
Mozi: Discovering DBMS Bugs via Configuration-Based
Equivalent Transformation

Jie Liang∗
KLISS, BNRist, School of Software,

Tsinghua University
Beijing, China

Zhiyong Wu∗
KLISS, BNRist, School of Software,

Tsinghua University
Beijing, China

Jingzhou Fu
KLISS, BNRist, School of Software,

Tsinghua University
Beijing, China

Mingzhe Wang
KLISS, BNRist, School of Software,

Tsinghua University
Beijing, China

Chengnian Sun
Cheriton School of Computer Science,

University of Waterloo
Waterloo, Canada

Yu Jiang†
KLISS, BNRist, School of Software,

Tsinghua University
Beijing, China

ABSTRACT

Testing database management systems (DBMSs) is a complex task.
Traditional approaches, such as metamorphic testing, need a precise
comprehension of the SQL specification to create diverse inputs
with equivalent semantics. The vagueness and intricacy of the SQL
specification make it challenging to accurately model query se-
mantics, thereby posing difficulties in testing the correctness and
performance of DBMSs. To address this, we propose Mozi, a frame-
work that finds DBMS bugs via configuration-based equivalent
transformation. The key idea behind Mozi is to compare the results
of equivalent DBMSs with different configurations, rather than
between semantically equivalent queries. The framework involves
analyzing the query plan, changing configurations to transform the
DBMS to an equivalent one, and re-executing the query to compare
the results using various test oracles. For example, detecting differ-
ences in query results indicates correctness bugs, while observing
faster execution times on the optimization-closed DBMS suggests
performance bugs.

We demonstrate the effectiveness of Mozi by evaluating it on
four widely used DBMSs, namely MySQL, MariaDB, Clickhouse,
and PostgreSQL. In the continuous testing, Mozi found a total
of 101 previously unknown bugs, including 49 correctness and
52 performance bugs in four DBMSs. Among them, 90 bugs are
confirmed and 57 bugs have been fixed. In addition, Mozi can be
extended to other DBMS fuzzers for testing various types of bugs.
With Mozi, testing DBMSs becomes simpler and more effective,
potentially saving time and effort that would otherwise be spent
on precisely modeling SQL specifications for testing purposes.

∗Jie Liang and Zhiyong Wu contributed equally to this work.
†Yu Jiang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639112

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

DBMS Testing, Configuration, Test Oracle

ACM Reference Format:

Jie Liang, ZhiyongWu, Jingzhou Fu, MingzheWang, Chengnian Sun, and Yu
Jiang. 2024. Mozi: Discovering DBMS Bugs via Configuration-Based Equiv-
alent Transformation. In 2024 IEEE/ACM 46th International Conference on

Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3597503.3639112

1 INTRODUCTION

Database Management Systems (DBMSs) serve as the backbone
for various applications, ranging from simple web applications to
complex, large-scale enterprise systems [11, 15, 58]. It is crucial to
ensure the correctness, reliability, and performance of DBMSs [4, 8,
10, 40, 44]. Metamorphic testing is a prevalent approach to testing
DBMS, which focuses on building metamorphic relations [5, 6, 32,
46, 47, 49]. These relations represent mathematical relationships be-
tween the input and output of a software system, which should hold
even when the input undergoes certain changes or transformations.
One common way of building metamorphic relations for DBMSs is
by creating different SQL queries with equivalent semantics and
comparing their outputs. For instance, consider the SQL queries
“SELECT 1+1” and “SELECT 2.” Although they have different syn-
tactic representations, their semantics are equivalent, as both yield
the same result.

To identify metamorphic relations, a precise comprehension of
the SQL specification is necessary [17, 18, 36]. However, the inherent
vagueness and intricacy of the SQL specification make accurately

modeling the semantics of queries difficult.Moreover, it often requires
a high degree of customization for the specific DBMS being tested.
Specifically, the complexity of the ANSI SQL standard [2, 13] and
per-DBMS extensions pose a significant challenge for accurately
modeling SQL semantics and building metamorphic relations. For
example, consider the handling of NULL values in SQL queries. The
behavior of NULL values can be subtle and vary across different
DBMSs. In some systems, NULL values are treated as equivalent
to an empty string or zero, while in others they are treated as a

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Chengnian Sun, and Yu Jiang

distinct value that is neither greater than nor less than any other
value [1]. Modeling these differences in SQL semantics is a complex
task that requires a detailed understanding of the specific features
and behaviors of each DBMS.

To address the problem, we present Mozi, a framework that
discovers DBMS bugs via configuration-based equivalent transfor-
mation as a complement to existing methods. Instead of focusing

on query equivalence, Mozi emphasizes generating equiva-

lent DBMSswith different configurations. This approach allows
Mozi to bypass the need for comprehensive input specificationmod-
eling, making it a more efficient and scalable solution for DBMS
testing. Mozi finds DBMS bugs with three main steps. First, it exe-
cutes a query and records the executed plan on the target DBMS.
Second, Mozi dynamically modifies specific configurations within
the DBMS based on the execution plan on-the-fly, such as optimiza-
tion strategies, to create a different instantiation of the original
version that is equivalent to the query. Finally, it re-issues the same
query to the weakened DBMS and compares the results. Design-
ing test oracles based on the comparison can assist in identifying
various types of bugs. Discrepancies in the results indicate the pres-
ence of correctness bugs (also known as logic bugs). For example,
if disabling a join optimization leads to different results, it suggests
an error in the optimization’s implementation. On the other hand,
if a DBMS with some optimizations disabled executes queries faster
than the original implementation, it reveals performance bugs, sug-
gesting that these optimizations might be counterproductive. By
concentrating on the equivalent transformation, Mozi alleviates the
complexity involved in modeling the subtle SQL semantics required
by traditional methods.

The main challenge of achieving equivalent transformations is
to identify the pertinent configurations and modify them without
compromising the query’s equivalence. Making arbitrary changes
in configurations closely related to the query execution process may
result in an inequivalent version of the query, whereas modifying
other configurations that are irrelevant to the query execution
process may have no effect. For example, suppose a DBMS has a
configuration that limits the maximum execution time of queries.
If this time limit is shortened arbitrarily, some queries may not
produce any results. However, changing other configurations, such
as the access control for unrelated tables, may not have any impact
on query execution.

We leverage plan-guided transformation to address the challenge.
Most modern DBMSs have the ability to generate an execution plan
for a given SQL query, which details the steps that the DBMS takes
to execute the query [21, 23, 39]. By analyzing the execution plan,
it is possible to identify specific configurations (e.g., optimization
strategies) that the DBMS is using to execute the query. In turn, this
information can be used to change certain configuration param-
eters to create a modified version of the DBMS that executes the
query with different logic but the same results. For example, if the
execution plan shows that a specific optimization is being used to
speed up the query execution, Mozi can disable this optimization
in the modified version of the DBMS. A decrease in response time
suggests the possibility of a performance issue within the DBMS.
By leveraging the introspection capabilities of the DBMS, Mozi can
more easily manipulate and configure the DBMS environment to
test different scenarios and configurations.

We conducted extensive experiments to evaluate the effective-
ness of Mozi in identifying previously undiscovered bugs on four
widely-used DBMSs, namely MySQL [42], MariaDB [34], Click-
house [9], and PostgreSQL [43]. In the continuous testing of three-
weeks, Mozi found a total of 101 previously unknown bugs, includ-
ing 49 correctness and 52 performance bugs in four DBMSs. Among
them, 90 bugs are confirmed and 57 bugs have been fixed. We also
evaluate Mozi against some related state-of-the-art testing tech-
niques. In 24-hour experiments, Mozi covers 64,973, 54,464, 43,236,
28,499, and 14,084 more branches, detects 25, 22, 21, 24, and 26
more bugs than PQS [48], NoREC [46], TLP1 [47], Apollo [25], and
Amoeba [33], respectively. Additionally, we assess the significance
of the plan-guided approach in Mozi and demonstrate its scalability
by applying Mozi to other fuzzers for detecting correctness and
performance bugs. In summary, our paper makes the following
contributions:
• We presentMozi, a framework for identifying DBMS bugs us-
ing configuration-based equivalent transformations, which
complements existing methods such as metamorphic testing.
Mozi aims to generate different DBMS instantiations that
should produce equivalent results when executing the same
SQL query. By designing test oracles based on the result
comparison, we can detect different types of bugs.
• We propose a three-step process for using Mozi to test
DBMSs: first, analyze the execution plan of a generated SQL
query; second, manipulate the DBMS configuration to cre-
ate an equivalent instance; and finally, issue the same SQL
query to the new DBMS and compare the results. We offer
a solution for efficiently creating a differently configured
DBMS by leveraging the analyzed plan of the query to guide
the transformation.
• We implement our approach in Mozi and evaluate it in four
popular DBMSs against other state-of-the-art techniques.
Mozi reported a total of 101 bugs and 90 bugs have been
confirmed as previously unknown bugs. It also found more
branches and bugs than other techniques.

