WINGFUZZ: Implementing Continuous Fuzzing for DBMSs

Jie Liang
Tsinghua University

Yiyuan Bai
Shuimu Yulin Technology Co., Ltd.

Abstract

Database management systems (DBMSs) are critical com-
ponents within software ecosystems, and their security and
stability are paramount. In recent years, fuzzing has emerged
as a prominent automated testing technique, effectively iden-
tifying vulnerabilities in various DBMSs. Nevertheless, many
of these fuzzers require specific adaptation for a DBMS
with a particular version. Employing these techniques to test
enterprise-level DBMSs continuously poses challenges due
to the diverse specifications of DBMSs and the code changes
in their rapid version evolution.

In this paper, we present the industry practice of implement-
ing continuous DBMS fuzzing on enterprise-level DBMSs
like ClickHouse. We summarize three main obstacles in im-
plementing, namely the diverse SQL grammar in test case
generation, the ongoing evolution of codebase in continuous
testing, and the disturbance of noises during anomaly analysis.
We propose WINGFUZZz, which utilizes specification-based
mutator generation, corpus-driven evolving code fuzzing, and
noise-resilient anomaly assessment to address them. By work-
ing with the engineers in continuous DBMS fuzzing, we
have found a total of 236 previously undiscovered bugs in 12
widely-used enterprise-level DBMSs including ClickHouse,
DamengDB, and TenDB. Due to its favorable test results,
our efforts received recognition and cooperation invitations
from some DBMS vendors. For example, ClickHouse’s CTO
praised: “Which tool did you use to find this test case? We
need to integrate it into our C1.” and WINGFUZZ has been
successfully integrated into its development process.

1 Introduction

Modern software applications rely heavily on database man-
agement systems (DBMSs) to efficiently store and manage
data [4, 15]. Due to the complexity of DBMSs and the rapid
iteration of versions, bugs are inevitably present. Once these

*Jie Liang and Zhiyong Wu contributed equally to this work.
"Yu Jiang is the corresponding author.

Zhiyong Wu"
Tsinghua University

Qiang Zhang
Shuimu Yulin Technology Co., Ltd.

Jingzhou Fu
Tsinghua University

Yu Jiang"
Tsinghua University

bugs are exploited by attackers, it may lead to a series of prob-
lems such as information leakage, system crashes, and disrup-
tions to the operation of upper-tier applications. Consequently,
the resilience and security of DBMSs have become paramount
considerations for organizations and corporations [1,5,9].
Both the industry and academia have developed many meth-
ods for detecting issues in DBMSs [24,32,42,46]. Among
them, fuzzing [33, 35, 63] is an effective way to assess the se-
curity of DBMSs [43, 54, 61], revealing lots of vulnerabilities.
Its basic process is to generate a stream of malformed inputs
and monitor the exception behaviors [28,29,31,59]. To test a
DBMS, fuzzers typically model the specific SQL specifica-
tion [51] for each DBMS to generate structured SQL inputs
that are both syntactically and semantically correct. For exam-
ple, SQLsmith [43] models the grammar of PostgreSQL [39]
as an abstract syntax tree (AST) to generate queries, and it has
found about 80 bugs in PostgreSQL since 2015 to 2023 [10].
However, employing these techniques to implement con-
tinuous fuzzing for DBMSs poses obstacles, especially for
iteratively developed enterprise-level database systems. The
first obstacle is the diverse SQL grammar, posing difficul-
ties in test case generation. Inputs to distinct DBMS typi-
cally adhere to unique grammar rules. For example, the syn-
tax for concatenating strings is different in PostgreSQL and
MySQL: PostgreSQL uses the ‘|| operator for string con-
catenation, whereas MySQL requires the CONCAT () function.
Consequently, to thoroughly test a DBMS, many fuzzers have
to be manually customized to unique grammars. For exam-
ple, SQUIRREL [61] has two different versions for testing
PostgreSQL and MySQL. For enterprise-level DBMSs, au-
tomated adaptation solutions are essential to accommodate
various DBMSs and rapidly evolving DBMS versions.

The second obstacle is the ongoing evolution of code-
base, which creates difficulties for continuous testing. To
meet the ever-changing demands of users and emerging se-
curity challenges, along with rapidly advanced technologies,
an enterprise-level DBMS undergoes frequent updates to im-
prove performance, fix vulnerabilities, and introduce innova-
tive functionalities. For example, ClickHouse uses a continu-

ous integration system to automatically verify and merge new
commits into its codebase [3]. To adequately test a DBMS,
fuzzers must keep pace with these changes in the evolving
systems, yet efficiently testing the updated portion in a new
version remains challenging.

The third obstacle is the disturbance of noises, introducing
complexities in anomaly detection and analysis. First, the au-
tomatic recovery mechanisms introduce noise into the fuzzers’
detection of anomalies, as they typically rely on checking
whether the connection is normal. When an anomaly happens,
the recovery mechanism takes control of the erroneous thread
to restore normal state and data. The connection may not even
be broken in the process, resulting in a miss of the anomaly.
Moreover, many state-of-the-art fuzzers execute tests on a
DBMS consecutively and thus tests have interferences. The
noise will come from the execution of the prelude test cases
because they will make changes to the system state.

In this paper, we present and analyze these obstacles
in implementing continuous fuzzing on enterprise-level
DBMSs. We propose WINGFUZZ which implements con-
tinuous fuzzing for DBMSs. It utilizes specification-based
mutator construction, corpus-driven evolving code fuzzing,
and noise-resilient anomaly assessment to address the obsta-
cles. First, the framework generates a unique query parser for
each DBMS automatically by adhering to the DBMS grammar
specifications. Subsequently, it concurrently executes long-
term fuzzing, utilizing generated test cases to initiate commit
fuzzing which prioritizes the coverage in the updated commit.
Lastly, the framework monitors each thread and isolates the
anomaly thread to capture anomalies along with their compre-
hensive data. The identified anomalies are then de-duplicated
and reported to developers for prompt resolution.

