
Sedar: Obtaining High-Quality Seeds for DBMS Fuzzing via
Cross-DBMS SQL Transfer

Jingzhou Fu
KLISS, BNRist, School of Software

Tsinghua University, China

Jie Liang∗
KLISS, BNRist, School of Software

Tsinghua University, China

Zhiyong Wu
KLISS, BNRist, School of Software

Tsinghua University, China

Yu Jiang∗
KLISS, BNRist, School of Software

Tsinghua University, China

ABSTRACT

Effective DBMS fuzzing relies on high-quality initial seeds, which
serve as the starting point for mutation. These initial seeds should
incorporate various DBMS features to explore the state space thor-
oughly. While built-in test cases are typically used as initial seeds,
many DBMSs lack comprehensive test cases, making it difficult to
apply state-of-the-art fuzzing techniques directly.

To address this, we propose Sedar which produces initial seeds
for a target DBMS by transferring test cases from other DBMSs. The
underlying insight is that many DBMSs share similar functionali-
ties, allowing seeds that cover deep execution paths in one DBMS to
be adapted for other DBMSs. The challenge lies in converting these
seeds to a format supported by the grammar of the target database.
Sedar follows a three-step process to generate seeds. First, it exe-
cutes existing SQL test cases within the DBMS they were designed
for and captures the schema information during execution. Second,
it utilizes large language models (LLMs) along with the captured
schema information to guide the generation of new test cases based
on the responses from the LLM. Lastly, to ensure that the test cases
can be properly parsed and mutated by fuzzers, Sedar temporarily
comments out unparsable sections for the fuzzers and uncomments
them after mutation. We integrate Sedar into the DBMS fuzzers
Sqirrel and Griffin, targeting DBMSs such as Virtuoso, Mon-
etDB, DuckDB, and ClickHouse. Evaluation results demonstrate
significant improvements in both fuzzers. Specifically, compared to
Sqirrel and Griffinwith non-transferred seeds, Sedar enhances
code coverage by 72.46%-214.84% and 21.40%-194.46%; compared
to Sqirrel and Griffin with native test cases of these DBMSs as
initial seeds, incorporating the transferred seeds of Sedar results
in an improvement in code coverage by 4.90%-16.20% and 9.73%-
28.41%. Moreover, Sedar discovered 70 new vulnerabilities, with 60
out of them being uniquely found by Sedar with transferred seeds,
and 19 of them have been assigned with CVEs.
∗Jie Liang and Yu Jiang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2024, April 2024, Lisbon, Portugal
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS

DBMS Fuzzing, Initial Seeds, Vulnerability Detection

ACM Reference Format:

Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang. 2023. Sedar: Obtain-
ing High-Quality Seeds for DBMS Fuzzing via Cross-DBMS SQL Transfer.
In Proceedings of 46th International Conference on Software Engineering
(ICSE 2024). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Database Management Systems (DBMSs) play a crucial role in mod-
ern software applications as they store data and process queries
across various domains. However, DBMSs are not immune to vul-
nerabilities, which can have severe consequences such as service
denials, data leaks, data loss, and even complete system failure.
Given the potential harm these vulnerabilities can inflict, it be-
comes essential to proactively identify and address any security
issues within DBMSs to ensure system security and data integrity.

Mutation-based fuzzing is widely recognized as an effective tech-
nique for uncovering vulnerabilities in software programs. Fuzzers
utilizing mutation-based approaches maintain a pool of initial seeds
and iteratively generate new test cases by mutating these seeds.
These mutated inputs are then executed on the target programs,
exploring new code regions and potentially exposing vulnerabil-
ities. However, when it comes to fuzzing Database Management
Systems (DBMSs), which primarily rely on Structured Query Lan-
guage (SQL) as inputs, the complexity of SQL grammar and the
intricacies of DBMS executable binaries pose unique challenges.
Traditional mutation-based fuzzing tools often struggle to effec-
tively fuzz DBMSs because the inputs generated by them often
result in syntax errors or semantic errors, making it difficult to test
the underlying logic and detect vulnerabilities within the DBMS.
Therefore, many works [9, 14, 19, 44, 48] are proposed to ensure
that the generated inputs for DBMS fuzzing adhere to the expected
input formats, enabling comprehensive testing of the deep logic
and discovering potential vulnerabilities within DBMSs.

The effectiveness of fuzzing technologies for DBMS heavily de-
pends on the quality of initial seeds. The initial seeds play a crucial
role as the starting point for mutations, enabling comprehensive
exploration of the state space of programs. To achieve effective
DBMS fuzzing, it is essential that the initial seeds encompass a
diverse range of DBMS features, allowing for thorough coverage
of the target DBMS’s functionality and potential vulnerabilities.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 2024, April 2024, Lisbon, Portugal Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang

Typically, existing mutation-based DBMS fuzzing approaches rely
on collecting SQL seeds from built-in unit test cases and regression
test suites. By leveraging these existing test cases, these fuzzing
techniques obtain initial seeds that have already been designed
to cover specific functionalities and test scenarios. This method
guarantees that the initial seeds are representative of valid inputs
and can help guide the mutation process effectively.

However, a significant obstacle arises when many DBMSs

lack comprehensive test cases, leaving fuzzers without a re-

liable source for collecting SQL statements as initial seeds.

Although several works [21, 42, 43, 46] have proposed initial seed
generation approaches, these techniques may not be suitable for
generating high-quality SQL seeds due to the unique complexi-
ties of SQL grammar and the inherent dependencies present in
SQL statements. SQL grammar exhibits intricate structures and se-
mantic rules that differ significantly from general-purpose markup
languages. These complexities make it challenging to apply tra-
ditional seed generation approaches directly to SQL statements.
Additionally, SQL statements often involve dependencies, such as
table relationships and query constraints, which further complicate
the generation of meaningful and representative SQL seeds.

To address the issue of lacking high-quality initial seeds in DBMS
fuzzing, a potential solution could be to gather test cases from
established DBMSs and transfer them into appropriate initial seeds
for the target DBMS. However, the transfer of SQL test cases across
DBMSs poses significant challenges. First, the grammar differences
between DBMSs make it impractical to directly utilize these test
cases as initial seeds. Doing so would result in numerous syntactic
and semantic errors when applied to the target DBMS. To effectively
trigger deep code regions within the target DBMS, it is crucial to
ensure that the SQL statements in the transferred seeds adhere
to the grammatical requirements of the target DBMS. Moreover,
compatibility issues arise when attempting to use these transferred
seeds with existing DBMS fuzzers. The mutators employed by these
fuzzers are designed to process the SQL test cases that conform to
their specifically supported grammar. As a result, these mutators
may fail to parse or mutate the transferred seeds due to the presence
of unsupported grammatical constructs. This limitation hinders the
effective testing of target DBMS using these fuzzers.

To overcome the challenges, we propose a solution called Sedar.
It guarantees compatibility with the target DBMS by a three-step
process: 1 First, the existing SQL test cases are executed within
their original DBMS environments, allowing for the collection of
essential schema information during the execution. This schema
information provides valuable insights into the database structure
and characteristics. 2 Second, the SQL test cases, along with the
collected schema information, are input to large language models
(LLMs) for further processing. The LLMs leverage the provided
schema information to guide the generation of new test cases that
align with the expected input formats and behavior of the target
DBMS. These newly generated test cases benefit from the exten-
sive knowledge of LLMs to be compatible with the target DBMS.
3 Finally, to ensure mutability by DBMS fuzzers, specific measures
are taken. When certain sections of the generated test cases can-
not be parsed by the fuzzers’ mutators, these sections are marked
as comments within the SQL statements. This marking instructs
the mutators to ignore those sections while focusing on mutating

the rest of the SQL statements. After the mutation, the previously
marked sections are uncommented, resulting in test cases that are
both compatible and mutable, ready to be used by DBMS fuzzers.

For evaluation, we apply Sedar to generate initial seeds for four
DBMSs: MonetDB, Virtuoso, DuckDB, and ClickHouse. We use two
state-of-the-art mutation-based DBMS fuzzers, namely Sqirrel
and Griffin, to assess the quality of the generated seeds. By utiliz-
ing the initial seeds provided by Sedar, these fuzzers were able to
achieve significant coverage improvements in the target DBMSs.
Specifically, in MonetDB, Virtuoso, DuckDB, and ClickHouse, the
fuzzers covered 40.58%-195.45%, 90.82%-126.87%, 62.05%-136.20%,
and 72.46%-214.84% more branches, respectively, compared to us-
ing non-transferred seeds. When using these transferred seeds to
augment the native seeds of these DBMSs for fuzzing, the fuzzers
enhance code coverage by 10.77%-28.41%, 12.53%-16.20%, and 4.90%-
9.73% in MonetDB, DuckDB, and ClickHouse, respectively. More-
over, the fuzzers identified a total of 70 previously unknown bugs
across the evaluated DBMSs. Among them, 60 bugs were uniquely
found by Sedar with transferred seeds, and 19 bugs have been as-
signed CVE IDs due to their severity. In summary, our paper makes
the following contributions:

(1) We identify the critical dependency of fuzzing techniques
on the availability of high-quality initial seeds derived from
built-in test cases. However, many DBMSs lack such test
cases, resulting in hindering effective DBMS fuzzing.