2 BACKGROUND AND MOTIVATION

DBMSandConfiguration.DatabaseManagement Systems (DBMSs)
refer to the software used tomanage the storage and retrieval of data
in databases [58]. DBMS configuration refers to the settings and
parameters that can adjust the behavior of database management
systems. These configuration options can affect the performance,
reliability, and security of the database system. Table 1 shows com-
mon categories of DBMS configurations.

Table 1: Categories of DBMS Configurations

Category Description

Buffer cache Size and behavior of the buffer cache.
Concurrency Control of concurrency and locking.
Memory allocation Memory allocation and usage.
Disk usage Control of disk space usage.
Query optimization Optimization of query execution.
Security Access control and authentication.

1PQS, NoREC, and TLP are three correctness test oracles utilized in SQLancer.

Mozi: Discovering DBMS Bugs via Configuration-Based Equivalent Transformation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

The buffer cache configuration determines the size and behavior
of the buffer cache used by the DBMS to store frequently accessed
data in memory. The concurrency configuration controls the de-
gree of concurrency and locking used to manage access to shared
data. Memory allocation configuration specifies how memory is
allocated and used by the DBMS. Disk usage configuration controls
how disk space is allocated and used by the DBMS. The optimiza-
tion configuration refers to the process of optimizing the DBMS
performance to ensure fast and efficient data access and processing.
It determines how queries are optimized and executed. Examples
include the choice of query optimizer, indexing strategies, and paral-
lelism settings. Finally, the security configuration deals with access
control and authentication to the database system.

DBMSMetamorphic Testing.Metamorphic testing [5, 6, 32, 49]
is a common method to construct oracles to detect correctness bugs
of DBMSs. A metamorphic relation is a mathematical relationship
between the input change and output change of a software system.
When the input changes, and the relationship no longer holds for
the corresponding output change, it indicates the presence of an
error. A common method is like EMI [26] to construct different, but
equivalent variants of a query. More concretely, given a query 𝑄
and its semantic equivalent query collection 𝐶 . The collection 𝐶

can be used to perform a comparison for any DBMS 𝐷 : if 𝐷 (𝑄) ≠
𝐷 (𝑄 ′) for some 𝑄 ′ ∈ 𝐶 , D has a bug. For example, the NoREC [46]
method of SQLancer detects the logic bugs of DBMS optimizer by
constructing equivalent non-optimization SQL query which can
not be optimized by DBMSs based on the existing SQL query. If
the non-optimization SQL query gets inconsistent results from the
existing SQL query, they detect a logic bug of the optimizer.

However, finding metamorphic relationships for DBMSs is very
difficult. Discovering an effective metamorphic relation needs a
deep understanding of SQL specification but one relationship can
usually focus on only one SQL feature. For instance, the TLP [47]
method can only be tested for queries that use WHERE, HAVING,
GROUP BY, aggregation functions, and DISTINCT features. Besides,
the relation may be highly customized for a specific DBMS, which
means that adapting it to other DBMSs can be costly.

Basic Idea of Mozi. The key idea of Mozi is to change DBMS
itself to an equivalent one as a reference to verify the execution
results. Specifically, rather than finding a mathematical rela-

tionship to build a different query, we choose to transform

the DBMS into an equivalent one by changing configurations.

Based on the transformation process and query execution results,
we can build test oracles to find bugs. For example, when two equiv-
alent DBMSs have different results when executing the same query,
there might be a correctness bug in the implementation.

This approach is based on the understanding that changing the
configuration can have a critical impact on the system’s behavior,
often leading to unexpected consequences. For example, enabling
or disabling certain query optimizations can significantly affect the
performance of the system, while changing the buffer size or cache
size can have an impact on the system’s memory usage. Moreover,
different configurations may cause the DBMS to generate different
plans and cover completely different code areas. If the modified
configuration can create an equivalent DBMS for the query, then
the executed plan should have identical semantics but with different
operations. In addition, some configuration settings may interact

with each other in non-obvious ways, leading to subtle bugs that
are hard to diagnose. Based on these observations, we can define
different test oracles to detect various kinds of bugs.

Example: A correctness bug in MySQL. We demonstrate
how Mozi can be used to identify bugs in MySQL through an
example of a correctness bug. This bug had significant implications
for the optimizer’s correctness and was confirmed and resolved
by MySQL developers. One developer commented, “It’s amazing, I

can’t imagine that turning off the optimization options would cause

such a correctness anomaly”.

select power(FOUND_ROWS(),n0.c0) as c1,n0.c0 as c2 from
(select r0.v5 as c0 from t0 as r0 left join t1 as r1
on (0) where (1) or ((r1.v4 is not NULL)) as n0;

SQL Query：

Default Execution Plan and Result：
1. Full Scan t0 ...

2. Index Scan t1 ...

3. Filter

Close the Index Scan Optimization:
SET @@optimizer_switch='index_condition_pushdown=off';

SET @@optimizer_switch='index_merge_sort_union=off';

New Execution Plan and Result：
1. Full Scan t0 ...

2. Full Scan t1 ...

3. Filter

Error: DOUBLE value is out of
range in 'pow(found_rows(),
`t0`.`r0`.`v5`)'"

Figure 1: A correctness bug found by Mozi in MySQL. Mozi

executes the query and finds the INDEX SCAN configuration
in the plan. Next, it disables this configuration to instantiate

a transformed DBMS. Finally, it re-executes the SQL query

and finds inconsistency query results, which indicates a cor-

rectness bug.

Figure 1 illustrates how Mozi detected a correctness bug in
MySQL. The top part of the figure displays the SQL query that trig-
gers the bug, which was executed with the default configuration by
MySQL. The query produced the correct records with the default
execution plan, where MySQL scanned the table t1 using the INDEX
SCAN method. Mozi then used two SET SQL statements to disable
the Index Scan option of the optimizer and create an equivalent
transformed DBMS on-the-fly. Finally, Mozi re-executed the same
SQL query in MySQL. However, the query did not execute correctly,
and MySQL returned some error messages. As shown in the bottom
part of the figure, the new execution plan selected by MySQL used
the FULL SCAN method to scan table t1, resulting in the correct-
ness bug. Detecting the correctness bug we presented using DBMS
metamorphic testing is challenging. DBMS metamorphic testing
constructs equivalent SQL queries and checks if the results are the
same to detect anomalies. However, to trigger this bug, the DBMS
configuration must be modified to alter the execution of the same
SQL query. As a result, this bug is difficult for other DBMS testing
methods to detect within the same time frame.

3 DBMS EQUIVALENT TRANSFORMATION

The main objective of Mozi is to overcome the limitations of tradi-
tional approaches that rely on creating different inputs with equiv-
alent semantics by precisely modeling the input specification. In-
stead, we propose a DBMS Equivalent Transformation approach

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Chengnian Sun, and Yu Jiang

SELECT * FROM t0
WHERE φ

Query

Plan

Step1: Plan Analysis

Index_mergehash_join

firstmatch seminjoin

derived_merge …

DBMS

Index_mergehash_join

firstmatch seminjoin

derived_merge …

Step2: Plan-Guided Equivalent
Transformation

Step3: Various Test Oracles
Construction

r1
r2
r3

r1
r2

DBMS’

3.75s

0.64s

Performance
Bugs

Correctness
Bugs

-> Seq Scan …(cost = …)
-> Hash … (cost = …)

-> … (cost = …)

Figure 2: Overview of Mozi. First, Mozi analyzes the plan of a generated query. It sends a generated query into the target DBMS

with default configurations. The relevant configurations such as optimization or memory options used in the plan are analyzed.

Second, Mozi constructs equivalents of the target DBMS by modifying its configurations in processing the query. Then Mozi

re-sends the SQL query to the transformed equivalent DBMS and records the new results. Finally, by comparing the old and

new results, Mozi is able to detect performance, correctness bugs, or other types of bugs. For example, different results between

the two DBMSs indicate the presence of correctness bugs, while faster execution on the optimization-disabled DBMS indicates

the presence of performance bugs.

that generates DBMSs with different configurations for testing pur-
poses. Our idea is based on the premise that equivalent DBMSs
with different configurations should produce consistent results
when given the same input SQL. We can detect various types of
bugs by integrating with various test oracles based on the result
comparison. For instance, if there are different results, it indicates
the presence of correctness bugs. Moreover, if the execution is
faster on the optimization-disabled DBMS, it indicates performance
bugs. Figure 2 illustrates the overview of utilizing DBMS equivalent
transformation to test bugs with different test oracles. The process
consists of three main steps: 1) Plan Analysis, 2) Plan-Guided Equiv-
alent Transformation, 3) Various Test Oracles Construction. The
following text in this section will first give some definitions and
then present the details of each step.

3.1 Definitions

To better describe the thoughts behind Mozi, we first give some de-
tailed definitions of concepts related to equivalent transformation.