By working with the engineers in the fuzzing process, we
have uncovered a total of 236 previously undiscovered bugs
in 12 DBMSs such as ClickHouse [13], DamengDB [16],
PolarDB [38], and TenDB [49]. Among them, 232 bugs are
confirmed. Our efforts received recognition from the ven-
dors of these DBMSs. For example, the CTO of ClickHouse
praised: “Which tool did you use to find this test case? We
need to integrate it into our C1.” [14], and the continuous
fuzzing of WINGFUZZ has been successfully integrated into
the development process of ClickHouse. The developers of
MonetDB praised: “They are the best kind we can wish for as
bug reports.”, and the founder of SQLite praised WINGFUZZ
as a “ground-breaking analysis tool” [21]. In summary, we
make the following contributions:

1. We summarize three obstacles in implementing contin-
uous DBMS fuzzing: diverse SQL grammar, ongoing
codebase evolution, and noise disturbance.

2. We propose and implement a continuous DBMS fuzzing
framework called WINGFUZZ to provide correspond-
ing solutions, consisting of specification-based mutator

construction, corpus-driven evolving code fuzzing, and
noise-resilient anomaly assessment.

3. We deployed WINGFUZZ to continuously fuzz 12
enterprise-level DBMSs like ClickHouse, and identified
236 previously unknown bugs, enhancing their security
and earning recognition from the respective vendors.

2 Background

DBMS and SQL. A Database Management System (DBMS)
is a software application that allows users to create, store,
retrieve, and manage data [4, 15]. DBMSs utilize Structured
Query Language (SQL) [8,51] to define, manipulate, and
query the database’s data. A SQL input must adhere strictly
to syntactic and semantic correctness. Any input that deviates
from the specified format and correctness will be rejected.

Continuous Integration System. The continuous integra-
tion (CI) [17,18,45] is a software development practice that
involves integrating every code change into a shared repos-
itory, automatically subjecting each modification to testing
before committing. This practice guarantees that new code
not only smoothly integrates with the existing codebase but
also does so without introducing errors.

DBMS Recovery Mechanism. A DBMS can experience
failures arising from software issues or hardware malfunc-
tions. It is crucial for the DBMS in a production environment
to remain operational even in the face of failure. DBMS re-
covery techniques [26, 53] play a vital role in recovering data
after a system failure and ensuring the maintenance of the
database’s atomicity and persistence properties.

3 Obstacles in Continuous DBMS Fuzzing

While the characteristics of different DBMSs may vary, the
basic process for implementing continuous fuzzing on them
is similar. Figure | shows the three steps of the basic process,
namely customize query generator, fuzz evolving codebase,
and detect and analyze anomalies.

3.1 Step 1: Customize Query Generator

The first step is to customize the query generator for a unique
DBMS. Query generation serves as the heart of DBMS
fuzzing, as it determines the function and features that can be
covered. A DBMS always possesses many features. To thor-
oughly test a DBMS, it is important to generate SQL queries
covering these features because many potential bugs might ex-
ist in the related code. Moreover, it is important to ensure the
generated queries exhibit both syntactic and semantic correct-
ness. Any questionable input will be rejected, thus preventing
exploration of the deeper logic.

Obstacle 1: diverse SQL grammar. Different DBMSs
have unique syntax, semantics, and optimization strategies [2,

Input Procedure Result
Dal Step 1: Custom Query Generator @
L-—I Obstacle: Diverse SQL Grammar

Mutator && Fuzzer

|
()

Crashes && Input

Grammar Specification

Code Base Step 2: Fuzz Evolving Codebase
E Obstacle: Continuously Evolving Code

3 | +

Y Step 3: Detect and Analyze Anomalies

0—0

@ Obstacle: Disturbance of Noises
Developer

Bug Report

Figure 1: Three steps and their related obstacles of implement-
ing continuous fuzzing on an enterprise-level DBMS.

6,55]. The diverse SQL grammar poses difficulties in the
generation of SQL test cases. Tailoring the generator to the
specifics of each DBMS ensures that the generated queries
are compatible with the target system, enhancing the effec-
tiveness of the testing process. This customization is essential
for producing queries that are not only syntactically correct
but also aligned with the unique language intricacies of the
targeted database system to cover deep logic. For example, in
Figure 2, the data types used in the column definitions are spe-
cific to each database system (e.g., VARCHAR in PostgreSQL
vs. String in ClickHouse). Besides, ClickHouse uses the
ENGINE clause to define the storage engine [2], whereas Post-
greSQL does not employ comparable grammar.

-- PostgreSQL SQL Syntax

CREATE TABLE employees (
employee_id SERIAL PRIMARY KEY,
name VARCHAR(50)

)5

-- ClickHouse SQL Syntax
CREATE TABLE employees (
employee_id UInt32,
first_name String
) ENGINE = MergeTree ORDER BY employee_id;

Figure 2: PostgreSQL and ClickHouse have different SQL
formats in creating tables, which are shadowed in yellow and
green, respectively.

3.2 Step 2: Fuzz Evolving Codebase

The second step is continuous fuzzing on evolving code. The
code of an enterprise-level DBMS continuously evolves to
meet the ever-changing business requirements, leverage tech-
nological advancements, address security concerns, enhance

usability, and meet evolving compliance requirements. To
ensure stability, security, and efficiency, the committed code
changes often undergo rigorous testing and validation.
Obstacle 2: ongoing evolution of the codebase. The ongo-
ing evolution of the codebase creates difficulties for continu-
ous fuzzing. To fuzz evolving changed code, fuzzing needs to
be conducted swiftly for a code commit while simultaneously
retaining the capability to thoroughly test the entire codebase.
And it is challenging to efficiently test the updated portions in
a new version. First, when applied to a specific code submis-
sion, the challenge lies in isolating and evaluating the security
impact of that submission within the broader context of the
application. Understanding the exact triggers, inputs, and data
paths affected by the new code can be intricate, especially in
complex software ecosystems with numerous dependencies.
Moreover, the need for speed in software development adds
complexity to this obstacle. In practice, an enterprise-level
DBMS always employs a CI system to integrate code com-
mits. It requires rapid security validation to ensure that code
submissions do not introduce vulnerabilities. However, the
exhaustive nature of traditional fuzzing can hinder the agility
of development teams. Performing thorough fuzzing can be
time-consuming, given that it often demands significant exe-
cution time to explore a broad spectrum of potential inputs.