(2) We propose Sedar, a novel approach that overcomes the
limitation of missing initial test cases by enabling the gen-
eration of seed inputs for targeted DBMS fuzzing through
cross-DBMS SQL transfer. These seeds can also be utilized to
augment the native seeds, thereby increasing code coverage
and facilitating the detection of unknown bugs.

(3) Sedar successfully uncovered 70 bugs in real-world DBMSs,
19 of which have been assigned CVE identifiers.

2 BACKGROUND AND MOTIVATION

DBMSs and SQL. Most DBMSs use structured query language
(SQL) as the language to manage data. Users can utilize various
functionalities of DBMSs by executing corresponding SQL state-
ments. Typically, DBMSs adhere to basic features of ANSI SQL
standard [1] for common uses, while they support more advanced
features with their unique SQL dialects. The grammars of SQL di-
alects are not compatible with each other, since similar features may
be implemented with distinct grammar between different DBMSs.

Initial Seeds for DBMS Fuzzing. A seed for DBMS fuzzing typ-
ically refers to a test case that comprises a series of SQL statements.
Mutation-based DBMS fuzzing continuously mutates existing seeds
to generate new test cases. The quality of these initial seeds is of
utmost importance for the effectiveness of fuzzing. First, the initial
seeds serve as the starting point for fuzzing and form the foun-
dation for the subsequent fuzzing iterations. The richness of the
features contained in the initial seeds affects the variety of func-
tionalities that can be explored within the DBMS in the following
mutation. High-quality initial seeds help increase test coverage and
enhance the effectiveness of bug detection. Moreover, due to the
unique grammar and behaviors of different DBMSs, it is important
to tailor the initial seeds to match the specific characteristics of the

Sedar: Obtaining High-Quality Seeds for DBMS Fuzzing via Cross-DBMS SQL Transfer ICSE 2024, April 2024, Lisbon, Portugal

target DBMS, ensuring that the fuzzing is well-suited to explore
that particular system effectively.

Test engineers have utilized mutation-based fuzzers to exten-
sively test many widely-used DBMSs, such as SQLite, MySQL, Mari-
aDB, and PostgreSQL. To facilitate the testing process, their initial
seeds are often acquired from the DBMSs’ built-in test cases. Specifi-
cally, these DBMSs havemaintained extensive test suites [24, 28, 38],
containing thousands of built-in test cases for unit tests, regression
tests, performance tests, and other purposes. With access to these
test suites, test engineers can effectively collect initial seeds and
perform efficient fuzzing on these popular DBMSs.

Lack of Quality Initial Seeds Limits DBMS Fuzzing. Al-
though the acquisition of initial seeds from the extensive test suites
is standard practice for those popular DBMSs, it is worth noting
that not all DBMSs provide such large and high-quality test suites.
The lack of comprehensive built-in test cases in some DBMSs poses
a challenge for fuzzers as there is no feasible way to directly collect
the suitable initial seeds for these DBMSs. This limitation can ad-
versely impact the performance of DBMS fuzzers due to the absence
of high-quality initial seeds.

1:CREATE TABLE a (p_id INT, p_name BLOB);
2:INSERT INTO a VALUES (1,NULL);
3:EXPLAIN SELECT * FROM a WHERE p_name=‘Lilu’;
-- In other DBMSs: successfully executed

3:TRACE SELECT * FROM a WHERE p_name=‘Lilu’;
-- In MonetDB: server crashed

Figure 1: A crash bug in MonetDB found by Sedar.

Figure 1 depicts a crash bug that cannot be detected by cur-
rent DBMS fuzzers due to the absence of appropriate initial seeds,
which is triggered by a TRACE statement. The TRACE statement is a
specialized feature in MonetDB intended for analyzing statement
execution, akin to the EXPLAIN statement in other DBMSs. How-
ever, MonetDB does not officially provide test cases that include
the TRACE statements. As a result, current DBMS fuzzers cannot dis-
cover this bug because none of the initial seeds contain the TRACE
statement, making it challenging to generate subsequent mutations
for triggering the bug. One potential method to test the TRACE fea-
ture in MonetDB is by transferring the test cases from other DBMSs
that use the EXPLAIN feature, as their grammars are similar. For
example, we can simply replace the keyword EXPLAIN with TRACE
to test MonetDB. However, such transfer faces two challenges:

(1) The substantial differences in grammar among DBMSs. While
the TRACE and EXPLAIN statements in the example differ only in one
keyword, there are significant differences in grammar across other
features, such as storage engines, data types, and function names,
among others. Taking MonetDB and SQLite as an example, Mon-
etDB has 225 functions, while SQLite has 165 functions, with only
59 of them sharing the same function names in both DBMSs. Such
significant differences make the transfer difficult and laborious.

(2) The limited grammar support of DBMS fuzzers. Many DBMS
fuzzers are implemented to test specific popular DBMSs, which
means their supported grammar is also tailored to those specific
systems. Even if test cases from other DBMSs are successfully trans-
ferred to match the grammar of MonetDB, the fuzzers may still
encounter difficulties in parsing or mutating these transferred test
cases due to the lack of support for certain grammars in them.

Basic Idea of Sedar. To address the first challenge, Sedar
leverages large language models (LLMs) to facilitate the transfer
process. LLMs have demonstrated exceptional performance in natu-
ral language tasks and programming language tasks [7, 16, 17]. For
SQL-related tasks, LLMs have been successfully utilized to generate
SQL statements from texts, showcasing outstanding effectiveness
[29]. Sedar utilizes LLMs to transfer SQL statements. It generates
prompts that include the individual SQL statements along with
their corresponding descriptions, aiding the process of LLMs.

To overcome the second challenge, Sedar takes steps to ensure
that the transferred test cases remain mutable by the fuzzers. It
accomplishes this by concealing any unparsable keywords and
clauses via commenting them out. This strategy enables the fuzzers
to focus solely on the remaining parsable parts, allowing them to
efficiently mutate the test cases. Through a combination of SQL
transfer and mutability refinement, Sedar successfully generates
high-quality initial seeds compatible with the DBMSs and fuzzers.

3 DESIGN

The overall design of Sedar is shown in Figure 2, which contains
three steps: schema capture, SQL transfer, and mutability refine-
ment. The following paragraphs present the details of each step.

3.1 Schema Capture

Schema capture aims to collect the schema information from the
test cases of other DBMSs. The schema refers to the structure or
blueprint that delineates the organization of the database. It out-
lines the logical arrangement of database objects, including tables,
columns, indexes, functions, constraints, and others. Schema pro-
vides a comprehensive overview of SQL statements, which can be
used to describe them and serve as prompts for the subsequent SQL
transfer process via LLMs. The schema information provides the
context of statements, which enhances the accuracy of the transfer.

The lack of schema information can lead to inaccuracies of the
output by LLMs due to the ambiguity of a single SQL statement. For
example, in a single SELECT statement “SELECT... WHERE a=b”, the
data types of the columns “a” and “b” are ambiguous when schema
information is not available. If the statement is to be transferred
to a DBMS requiring explicit type casting such as PostgreSQL, the
expression “a=b” needs a rewrite with type casting. This could
be as “a=b::BOOL” when the column “a” is the boolean type or
“a=b::TEXT” for the string type. Due to the ambiguity, LLMs cannot
infer the data types of columns as well as the correct formats of
type casting, leading to incorrect transfer. In contrast, when pro-
viding schema information, LLMs can generate correct expressions
according to the data types from schema information.

Schema information could be retrieved by executing specific
queries. DBMSs typically support queries on system tables that can
list all database objects with their corresponding names and types,
effectively representing the entire schema. However, collecting the
entire schema is excessive for describing SQL statements. While
databases can contain hundreds of objects such as user-defined
or built-in tables, columns, triggers, and functions, A single SQL
statement may merely reference several database objects. Only the
database objects referenced by the SQL statements in test cases are
necessary for retrieving the schema that describes them.

ICSE 2024, April 2024, Lisbon, Portugal Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang

Popular

DBMSs

Test Case

Execution

Schema

Query

Unparsable

Commenting

Test Cases From

Popular DBMSs

Compatible

Seeds
Mutable

Seeds

Schema Capture Mutability Refinement

Bugs

Schema

Information

Statements Prompt

Generation

LLM Query

LLM

SQL Transfer

DBMS

Fuzzers

Figure 2: The overall design of Sedar. First, Sedar executes the statements in test cases of other DBMSs and collects the schema

information of the DBMS during execution. Second, to make the test cases compatible with the grammar of the target DBMS, it

feeds the test cases along with the schema information to the LLMs to transfer them into those satisfying the grammar of the

target DBMS. Third, to make the test case parsable and mutable by the DBMS fuzzer, it parses the test case with the fuzzer’s

parser, comments out the unparsable sections, and then uncomments them after mutation.

To collect the database objects referenced by each statement of
test cases, Sedar follows these steps: (1) First, Sedar executes the
test cases within their respective DBMS. It records each executed
statement and splits it into tokens. (2) Second, Sedar enumerates
the identifier tokens in the statement and queries the current system
tables to locate the corresponding database objects that match
these identifiers. (3) Third, for the database objects found by the
query, Sedar constructs the referenced sub-schema according to
the information of these objects.

person

- student_id INT
- name VARCHAR(50)
- school_id INT
…

school

- id INT
- name VARCHAR(50)
- Location VARCHAR(255)
…

…

SELECT location

FROM person JOIN school

WHERE school_id = id

Entire Schema

SQL Statement

school

- id INT

- location VARCHAR(255)

person
- school_id INT

Referenced Sub-Schema

②query

③construct

Identifier Tokens:
{location, person, school, school_id, id}

①split

Figure 3: The workflow of schema capture.