DBMSConfiguration Variants.We defineD to be the set of all
possible DBMSs, incorporating the various configuration options
available. Let C be the set of configurations for the DBMS. We use
𝐶𝑜𝑛𝑓 (𝐷, 𝑐) to describe the value for configuration 𝑐 in DBMS 𝐷 .
DBMS D’s configuration variant set 𝐷𝑐 is defined as:

𝐷𝑐 = {𝐷′ ∈ D|∃𝑐 ∈ C,𝐶𝑜𝑛𝑓 (𝐷′, 𝑐) ≠ 𝐶𝑜𝑛𝑓 (𝐷, 𝑐)}.

DBMS Configuration Transformation. A DBMS Configura-
tion transformation from 𝐷 to its variant 𝐷′ (𝐷′ ∈ 𝐷𝑐), denoted by
𝑇 (𝐷, 𝐷′), is a set of functions that map each different configuration
𝑐 from 𝐷 to 𝐷′, which could be defined as:

𝑇 (𝐷,𝐷′) = {𝑐1→ 𝑐2 ∈ C × C|𝑐1! = 𝑐2},

where 𝑐1 = 𝐶𝑜𝑛𝑓 (𝐷, 𝑐) and 𝑐2 = 𝐶𝑜𝑛𝑓 (𝐷′, 𝑐).
Query Equivalence. Given a query 𝑞 and a DBMS 𝐷 along with

its data set 𝑑 . we use 𝐷 (𝑞, 𝑑) to denote the deterministic result rows
retrieved from DBMS 𝐷 . Given a set of queries 𝑄 under some data
set 𝑑 , two DBMS 𝐷, 𝐷′ ∈ D are equivalent to 𝑄 if and only if

∀𝑞 ∈ 𝑄,𝐷 (𝑞, 𝑑) = 𝐷′ (𝑞, 𝑑).

Equivalent Transformation. We use 𝐷𝑄 = 𝐷𝑒
𝑄
to denote that

𝐷 and𝐷𝑒 are equivalent to the query set𝑄 . Based on the predefined
concepts, 𝑇 (𝐷, 𝐷′) is a equivalent transformation if and only if

𝐷′ ∈ 𝐷𝑐 ∧ {𝐷𝑒 |𝐷𝑄 = 𝐷𝑒
𝑄 }.

3.2 Plan Analysis

Mozi transforms the configuration based on the query plan. It is
built on the understanding that a plan not only reflects the query’s
execution but also includes the configuration options that influence
it. Consider Figure 3 as an example, where we intend to execute
a query in PostgreSQL that joins two tables. The figure shows
the execution plan that PostgreSQL has devised for this query. It
shows that PostgreSQL has chosen to employ a hash join to join
the “orders” and “users” tables, as well as a bitmap index scan to
filter out orders with a total price greater than 100. The plan also
indicates that the “users” table is scanned sequentially.

Using the plan, we can alter the execution process by disabling
enable_hashjoin, enable_bitmapscan, and enable_seqscan. Ad-
ditionally, the plan reveals that certain configuration options were
employed to influence it. For instance, the choice of the Hash Join
step is determined by the configuration option “work_mem” which
determines the memory available for hash joins, sorts, and aggre-
gations. In this instance, the planner estimated that the available

Mozi: Discovering DBMS Bugs via Configuration-Based Equivalent Transformation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

SELECT u.username, SUM(o.total_price) FROM users u JOIN orders o ON u.id = o.user_id
WHERE o.total_price > 100 GROUP BY u.username;

GroupAggregate (cost=2568.20..2766.57 rows=313 width=36) (actual time=… rows=… loops=…)
Group Key: u.username
-> Sort (cost=2568.20..2594.38 rows=10460 width=32) (…)

Sort Key: u.username
Sort Method: external merge Disk: 432kB
-> Hash Join (cost=926.70..1648.72 rows=10460 width=32) (…)

Hash Cond: (o.user_id = u.id)
-> Bitmap Heap Scan on orders o (cost=434.84..1108.26 rows=5235 width=12)(…)

Recheck Cond: (total_price > 100)
Heap Blocks: exact=2034
-> Bitmap Index Scan on orders_total_price_idx (…) (…)

Index Cond: (total_price > 100)
-> Hash (cost=375.70..375.70 rows=3000 width=28) (…)

Buckets: 4096 Batches: 1 Memory Usage: 162kB
-> Seq Scan on users u (cost=0.00..375.70 rows=3000 width=28) (…)

Planning Time: 0.172 ms, Execution Time: 55.042 ms

QUERY PLAN

Figure 3: A plan generated by PostgreSQL that utilizes Hash
Join, Index Scan, and Seq Scan.

memory was adequate to execute the hash join efficiently, given the
estimated size and selectivity of the input relations. Hence, by ad-
justing these configurations, we can potentially transform a DBMS
into an equivalent one and achieve a different execution process.
Therefore, modifying configurations can significantly alter the be-
havior of a query that has been executed. However, it is challenging
to keep query equivalence for transformation.

3.3 Plan-Guided Equivalent Transformation

Ensuring query equivalence between DBMSs while making changes
to their configurations that can impact the query execution process
based on a test oracle is a challenging task. The changes should
be carefully crafted to ensure that meaningful comparisons can be
made between the execution results of the original and modified
DBMSs with respect to the test oracle while preserving the equiv-
alence. To address the challenge, Mozi proposes the plan-guided
configuration transformation approach.

Algorithm 1: Plan-Guided Equivalent Transformation
Input :Query𝑄 , DBMS 𝐷 ,

Original configuration space𝐶 ,
Test oracle𝑇

Output :Transformed configuration𝐶′

1 𝑃 ← extractPlan(𝑄 , 𝐷);
2 𝐶𝑃 ← getConfigurations(𝑃);
3 𝐶𝑇 ← getInfluencedConfigurations(𝑇);
4 𝐶′ ← 𝐶 \ (𝐶𝑃 ∩𝐶𝑇) ;
5 foreach 𝑐 ∈ 𝐶𝑃 ∩𝐶𝑇 do

6 if flipCoin(c) then

7 𝑣 ← getOnePossibleValue(𝑐);
8 while 𝑣 == getValue(c) do
9 𝑣 ← getOnePossibleValue(𝑐);

10 end

11 setValue(c, v);
12 end

13 𝐶′ = 𝐶′ ∪ 𝑐 ;
14 end

15 return𝐶′;

Algorithm 1 shows the overall process of plan-guided equiva-
lent transformation. First, we analyze and extract the plan for the

executed query (Line 1). Based on the plan and predefined test
oracle, we can identify the candidate configuration sets relevant to
both of them (Lines 2-4). In particular, the configurations related to
the test oracles will be discussed in Section 3.4. Besides, to ensure
equivalence, we only change configurations that are not critical to
the query’s correctness but related to the plan. For example, we
could change the configurations like memory allocation and disk
usage. Some other configurations that are related to low-level func-
tionalities will not be considered, such as “max_relations” which is
used to limit the maximum number of tables in the database.

After that, we decided whether to transform the configuration
parameter in the candidate sets. For each configuration in the can-
didate sets, we use the function flipCoin to decide whether to
change it randomly (Line 6). For each passed configuration, we first
calculate a valid value while not equal to the current one (Lines
7-10). If true, then we will set the target value to the configuration
and add it to the result set. It is essential to ensure that the target
value does not violate any constraints or assumptions and guaran-
tees that the DBMS will still return accurate results. For instance,
the amount of memory allocated should not surpass the available
memory, and the time limit should be long enough to guarantee
the successful retrieval of results.

3.4 Various Test Oracles Construction

Based on the equivalent transformation, we could detect bugs in
DBMSs under various test oracles. For example, we could utilize
equivalent transformation to conduct correctness testing, perfor-
mance testing, memory safety testing, authorization testing, and
compliance testing. In the following content of this section, we will
discuss how to construct test oracles that detect correctness and
performance issues. Additionally, we will also explore how to apply
equivalent transformations in other test oracles in Section 6.

Test Oracles for Correctness Bugs. Correctness bugs refer to
errors in the results of a query. It is also known as logic bugs. To
detect correctness bugs, we could directly compare the results from
equivalent DBMSs, and check whether the results are different.

One important problem is determining the related configura-
tions to correctness bugs. Specifically, the DBMS configurations
need to be modified to guarantee that the execution of queries on
two different DBMSs will behave differently but produce consis-
tent results. To achieve this goal, many configurations of certain
types can be utilized while testing for correctness errors. First, the
optimization configurations can be used to directly alter the query
plan and affect query execution. Moreover, some configurations
that have indirect impacts could also be considered, such as buffer
cache configuration, memory allocation configuration, and disk
usage configuration. For instance, a configuration that affects the
allocation of memory buffers may not directly impact query pro-
cessing, but it may lead to memory leaks or corruption, ultimately
resulting in incorrect query results or even system crashes.