3.3 Step 3: Detect and Analyze Anomalies

The final step involves the detection and analysis of bugs
against interruption, encompassing anomaly recognition, de-
duplication of anomalies, and their minimization. Anomalies
may occur during the query execution. To detect them, a
fuzzer needs to actively monitor the system to identify any
deviations from the expected or desired behavior. After that,
the anomalies need to be de-duplicated to unique ones. To pin-
point the root causes of anomalies, the inputs that trigger them
and the site information of the anomaly (e.g., data, metadata,
stack trace) will be saved and analyzed.

Obstacle 3: disturbance of noises. The presence of noise
during anomalous events can impact both anomaly detection
and analysis. The noise in detection mainly comes from the
built-in anomaly recovery mechanism. Fuzzers typically de-
termine anomalies by assessing the availability of connections
to the DBMS, but the recovery mechanism will ensure the
DBMS maintains its connection. For example, the intricate
post-crash procedures in ClickHouse, which include logging
queries, dump generation, and error checking, contribute to
delays in promptly obtaining crucial crash site information.
These processes, while essential for system recovery and en-
suring data integrity, hinder the swift identification and res-
olution of anomalies. In the process, ClickHouse maintains
its connections with the fuzzer and can even continue ac-
cepting generated queries. Consequently, a fuzzer encounters
challenges in determining whether the DBMS has crashed.

Secondly, the recovery mechanism will also bring noises

Specification-Based Mutator Construction | Corpus-Driven Evolving Code Fuzzing

Long-Term Fuzzing

Grammar Uniform
Specification Paradigm

(G

Mutator Fuzzer

Sources

Intermediate
Grammar Rules

oo |1
Corpus —> Fuzzing

Noise-Resilient Anomaly Assessment

= | |Gl

Thread Anomaly
Monitor Analyzer

Cl/cD

—
==

Testing
Unit Test

==
= S5

Build

Bug
Report

%

Recover

il Commit *
Developer

Figure 3: Overview of WINGFUZZ’s solutions. (1) To automatically adapt to the diverse grammar, WINGFUZZ derives the query
mutator from DBMS grammar specification. (2) To continuously fuzz evolving code, WINGFUZZ utilizes corpus-driven evolving
code fuzzing. It continuously fuzzes the latest DBMS version, accumulating corpus to conduct rapid commit fuzzing on code
that has undergone version changes. (3) To detect anomalies against noises, WINGFUZz directly traces each thread to capture
exceptional signals. Once an anomaly is captured, it will collect comprehensive information to generate a detailed bug report.
After that, it terminates and restarts the entire system, resetting the database for the subsequent fuzzing cycle.

for anomaly analysis. Specifically, the mechanism might in-
terrupt the problematic thread, blending the call stack of the
anomaly with the call stacks of multiple threads. This intro-
duces noise to the stack trace used for exception analysis. In
addition, the noise from the previous query execution will
also influence the analysis. Many state-of-the-art fuzzers exe-
cute tests on DBMSs consecutively, leading to interference
between tests. Once an anomaly is triggered, it may not only
be caused by the current test case but also related to the state
change of the previous test cases.

4 Solutions of WINGFUZZ

Figure 3 shows the overview of WINGFuUzz. (1) In Step
1, to overcome the diverse SQL grammar, WINGFUZZ con-
structs the query mutator from the grammar specification of
the DBMS. (2) In Step 2, to address the ongoing evolution
codebase, WINGFUZz continuously fuzzes the latest version,
accumulating corpus to perform rapid commit fuzzing on
code affected by version changes. (3) In Step 3, to insulate
the noises, WINGFUZZ isolates the execution of test cases
and directly captures anomalous signals.

4.1 Specification-Based Mutator Construction

WINGFUZZ addresses Obstacle 1 by automatically deriving
the customized mutator from the DBMS grammar specifica-
tion. It generates new queries by mutating existing queries
while preserving syntax structures. The SQL mutator com-
prises two components: a SQL transfer and an AST mutator.
The SQL transfer converts a SQL query into an AST. Sub-

sequently, the AST mutator alters the structure (e.g., add a
“ORDER BY” after a SELECT statement) or data elements (e.g.,
replace a table with a SELECT clause) of the original AST
to generate a new one. Then the new AST is transformed
into a SQL query by analyzing the dependencies between
objects and popular data. The SQL mutator identifies the
structures and data of a query through intermediate grammar
rules, which are represented by a uniform paradigm.

Uniform Grammar Paradigm. This paradigm is an ex-
tension of the BNF paradigm with semantic information. It
follows a context-free grammar, incorporating data elements
that describe the SQL data model of a DBMS. Data elements
are labeled with symbols that distinguish categories (e.g., ta-
bles and columns). Figure 4 shows an example of utilizing the
paradigm to describe rules for altertablestmt recursive
reduction. Specifically, altertablestmt is a non-terminal
symbol, followed by its corresponding reduction rule. In the
last row, name (which represents the TABLESPACE name) is
marked with @DataT Name. Utilizing the uniform grammar
paradigm, various grammar rules can be uniformed, allowing
for the construction of a customized SQL mutator.

__

ialtertablestmt: H
ALTER TABLE relation expr alter_table cmds 1
.| ALTER TABLE IF P EXISTS relation_expr alter_table_cmds
'| ALTER TABLE relation_expr partition_cmd !
'| ALTER TABLE IF P EXISTS relation expr partition_cmd !
| ALTER TABLE ALL IN_P TABLESPACE name

E@DataTName@ SET TABLESPACE name @DataTName@ opt_nowait

Figure 4: An example of the uniform grammar paradigm.

Customized Mutator Construction. Algorithm 1 shows
the procedure to automatically construct the SQL mutator

with the SQL grammar specification. Firstly, it extracts tokens
and SQL grammar rules (e.g., keywords and specific rules)
from the SQL grammar file, then translates them into inter-
mediate grammar rules using the uniform grammar paradigm
(Lines 1-3). Then, for each grammar rule in the intermediate
grammar rules, we analyze the rule to find the data-related
elements that represent the data model (e.g., table, column,
and schema) in DBMSs. We will add the specific mutation
rules for each data element (e.g., a table object can only be
populated with the table name), which are used to mutate the
data element of AST (Lines 5-7). Finally, the tokens and rules
will be used to generate a lexer for the SQL transfer (Lines
9-10), and the uniform grammar paradigm G’ will be used to
generate the AST mutator (Line 11).