Figure 3 illustrates an example of the workflow of schema cap-
ture. Upon the execution of a statement, Sedar first splits the state-
ment into identifier tokens, namely “location”, “person”, “school”,
“school_id”, and “id”. Next, Sedar queries the system table to locate
the corresponding database objects, and the result of the query
reveals that “school” and “person” are table names, while “id”, “loca-
tion”, and “school_id” are column names. Finally, Sedar constructs
the sub-schema referenced by the statement according to the query
result. After the above steps are finished, we obtain the SQL state-
ments in test cases paired with their corresponding sub-schemas.
The schema information of each statement will be used to describe
the statement, which is introduced in the next component of Sedar.

3.2 SQL Transfer with LLM

SQL transfer aims to transform the SQL statements in test cases
from popular DBMSs into statements that match the grammar of
the target DBMSs via LLMs. First, Sedar generates prompts for
the LLMs based on the SQL statements and their corresponding

schema information for the transfer task. Next, it queries the LLMs
and processes the responses into the test cases that are compatible
with the target DBMS.

Prompt Generation. The inputs given to LLMs, known as
prompts, determine their outputs. To drive LLMs to process the
transferring task, it is required to design suitable prompts (i.e.,
prompt engineering). For the purpose of transferring the test cases
of popular DBMS to target DBMS, a straightforward design of the
prompt is to submit the entire test cases to LLMs. However, the
test cases can be very large, potentially including thousands of
SQL statements. Due to the limitations of LLMs in handling large
inputs and generating extensive outputs within a single prompt,
Sedar adopts a different approach. It generates individual prompts
for each statement in test cases, addressing the task of transfer-
ring a single statement per prompt. This allows for more efficient
processing and ensures better compatibility with the LLMs.w

The following is a SQL statement in SQLite.

Note that “v0” is a table, “v1” is a column

with string type.

```sql

CREATE TABLE v0(v1) WITHOUT ROWID;
```

The equivalent statement in DuckDB:

Description

SQL
Statements

Command

Figure 4: An example of the prompt to transfer a statement

from SQLite grammar to DuckDB grammar.

Figure 4 shows a sample prompt for the transfer of a single state-
ment. The prompt contains the following parts: 1 The description
of the statement waiting to transfer, which includes the introduc-
tion of the sub-schema referenced by the statement. It provides the
context of the statement, which enables the LLM to generate accu-
rate output without requiring knowledge of entire test cases. 2 The
content of the statement. It is enclosed within a markdown code
block with the ’sql’ hint. 3 The command part, namely “The equiv-
alent SQL statement in DuckDB”. It is to drive the LLMs to transfer
the given statement into the one matching DuckDB grammar.

In the prompt, both the SQL statement part and the command
part can be generated directly from the content of the SQL state-
ment and the name of the target DBMS. For the description part,
Sedar needs to generate a natural language summary of the sub-
schema captured by the schema capture component. It is achieved

Sedar: Obtaining High-Quality Seeds for DBMS Fuzzing via Cross-DBMS SQL Transfer ICSE 2024, April 2024, Lisbon, Portugal

by converting each item in the sub-schema into a sentence with
the format “{item_name} is a {item_type}”, and concatenating these
sentences to form the description part.

LLMQuery.Upon the generation of prompts, Sedar enumerates
the prompts and queries the LLMs. Since every prompt already con-
tains the context of the statement, the order of these prompts during
querying does not impact the process. Thus, for LLMs with parallel
support, Sedar can concurrently query multiple prompts for speed-
ing up. Upon these prompts are sent to LLMs, the LLMs generate
responses that contain the transferred SQL statements. For LLMs
that have been pretrained with data containing the knowledge of
target DBMS, they can directly provide the result of transferring.
Otherwise, the LLMs require fine-tuning with the documentation
and tutorials of target DBMS to enable them to transfer SQL state-
ments properly. Finally, when receiving the responses from LLMs,
Sedar extracts the transferred statements and combines them in
their original sequences to create new test cases. These new test
cases are called compatible seeds since they should now be compati-
ble with the grammar of the target DBMS.

LLM

prompt

SELECT * FROM v0 WHERE v1 IN v0;

prompt

REPLACE INTO v0 VALUES (100);

prompt

CREATE TABLE v0(v1) WITHOUT ROWID;

Compatible Seed of DuckDB

Generated Prompts

CREATE TABLE v0(v1 VARCHAR);

INSERT OR REPLACE INTO v0 VALUES (100);

SELECT * FROM v0 WHERE v1 IN (SELECT *
FROM v0);

Figure 5: An example of a compatible seed of DuckDB. It is

combined with the responses of LLM driven by prompts.

Figure 5 illustrates the transfer from a SQLite test case into a com-
patible seed for DuckDB. Sedar first generates three prompts for
the three statements of the test case, similar to the example shown
in Figure 4. Then, Sedar queries the LLMwith these prompts in par-
allel. The responses of LLM present the following modifications to
the statements: 1 The clause WITHOUT ROWID in the table creation
statement is removed, as DuckDB does not support this feature. 2
The data type definition is added since the column types of table
creation in DuckDB require explicit definitions. 3 The REPLACE
keyword and the IN clause are replaced into the equivalent gram-
mar of DuckDB. Finally, Sedar joins these statements together to
form the compatible seed of DuckDB.

3.3 Mutability Refinement

Although the compatible seeds are suitable to the grammar of the
target DBMS, they are currently not mutable for the mutation-based
DBMS fuzzer. During the mutation process, the DBMS fuzzer’s mu-
tator is required to parse the SQL statements in the seed, analyze
their syntactic structures (e.g., the IRs in Sqirrel), modify the
structures, and convert the modified structures back to SQL state-
ments to form a new test case. When the seeds contain the grammar

supported by the target DBMS but not by the mutator’s parser, the
mutator is unable to parse them, impeding further mutation.

CREATE TABLE (v1 Int32)

ENGINE = MergeTree() ORDER BY (v1);

Mutator
CREATE TABLE (v1 /*Int32*/)

/*ENGINE = MergeTree() ORDER BY (v1)*/;

CREATE TABLE (v1 /*Int32*/ NOT NULL PRIMARY KEY)

/*ENGINE = MergeTree() ORDER BY (v1)*/;

parse

mutate

comment unparsable tokens

Compatible Seed

Mutable Seed

Mutated Seed

uncomment

CREATE TABLE (v1 Int32 NOT NULL PRIMARY KEY)

ENGINE = MergeTree() ORDER BY (v1);

Final Input to DBMS

Figure 6: The workflow of mutability refinement. Sedar gen-

eratesmutable seeds for themutators of fuzzers by comment-

ing out the unparsable sections in compatible seeds. These

comments for unparsable sections will be uncommented af-

ter the mutation finishes.

For instance, Sqirrel is unable tomutate the seed of ClickHouse
as shown in Figure 6. In ClickHouse, a CREATE TABLE statement
always specifies the storage engine, such as MergeTree and Memory.
However, Sqirrel lacks support for the grammar of engine decla-
ration clauses. If such statements are fed to Sqirrel for mutation,
the Sqirrel’s mutator will fail to parse the statements and simply
skip the entire seed. As a result, Sqirrel cannot mutate any Click-
House seed that contains CREATE TABLE statements, which limits
Sqirrel’s performance on ClickHouse.

To make the mutator able to parse and mutate the seed, Sedar
tries to extract the parsable part of the seed with Algorithm 1.
Specifically, Sedar first breaks the content of the seed into a list of
tokens, and then these tokens are sequentially fed to the mutator’s
parser. (lines 2-6). When a token encounters an error of the parser
(e.g., no rules can handle the token appended), Sedar marks this
token as an unparsable section, recovers the parser from its error
state, and continues with the next token (lines 7-14). After all of the
tokens have been processed, Sedar comments out these unparsable
sections, instructing the parser to ignore them (line 15). The “/*” and
“*/” strings are inserted around these unparsable sections of the seed,
which is a common format of SQL comments. Upon commenting
out the unparsable sections, we refer to the seed as a mutable seed,
since it can now be parsed for further mutation.

These mutable seeds are subsequently delivered to the DBMS
fuzzer’s mutator to mutate, which introduces a variety of mutated
structures within the parsable sections (line 16). Next, Sedar un-
comments the unparsable sections in these seeds to restore the
unsupported grammar (lines 17-19). The seeds thus consist of both
the mutated parsable part and uncommented unparsable sections
of the seed, which can trigger new behaviors in the target DBMS.

Figure 6 is an example to show how Sedar refines the mutability
of a compatible seed of ClickHouse. First, Sedar uses the mutator
of Sqirrel to parse the statement in the seed and identify two un-
parsable sections: the Int32 data type and the engine clause. Second,
Sedar comments out these unparsable sections, thereby forming
a mutable seed that contains only the CREATE TABLE keyword and

ICSE 2024, April 2024, Lisbon, Portugal Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang

Algorithm 1:Mutate the unparsable seed
Input : the mutator of DBMS fuzzer:𝑀 ,

the seed containing unparsable parts: 𝑆 .
Output :The mutations of the unparsable seed.