After the query is re-executed on the transformed DBMS, the
results are compared to those obtained from the original DBMS
execution. If the values returned by both systems are the same for
every query, then the results are considered matched. However, if
there are any differences in the returned values, Mozi will flag the
results as unmatched and log the differences.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Chengnian Sun, and Yu Jiang

Test Oracles for Performance Bugs.We can also use DBMS
equivalent transformation to test performance bugs. A basic way is
applying the equivalent transformation process to create a weak-
ened version of the original DBMS, which is designed to have lower
performance. If the weakened DBMS significantly performs better
than the original DBMS, it indicates a potential performance bug.

In a cost-based optimizer, it is generally expected that disabling
optimization operators will not lead to improved database engine
performance. If it does, this indicates a performance bug, which can
result in slower query processing and reduced system throughput.
Such issues can be referred to as performance anomalies caused by
reversed optimization. To detect these errors, a DBMS can be weak-
ened by applying configuration transformations such as disabling
query optimization or limiting resource usage. The SQL query is
then executed on the transformed DBMS, and the plan and exe-
cution time are obtained. If the new execution time is lower than
the original execution time while the results are equal, a potential
performance anomaly is detected. This technique is useful in iden-
tifying and resolving performance issues in a cost-based optimizer,
which is widely used in popular DBMSs.

For example, in our experiment, the execution time of one SQL
query executed by MySQL with the hash_join optimization oper-
ator was 10.42 seconds. When disabling hash_join optimization
operators, the new execution time was only 1.54 seconds, which
reduces the original execution time by 85%. The decline in perfor-
mance resulting from optimization implies that this is indeed a
performance issue, and the issue has also been confirmed by the
developers of MySQL.

4 IMPLEMENTATION

As depicted in Figure 4, the Mozi framework has two layers, namely
Transformation Layer and Adaptation Layer.

Transformation Layer. This layer performs DBMS equivalent
transformations. The plan analyzer executes SQL commands such
as “EXPLAIN” [20, 41] to obtain the execution plan and extract the
involved SQL operations. The configuration transformer sets config-
uration on-the-fly by using SQL commands. For example, to disable
sequential scan types in the plan derived by PostgreSQL, we can use
the SQL command “SET ENABLE_SEQSCAN TO OFF”. The result
checker compares the results of query executions on equivalent
DBMSs based on test oracles.

The test oracles include correctness testing, performance testing,
and others. Currently, specific configurations are first classified
by category or component related to the oracle and then further
determined manually. For example, configurations related to op-
timizers are often associated with performance issues. Based on
that, we have now identified 26 and 21 performance-related config-
urations for MySQL and PostgreSQL according to their functionali-
ties [19, 38], respectively.

Adaptation Layer. This layer handles adaptations for different
target DBMSs with certain specifications. It has a SQL specification
analyzer and a query generator. The SQL specification analyzer is
used to analyze the SQL specification file to get the supported SQL
clauses and configuration lists. The query generator utilizes the
analyzed results to produce queries of varying complexity, ranging
from straightforward ones to more complex queries that involve

joins and subqueries. Specifically, we will extract the BNF para-
digm’s grammar rules and the clauses supported by the DBMS
from the DBMS grammar file. Following this, we will engage in
SQL statement modeling. During the query generation process,
the generator first constructs the basic skeleton of the syntax tree.
Subsequently, it recursively selects clauses to populate nodes with
a certain probability, generating queries that encompass a broader
range of configurations. This process establishes a comprehensive
testing ground for various scenarios and optimizations. In addition,
the generator avoids generating queries with non-deterministic
behaviors. These behaviors may confuse oracles and lead to false
alarms. For example, the generator avoids using functions like ran-
dom() or ever-changing environment variables like time.

Target DBMS

Adaptation Layer

Mozi Framework

Test Oracles

Correctness

Performance

Configuration Transformer

Plan Analyzer

Result Checker

Transformation Layer

…

…

Transformer Engine

Query
Generator

SQL Specification
Analyzer

Configuration
List

Figure 4: The core components of Mozi.

5 EVALUATION

In this section, we evaluate the effectiveness of detecting bugs with
the test oracle constructed by Mozi. Our evaluation aims to answer
the following questions:

• RQ1: Can Mozi find previously unknown correctness and
performance bugs?
• RQ2: How does Mozi perform compared to other DBMS
testing techniques?
• RQ3: How effective is the plan-guided transformation for
Mozi in detecting the bugs?
• RQ4: Can Mozi help other fuzzers find bugs?

5.1 Evaluation Setup

WeevaluatedMozi on fourwidely used open-sourceDBMSs, namely
MySQL (8.0.32), MariaDB (10.8), Clickhouse (22.11.4.3), and Post-
greSQL (15.2). The experiments were conducted on a machine run-
ning 64-bit Ubuntu 20.04 with an AMD EPYC 7742 Processor @
2.25 GHz, 128 cores, and 504 GiB of main memory. All DBMSs were
tested using docker containers that were downloaded directly from
their websites. Each docker container is allocated with 5 CPU cores
and 40 GiB of RAM.

Mozi: Discovering DBMS Bugs via Configuration-Based Equivalent Transformation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

5.2 DBMS Vulnerability Detection

Bug Statistics.We applied Mozi to test performance and correct-
ness bugs in three weeks. The four evaluated DBMSs are widely
used and well-tested. Nevertheless, Mozi performed well and fi-
nally found 101 previously unknown bugs in them. We also used
SQLancer [45] (with test oracles PQS [48], TLP [47], andNoREC [46]),
Apollo [25], and Amoeba [33] to test these DBMSs, but they can
only find a subset of these bugs (shown in Section 5.3).

Table 2 shows the statistics of the bugs. Mozi reported a total
of 49 correctness bugs and 52 performance bugs. We reported all
the bugs to the corresponding DBMS developers. Among them, 46
correctness bugs and 44 performance bugs have been confirmed
as previously unknown bugs. At the time of writing this paper,
57 bugs have been fixed, and we have received gratitude from the
developers. In addition, 11 bugs are still being validated by the
developers due to the complexity of DBMS.

Table 2: Number of reported and confirmed bugs by Mozi in

three weeks.

Correctness Performance
DBMS Reported Confirmed Reported Confirmed
MySQL 14 13 21 19
MariaDB 14 14 21 17
Clickhouse 12 11 8 6
PostgreSQL 9 8 2 2

Total 49 46 52 44

Bug Severity. Based on the analysis of the DBMS developer,
the bugs detected by Mozi are distributed in over 35 components on

the tested DBMSs. The correctness bugs are hard to detect because
they will not cause obvious signs such as system crashes. The
performance bugs are also critical because they could influence the
overall response time of the DBMS. More importantly, during our
communication with the developers, they expressed their interest
in discovering vulnerabilities by constructing an equivalent DBMS.
And they discovered many issues that they had never focused on
in the development. At the time of writing this paper, developers
have fixed a total of 57 bugs.

25

9
7

5

18

13

9

4

0

5

10

15

20

25

30

0-1 1-3 3-5 >5

N
um

be
r o

f B
ug

s

Year

Correctness Bugs
Performance Bugs

Figure 5: Time distribution of imported codes for the con-

firmed bugs. Among them, 25 bugs had remained latent for

over 3 years, while 43 were imported within the last 1 year.

Moreover, many bugs had been present in the DBMSs for many
years before being detected. Figure 5 displays the time distribution
of the imported error codes for the confirmed bugs. As shown in
the figure, 25 bugs had remained latent for over 3 years, while 43
bugs were imported within the last 1 year. Without Mozi, these
bugs may remain for more time and result in potential harm. Here
we present a performance bug in PostgreSQL only found by Mozi.

Case Study. Figure 6 illustrates the process of triggering a signif-
icant performance bug in PostgreSQL. The bug causes a consider-
able decrease in PostgreSQL’s performance on the index_scan
optimization, a classical technique for optimizing SQL queries
by efficiently accessing data through indexes. Normally, using
index_scan should result in faster data retrieval than performing a
full table scan using full_scan. However, utilizing the index_scan
optimization in this instance led to a 20x decrease in performance
compared to not using it.

-- Step 1. Create the init tables
create table t1 (v0 int, v1 varchar ,...) ;
create table t2 (v0 CURRENT_TIMESTAMP,v1 float,...) ;
create table t3 (v0 float primary key,v1 float,...) ;
-- Step 2. Add index to the tables
create index i1 on t1 (v1) using hash;
...
-- Step 3. Insert records to tables
insert into v1 value(1,'v5easaw',...);
...
-- Step 4. The SQL query for execution: Execution Time:11.42s
select case when (EXISTS (select ref1.v as c0, ...
from table1 as ref1 where 1)) and (s0.c0 is not NULL)
then s0.c0 else s0.c0 end as c0, MONTH(s0.c1) as c1,
JSON_OBJECT() as c2, case when s1.c0 is not
NULL then s1.c0 else s1.c0 end (select ...;
-- Step 5. Close the index_scan optimization
set enable_indexscan="off"
-- Step 6. Execute the same SQL query, Execution Time: 0.534s

Figure 6: The simplified PoC to trigger the performance bug

in PostgreSQL. The bug is influenced by the index_scan opti-
mization, which was only detected by Mozi.

