execution. While such
analyses are adept at detecting vulnerabilities, they focus mainly
on the passive detection of errors in running programs. A more
proactive approach is presented in [43], which integrates logs with
fuzzing to determine the position of the fuzz layer within the sys-
tem. This integration allows for an active form of fuzzing, although
it still relies on random generation with limited information. As an
evolution of this methodology, [2] extracts log information to guide
the generation of appropriate payloads, significantly improving the
accuracy of fuzzing. This approach requires the manual design of
constraint classifications and imposes stringent requirements on
the log format. While these studies highlight the critical role of
log information, they also expose the invasive and labor-intensive
aspects of its application in fuzzing, reflecting a lack of scalability.
GLeeFuzz[42] extracts specific types of exception information from
specific types of logs (WebGL), which is difficult to use with hetero-
geneous unstructured logs for protocol testing. Logos, in contrast,
proposes a unified model for log information that extracts feedback
to guide fuzzing. This unified modeling approach not only reduces
dependency on specific formats but also captures rich feedback
from the SUT [23]. By leveraging log data at minimal cost, Logos
facilitates effective testing and demonstrates a more scalable and
less expert-intensive methodology for integrating fuzzing with log.

7 Conclusion
In this paper, we introduce Logos, a log-guided protocol fuzzer that
uses unified log modeling and guidance to detect vulnerabilities
in protocol implementations. It uses semantic information from
unstructured logs to dynamically maintain semantic coverage and
applies the proposed packet generation algorithm to efficiently
generate packets with the concerning of log diversity. Compared to
state-of-the-art protocol fuzzers, Logos achieves higher coverage
and detects more bugs in real-world protocol implementations.
Logos is a non-invasive protocol fuzzer that requires no expert
knowledge or instrumentation.
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