Algorithm 1: Customized Mutator Construction
Input :SQL Grammar File: G
Output :SQL Transfer: 7, SQL Mutator: M

1 Tokens < extractTokens (G);

2 Rules < extractRules (G) ;

3 G’ + constructNewParadigm (Tokens, Rules);

4 for R € Rules do

5 if containDataElement (R) then

6

7

8

9

addSQLDataMutationModel (R);
end
end
L < generatelexer (Tokens) ;
10 T < generateTransfer (L, Rules) ;
11 M < generatorMutator (G');

4.2 Corpus-Driven Evolving Code Fuzzing

WINGFUZzz overcomes Obstacle 2 by employing the cor-
pus generated through long-term fuzzing to conduct rapid
commit fuzzing. Figure 5 shows the basic process of evolving
code fuzzing. In the long-term fuzzing, WINGFUZZ main-
tains a corpus containing the smallest inputs ever discovered
in fuzz testing, which are capable of providing the broadest
code coverage. When a commit is submitted to the codebase,
it will carry out commit fuzzing. The process begins by ex-
tracting specific inputs related to the commit from the existing
corpus determined by changed functions. Then a time-limited
fuzzing is performed which is guided by coverage related to
the new commit code.

Following the successful completion of these tests, the
long-term fuzzing test is reinitiated to commence testing the
latest code changes following the merged commit. Note that
previously covered code can still be tested by this strategy.
For long-term fuzzing, previous seeds are retained in the seed
pool. If the changed code impacts the code that was previously
covered, the effect on these codes can still be tested by the
existing seed. The following are details of commit fuzzing.

Long-Term Fuzzing Commit Fuzzing

Corpus

Long-Term Commit | | | -ff
Fuzzer Fuzzer Brg
Latest | . ()

Codebase [«— Commit @«—
DBMS / Developer

Figure 5: Corpus-driven evolving code fuzzing.

Commit Fuzzing. Commit fuzzing aims to rapidly ascer-
tain whether the submitted commit contains any potential
issues or vulnerabilities. Traditional fuzzing procedures often
involve testing the entire system, which can be inefficient
when trying to focus on a specific area of the codebase. This
inefficiency can hinder the quick validation of the security of
a commit. To address the problem, we propose Algorithm 2
to focus on fuzzing the commit code.

Algorithm 2: Commit Fuzzing

Input :Corpus in Long-Term Fuzzing:C,
A map from a test case to its covered funs:M
Codebase: B,
Commit: commit
Output :Specific Corpus: C’
F < getRelvantFuns (commit);
C'=1initialCorpus();
for c € C do
if M[c] N F # @ then
| C«+Cuc
end
end
D + instrumentCompileCommit (B, F);
ghitmap <+ initial ();
repeat
11 s < select (C');
12 s’ + ASTMutate (s);
3 (sbitmap, scbitmap) + execute (D, s');
14 if canCover (schitmap) && hasNew (sbitmap,
gbitmap) then
15 '+ Cuys,
16 M[s'] + getCoveredFuns (5);
17 gbitmap < update (gbitmap, sbitmap);
18 end
until Timeframe Expiration || Anomaly Triggered,

LI T T L R

=
=)

=
e

The algorithm first filters a specific corpus that could cover
the commit changes. To speed up corpus filtering, instead of
re-executing existing test cases for coverage checking, we
utilize static analysis to obtain interesting test cases that cover
relevant code for new commits. First, we analyze the com-
mit and get the relevant functions of the committed changes.

Specifically, the smallest functions that either contain the com-
mitted changes or invoke the new functions will be deemed
relevant functions to the commit (Line 1). After that, we tra-
verse each test case in the corpus and filter the ones that could
cover the relevant functions (Lines 3-7). More precisely, we
maintain a map from a test case to its covered functions. Any
test case with covered functions overlapping commit-relevant
functions will be added to the specific corpus.

Following the filtration of the specific corpus, WINGFUZZ
initiates the fuzzing process using it as the initial corpus.
‘We compile the codebase with the commit to instrument the
DBMS that specially tracks the coverage of the committed
changes (Line 8). In addition to utilizing the shared coverage
bitmap in traditional fuzzing, we designed a dedicated stan-
dalone coverage bitmap specifically for committed changes.
The commit fuzzing process is similar to coverage-guided
fuzzing, including the process of test case selection (Line 11),
mutation (Line 12), and corpus update (Lines 13-18). In the
mutation, WINGFUZZ uses the customer mutator introduced
in Section 4.1. When updating the corpus, the test case that
can both cover the committed code and has new coverage will
be added to the corpus. Commit fuzzing is terminated either
upon the expiration of the predefined timeframe [25] or the
occurrence of an anomaly.

CI Integration. Commercial DBMSs always utilize CI sys-
tems to merge code commits. Corpus-driven evolving fuzzing
can be seamlessly integrated into CI with the following steps:

(1) Incorporate commit fuzzing as a check step in the inte-
gration testing, like following stress testing. The identification
of any anomalies during commit fuzzing will result in mark-
ing the check as failed. Details about the triggering exception
are preserved, and the code merge process fails. Develop-
ers are then required to fix the code before proceeding with
subsequent commits.

(2) Place long-term fuzzing on dedicated servers to run
continuously. When a commit passes all the checks in CI, the
long-term fuzzing initiates a fresh testing cycle to assess the
updated code with the newly merged commit. During this
restart, all previous test cases in the corpus and new test cases
found in commit fuzzing will be dry-run to construct a new
corpus to start the new cycle. If long-term fuzz testing dis-
covers issues or vulnerabilities, it will trigger an automatic
reporting mechanism. The mechanism doesn’t halt the testing
process; testing continues seamlessly alongside the reporting
of any problems encountered. The inputs that trigger anoma-
lies will also be added to the regression testing set.