The mechanism to trigger the bug. Figure 6 illustrates the steps to
trigger bugs in PostgreSQL. In Step 1 , Mozi creates complex initial
tables. It then adds constraints, such as indexes, to the tables in Step
2 , followed by inserting a large number of records into them in
Step 3 . In Step 4 , Mozi generates a SQL query that includes some
complex clauses and requires scanning some records from table
t1, which triggers the index_scan optimization of PostgreSQL. As
shown, PostgreSQL takes 11.42 seconds to execute the SQL query.
However, after disabling the index_scan optimization in Step 5 ,
PostgreSQL only takes 0.534 seconds to execute the same SQL
query. The performance decrease caused by using the index_scan
optimization is significant, leading to a 20x slowdown compared to
not using the optimization in execution.

Why was the bug only discovered by Mozi? The bug involves
DBMS configuration changes, which can hardly be detected by
other DBMS testing methods. Specifically, SQLancer and Amoeba
detect the bugs by constructing the equivalent SQL query, which
does not change the configuration of DBMS. Therefore, this bug can
not be discovered by them. Similarly, Apollo detects the regression
performance bugs of DBMSs by comparing the response time of
two different-version DBMSs with the same configuration, thus it
cannot detect this kind of bug. In contrast, Mozi detected this bug

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Chengnian Sun, and Yu Jiang

by constructing a test oracle for performance bug detection with
configuration-based equivalent transformation. In summary, the re-
sults indicate that Mozi can detect previously unknown correctness
and performance bugs, which adequately answers RQ1.

5.3 Comparison with Other Techniques

We implement Mozi with correctness and performance test ora-
cles into Mozi 𝑐𝑜𝑟 and Mozi 𝑝𝑒𝑟 to detect correctness bugs and
performance bugs, respectively.

Compared Techniques and Setup. To evaluate the effective-
ness of our framework, Mozi, we conducted a comparison study be-
tween Mozi 𝑐𝑜𝑟 and Mozi 𝑝𝑒𝑟 with the state-of-the-art DBMS test-
ing methods. Specifically, we compared Mozi 𝑐𝑜𝑟 against SQLancer
using three logic test oracles, namely PQS [48], NoREC [46], and
TLP [47] for correctness bug detection. In the following text, we will
refer to these three implementations of SQLancer by their respective
oracle names. We also compared Mozi 𝑝𝑒𝑟 with Apollo [25] and
Amoeba [33] for performance bug detection. Currently, Amoeba
only supports PostgreSQL. We ran the testing tools on each DBMS
for 24 hours and recorded the number of triggered bugs. All bugs
were reported to the developers, and we used the confirmed num-
ber of bugs as the result. To ensure a fair comparison, we collected
the generated queries from each testing method and dry-ran the
queries to ensure uniform branch coverage.

Results.Mozi outperforms other testing methods in detecting
both performance and correctness bugs. Table 3 displays the number
of bugs detected by each method. In 24 hours, Mozi 𝑐𝑜𝑟 detected
a total of 29 bugs. Compared to PQS, NoREC, and TLP, Mozi 𝑐𝑜𝑟
found 25, 22, and 21 more bugs, respectively. For performance bugs,
Mozi 𝑝𝑒𝑟 discovered 27 bugs, while Apollo and Amoeba detected
3 and 1 bugs on the tested DBMSs, respectively.

We investigated the bugs and found that the bugs identified by
Mozi did not overlap with other techniques. This is because Mozi
detects problems through the transformation of DBMS configura-
tions, which is a process not employed by the other methods. On the
other hand, Mozi did not find the bugs detected by other techniques.
This disparity arises because PQS, NoREC, and TLP employ highly
customized test oracles, with the latter two incorporating statement
changes not utilized in Mozi 𝑐𝑜𝑟 . The test oracles of Amoeba and
Apollo for identifying performance bugs differ fromMozi 𝑝𝑒𝑟 . The
first one necessitates constructing an equivalent statement, while
the other requires referencing the previous version. In contrast,
Mozi utilizes DBMS transformation, resulting in a low likelihood
of identifying common bugs.

Table 3: The number of detected bugs by each DBMS testing

method in 24 hours.

Correctness Performance
DBMS PQS NoREC TLP Mozi 𝑐𝑜𝑟 Apollo Amoeba Mozi 𝑝𝑒𝑟
MySQL 1 2 2 9 1 – 11
MariaDB 2 3 2 10 0 – 13
Clickhouse 0 1 3 6 1 – 2
PostgreSQL 1 1 1 4 1 1 1

Total 4 7 8 29 3 1 27
Improvement 25↑ 22↑ 21↑ - 24↑ 26↑ -

Table 4 shows the number of branches covered by each method
in 24 hours. It shows that Mozi covers more branches in 24 hours
when compared to other testing methods. Specifically, compared
to three correctness bug testing methods, Mozi 𝑐𝑜𝑟 covered a total
of 64,973, 54,464, and 43,236 more branches than PQS, NoREC, and
TLP, respectively. And compared to the performance bug testing
fuzzer Apollo, Mozi 𝑝𝑒𝑟 covered a total of 28,499 more branches
in MySQL, MariaDB, Clickhouse, and PostgreSQL. Compared to
Amoeba, Mozi covered 14,084 more branches in PostgreSQL.

Table 4: The number of covered branches by each DBMS

testing method in 24 hours.

Correctness Performance
DBMS PQS NoREC TLP Mozi 𝑐𝑜𝑟 Apollo Amoeba Mozi 𝑝𝑒𝑟
MySQL 50,294 52,984 60,274 75,293 70,923 – 74,836
MariaDB 40,154 42,938 45,792 54,982 46,365 – 55,387
Clickhouse 65,980 69,842 69,928 79,852 72,388 – 80,142
PostgreSQL 59,811 60,984 61,982 71,085 63,748 56,844 70,928

Total 216,239 226,748 237,976 281,212 252,794 56,844 281,293
Improvement 64,973↑ 54,464↑ 43,236↑ - 28,499↑ 14,084↑* -
* The improvement is only for PostgreSQL since Amoeba only supports it among four DBMSs at the
time of writing.

The main reason for Mozi’s improvement in bug detection and
branch coverage is its independence from specific SQL features in
test oracle. This flexibility enables Mozi to test a broader range of
functionalities within the DBMS. Specifically, PQS, NoREC, TLP,
and Amoeba are constructed based on specific features to create
test cases, which limits the SQL grammar they can support. For
example, NoREC detects logic bugs in the DBMS optimizer by
constructing equivalent optimized and unoptimized queries based
on the optimizer rules. However, this approach only covers SQL
grammar that conforms to the optimizer rules. In contrast, Mozi
generates SQL queries without any limitations on the SQL grammar
since it relies on the DBMS itself to evaluate query results. As
a result, Mozi can support more SQL grammar and cover more
branches compared to PQS, NoREC, and TLP, which explains why
it can detect more correctness bugs in these DBMSs.

Apollo generates queries by comparing the query performance
of two versions of the same DBMS, which is effective for detecting
performance regression bugs. However, Apollo is limited by utiliz-
ing differential testing on current and previous DBMS versions. The
bugs that exist in both versions will not be detected. In addition,
this approach relies heavily on the differences between the two
versions, which can limit the diversity of its generated queries. If
the differences between versions are minimal, Apollo may not
be able to generate a sufficient number of unique queries to fully
test the different logic in the DBMS. Differently, Mozi transforms
the DBMS based on the executed query. It expands the differences
by changing configurations thus more DBMS behaviors could be
triggered. Moreover, in cases where there are only a limited number
of versions of DBMSs available, Apollo may encounter difficulty in
applying. The result illustrates that Mozi can test more functional-
ity of the DBMS and cover more branches, leading to the detection
of more performance bugs, which adequately answers RQ2.

Mozi: Discovering DBMS Bugs via Configuration-Based Equivalent Transformation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

5.4 Importance of Plan-Guided Algorithm

We implement Mozi !𝜌 to measure the importance of the plan-guide
transformation in Mozi. It disables the plan-guided component,
which randomly changes the configuration without any guidance
from the execution plan of the SQL query. Note that there are two
versions of Mozi !𝜌 : Mozi !𝜌𝑐𝑜𝑟 , which uses the correctness test
oracle, and Mozi !𝜌𝑝𝑒𝑟 , which uses the performance test oracle.
We run Mozi 𝑐𝑜𝑟 and Mozi 𝑝𝑒𝑟 against their plan-guided disabled
versions for 24 hours and collect the number of detected bugs and
covered branches for comparison.

Table 5: Number of detected correctness bugs and covered

branches of Mozi
𝑐𝑜𝑟

and Mozi
!𝜌𝑐𝑜𝑟

in 24 hours.