1 begin

2 𝑃 ← GetParserOf(𝑀) ;
3 tokens← SplitIntoTokens(𝑆) ;
4 state← InitStateOfParser(𝑃) ;
5 unparsables← an empty list;
6 foreach 𝑡 in tokens do

7 prevState← state;
8 state← Parse(𝑡, 𝑃, state) ;
9 if IsErrorState(nextState) then
10 Append(unparsables, 𝑡) ;
11 state← prevState;
12 end

13 end

14 𝑆∗ ← 𝑆 ;
15 foreach 𝑡 in unparsables do 𝑆∗ ← Comment(𝑆∗, 𝑡) ;

// 𝑆∗ here is called the mutable seed.

16 mutated← MutateTestCase(𝑆∗, 𝑀) ;
17 foreach𝑚 in mutated do

18 foreach 𝑡 in unparsables do𝑚 ← UnComment(𝑚, 𝑡) ;
19 end

20 return mutated;
21 end

the column name “v1”. Third, Sqirrel mutates the mutable seed
into a statement with the keywords NOT NULL and PRIMARY KEY.
Last, the unparsable sections are uncommented to get the final seed.
The mutated seed is still valid for ClickHouse and contains new
keywords produced by the mutation to trigger new behaviors.

4 IMPLEMENTATION

As Figure 2 shows, Sedar consists of three components with re-
spect to three steps: schema capture, SQL transfer, and mutability
refinement. We implemented the three components with 3,213 lines
of C++ code and 1,072 lines of Java code.

For the schema capture component, we modified the source
code of the DBMS clients [23, 27, 39] to capture the referenced
sub-schema whenever a statement is executed. Once the collections
of the statements and their schema information of a DBMS’s test
cases are finished, these results are reusable when transferring from
the DBMS to multiple DBMSs. For the SQL transfer component,
we employed the gpt-3.5-turbo-0301 model as the LLM to transfer
SQL statements. The prompt generation is implemented in Java,
and the interaction with gpt-3.5-turbo-0301 is run via its online
Applications Program Interface (API). For the mutability refinement
component, its implementation depends on the parser of the DBMS
fuzzer. For example, Sqirrel’s parser is written with Lex and Yacc
[18] code. We implemented the refinement of mutability by adding
the error recovery rules [11] to Sqirrel’s parser, which enables it
to automatically record and skip unparsable tokens.

5 EVALUATION

We evaluate Sedarwith the improvement of code coverage and bug
detection after employing Sedar to existing DBMS fuzzers, as well
as the efficiency of the seeds generated by Sedar in DBMS fuzzing.
Our evaluation aims to answer the following research questions:

• RQ1: With Sedar employed, can DBMS fuzzers find new
vulnerabilities in real-world DBMSs?
• RQ2:How is the improvement of Sedar for the performance
of mutated-based fuzzers on new DBMS?
• RQ3: What is the contribution of SQL transferring on the
initial seeds for fuzzing?
• RQ4: What is the effectiveness of refining mutability to
DBMS fuzzers?

5.1 Evaluation Setup

Tested DBMSs. We selected four popular DBMSs for the eval-
uation, including MonetDB [3], Virtuoso [36], DuckDB [6], and
ClickHouse [10]. These DBMSs are all widely used open-source
DBMSs according to DB-Engine Ranking [12, 13]. They support
similar DBMS features (e.g. the relational data model) but use dif-
ferent SQL dialects. The versions under evaluation are MonetDB
v11.46.0, Virtuoso-opensource v7.2.9, DuckDB v0.7.1, and Click-
House v23.5.3.24.

DBMS Fuzzers. To evaluate the quality of seeds generated by
Sedar, we employed two mutation-based DBMS fuzzers, Griffin
and Sqirrel. Specifically, Griffin applies mutation by reshuffling
statements and metadata-guided substitutions, while Sqirrel per-
forms syntax-preserved mutations and semantic-guided instanti-
ations on SQL test cases. Both Sqirrel and Griffin rely on the
initial seeds for DBMS fuzzing and aim to detect crash bugs.

Table 1: Information on collected open-source test cases.

SQLite MySQL PostgreSQL

Number of Test Cases 2,643 2,685 1,367
Number of Statements 308,292 98,862 19,814
Total Size of Test Cases 31 MiB 15 MiB 8.4 MiB

Collected Test Cases. As Sedar aims to produce high-quality
initial seeds for target DBMS by transferring test cases from other
DBMSs, we collected built-in test cases from other DBMS reposi-
tories [23, 27, 39] for SQL transfer, including SQLite, MySQL, and
PostgreSQL. Table 1 shows the information on collected test cases
in each DBMS. We also collected the native open-source test cases
from the repositories of MonetDB, DuckDB, and ClickHouse for
comparison. Virtuoso does not offer open-source test cases.

Basic Setups.We performed the evaluation on a 128-core AMD
EPYC 7742 Processor @ 2.25 GHz machine with 504 GiB of main
memory running 64-bit Ubuntu 20.04. The DBMSs to test are com-
piled by AFL++ [8] for coverage feedback. We ran the DBMS fuzzers
with their default configurations and different sets of initial seeds,
and utilized ptrace to monitor whether the DBMSs crashed during
fuzzing. Each fuzzing instance ran for 24 hours with 2 CPUs on
testing target DBMSs.

5.2 DBMS Vulnerabilities

With Sedar employed, Sqirrel and Griffin have found 70 un-
known bugs in 3 days, and 60 of them were uniquely discovered
by Sedar with transferred seeds. Table 2 lists the details of these
discovered bugs. Specifically, Sedar found 31, 25, 6, and 8 bugs in
MonetDB, Virtuoso, DuckDB, and ClickHouse, respectively. These
new bugs found by Sedar have various types, including 33 null

Sedar: Obtaining High-Quality Seeds for DBMS Fuzzing via Cross-DBMS SQL Transfer ICSE 2024, April 2024, Lisbon, Portugal

Table 2: List of previously-unknown bugs detected by Sqir-

rel and Griffin with Sedar employed, 70 confirmed with

19 CVEs assigned.

[UAF: Use-After-Free, SO: Stack Overflow, HBOF: Heap Buffer Overflow,
SBOF: Stack Buffer Overflow, AF: Assertion Failure, NPD: Null Pointer
Dereference, DBZ: Divide-by-Zero, SEGV: Segmentation Violation]

Fixed/Detected Component Bug Type

MonetDB (19/31) storage UAF(3), NPD(3)
relation NPD(10), SO(1)
select NPD(5)
optimizer NPD(1)
mal SBOF(1), HBOF(1), NPD(2)
gdk DBZ(1), SEGV(1), UAF(1), HBOF(1)

Virtuoso (25/25) sqlstmts SEGV(4), NPD(2), HBOF(1)
sql DBZ(2), UAF(1), NPD(5), SEGV(2), HBOF(5)
parser SEGV(1), NPD(1)
chash SEGV(1)

DuckDB (5/6) catalog UAF(1)
storage NPD(1), AF(1)
transaction AF(1)
odbc SEGV(1)
optimizer SO(1)

ClickHouse (8/8) function NPD(2), SEGV(1)
interpreter AF(1)
processor DBZ(1), NPD(1), SEGV(1)
common SO(1)

Total 19 components 57 fixed, 70 confirmed

pointer dereferences, 6 use-after-free, 3 stack overflows, 8 heap
buffer overflows, 1 stack buffer overflow, 4 divide-by-zero, 12 seg-
mentation violations, and 3 assertion failures. All of these bugs
are confirmed by the vendors, and 57 of them are already fixed. In
addition, 19 of them are assigned CVE IDs.

Case Study: the “interval” operator in ClickHouse. Sedar
detected a null pointer dereference bug in ClickHouse, triggered
by an insertion statement with the INTERVAL operator. Ordinarily,
in SQL grammar, the INTERVAL operator is for the calculation of
date and timestamp values. ClickHouse supports a non-standard
INTERNAL grammar, but such a feature can induce a crash bug when
executing the INSERT statement shown in Figure 7. In ClickHouse,
The expression “INTERVAL ‘1 day 1 hour 1 minute 1 second”’ was
processed as a tuple with four values, corresponding to “(toInter-
valDay(1), toIntervalHour(1), toIntervalMinute(1), toIntervalSec-
ond(1))”. However, the insertion only accepts exactly one value
per column with the DATE type. The mismatch of the number of
values leads to a null pointer dereference of ClickHouse during the
processing of the insertion statement.

The Reason for Finding the Bug by Sedar. ClickHouse lacks
testing of the non-standard interval expression within insertion
statements, while other DBMSs have tested similar features. In
MySQL, it supports string literals like “1 01:01:01” to denote time
intervals and the “ADDTIME” function to add a date and a time
interval. MySQL includes a test case testing this feature in an inser-
tion statement (shown in blue in Figure 7). Nonetheless, such a test
case in MySQL is invalid for ClickHouse due to the differences in
the time interval grammar. Executing the MySQL’s INSERT state-
ment on ClickHouse will result in a “Cannot parse expression of
type Date” error, failing to reveal the crash bug. However, Sedar
provides the valid time interval expression by transferring the state-
ment in MySQL to ClickHouse grammar (shown in red in Figure 7).