4.3 Noise-Resilient Anomaly Assessment

WINGFUZzz addresses Obstacle 3 by directly tracing each
thread of a DBMS and dropping databases before executing
each test case. To avoid system noise when an anomaly is trig-
gered, WINGFUZzZ directly traces each thread and halts the

entire system. Figure 6 shows the overall process. Specifically,
WINGFUZZ monitors each thread in real time for anomaly de-
tection. Once an exception signal is received from any thread,
it is categorized as a DBMS anomaly. The monitor intercepts
the signal and suspends the thread. Subsequently, the bug ana-
lyzer will extract the stack trace of the thread along with other
comprehensive data, such as the shared bitmap for coverage,
and relevant system variables. The detailed information serves
as a valuable resource for subsequent analysis and debugging.

After that, the bug analyzer terminates the whole DBMS,
bypassing its recovery mechanism including built-in error log-
ging, checking, and other functionalities. Then, WINGFUZZ
deletes all databases and restarts the DBMS to provide a clean
environment for subsequent tests. The detailed anomaly infor-
mation can be analyzed online or off-line. We can utilize the
stack trace and other information to deduplicate the anoma-
lies and generate concise reports elucidating the potential root
causes of anomalies and affected components.

DBMS WingFuzz

Recovery Mechanism Threads

B s
1] Queries

=] B

Normal | N Signal
Process Handler

Restart

<> al

= stack

Bug Report

Bug
Analyzer

Figure 6: WINGFUZZ directly traces each thread for anomaly
identification and halts the whole system for bug analysis.

Moreover, to avoid the noise from previous executions,
WINGFUZz adopts a strategy of isolating the execution of
individual test cases. This involves the systematic dropping
of all databases before initiating the execution of each test
case. The approach eliminates residual data and side effects
from previous tests, providing a fresh state for the precise
execution of the current test case. Once a test case triggers an
anomaly, it is convenient to use the current test case for bug
reproduction and analysis.

S Implementation

Based on the above solutions, we implement them into a
continuous DBMS fuzzing framework named WINGFUZz. It
mainly consists of three parts: a query mutator constructor,
an evolving code fuzzer, and a noise-resilient bug analyzer.
The query mutator constructor is based on the bison and
flex. Generally, most DBMSs have a grammar description file
like bison files in its source code, which describes the tokens
and grammar rules. For example, the grammar file for Post-
greSQL can be downloaded in its Github [7]. For DBMSs that
lack the file, we can also extract their grammar description
from the official document. The uniform grammar paradigm

follows the BNF format with some SQL data elements. The
mutator constructor first converts the tokens and grammar
rules to bison and flex format following the uniform paradigm
with 2034 lines of Python code. It then uses bison and flex
to generate the SQL transfer and AST mutator. The fuzzing
module encompasses the basic components for conducting
fuzzing, including a wrapped compiler that encapsulates dif-
ferent parameters for the coverage instrument, a test case
selector, a corpus updater, and the mutator constructed based
on the grammar specification. The support for CI integration
is implemented with scripts.

The noise-resilient bug analyzer monitors the exceptional
signals of each thread to capture anomalies. The exceptional
signals are operating system signals that can indicate vari-
ous errors that need immediate attention, such as SIGSEGV,
SIGILL, SIGBUS, SIGABRT, and SIGFPE. It could happen in
any child process or child thread of the DBMS. To catch these
anomaly signals, we start the DBMS as the child process of
the monitor via fork() and exec(), and use ptrace to moni-
tor the DBMS process: on the one hand, we trace all signals
received by the DBMS process. If the signals are one of the
anomaly signals, it means a potential bug is triggered, and we
call the API of 1libunwind-ptrace to retrieve the call stack
from the process. On the other hand, we trace the clone(),
fork(), vfork(), and exec() of the process to catch all child
processes and threads, monitoring them comprehensively.

6 Evaluation

In this section, we begin by comparing WINGFUZZ with other
fuzzers. Subsequently, we demonstrate the contributions of
each component in WINGFUZzZ by gradually adding them.
Moreover, we present the practice of deploying WINGFUZZ
on 12 popular or enterprise-level DBMSs like ClickHouse.

6.1 Compared with Existing Fuzzers

To show the effectiveness of WINGFUZZ, we compared it
with three state-of-the-art fuzzers, including conventional
mutation-based fuzzer SQUIRREL as well as generated-based
fuzzer SQLancer and SQLsmith, which are widely used in
the industry to test DBMSs.

Tested DBMSs and Metrics. We chose four open-source
DBMSs as tested DBMSs, namely PostgreSQL, MySQL,
MariaDB, and PolarDB, which are widely used in industry
and academic research. They were selected because all the
compared fuzzers support testing them. Since other fuzzers do
not support fuzzing evolving code, we used the latest version
of four DBMSs as the target. We evaluated fuzzers using two
metrics, namely branches covered and unique bugs triggered.
The unique bugs were identified by comparing the call stack
and manual analysis. For a fair comparison, when we finished
fuzzing, we collected the queries generated by each fuzzer
and dry-ran the queries to uniform the branch coverage.

Basic Setup. We performed all experiments on a machine
running 64-bit Ubuntu 20.04 with 128 cores (AMD EPYC
7742 Processor @ 2.25 GHz) and 504 GiB of main memory.
All DBMS test instances run in Docker containers, each con-
taining a single DBMS service and a DBMS test tool. The test
tools operate with default configurations, such as instrumen-
tation methods and initial seed corpus. We run each DBMS
test instance for 24 hours, a commonly used time frame for
comparative evaluation. For quantitative comparisons, we run
the docker containers for each DBMS experiment with 5 CPU
cores and 32 GiB of main memory.

Branch Coverage. Table | shows the branches covered
by those fuzzers in 24 hours. They show that WINGFUZZ
covers a total of 211620, 197059, 132397 more branches than
SQLancer, SQLsmith, and SQUIRREL, respectively.

Table 1: Number of branches covered in 24 hours.

DBMS SQLancer SQLsmith SQUIRREL WINGFuUZzZ
PostgreSQL | 61,420 66,821 63,742 84,954
MySQL 69,182 67,291 77,829 104,281
MariaDB 60,031 69,281 91,932 129,832
PolarDB 56,928 58,729 93,281 140,114
Total 247,561 262,122 326,784 459,181
Increment 211,620 197,059 132,397 —

The main reason contributing to the enhanced coverage is
that WINGFUZZ supports more SQL grammar of each DBMS
than other fuzzers. Specifically, SQLancer generates queries
based on custom pattern rules, limiting its support to the SQL
grammar associated with the defined test oracle. Similarly,
SQLsmith focuses on the AST model of the DBMS’s SELECT
statement, predominantly generating SELECT statements for
testing. As a result, it lacks exploration of other DBMS func-
tionalities. Benefiting from feedback guidance and the data
dependency graph, SQUIRREL outperforms both SQLancer
and SQLsmith in these DBMSs. Nevertheless, it still suffers
from the limited support for the SQL grammar of the target
DBMSs. For example, SQUIRREL currently supports only a
subset of 165 grammar rules for MySQL, whereas the parser
of MySQL encompasses 695 grammar rules.