DBMS Bugs Number Branch Coverage
Name Mozi 𝑐𝑜𝑟 Mozi !𝜌𝑐𝑜𝑟 Mozi 𝑐𝑜𝑟 Mozi !𝜌𝑐𝑜𝑟
MySQL 9 5 75,293 73,428
MariaDB 10 3 54,982 49,872
Clickhouse 6 1 79,852 73,293
PostgreSQL 4 2 71,085 62,396

Total 29 11 281,212 258,989

Table 5 shows the number of detected correctness bugs and
covered branches by Mozi 𝑐𝑜𝑟 and Mozi !𝜌𝑐𝑜𝑟 . The table illustrates
that the plan-guided algorithm helps Mozi find more correctness
bugs and cover more branches. Specifically, Mozi 𝑐𝑜𝑟 triggered 4,
7, 5, and 2 more correctness bugs and covered 1865, 5110, 6559,
and 8689 more branches when compared to Mozi !𝜌𝑐𝑜𝑟 on MySQL,
MariaDB, Clickhouse, and PostgreSQL, respectively.

Table 6: Number of detected performance bugs and covered

branches of Mozi
𝑝𝑒𝑟

and Mozi
!𝜌𝑝𝑒𝑟

in 24 hours.

DBMS Bugs Number Branch Coverage
Name Mozi 𝑝𝑒𝑟 Mozi !𝜌𝑝𝑒𝑟 Mozi 𝑝𝑒𝑟 Mozi !𝜌𝑝𝑒𝑟
MySQL 11 4 74,836 70,825
MariaDB 13 5 55,387 48,984
Clickhouse 2 0 80,142 73,475
PostgreSQL 1 0 70,928 64,871

Total 27 9 281,293 258,155

Table 6 shows the number of detected performance bugs and cov-
ered branches by Mozi 𝑝𝑒𝑟 and Mozi !𝜌𝑝𝑒𝑟 . First, Mozi 𝑝𝑒𝑟 found
more performance bugs than the plan-guided disabled version.
Specifically, Mozi found 7, 8, 2, and 1 more performance bugs
when compared to Mozi !𝜌𝑝𝑒𝑟 on MySQL, MariaDB, Clickhouse
and PostgreSQL, respectively. Furthermore, it is possible that more
performance bugs arose from higher branch coverage. More con-
cretely, in the testing, Mozi 𝑝𝑒𝑟 covered 4011, 6403, 6667, and 6057
more branches compared to Mozi !𝜌𝑝𝑒𝑟 on MySQL, MariaDB, Click-
house, and PostgreSQL, respectively.

From the results, we can see that the plan guidance plays an
important role in the performance of Mozi. It not only helps Mozi
cover more states in target DBMSs and also helps to find more

bugs. The main reason is that plan guidance helps Mozi find the
configurations related to the execution processes of the SQL query.
By changing these configurations, the optimization plan might be
changed significantly. Thus many new behaviors will be triggered
and new branches will be covered. When disabling the plan guid-
ance, Mozi !𝜌 transforms the DBMS by arbitrarily modifying the
configuration. However, arbitrarily changing might not influence
the covered logic of the specific query. Consequently, Mozi could
cover more branches than Mozi !𝜌 . Therefore, plan guidance plays
a crucial role in effectively covering branches and successfully de-
tecting bugs, which adequately answers RQ3.

5.5 Scalability of Mozi to Other Fuzzers

SQLsmith and Sqirrel are two widely used fuzzers targeting
crash bugs. To measure the scalability of utilizing Mozi to help
other tools find bugs, we adapt the two test oracles of Mozi to
these two fuzzers to detect performance bugs and correctness
bugs in DBMS. Specifically, we implement SQLsmith+Mozi 𝑐𝑜𝑟 and
Sqirrel+Mozi 𝑐𝑜𝑟 to detect correctness bugs. We also implement
SQLsmith+Mozi 𝑝𝑒𝑟 and Sqirrel+Mozi 𝑝𝑒𝑟 to detect the perfor-
mance bugs. Note that we only use 294 and 378 lines of C++ codes
to adapt the two test oracles to SQLsmith, 287 and 391 lines of
C++ codes for Sqirrel, respectively. The test oracles in Mozi are
constructed using a configuration-based equivalent transformation
approach that is independent of SQL generation. Therefore, Mozi
can easily adapt to other SQL generators and perform well in de-
tecting bugs. Specifically, for every query generated by them, we
initially execute it using the original configuration of the target
DBMS. Subsequently, guided by the plan, we transform the config-
uration and re-run the query to detect bugs. After that, the original
configuration is restored, and the tools are employed to generate
the next query. We run these tools on the four test DBMSs for 24
hours and compare them with SQLsmith and Sqirrel, respec-
tively. Note that SQLsmith+Mozi 𝑐𝑜𝑟 , SQLsmith+Mozi 𝑝𝑒𝑟 , Sqir-
rel+Mozi 𝑐𝑜𝑟 , and Sqirrel+Mozi 𝑝𝑒𝑟 can still detect crash bugs
because we do not close the basic functionality of each tool.

Table 7 shows the number of crash bugs, correctness bugs, and
performance bugs detected by each tool in 24 hours. It shows that
Mozi performs well when scaled to other fuzzers. First, Mozi helps
SQLsmith and Sqirrel detect correctness bugs and performance
bugs with the two test oracles. Specifically, SQLsmith+Mozi 𝑐𝑜𝑟
and Sqirrel+Mozi 𝑐𝑜𝑟 discovered 13 and 7 correctness bugs apart
from crash bugs, respectively. Similarly, SQLsmith+Mozi 𝑝𝑒𝑟 and
Sqirrel+Mozi 𝑝𝑒𝑟 also detected 14 and 12 performance bugs in
addition to the crash bugs, respectively. By combining the test
oracle built by equivalent transformation, these tools are given the
ability to find correctness and performance issues. Based on the
generated SQL queries, Mozi transforms the target DBMSs into
equivalent ones, resulting in potentially different behaviors. This
allows for the comparison of query results, enabling the detection
of correctness and performance bugs.

Moreover, Mozi does not significantly diminish the effective-
ness of SQLsmith and Sqirrel in detecting crash bugs. Specif-
ically, SQLsmith+Mozi 𝑐𝑜𝑟 and SQLsmith+Mozi 𝑝𝑒𝑟 only missed
one crash bug each when compared to SQLsmith. This is because

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Chengnian Sun, and Yu Jiang

Table 7: Number of detected bugs for Mozi augmented SQLsmith and Sqirrel in 24 hours. Note that SQLsmith+Mozi
𝑐𝑜𝑟

and

Sqirrel+Mozi
𝑐𝑜𝑟

are the versions augmented to test correctness bugs, while SQLsmith+Mozi
𝑝𝑒𝑟

and Sqirrel+Mozi
𝑝𝑒𝑟

are

the versions augmented to test performance bugs.

SQLsmith SQLsmith+Mozi 𝑐𝑜𝑟 SQLsmith+Mozi 𝑝𝑒𝑟 Sqirrel Sqirrel+Mozi 𝑐𝑜𝑟 Sqirrel+Mozi 𝑝𝑒𝑟
DBMS Crash Crash Correctness Crash Performance Crash Crash Correctness Crash Performance
MySQL 2 2 2 2 5 1 1 2 2 4
MariaDB 3 2 5 3 4 2 2 2 2 6
Clickhouse 1 1 2 1 2 1 1 1 1 1
PostgreSQL 4 4 4 3 3 2 2 2 2 1

Total 10 9 13 9 14 6 6 7 7 12

Mozi requires multiple executions of each SQL query and addi-
tional SQL statements to alter the DBMS configuration. In other
words, the augmented versions executed fewer SQL queries and
thus missed one bug. However, modifying the DBMS configuration
and re-executing SQL queries can potentially trigger new behaviors
in the DBMS, which can aid in identifying new bugs. For example,
Sqirrel+Mozi 𝑐𝑜𝑟 detected the same 6 crash bugs as Sqirrel,
and Sqirrel+Mozi 𝑝𝑒𝑟 identified one additional crash bug com-
pared to Sqirrel. In summary, Mozi can help other fuzzers find
more bugs of various types, which adequately answers RQ4.

6 DISCUSSION

Adaptability of Mozi.Mozi is adaptable to DBMSs which support
changing configurations during runtime. For a new DBMS, Mozi
will automatically derive the related SQL commands and config-
urations from SQL specifications. The only human cost involved
is deciding whether these configurations are relevant to the spe-
cific oracle. The cost is controllable because the specific test oracle
is related to certain types and the number of one configuration
type is generally not large. For example, there are a total of 340
configurations for PostgreSQL and 21 for optimizations related to
performance bugs [18].
Alternative Transformation Methods. Besides changing con-
figurations, other methods also exist for transforming DBMSs. For
example, we could generate various DBMS versions by compiling
the source code using different compilers or optimization levels [22],
ensuring that these versions are equivalent. Another approach in-
volves detecting the code covered by a given query, removing any
unrelated code, and recompiling to generate a query-equivalent
DBMS. However, these methods require recompiling the entire
DBMS, which can be time-consuming, especially for large and
complex DBMSs. An alternative approach is to use on-the-fly re-
compiling techniques [56]. However, it still imposes a substantial
overhead, making it challenging to adapt to DBMS transformations.
Other Potential Test Oracles. DBMS equivalent transformation
can be used for testing various types of bugs with other test ora-
cles, in addition to correctness and performance bugs. For example,
memory safety testing can be performed by creating DBMSs with
varied memory configurations and generating test cases to exer-
cise memory allocation, deallocation, and accesses. The process
can be combined with dynamic analysis tools such as AddressSan-
itizer [51]. Moreover, Authorization testing can be performed by
creating equivalent DBMSs with different security configurations

to verify access controls and permissions. By generating alternative
DBMSs with varying security settings, we can thoroughly examine
whether certain accesses violate the intended restrictions.