CREATE TABLE t1(c1 DateTime, c2 DateTime,
c3 DateTime, PRIMARY KEY(c1, c2, c3))
ENGINE = MergeTree();

INSERT INTO t1 (c1,c2,c3) VALUES(
now() + INTERVAL '1 day 1 hour 1 minute 1 second’,
now(), now());

SQL statements in MySQL test cases

The PoC to trigger a crash in ClickHouse

CREATE TABLE t1(c1 DATE NULL, c2 DATE NULL,
c3 DATE NULL, UNIQUE(c1,c2,c3));

INSERT INTO t1 (c1,c2,c3) VALUES
(ADDTIME(NOW(),’1 01:01:01’), NOW(), NOW());

Figure 7: Case study: a crash bug in ClickHouse when pro-

cessing the INTERVAL clause found by Sedar.

Similarly, Sedar also transfers a table creation statement to Click-
House’s grammar. Thus, with initial seeds containing the specific
INTERNAL expression in insertion statements and a correct table
creation statement of ClickHouse, a fuzzing instance succeeded in
finding the bug in several hours by combining these two statements.

5.3 Overall Experiments

To evaluate the improvement of DBMS fuzzers by Sedar, we per-
formed Griffin and Sqirrel on DBMSs, and configured them
with five distinct sets of initial seeds on each DBMS: the first one
is the built-in initial seeds of the default configurations of fuzzers,
labeled as Griffin and Sqirrel in the evaluation; the second one
is the test cases we collected from other popular DBMSs without
transferring, labeled as Griffin𝑃 and Sqirrel𝑃 ; the third one is
the seeds generated by Sedar, labeled as Sedar-Griffin and Sedar-
Sqirrel; the fourth one is the native test cases of the DBMSs to
test, with the mutability refinement of Sedar applied, labeled as
Sedar-Griffin𝑁− and Sedar-Sqirrel𝑁− ; the last one is the com-
bination of the seeds generated by Sedar and their native test cases,
labeled as Sedar-Griffin𝑁 and Sedar-Sqirrel𝑁 . It should be
noted that the fuzzers are not able to directly parse or mutate their
native test cases, so we apply themutability refinement to the native
test cases in the experiment.

We measured their effectiveness with the number of branches
and the count of detected bugs. All the branch coverage was cap-
tured by the SanitizerCoverage [40] of LLVM for a fair comparison.
We additionally repeated the experiment 5 times and computed the
𝑝-values for statistical tests.

Code Coverage. Figure 8 presents the number of covered code
branches on DBMSs by DBMS fuzzers when using different test
cases as initial seeds. It illustrated that DBMS fuzzers deployed
with Sedar outperform the fuzzers with non-transferred seeds
in terms of branch coverage. Specifically, Sedar-Griffin covered
more branches by 21.40%-40.58%, 90.82%-126.87%, 62.05%-74.26%,
and 172.99%-194.46% on MonetDB, Virtuoso, DuckDB, and Click-
House, respectively, compared to Griffin and Griffin𝑃 . Similarly,
Sedar-Sqirrel enhanced branch coverage by 160.30%-195.45%,
107.68%-111.00%, 81.71%-136.20%, and 72.46%-214.84% on these
DBMSs compared with Sqirrel and Sqirrel𝑃 .

The enhancements in branch coverage can be attributed to two
primary reasons. On one hand, the seeds for Sedar-Griffin and

ICSE 2024, April 2024, Lisbon, Portugal Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang

0
10k
20k
30k
40k
50k
60k
70k
80k
90k

 0 5 10 15 20

B
ra

n
ch

e
s

MonetDB

0
5k

10k
15k
20k
25k
30k
35k
40k
45k

 0 5 10 15 20

B
ra

n
ch

e
s

Virtuoso

0
20k
40k
60k
80k

100k
120k
140k
160k
180k
200k

 0 5 10 15 20

B
ra

n
ch

e
s

DuckDB

0
50k

100k
150k
200k
250k
300k
350k

 0 5 10 15 20

B
ra

n
ch

e
s

ClickHouse

0

20k

40k

60k

80k

100k

120k

 0 5 10 15 20

B
ra

n
ch

e
s

Time (h)

0
5k

10k
15k
20k
25k
30k
35k
40k

 0 5 10 15 20

B
ra

n
ch

e
s

Time (h)

0
20k
40k
60k
80k

100k
120k
140k
160k
180k

 0 5 10 15 20

B
ra

n
ch

e
s

Time (h)

0

50k

100k

150k

200k

250k

 0 5 10 15 20

B
ra

n
ch

e
s

Time (h)

Sedar-GriffinN

Sedar-GriffinN-

Sedar-Griffin
GriffinP

Griffin

0

50k

100k

150k

200k

250k

 0 5 10 15 20

B
ra

n
ch

e
s

Time (h)

Sedar-SquirrelN

Sedar-SquirrelN-

Sedar-Squirrel
SquirrelP

Squirrel

Figure 8: The branch coverage of DBMS fuzzers on MonetDB, Virtuoso, DuckDB, and ClickHouse. Displayed are the medians

and the 95% confidence intervals of 5 repeated times.

Sedar-Sqirrel have high qualities for the target DBMSs. The
Griffin, Griffin𝑃 , Sqirrel, and Sqirrel𝑃 only use the default
seeds of fuzzers or the test cases of other DBMSs as the initial
seeds, which are currently incompatible with the grammar of tar-
get DBMSs. As a result, the new test cases generated by Sqirrel
and Griffin from these seeds do not satisfy the grammar of target
DBMSs, limiting their code coverage on the four DBMSs. Instead,
the initial seeds processed by Sedar match the grammar of target
DBMSs, which helped fuzzers cover more branches. The other rea-
son is that the mutability refinement of Sedar helps enhance the
correctness of SQL statements during fuzzing. Without the muta-
bility refinement, the SQL statements generated by Sqirrel and
Griffin contain syntax errors for new target DBMS, limiting the
fuzzers exploring DBMS behaviors. In contrast, Sedar employs the
mutability refinement, which helps DBMS fuzzers generate correct
SQL statements and thereby deeply test the DBMSs. Consequently,
with the compatible initial seeds and the mutability refinement
component, Sedar enables the fuzzers to generate more syntac-
tically and semantically correct statements, and cover more deep
logic and code regions in target DBMSs by these statements.

It can also be observed from Figure 8 that Sedar-Griffin𝑁− and
Sedar-Sqirrel𝑁− achieved substantially higher code coverage
compared to the ones without native test cases in their initial seeds.
This is because the native seeds, as maintained by their developers,
have already covered a wide range of features and functionality of
DBMSs. The mutability refinement also helps the fuzzers to adapt
these seeds and finally cover more code branches. Furthermore,
when introducing the transferred seeds into initial seeds addition-
ally, Sedar-Griffin𝑁 and Sedar-Sqirrel𝑁 cover more branches
than Sedar-Griffin𝑁− and Sedar-Sqirrel𝑁− by 10.77%-28.41%,
12.53%-16.20%, and 4.90%-9.73% for MonetDB, DuckDB, and Click-
House, respectively. The reason is that these transferred seeds bring
valuable test cases from other DBMSs to the target DBMSs, such as
the edge cases of DBMS features like the example in Figure 7. They
help Sedar-Griffin𝑁 and Sedar-Sqirrel𝑁 to trigger more code
regions than using only native test cases.

Bugs. Table 3 exhibits the bugs detected by fuzzers with different
seeds after 24 hours. Compared to the fuzzers using non-transferred
seeds, We can see that Sedar improves the bug detection ability of
Griffin and Sqirrel on the four DBMSs. With Sedar employed,
Sedar-Griffin found a total of 18 and 19 more bugs in the four
DBMSs than Griffin and Griffin𝑃 , and Sedar-Sqirrel found 30

Table 3: Number of bugs detected by DBMS fuzzers in 24

hours. Shown are the medians of 5 runs.

Fuzzer MonetDB Virtuoso DuckDB ClickHouse

Griffin 2 2 1 0
Griffin𝑃 3 0 1 0

Sedar-Griffin 10 10 2 1
Sedar-Griffin𝑁 − 27 - 0 0
Sedar-Griffin𝑁 30 - 2 1

Sqirrel 9 6 0 0
Sqirrel𝑃 5 8 0 0

Sedar-Sqirrel 18 22 3 2
Sedar-Sqirrel𝑁 − 13 - 0 1
Sedar-Sqirrel𝑁 23 - 3 2

and 32 more bugs than Sqirrel and Sqirrel𝑃 . The relationships
between these bugs are shown in Figure 9 (A). With different initial
seeds, the Griffin series uncovered 27 bugs in total, with 19 of
them being detected only when Sedar is employed. Similarly, the
Sqirrel series discovered 53 bugs, with 30 of them uniquely found
by Sedar-Sqirrel. It shows that with the initial seeds of Sedar,
the fuzzers Griffin and Sqirrel can detect more bugs compared
to their previous performance. We also noticed that several bugs
were only found with non-transferred seeds. It is because few of
the incompatible test cases in these seeds crashed the DBMSs.