In contrast, WINGFUZz adopts a specification-based mu-
tator construction approach to maximize support for the en-
tire SQL grammar of the target DBMSs. The process be-
gins by extracting the complete grammar rules and tokens
from the specification of the target DBMSs, which are then
translated into uniform intermediate grammar rules. Subse-
quently, WINGFUZZ generates its SQL grammar parser and
SQL grammar lexer based on these uniform rules. In addition,
WINGFUZz also introduces the AST model of SQL queries
for mutation, which could help maintain the syntax and se-
mantic correctness of the SQL queries during mutation. More
comprehensive support for SQL grammar allows WINGFUZZ
to effectively trigger more complex logic within the target
DBMS. For instance, WINGFUZZ accommodates all 695 SQL

grammar rules of MySQL, ultimately leading to the discovery
of 26452 more branches than SQUIRREL on MySQL.
Unique Bugs. Besides branch coverage, WINGFUZZ also
triggered more bugs than other fuzzers in 24 hours. Table 2
shows the number of bugs found by each tool. Specifically,
WINGFUZZ finds a total of 25, 24, 21 more unique bugs than
SQLancer, SQLsmith, and SQUIRREL, respectively.

Table 2: Number of reproduced bugs triggered in 24 hours.

DBMS SQLancer SQLsmith SQUIRREL WINGFuUzzZ
PostgreSQL 0 1 1 2
MySQL 1 1 1 7
MariaDB 0 0 2 7
PolarDB 1 1 2 11
Total 2 3 6 27
Increment 25 24 21 -

The enhancement in bug triggering primarily stems from
two factors. Firstly, there is an improvement in coverage.
The increased branch coverage implies that WINGFUZZ can
encompass unique functionalities within the target DBMS,
where potential bugs might be located. Secondly, WINGFuUzz
utilizes a noise-resilient anomaly assessment. Unlike other
fuzzers that may ignore anomalies due to the noise brought
by recovery mechanisms, WINGFUZz directly monitors the
exceptional signals from each thread of the target DBMS.
Moreover, during the bug reproduction process, we observed
that many bugs from other fuzzers cannot be triggered using
their recorded inputs, due to the lingering execution state
of previously executed test cases. In contrast, WINGFUZZ
resets the database for each test case, ensuring that most of
the anomalies detected by WINGFUZZ can be reproduced.

6.2 Contributions of Each Component

To evaluate the effectiveness of each component in
WINGFUZzZ, we implement WingFuzz™", WingFuzz$, and
WingFuzz$™¢. WingFuzz®" uses the raw mutation algorithm
in AFL [59] without grammar adaptation. WingFuzz$ en-
ables specification-based mutator construction. Based on that,
WingFuzz8"¢ also enables evolve-code fuzzing. For a fair
comparison, we first run commit fuzzing for 30 minutes and
then enable normal fuzzing. WingFuzz?/ (i.e., WINGFUZZ)
enables all three components.

Table 3: Number of branches covered in 24 hours.

DBMS WingFuzz™® WingFuzz8 WingFuzz$t¢ WingFuzz®!
PostgreSQL 12,938 84,023 87,384 84,954
MySQL 11,082 103,940 105,402 104,281
MariaDB 12,393 130,294 131,394 129,832
PolarDB 20,112 139,739 141,593 140,114
Total 56,525 457,996 465,773 459,181

Table 4: Number of reproduced bugs triggered in 24 hours.

DBMS WingFuzz'® WingFuzz8 WingFuzz8+¢ WingFuzz®!!
PostgreSQL 0 0 0 2
MySQL 0 2 2 7
MariaDB 0 2 2 7
PolarDB 0 1 4 11
Total 0 5 8 27

Table 3 and Table 4 demonstrate the number of branches
covered and reproduced bugs found by these versions in
24 hours. With grammar-based mutation, WingFuzz® finds
401471 more branches and 5 more bugs than WingFuzz"".
The improvement contributes to the improved syntax and se-
mantic correctness provided by grammar adaption. Combined
with evolving code fuzzing, WingFuzz8™¢ finds 7777 more
branches and 3 more bugs than WingFuzz8. This improve-
ment is due to commit fuzzing effectively guiding the fuzzing
process to cover changed code regions more promptly. Ad-
ditionally, when noise-resilient anomaly assessment is also
enabled, WingFuzz*! finds 6592 fewer branches because of
the extra overhead. But it finds 19 more reproduced bugs
than WingFuzz8"¢. The improvement in reproduced bugs is
because the third component isolates the test case, thereby
facilitating bug reproduction.

6.3 Practice of Deploying WINGFUZZ

In this section, we first illustrate the deployment process
of WINGFUZZ, then present the bug detection results for 12
DBMSs we deployed along with some case studies.

6.3.1 Process of Deployment

The deployment process adheres to the procedure outlined
in Section 3, encompassing three key steps: query generator
customization, evolving codebase fuzzing, and anomaly de-
tection and analysis. Let’s use ClickHouse as an example to
illustrate the deployment process.

Step 1: Customize query generator. In contrast to traditional
row-based databases that store data in rows, ClickHouse or-
ganizes data by columns. Consequently, the SQL grammar
of ClickHouse exhibits notable differences from that of tra-
ditional DBMS due to its optimization for columnar data
storage. Nevertheless, within ClickHouse’s source code, there
exists a grammar file, which delineates the SQL grammar
rules in the bison format. Utilizing this grammar file, WING-
FuUzz initially extracts both tokens and context-independent
grammar rules. Subsequently, the tokens are integrated into
the sgllex. 1 file to generate the lexer. The grammar rules are
reorganized with the IR structure and then incorporated into
parser-mutate.y file to generate the grammar parser and
AST mutator. The resulting lexer, parser, and AST mutator
collectively contribute to SQL mutation.