7 RELATEDWORK

In this section, we will first introduce DBMS Fuzzing, and then
focus on works related to DBMS test oracle construction and con-
figuration settings.

DBMS Fuzzing. Fuzzing [7, 29, 31, 37, 60] has been applied to
DBMSs in recent years and has found hundreds of bugs. These
DBMS fuzzers generate SQL test cases continuously, feed them to
the target DBMS, and check whether the DBMS works normally
when executing them. Most fuzzers [3, 16, 24, 28, 30, 50, 57, 59, 62]
focus on generating complex and valid SQL test cases to find the
memory safety bugs. They could be roughly divided into generation-
based and mutation-based fuzzers. Generation-based fuzzers gener-
ate SQL queries based on predefined SQL generation models. SQL-
smith [50] generates SELECT statements with complex structures
according to its predefined AST models. Amoeba [33] leverages
domain-specific design languages to generate SQL queries from
scratch based on the schema of the database.Mutation-based fuzzers
mutate existing SQL queries to produce new queries, which are
always guided by coverage information. Sqirrel [62] designs an
intermediate representation (IR) to mutate SQL test cases with code
coverage guidance. DynSQL [24] establishes a mapping model be-
tween binary files and SQL query syntax trees. Lego [28] generates
SQL statement sequences with abundant types by exploring SQL
statements of different types and analyzing type affinities. Grif-
fin [16] proposes metadata graphs of SQL statements to provide a
grammar-free way for mutation of SQL test cases. Unicorn [59]
utilizes hybrid input synthesis to generate queries with time-series
elements. QPG [3] in SQLancer introduces a mutation technique
to use DDL (e.g., CREATE) and DML (e.g., INSERT) statements
to change the database state. It saves those mutated cases that
cover unseen query plans to explore more behaviors. SQLRight [30]
separates SELECT and other statements for mutation, and finally
concatenates them together.

Unlike these works that generate complex SQL queries to test
database management systems, Mozi takes a different approach.
Instead, it is a framework that applies equivalent transformations
to DBMSs. By using this technique, Mozi is able to test both cor-
rectness and performance bugs. Nevertheless, The SQL generation
technique and DBMS equivalent transformation are orthogonal. As

Mozi: Discovering DBMS Bugs via Configuration-Based Equivalent Transformation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

a result, it is possible to adapt the SQL generation technique into
Mozi to combine the advantages of both techniques.

Metamorphic Testing.Many works [30, 33, 46–48, 53] detect
errors in a DBMS by verifying whether the execution results of SQL
statements conform to predefined rules. Amoeba [33] aims to find
performance bugs in DBMS by constructing semantically equiva-
lent query pairs and comparing the response times when the DBMS
executes them. NOREC [46] and TLP [47] are two test oracles used
in SQLancer. NoREC converts a SQL query to one that cannot be
optimized by optimizers and compares the two’s execution results
to find optimizer bugs. TLP employs the concept of partitioning,
wherein a problem is identified by partitioning the original query
into multiple more complex queries. The approach involves com-
paring the results of the original query with the composed result
of the partitioned queries to determine their consistency. DQE [53]
constructs SQL statements that should access the same rows and
verifies whether the rows fetched by these statements are the same
during execution. The EMI (Equivalence Modulo Inputs) [26] can
be seen as a special case of metamorphic testing. It aims to reduce
the complexity of validating the correctness of compilers. It mainly
focuses on generating the EMI variants (i.e., the equivalent pro-
grams under some test inputs) by randomly deleting or keeping
the unexecuted statements on the input set.

Compared to metamorphic testing, our work focuses specifically
on changing the DBMS itself. While metamorphic testing relies on
manually defining metamorphic relations, our approach automati-
cally generates equivalent DBMSs that can be used for a variety of
testing purposes, including performance and correctness testing.
Some other test oracles could also be extended like authorization
testing and compliance testing.

Differential Testing. Some approaches [12, 25, 52] are proposed
to test the same SQL statements on different DBMSs, known as
differential testing [35]. RAGS [52] proposes the idea of validating
the output of SQL statements by comparing the execution results
of multiple DBMS vendors. Apollo [25] compares the executing
speed of the same SQL statements on different versions of the target
DBMS to detect its performance bugs. DT2 [12] finds transaction
discrepancies onmultiple MySQL-compatible DBMSs by comparing
their transaction execution results of the same transactions.

Mozi utilizes a special form of differential testing to test correct-
ness and performance bugs. Compared to other works that use one
fixed DBMS for comparison, Mozi continuously transforms the
configuration of a DBMS to compare it dynamically with different
instantiations. Due to the equivalence with respect to queries, Mozi
circumvents the problem of not being able to find a DBMS for com-
parison or only being able to test limited queries with a common
syntax in both compared DBMSs.

Configuration Tuning. Configuration tuning techniques [14,
27, 54, 55, 61] are already used in DBMS for performance anal-
ysis and improvement. To recommend improved configurations,
iTuned [14] automatically finds possible high-performance param-
eter settings and verifies them by running online experiments in
production database environments. Many methods use machine
learning methods to achieve automated tuning [27, 54, 55]. For
example, OtterTune [54] employs large-scale machine learning to
automate DBMS tuning by analyzing past experience and new exe-
cution information. QTune [27] is a query-aware database tuning

system that uses a deep reinforcement learning model to efficiently
and effectively tune database configurations.

These works can improve the DBMS performance by configu-
ration tuning, but they ignore the possible bugs under different
configurations. Mozi can find such bugs following the DBMS equiv-
alent transformation.

8 CONCLUSION

In this paper, we proposed Mozi, a framework for discovering
bugs in DBMSs via configuration-based equivalent construction.
The framework involves issuing a query to the DBMS, changing
configurations on-the-fly, and re-issuing the query to the modified
DBMS to compare results. Different results indicate correctness
bugs, while faster execution on the weakened DBMS indicates
performance bugs. Our experiment results show that Mozi detected
many correctness and performance bugs that were missed by other
tools, indicating its superiority in terms of bug-finding capabilities.
In our future work, we will focus on studying other transformation
methods and finding other potential test oracles.

ACKNOWLEDGMENTS

This research is sponsored in part by theNSFC Program (No. 62302256,
62022046, 92167101, 62021002), Chinese Postdoctoral Science Foun-
dation(2023M731953), and National Key Research and Development
Project (No. 2022YFB3104000).

REFERENCES

[1] 2023. Null Value Differences in RDBMS. https://www.linkedin.com/pulse/null-
value-differences-rdbms-sumit-sengupta. Accessed: January 18, 2024.

[2] 2024. SQL Language Reference–ANSI Standards. https://docs.oracle.com/
en/database/oracle/oracle-database/19/sqlrf/ANSI-Standards.html#GUID-
F51EA195-0669-4DED-9D81-B7205AAC642F/. Accessed: January 18, 2024.

[3] Jinsheng Ba and Manuel Rigger. 2023. Testing database engines via query plan
guidance. In Proceedings of International Conference on Software Engineering

(ICSE).
[4] Adam Bannister. 2021. SQLite patches use-after-free bug that left apps open to

code execution, denial-of-service exploits. https://portswigger.net/daily-
swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-
execution-denial-of-service-exploits. Accessed: January 18, 2024.

[5] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 2020. Metamorphic testing:
a new approach for generating next test cases. arXiv preprint arXiv:2002.12543
(2020).

[6] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, TH Tse,
and Zhi Quan Zhou. 2018. Metamorphic testing: A review of challenges and
opportunities. ACM Computing Surveys (CSUR) 51, 1 (2018), 1–27.

[7] Yuanliang Chen, Yu Jiang, FuchenMa, Jie Liang, MingzheWang, Chijin Zhou, Xun
Jiao, and Zhuo Su. 2019. EnFuzz: Ensemble Fuzzing with Seed Synchronization
among Diverse Fuzzers. In USENIX Security Symposium.

[8] Catalin Cimpanu. 2019. Google Chrome impacted by new Magellan 2.0 vul-
nerabilities. https://www.zdnet.com/article/google-chrome-impacted-by-new-
magellan-2-0-vulnerabilities/. Accessed: January 18, 2024.

[9] ClickHouse 2024. ClickHouse Website. https://clickhouse.com/. Accessed:
January 18, 2024.

[10] PostgreSQL Community. 2014. PostgreSQL Bug List. https://www.postgresql.org/
list/pgsql-bugs/. Accessed: January 18, 2024.