Furthermore, compared to the fuzzers utilizing the native test
cases as seeds, Sedar can help fuzzers to find new bugs in Mon-
etDB, DuckDB, and ClickHouse. As Figure 9 (B) shows, the Grif-
fin series and Sqirrel series found 40 and 37 bugs in the three
DBMSs in total. Out of these, 13 bugs of Griffin series and 23
bugs of Sqirrel series were detected only when the transferred
seeds of Sedar were integrated into the initial seeds. Addition-
ally, we can see that Sedar-Griffin𝑁 , which combines transferred
seeds and native test cases as initial seeds, found 20 and 6 more

(A) SEADER v.s. Non-transferred

Griffin

Sedar-Griffin

GriffinP Squirrel SquirrelP

Sedar-Squirrel

Sedar-Griffin
Sedar-GriffinN-

Sedar-GriffinN Sedar-SquirrelN

Sedar-Squirrel
Sedar-SquirrelN-

(B) SEADER v.s. Native

Figure 9: Relationships between the bugs in Table 3.

Sedar: Obtaining High-Quality Seeds for DBMS Fuzzing via Cross-DBMS SQL Transfer ICSE 2024, April 2024, Lisbon, Portugal

bugs than Sedar-Griffin and Sedar-Griffin𝑁− . Similarly, Sedar-
Sqirrel𝑁 found 6 and 14 more bugs than the other two. We also
noticed that Sedar-Griffin𝑁− and Sedar-Sqirrel𝑁− only dis-
covered one bug in DuckDB and ClickHouse in total, although they
achieved high branch coverage. It is because DuckDB and Click-
House have already supported multiple fuzzers [4, 5] and have been
fuzzed with their native test cases for a long time, which makes it
hard to discover new bugs with these test cases only. In contrast,
the transferred seeds of Sedar provide valuable test cases from
other DBMSs, such as the edge cases that are not considered by the
native ones. They help fuzzers to detect new bugs in DuckDB and
ClickHouse.

P-value. The experiment is repeated 5 times for statistical tests.
From the 𝑝-values displayed in Table 4, we can infer that Sedar-
Griffin, Sedar-Sqirrel, Sedar-Griffin𝑁 , and Sedar-Sqirrel𝑁
achieved significantly higher branch coverage and detected a sig-
nificantly larger number of bugs.

Table 4: P-values for Sedar-Griffin and Sedar-Sqirrel

vs Griffin, Griffin
𝑃
, Sqirrel, and Sqirrel

𝑃
, and p-

values for Sedar-Griffin
𝑁
and Sedar-Sqirrel

𝑁
vs Sedar-

Griffin
𝑁−

and Sedar-Sqirrel
𝑁−

. All p-values are statis-

tically significant (𝑝 < 0.05).

Fuzzer MonetDB Virtuoso DuckDB ClickHouse
Branch Bug Branch Bug Branch Bug Branch Bug

Griffin 0.0079 0.0109 0.0079 0.0106 0.0079 0.0056 0.0079 0.0040

Griffin𝑃 0.0079 0.0117 0.0079 0.0099 0.0079 0.0056 0.0079 0.0040

Sqirrel 0.0079 0.0112 0.0079 0.0119 0.0079 0.0073 0.0079 0.0065

Sqirrel𝑃 0.0079 0.0117 0.0079 0.0119 0.0079 0.0073 0.0079 0.0065

Sedar-Griffin𝑁 − 0.0079 0.0278 - - 0.0079 0.0065 0.0079 0.0086

Sedar-Sqirrel𝑁 − 0.0079 0.0116 - - 0.0079 0.0086 0.0079 0.0200

5.4 Contribution of SQL Transfer

To understand the advantage of the compatible seeds generated by
SQL transfer of Sedar, we compared the original test cases collected
from other popular DBMSs, labeled as 𝑆− , and the compatible seeds
generated by Sedarwith SQL transfer, labeled as 𝑆 . The compatible
seeds 𝑆 consist of the statements generated by LLM of the SQL
transfer component. We evaluated the two sets of seeds in terms of
syntactic correctness, semantic correctness, and code coverage.

Table 5 shows the syntactic correctness ratios and semantic cor-
rectness ratios, as well as the number of covered branches between
𝑆− and 𝑆 on four DBMSs. From the table, we can see that 𝑆 con-
tains 27%, 66%, 29%, and 29% more syntactic-correct statements,
includes 56%, 64%, 24%, and 62% more semantic-correct statements,
and covers 13%, 66%, 13%, 99% more code branches than 𝑆− in
MonetDB, Virtuoso, DuckDB, and ClickHouse, respectively. It in-
dicates that the SQL transfer with LLMs can convert some invalid
SQL statements into valid ones for the target DBMS. These trans-
ferred statements achieve higher code coverage since more valid
statements can trigger more code logic of DBMS.

We can also notice the high improvements in code coverage of
Virtuoso and ClickHouse. Virtuoso, which is a multi-model DBMS
primarily focusing on the graph data model, offers only basic sup-
port to SQL grammar for the relational model. This limitation ex-
plains why 𝑆− , the collected SQL test cases from other DBMSs,
has a low syntactic correctness ratio of only 0.32 on Virtuoso. By
comparison, within the compatible seeds 𝑆 , some statements with

Table 5: The syntactic correctness ratios, the semantic cor-

rectness ratios, and branch coverage of the test cases of other

DBMSs 𝑆− and the compatible seeds 𝑆 of Sedar.

DBMS
Syntactic

Correctness Ratios
Semantic

Correctness Ratios Branch Coverage

𝑆− 𝑆 𝑆− 𝑆 𝑆− 𝑆

MonetDB 0.589 0.754 (+27%) 0.236 0.370 (+56%) 34,189 38,493 (+13%)
Virtuoso 0.324 0.539 (+66%) 0.097 0.160 (+64%) 22,176 36,915 (+66%)
DuckDB 0.674 0.871 (+29%) 0.284 0.352 (+24%) 61,356 69,217 (+13%)

ClickHouse 0.613 0.793 (+29%) 0.182 0.297 (+62%) 56,497 112,494 (+99%)

unsupported grammar are transferred into the equivalent expres-
sions of basic SQL grammar that Virtuoso does support. Some are
even transferred into the SPARQL [26] dialect for its graph data
model. Consequently, 𝑆 achieves a syntactic correctness ratio of
0.53 and covers 66% more code branches than 𝑆− .

For ClickHouse, the improvement partially comes from CREATE
TABLE statements. ClickHouse requires an explicit specification of
the storage engine when creating a table. However, in 𝑆− , most
table creation statements lack the engine declaration, leading to ex-
ecution failures when ClickHouse runs test cases containing these
statements. Moreover, it impacts all subsequent INSERT and SELECT
statements that reference the table, resulting in a low semantic cor-
rectness ratio and branch coverage. In contrast, the table creation
statements in 𝑆 successfully include the engine declaration benefit-
ing from SQL transfer. It enables table creation statements in 𝑆 to
be valid and executable in ClickHouse, as well as the corresponding
INSERT and SELECT statements, leading to higher code coverage.
Table 6: The correct syntactic structures in the semantically

correct statements of 𝑆− and 𝑆 .

DBMS Function Data Type Keyword
𝑆− 𝑆 𝑆− 𝑆 𝑆− 𝑆

MonetDB 107 132 29 29 235 244

Virtuoso 28 52 16 17 102 136

DuckDB 185 214 34 39 291 340

ClickHouse 83 227 36 61 124 152

Total 403 625 115 146 752 872

Increment 222 - 31 - 120 -

Furthermore, we examined the syntactic structures contained by
the semantically correct statements of 𝑆− and 𝑆 in the four DBMSs,
focusing on the functions, data types, and keywords supported by
these DBMSs. From the result shown in Table 6, we can see that
𝑆 contains 222 more functions, 31 more data types, and 120 more
keywords in total than 𝑆− . This improvement allows the compatible
seeds 𝑆 to achieve higher correctness ratios and code branches in
the four DBMSs.

5.5 Effectiveness of Mutability Refinement

To measure the effectiveness of the mutability refinement, we per-
formed Sqirrel on four DBMSs with the compatible seeds gener-
ated just by the SQL transfer component of Sedar, labeled as 𝑆 , and
the mutable seeds generated by SQL transfer and mutability refine-
ment, labeled as 𝑆+. We recorded the number of successfully parsed
and mutated statements by Sqirrel with the compatible seeds 𝑆
and the mutable seeds 𝑆+ as the metric. We also ran Sqirrel for
24 hours for the comparison of branch coverage.

ICSE 2024, April 2024, Lisbon, Portugal Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang

Table 7: The number of statements in compatible seeds and

mutable seeds that can be parsed by Sqirrel, and the

branch coverage achieved by Sqirrel with these seeds.