Step 2: Fuzz evolving codebase. We first conducted long-
term testing on the latest version of ClickHouse on a dedicated
server. This process involved constant monitoring of Click-
House’s latest commits using scripts provided by WINGFUZzZ.
Throughout this procedure, a total of 10 bugs were identified.
The reporting of these bugs garnered the attention of Click-
House developers, including their CTO [14]. The developers
promptly acknowledged and addressed these problems [50].
With the invitation from ClickHouse, we collaborated with
their engineers to integrate WINGFUZZ into their develop-
ment process. As described in Section 4.2, we integrated
WINGFUZzZ into the internal development workflow, contin-
uously conducting long-term independent tests on the latest
code. At the time of the paper writing, we have identified
31 bugs in ClickHouse. Two-thirds of them were found after
integration, demonstrating the effectiveness of corpus-driven
evolving code fuzzing. Apart from ClickHouse, we are col-
laborating with engineers of DBMSs such as DamengDB,
YashanDB, and TenDB to deploy WINGFUZZ.

Step 3: Detect and analyze anomalies. ClickHouse has a
robust error recovery mechanism. When a system anomaly
occurs, ClickHouse logs error information, generates core
dump files, checks errors, performs data recovery, and subse-
quently restarts the DBMS. This mechanism ensures smooth
running, but the noise it introduces hinders the fuzzer’s ability
to capture and analyze exceptions. Furthermore, this mecha-
nism incurs a considerable time cost, substantially impacting
the fuzzing efficiency. Following the solutions in Section 4.3,
WINGFuUZzz directly monitors each thread. Upon triggering
an anomaly in any thread, WINGFUZZ assumes control of the
system. It extracts anomaly information like call stack from
the thread. Following this, WINGFUZZ terminates all threads,
clears the database, and restarts ClickHouse. In the anomaly
analysis phase, WINGFUZZ de-duplicate anomalies based on
coverage and call stack. Ultimately, anomaly reporting is ac-
complished by combining stack information with the input
that triggered the exception.

6.3.2 DBMS Vulnerability Results

As Table 5 shows, we utilize WINGFUZZ to test 12 DBMSs
(e.g., ClickHouse, DamengDB, and MariaDB), and WING-
Fuzz reported a total of 236 bugs. We have reported all
identified bugs to the corresponding DBMS vendors and have
received positive responses from them. Among them, 232
bugs have been confirmed. Out of the identified bugs, about
four-fifths stem from buffer overflow, segmentation viola-
tions, and use-after-free vulnerabilities. An attacker may use
them to execute arbitrary code to control the system or gain
special privileges, which could cause significant damage. Ad-
ditionally, WINGFUZZ also found vulnerabilities such as null
pointer dereferences, undefined behaviors, and assertion fail-
ures. These vulnerabilities can also inflict substantial damage
on database services that must operate continuously.

Table 5: Number of anomalies reported by WINGFUZZ.

DBMS ‘ Tested Versions Reported ~Confirmed
ClickHouse [13] 23.7.1-23.7.4 31 31
DamengDB [16] 8.1.1.87 60 60

MariaDB [34] 10.8-11.1 10 10
MonetDB [36] 11.46.0-11.48.0 12 12
MySQL [37] 8.0.32-8.1.0 11 9
PostgreSQL [39] 14.1-14.2 3 2
PolarDB [38] 2.0-2.3 21 20
SQLite [47] 3.37.3-3.39.0 17 17
TDengine [48] 2.4.0-2.6.0 24 24
TenDB [49] 3.3.1-3.3.2 18 18
VastBase-G100 [52] 2.2-build-11 23 23
YashanDB [57] 23.1.1.100 6 6
Total \ - 236 232

More importantly, our efforts have garnered expressions of
gratitude from numerous DBMS vendors. The acknowledg-
ment and appreciation received from these vendors are repre-
sented in Figure 7, highlighting the widespread recognition
and positive reception of our endeavors within the industry.
This validation from DBMS vendors serves as a testament to
the impact and value of our work.

“Wingtecher Lab's ground-breaking analysis tools that found
a way to get one of those assert() statements to fail.”[21]

Founder of SQLite

“Thank you very much for your reports. They are the best kind
we can wish for as bug reports!”

COO of MonetDB

“We are very happy with the findings and we want more!”[50]

“Which tool did you use to find this test case? We need to
integrate it into our C1.”[14]

CTO of ClickHouse

Figure 7: Some affirmations from various DBMS vendors.

6.3.3 Case Studies

Case Study 1: A segmentation violation in ClickHouse caused
by ORDER BY tuple of window functions. The bug is hidden in
six C++ files in the srclnterpreters directory of ClickHouse’s
source code, which invokes the ORDER BY statements and
tuple data types. Note that this bug is related to the unique
grammar of ClickHouse.

CREATE TABLE v@ (v1 Nullable (Int32) , col2
String , col3 Int32 , cold Int32) ENGINE =
MergeTree () ORDER BY tuple () ;

SELECT * FROM v@ ORDER BY tuple (count (*) OVER "
(), vli,vli,ve.vl);

Figure 8: The case that triggered the segmentation violation.

Root Cause Analysis. Figure 8 shows the test case that

triggered the bug. First, it creates a table v0 including 4
columns with the MergeTree engine. The data in table v0 are
ordered according to the values with the ORDER BY tuple ()
subclause. Then, it queries the data from table vO with
SELECT statements and ORDER BY statements. Finally, the
server crashed when it used ORDER BY to order the tuple of
count (*) window functions with the SELECT statement. The
bug is invoked by the combination of ClickHouse’s ORDER
BY tuple () and window functions, which is unique in Click-
House. With the specification-based mutator construction,
WINGFUZZ generates cases with unique grammars and de-
tects this bug. In addition, when this anomaly occurs, system
noise in ClickHouse can affect the identification and extrac-
tion of the bug’s information. Due to WINGFUZZ’s isolation
of the execution, we can extract the triggering test case and
related call stack for reproducing and analyzing.
Case Study 2: A use-after-free in MariaDB caused by up-
dated functionality of IN expression. The bug was hidden
deeply in the class ITtem_func_in of item_cmpfunc.cc. It
poses significant damage as it can be exploited by an attacker
to gain access to sensitive information belonging to other
users. Note that the bug was introduced while upgrading the
version to enhance the functionality of the IN expression.