[11] Carlos Coronel and StevenMorris. 2019. Database systems: design, implementation

and management. Cengage learning.
[12] Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and

Dan Ye. 2022. Differentially Testing Database Transactions for Fun and Profit.
In 37th IEEE/ACM International Conference on Automated Software Engineering.
1–12.

[13] Chris J Date. 1989. A Guide to the SQL Standard. Addison-Wesley Longman
Publishing Co., Inc.

[14] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning database
configuration parameters with ituned. Proceedings of the VLDB Endowment 2, 1
(2009), 1246–1257.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Chengnian Sun, and Yu Jiang

[15] R Elmasri, SB Navathe, R Elmasri, and SB Navathe. 2015. Fundamentals of
Database Systems. In Advances in Databases and Information Systems. Springer,
139.

[16] Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2022. Griffin:
Grammar-free DBMS fuzzing. In Proceedings of the 37th IEEE/ACM International

Conference on Automated Software Engineering. 1–12.
[17] James R Groff, Paul N Weinberg, and Andrew J Oppel. 2002. SQL: the complete

reference. Vol. 2. McGraw-Hill/Osborne.
[18] The PostgreSQL Global Development Group. 2023. PostgreSQL 14.10 Documen-

tation. https://www.postgresql.org/files/documentation/pdf/14/postgresql-14-
A4.pdf. Accessed: January 18, 2024.

[19] The PostgreSQL Global Development Group. 2023. Query Planning. https:
//www.postgresql.org/docs/current/runtime-config-query.html. Accessed: Jan-
uary 18, 2024.

[20] The PostgreSQL Global Development Group. 2024. EXPLAIN Statement of Post-
greSQL. https://www.postgresql.org/docs/current/sql-explain.html. Accessed:
January 18, 2024.

[21] The PostgreSQL Global Development Group. 2024. Using EXPLAIN. https:
//www.postgresql.org/docs/current/using-explain.html. Accessed: January 18,
2024.

[22] Kenneth Hoste and Lieven Eeckhout. 2008. Cole: compiler optimization level
exploration. In Proceedings of the 6th annual IEEE/ACM international symposium

on Code generation and optimization. 165–174.
[23] Matthias Jarke and Jurgen Koch. 1984. Query optimization in database systems.

ACM Computing surveys (CsUR) 16, 2 (1984), 111–152.
[24] Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. 2023. DynSQL: Stateful Fuzzing for

Database Management Systems with Complex and Valid SQL Query Generation.
[25] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2020.

APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems. In Proceedings of the 46th International Conference on Very

Large Data Bases (VLDB). Tokyo, Japan.
[26] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-

alence modulo inputs. ACM Sigplan Notices 49, 6 (2014), 216–226.
[27] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. Qtune: A query-aware

database tuning system with deep reinforcement learning. Proceedings of the
VLDB Endowment 12, 12 (2019), 2118–2130.

[28] Jie Liang, Yaoguang Chen, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Yu Jiang,
Xiangdong Huang, Ting Chen, Jiashui Wang, and Jiajia Li. 2023. Sequence-
oriented DBMS fuzzing. In Proceedings of IEEE International Conference on Data

Engineering (ICDE).
[29] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang

Sun. 2018. PAFL: Extend Fuzzing Optimizations of Single Mode to Industrial
Parallel Mode.

[30] Yu Liang, Song Liu, and Hong Hu. 2022. Detecting Logical Bugs of {DBMS} with
Coverage-based Guidance. In 31st USENIX Security Symposium (USENIX Security

22). 4309–4326.
[31] LibFuzzer 2024. LibFuzzer. https://www.llvm.org/docs/LibFuzzer.html. Accessed:

January 18, 2024.
[32] Huai Liu, Fei-Ching Kuo, Dave Towey, and Tsong Yueh Chen. 2013. How effec-

tively does metamorphic testing alleviate the oracle problem? IEEE Transactions

on Software Engineering 40, 1 (2013), 4–22.
[33] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso. 2022. Automatic detection

of performance bugs in database systems using equivalent queries. In Proceedings

of the 44th International Conference on Software Engineering. 225–236.
[34] MariaDB 2024. MariaDB. https://mariadb.org/. Accessed: January 18, 2024.
[35] William M McKeeman. 1998. Differential testing for software. Digital Technical

Journal 10, 1 (1998), 100–107.
[36] Jim Melton. 1996. Sql language summary. Acm Computing Surveys (CSUR) 28, 1

(1996), 141–143.
[37] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of

the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990).
[38] MySQL 2014. MySQL 8.0 Reference Manual, Switchable Optimizations. https:

//dev.mysql.com/doc/refman/8.0/en/switchable-optimizations.html. Accessed:
January 18, 2024.

[39] MySQL 2024. Understanding the Query Execution Plan. https://dev.mysql.com/
doc/refman/8.0/en/execution-plan-information.html. Accessed: January 18,
2024.

[40] Oracle. 2014. MySQL Bug List. https://bugs.mysql.com/. Accessed: January 18,
2024.

[41] Oracle. 2024. EXPLAIN Statement of MySQL. https://dev.mysql.com/doc/refman/
8.0/en/explain.html. Accessed: January 18, 2024.

[42] Oracle 2024. MySQL. https://www.mysql.com/. Accessed: January 18, 2024.
[43] PostgreSQL 2024. PostgreSQL. https://www.postgresql.org/. Accessed: January

18, 2024.
[44] Manuel Rigger. 2024. Bugs found in Database Management Systems. https:

//www.manuelrigger.at/dbms-bugs. Accessed: January 18, 2024.
[45] Manuel Rigger. 2024. SQLancer Website. https://github.com/sqlancer/sqlancer.

Accessed: January 18, 2024.

[46] Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In Proceedings of

the 28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 1140–1152.
[47] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via

query partitioning. Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 1–30.

[48] Manuel Rigger and Zhendong Su. 2020. Testing database engines via pivoted
query synthesis. In 14th USENIX Symposium on Operating Systems Design and

Implementation OSDI 20). 667–682.
[49] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A

survey on metamorphic testing. IEEE Transactions on software engineering 42, 9
(2016), 805–824.

[50] Andreas Seltenreich, Bo Tang, and Sjoerd Mullender. 2018. SQLsmith: a random
SQL query generator. https://github.com/anse1/sqlsmith

[51] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX

Annual Technical Conference, Boston, MA, USA, June 13-15, 2012, Gernot Heiser and
Wilson C. Hsieh (Eds.). USENIX Association, 309–318. https://www.usenix.org/
conference/atc12/technical-sessions/presentation/serebryany

[52] Donald R. Slutz. 1998. Massive Stochastic Testing of SQL. In VLDB’98, Proceedings

of 24rd International Conference on Very Large Data Bases, New York, USA. Morgan
Kaufmann, 618–622.

[53] Jiansen Song, Wensheng Dou, Ziyu Cui, Qianwang Dai, Wei Wang, Jun Wei, Hua
Zhong, and Tao Huang. 2023. Testing Database Systems via Differential Query
Execution. In Proceedings of International Conference on Software Engineering

(ICSE).
[54] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.

Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM international conference on management

of data. 1009–1024.
[55] Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang,

Christian Bilien, and Andrew Pavlo. 2021. An inquiry into machine learning-
based automatic configuration tuning services on real-world database manage-
ment systems. Proceedings of the VLDB Endowment 14, 7 (2021), 1241–1253.

[56] MingzheWang, Jie Liang, Chijin Zhou, ZhiyongWu, Xinyi Xu, and Yu Jiang. 2022.
Odin: on-demand instrumentation with on-the-fly recompilation. In Proceedings

of the 43rd ACM SIGPLAN International Conference on Programming Language

Design and Implementation. 1010–1024.
[57] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang,

and Yu Jiang. 2021. Industry Practice of Coverage-Guided Enterprise-Level DBMS
Fuzzing. In 43rd IEEE/ACM International Conference on Software Engineering:

Software Engineering in Practice, ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021.
IEEE, 328–337. https://doi.org/10.1109/ICSE-SEIP52600.2021.00042

[58] Wikipedia 2024. databases. https://en.wikipedia.org/wiki/Database. Accessed:
January 18, 2024.

[59] ZhiyongWu, Jie Liang, Mingzhe Wang, Chijin Zhou, and Yu Jiang. 2022. Unicorn:
detect runtime errors in time-series databases with hybrid input synthesis. In
Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing

and Analysis. 251–262.
[60] Michał Zalewski. 2017. american fuzzy lop. http://lcamtuf .coredump.cx/afl/.

Accessed: January 18, 2024.
[61] Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022. Towards

dynamic and safe configuration tuning for cloud databases. In Proceedings of the

2022 International Conference on Management of Data. 631–645.
[62] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Ding-

hao Wu. 2020. Squirrel: Testing Database Management Systems with Language
Validity and Coverage Feedback. In The ACM Conference on Computer and Com-

munications Security (CCS), 2020.