DBMS Parsable Statements Branch Coverage
𝑆 𝑆+ 𝑆 𝑆+

MonetDB 166,410 239,495 61,981 77,194
Virtuoso 106,118 200,209 24,017 37,191
DuckDB 125,655 201,997 96,513 116,638

ClickHouse 149,843 230,766 87,389 143,368
Total 548,026 872,467 269,900 374,391

Increment 324,441 - 104,491 -

Table 7 presents the statistical results of four tested DBMSs.
Compared to 𝑆 , the numbers of parsable statements in 𝑆+ increased
by 44%, 89%, 61%, and 54% on MonetDB, Virtuoso, DuckDB, and
ClickHouse, respectively. The improvement is mainly attributed
to the mutability refinement, which helps DBMS fuzzers mutate
the grammar-incompatible SQL statements. Since 𝑆 is generated
by LLM for SQL transfer, it includes the unique grammar of tar-
get DBMS, such as unique keywords and clauses, which prevents
Sqirrel from parsing and mutating these seeds. By contrast, in
𝑆+, these unparsable parts with unique grammar are temporarily
commented out. It allows Sqirrel to parse the remaining parsable
parts and mutate them to generate more test cases. Thus, with more
seeds able to be parsed and mutated, the mutated seeds are expected
to trigger more behaviors in DBMSs and cover more code branches.
Table 7 shows the code coverage after running Sqirrel with 𝑆

and 𝑆+ respectively. From the table, we can see that Sqirrel with
𝑆+ achieves 25%, 55%, 21%, and 64% higher code coverage on four
DBMSs than 𝑆 . The result indicates that the mutability refinement
component of Sedar can improve the performance by enabling
it to parse and mutate the test cases containing unique grammar,
which could generate more semantically correct SQL statements
and thereby cover more code branches.

6 DISCUSSION

In this section, we discuss several limitations of our implementation
of Sedar and our plan to address them in future work.

The Limited Syntactic and Semantic Correctness Ratios of

Transferred Seeds. Although there is a noticeable improvement
in the syntactic and semantic correctness of transferred seeds com-
pared to original ones as indicated in Table 5, the absolute values
of the correctness ratios are still low. There are several reasons. 1○
One is the different support of DBMS features. When the target
DBMS does not support similar features in the original statement,
such as unsupported data types and functions, the SQL transfer will
produce a non-executable statement on target DBMS. For example,
Virtuoso is primarily a graph database, providing only basic support
for SQL grammar and lacking similar advanced features in popular
DBMSs. Thus, many statements in popular DBMSs do not have
equivalent ones in Virtuoso, and it causes significantly lower cor-
rectness ratios for Virtuoso than the other DBMSs. 2○ The second is
the hallucinations of LLMs. LLMs sometimes output inaccurate or
incorrect results, leading to the SQL transfer generating incorrect
statements for target DBMSs. 3○ Furthermore, we can also notice

that the semantic correctness ratios are notably lower than syn-
tactic correctness ratios. This is because SQL statements within a
test case might have contextual dependencies. A single incorrectly
transferred statement will affect the subsequent statements that
depend on it, rendering them semantically incorrect as well.

A way to improve these correctness ratios is to update the SQL
transfer process with real-time feedback from target DBMSs and
regeneration. For example, upon the transfer of a SQL statement by
the LLMs, we can immediately execute the transferred statement
on the target DBMS. If there is an execution failure, we can feed the
error message back to the LLMs to generate an amended version.
We will implement this feedback component in future work.

Table 8: The transfer results of other LLMs on the SQL trans-

fer cases in Figure 5 and Figure 7.

Model

Figure 5

create table
Figure 5

replace
Figure 5

select
Figure 7

create table
Figure 7

insert
Llama-2-7B ✗ ✗ ✗ ✗ ✗

Llama-2-13B ✗ ✓ ✓ ✗ ✗

Llama-2-70B ✓ ✓ ✓ ✗ ✓

ChatGLM2-6B ✗ ✓ ✗ ✗ ✗

ChatGLM2-130B ✓ ✓ ✓ ✓ ✓

CodeLlama-7B ✓ ✓ ✓ ✗ ✓

CodeLlama-13B ✓ ✓ ✓ ✓ ✓

CodeLlama-34B ✓ ✓ ✓ ✓ ✓

✓: transferred correctly; ✗: transferred wrongly.

External Validity. In the implementation and evaluation of
LLMs, we only employed gpt-3.5-turbo-0301 in the SQL transfer
component of Sedar, leading to external validity. To demonstrate
the ability of other LLMs in SQL transfer, we tested the transfer
examples in Figure 5 and Figure 7 on several state-of-the-art LLMs
including Llama 2 [41], ChatGLM2 [35, 47], and CodeLlama [33],
with the results listed in Table 8. As illustrated, the LLMs fine-
tuned for code tasks (e.g. CodeLlama) and the LLMs with more
parameters (e.g. ChatGLM2-130B) produce better results. We believe
that Sedar can perform well with these models on the SQL transfer
task. Moreover, to enhance the performance, we can fine-tune the
LLMs with the documentation, tutorials, and native test cases of
the target DBMSs, especially for new DBMS features or newly
developed DBMSs.

7 RELATEDWORK

Mutation-Based DBMS Fuzzing. The mutation-based fuzzing
techniques [2, 9, 14, 19, 20, 44, 45, 48] have been successfully ap-
plied to DBMSs for effective testing and bug finding. Sqirrel [48]
mutates SQL statements by translating SQL statements into the
Intermediate Representation (IR) for SQL, mutating the IRs, and
re-translating the mutated IRs into syntactically and semantically
correct SQL statements. Lego [19] proposes the type affinity of SQL
sequences and employs it to guide the generation of SQL statements
with abundant SQL type sequences. Griffin [9] utilizes a grammar-
free way to mutate SQL statements with statement reshuffle and
metadata-based substitution. SQLRight [20] employs test oracles to
mutation-based fuzzers to detect logic bugs. While the above are
all coverage-guided approaches, QPG [2] proposes the concept of
query plan guidance to guide the fuzzing other than code coverage.

Generation-Based DBMS Testing. Some generation-based
approaches [15, 22, 30–32, 34, 37] are proposed to find specific types
of DBMS bugs. SQLsmith [34] generates SELECT statements with

Sedar: Obtaining High-Quality Seeds for DBMS Fuzzing via Cross-DBMS SQL Transfer ICSE 2024, April 2024, Lisbon, Portugal

complex structures from a predefined Abstract Syntax Tree (AST) to
find crash bugs. NoREC [30] is designed to detect optimization bugs
by generating SQL queries as well as the equivalent ones that cannot
be optimized. PQS [32] generates queries that should fetch a specific
row, and indicates a bug triggered when the row is not included in
result sets. DQE [37] focuses on logic bugs in UPDATE and DELETE
queries by verifying that the same rows are accessed with the same
predicate. Amoeba [22] discovers performance bugs by generating
equivalent SQL queries and comparing their execution times.

Initial Seed Generation. Several existing works [21, 25, 43, 46]
concentrate on generating high-quality seeds for general-purpose
mutation-based fuzzing. SAFL [43] employs symbolic execution to
generate qualified initial seeds that provide valuable exploration
directions. SLF [46] generates valid seeds by automatically iden-
tifying input validity checks of programs and input fields related
to these checks. Tensilefuzz [21] further denotes the input fields
as string variables and generates seeds through string constraint
solving. While the seed generation works gain good effectiveness
on general-purpose fuzzing, they are not suitable for DBMS fuzzing
due to the complexity of SQL grammar. Other works can provide
valid initial seeds for specific fuzzing targets. Moonshine [25] distills
seeds for Operating System (OS) fuzzers from real-world system
call traces by analyzing their dependencies. Skyfire [42] learns a
probabilistic context-sensitive grammar (PCSG) from existing seeds
and grammars, and generates well-distributed initial seeds.

Main Differences. Sedar is a tool to provide high-quality initial
seeds via cross-DBMS SQL transfer. Its seeds could be utilized for
popular DBMS fuzzers. Even for DBMSs that are not supported by
them in grammar, Sedar can still utilize the mutability refinement
component to extend these fuzzers to complete the testing process.
The generation-based tools typically generate SQLs based on pre-
defined rules and may only encompass a limited set of features. In
contrast, Sedar transfers SQLs from well-tested DBMS’s built-in
test cases. These test cases encompass the rich features of these
popular databases, which are conducive to discovering bugs. As a
result, Sedar found bugs in 19 components of four DBMSs shown
in Table 2, including components such as parsers, optimizers, in-
terpreters, and transactions. Compared to other seed generation
methods, Sedar does not generate seeds from scratch. Instead,
Sedar obtains seeds by transferring test cases from other DBMSs
with LLMs. It does not rely on the test cases of target DBMSs.

8 CONCLUSION

In this paper, we propose Sedar, which generates the initial seeds
for target DBMS fuzzing through cross-DBMS SQL transfer. First,
to obtain the SQL test cases compatible with target DBMSs, it
queries LLMs to transfer the test cases prompting with the col-
lected schema information. Then, to make the seed mutable by the
DBMS fuzzers, it comments out the unparsable parts for the parsers
of mutators, and uncomments them after mutation. With Sedar
employed, mutation-based fuzzers Sqirrel and Griffin found 31,
25, 6, and 8 bugs in MonetDB, Virtuoso, DuckDB, and ClickHouse,
respectively. Moreover, 19 bugs of them are assigned with CVE IDs
due to their severity.

ACKNOWLEDGMENTS

This research is sponsored in part by theNSFC Program (No. 62302256,
62022046, 92167101, 62021002), Chinese Postdoctoral Science Foun-
dation(2023M731953), and National Key Research and Development
Project (No. 2022YFB3104000).

REFERENCES

[1] ANSI. 2022. ANSI Standard. https://www.ansi.org/. Accessed: December 24,
2023.

[2] Jinsheng Ba and Manuel Rigger. 2023. Testing database engines via query plan
guidance. In Proceedings of International Conference on Software Engineering
(ICSE).

[3] MonetDB B.V. 2023. MonetDB Website. https://www.monetdb.org. Accessed:
December 24, 2023.

[4] ClickHouse. 2021. Fuzzing: Practical Approaches in ClickHouse. https://
presentations.clickhouse.com/cpp_siberia_2021/index_en.html. Accessed: De-
cember 24, 2023.

[5] DuckDB. 2023. DuckDB Fuzzers. https://github.com/duckdb/duckdb-fuzzer/
issues. Accessed: December 24, 2023.

[6] DuckDB. 2023. DuckDBWebSite. https://www.duckdb.org/. Accessed: December
24, 2023.

[7] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated repair of programs from large language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1469–1481.

[8] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++
: Combining Incremental Steps of Fuzzing Research. In USENIX Workshop on
Offensive Technologies (WOOT).

[9] Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2022. Griffin:
Grammar-Free DBMS Fuzzing. In 37th IEEE/ACM International Conference on
Automated Software Engineering. 1–12.

[10] ClickHouse Inc. 2023. ClickHouse Website. https://clickhouse.com. Accessed:
December 24, 2023.

[11] Free Software Foundation Inc. 2023. Error Recovery. https://www.gnu.org/
software/bison/manual/html_node/Error-Recovery.html. Accessed: December
24, 2023.

[12] Solid IT. 2022. DB-Engines Ranking. https://db-engines.com/en/ranking. Ac-
cessed: December 24, 2023.

[13] Solid IT. 2022. DB-Engines Ranking of Relational DBMS. https://db-engines.com/
en/ranking/relational+dbms. Accessed: December 24, 2023.

[14] Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. 2023. DynSQL: Stateful Fuzzing for
Database Management Systems with Complex and Valid SQL Query Generation.

[15] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2020.
APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems (to appear). In Proceedings of the 46th International Conference
on Very Large Data Bases (VLDB). Tokyo, Japan.

[16] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-
shot testers: Exploring llm-based general bug reproduction. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2312–2323.

[17] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. CODAMOSA: Escaping coverage plateaus in test generation with pre-
trained large language models. In International conference on software engineering
(ICSE).

[18] John R Levine, Tony Mason, and Doug Brown. 1992. Lex & yacc. " O’Reilly Media,
Inc.".

[19] Jie Liang, Yaoguang Chen, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Yu Jiang,
Xiangdong Huang, Ting Chen, Jiashui Wang, and Jiajia Li. 2023. Sequence-
oriented DBMS fuzzing. In Proceedings of IEEE International Conference on Data
Engineering (ICDE).

[20] Yu Liang, Song Liu, and Hong Hu. 2022. Detecting Logical Bugs of {DBMS} with
Coverage-based Guidance. In 31st USENIX Security Symposium (USENIX Security
22). 4309–4326.

[21] Xuwei Liu,Wei You, Zhuo Zhang, and Xiangyu Zhang. 2022. TensileFuzz: facilitat-
ing seed input generation in fuzzing via string constraint solving. In Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
391–403.

[22] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso. 2022. Automatic Detection
of Performance Bugs in Database Systems using Equivalent Queries. (2022).

[23] MySQL. 2023. MySQL Github. https://github.com/mysql/mysql-server. Accessed:
December 24, 2023.

[24] MySQL. 2023. The MySQL Test Suite. https://dev.mysql.com/doc/dev/mysql-
server/latest/PAGE_MYSQL_TEST_RUN_PL.html. Accessed: December 24, 2023.

[25] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. Moonshine: Optimiz-
ing OS fuzzer seed selection with trace distillation. In 27th USENIX Security
Symposium (USENIX Security 18). 729–743.

[26] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and com-
plexity of SPARQL. ACM Transactions on Database Systems (TODS) 34, 3 (2009),

https://www.ansi.org/
https://www.monetdb.org
https://presentations.clickhouse.com/cpp_siberia_2021/index_en.html
https://presentations.clickhouse.com/cpp_siberia_2021/index_en.html
https://github.com/duckdb/duckdb-fuzzer/issues
https://github.com/duckdb/duckdb-fuzzer/issues
https://www.duckdb.org/
https://clickhouse.com
https://www.gnu.org/software/bison/manual/html_node/Error-Recovery.html
https://www.gnu.org/software/bison/manual/html_node/Error-Recovery.html
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking/relational+dbms
https://db-engines.com/en/ranking/relational+dbms
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN_PL.html
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN_PL.html

ICSE 2024, April 2024, Lisbon, Portugal Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang

1–45.
[27] PostgreSQL. 2023. PostgreSQL GitHub. https://github.com/postgres/postgres.

Accessed: December 24, 2023.
[28] PostgreSQL. 2023. Regression Tests. https://www.postgresql.org/docs/current/

regress-run.html. Accessed: December 24, 2023.
[29] Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. 2022. Evaluating the

text-to-sql capabilities of large language models. arXiv preprint arXiv:2204.00498
(2022).

[30] Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1140–1152.

[31] Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems via
Query Partitioning. Proc. ACM Program. Lang. 4, OOPSLA, Article 211 (2020).
https://doi.org/10.1145/3428279

[32] Manuel Rigger and Zhendong Su. 2020. Testing database engines via pivoted
query synthesis. In 14th USENIX Symposium on Operating Systems Design and
Implementation OSDI 20). 667–682.

[33] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[34] Andreas Seltenreich, Bo Tang, and Sjoerd Mullender. 2018. SQLsmith: a random
SQL query generator. https://github.com/anse1/sqlsmith

[35] OpenLink Software. 2023. ChatGLM2 repository. https://github.com/THUDM/
ChatGLM2-6B/blob/main/README_EN.md. Accessed: December 24, 2023.

[36] OpenLink Software. 2023. Virtuoso Open-Source Edition. https://
vos.openlinksw.com/owiki/wiki/VOS. Accessed: December 24, 2023.

[37] Jiansen Song, Wensheng Dou, Ziyu Cui, Qianwang Dai, Wei Wang, Jun Wei, Hua
Zhong, and Tao Huang. 2023. Testing Database Systems via Differential Query
Execution. In Proceedings of International Conference on Software Engineering
(ICSE).

[38] SQLite. 2023. How SQLite Is Tested. https://www.sqlite.org/testing.html. Ac-
cessed: December 24, 2023.

[39] SQLite. 2023. SQLite Github. https://github.com/sqlite/sqlite. Accessed: Decem-
ber 24, 2023.

[40] The Clang Team. 2023. SanitizerCoverage. https://clang.llvm.org/docs/
SanitizerCoverage.html. Accessed: December 24, 2023.

[41] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[42] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-driven
seed generation for fuzzing. In 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 579–594.

[43] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin
Zhao, and Jiaguang Sun. 2018. SAFL: increasing and accelerating testing cov-
erage with symbolic execution and guided fuzzing. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings, ICSE
2018, Gothenburg, Sweden. ACM, 61–64.

[44] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang,
and Yu Jiang. 2021. Industry Practice of Coverage-Guided Enterprise-Level DBMS
Fuzzing. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 328–337.

[45] ZhiyongWu, Jie Liang, Mingzhe Wang, Chijin Zhou, and Yu Jiang. 2022. Unicorn:
detect runtime errors in time-series databases with hybrid input synthesis. In
ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, South Korea, July 18 - 22, 2022, Sukyoung Ryu and Yannis
Smaragdakis (Eds.). ACM, 251–262. https://doi.org/10.1145/3533767.3534364

[46] Wei You, Xuwei Liu, Shiqing Ma, David Perry, Xiangyu Zhang, and Bin Liang.
2019. SLF: Fuzzing without valid seed inputs. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 712–723.

[47] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding,
Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: An open
bilingual pre-trained model. arXiv preprint arXiv:2210.02414 (2022).

[48] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Ding-
hao Wu. 2020. Squirrel: Testing Database Management Systems with Language
Validity and Coverage Feedback. In The ACM Conference on Computer and Com-
munications Security (CCS), 2020.

https://github.com/postgres/postgres
https://www.postgresql.org/docs/current/regress-run.html
https://www.postgresql.org/docs/current/regress-run.html
https://doi.org/10.1145/3428279
https://github.com/anse1/sqlsmith
https://github.com/THUDM/ChatGLM2-6B/blob/main/README_EN.md
https://github.com/THUDM/ChatGLM2-6B/blob/main/README_EN.md
https://vos.openlinksw.com/owiki/wiki/VOS
https://vos.openlinksw.com/owiki/wiki/VOS
https://www.sqlite.org/testing.html
https://github.com/sqlite/sqlite
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://doi.org/10.1145/3533767.3534364

	Abstract
	1 Introduction
	2 Background And Motivation
	3 Design
	3.1 Schema Capture
	3.2 SQL Transfer with LLM
	3.3 Mutability Refinement

	4 Implementation
	5 Evaluation
	5.1 Evaluation Setup
	5.2 DBMS Vulnerabilities
	5.3 Overall Experiments
	5.4 Contribution of SQL Transfer
	5.5 Effectiveness of Mutability Refinement

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