CREATE TEMPORARY TABLE v@ (v1 TINYBLOB , v2

TINYINT , v3 BINARY GENERATED ALWAYS AS (v1 IN

(FALSE , CURRENT USER () IS NULL , 34))) ;
ALTER TABLE v@ ADD COLUMN v@ MEDIUMINT;

INSERT IGNORE INTO v@ VALUES ('x' , 'x' , 'x', 1) ;
SELECT * FROM v@; i‘;

Figure 9: The test case that triggered the use-after-free.

Root Cause Analysis. The class Ttem_func_in is designed
for IN expression, and the in_vector *array is a main
member of it to store the temporary data of expression. In
this case, the array was freed by mistake, which caused a
use-after-free bug. Figure 9 shows the test case that triggered
that bug. First, it creates a table v0 and associates attribute v1
with v3 with the GENERATED clause and IN expression. Mean-
while, the array in Item_func_in would be used to store
the temporary data in the associated column. Then it executes
the ALTER statement and the INSERT statement to change the
structure of the table and insert the record into the table v0.
However, the cleanup () function is called by mistake and
the array is freed, which may still be used when operating
the table v0. Finally, a use-after-free happens when MariaDB
executes the SELECT statement to query data from vO0.

The bug was introduced during the upgrade process of
MariaDB’s version, specifically in the enhancement of the
IN expression functionality. However, the commit success-
fully passed through all checks, including unit testing and
regression testing. WINGFUZz promptly identified the bug
through evolving code fuzzing when MariaDB released the

new version. Its evolving code fuzzing enables the detection
of such bugs triggered by version upgrades.

Case Study 3: A buffer overflow in MonetDB caused by com-
plex comparison expressions in queries. When using the com-
plex nested comparison expression with the WITH clause on
a table in MonetDB, the optimizer of MonetDB triggers a
buffer overflow while optimizing these comparisons.

CREATE TABLE v@ (v1 SMALLINT) ;

UPDATE v@ SET vl = v1 <= (WITH v@ (vl) AS (SELECT
(CASE WHEN 59 THEN (@ * (('x' < vl = 255 > vl -
vi))) END)) SELECT vl > 16 OR vl > 2147483647
AND v1 >= 27 AS v4 FROM v@ ORDER BY vi > vi % vi %

(vl) NULLS LAST) OR vi > -1 ; A\

Figure 10: The test case that triggered the buffer overflow.

Root Cause Analysis. Figure 10 shows the test case that
triggered the bug. To optimize the complex expression in the
UPDATE statement, MonetDB tries to rewrite the comparison
by reconstructing the AST nodes. However, when meeting the
nested comparisons, a wrong type of AST node was bound to
the expression, which caused the buffer overflow in further
processing. The bug is invoked by a complicated UPDATE
statement. The issue was discovered because WINGFUZz
performs grammar adaptations to produce statements with
nested comparisons, which MonetDB does not handle well.
Case Study 4: An undefined behavior (integer overflow) in
MonetDB when calling SQL function levenshtein(). When
passing two large strings to the function levenshtein(), a
piece of code in MonetDB that calculates the array length
triggers an integer overflow. If execution continued, this led
to array out-of-bounds access and then the DBMS crashed.

CREATE TABLE v@ (vl CHAR (100));

INSERT INTO v@ VALUES (222) , (18), (3) ,
(947) yuy (NULL) ,up (34)

INSERT INTO v@ (vl) SELECT group_concat ('table
tn3 row 99') FROM vO , v@ AS tri , v@ AS OMW WHERE
10 LIMIT 4 ;

SELECT levenshtein (vl , vl , 16 , 10 , 561) , vl ,
vl FROM VO ; X

Figure 11: The test case that triggered the undefined behavior.

Root Cause Analysis. Figure 11 shows the test case that
triggered the bug. MonetDB uniquely supports the function
levenshtein () to calculate the Damerau—Levenshtein dis-
tance between two strings. When the lengths of the two strings
are m and n, MonetDB needs to allocate an array of length
m * n to perform the algorithm. However, the variable used
to calculate the array length was stored as a 32-bit integer,
which led to an integer overflow when the lengths of the two
strings were large. MonetDB fixed the bug by changing the
data type from int to long. The bug is invoked by a unique
function supported by MonetDB. Because of grammar adap-
tation, WINGFUZZ could test the related grammar and cover

the function. Due to the noise-resilient anomaly assessment,
WINGFUZZ captured this undefined behavior and recorded
the related information.

Case Study 5: An assertion failure in MariaDB when in-
serting data into tables with spatial index. When creating an
InnoDB table with a SPATIAL index and inserting multiple
rows of data, MariaDB threw an assertion failure ‘!cursor-
>index->is_committed()’ and raise SIGABRT.

CREATE TABLE t1(f1 SERIAL, f2 LINESTRING NOT NULL
DEFAULT LineFromText('LINESTRING(1 1,2 2,3 3)'),
SPATIAL INDEX(f2))ENGINE=InnoDB; .
INSERT INTO t1(f1) VALUES(@), (1), (2); £\ 3

Figure 12: The test case that triggered the assertion failure.

Root Cause Analysis. Figure 12 shows the test case that
triggered the bug. When an InnoDB table contains any index,
the InnoDB engine will try bulk insertion when inserting
multiple rows. The bulk insertion depends on the primary key
which is automatically constructed by the index. However,
the SPATIAL index is a special index that never constructs
the primary key. Thus, when the bulk insertion was looking
for the primary key in the SPATIAL index, it triggered the
assertion failure. The bug is invoked by a combination of
SPATIAL index and INSERT statement. It is triggered by the
richer grammar brought with grammar adaptation. Due to the
noise-resilient anomaly assessment, WINGFUZZ captured the
signal thrown by the assertion failure to report it.

7 Lessons Learned

Adapt various DBMS features to improve semantic cor-
rectness and complexity of test cases. In practice, we find
that many bugs are related to the specific dialects or features
of the DBMSs. They are found because WINGFUZZ tries to
adapt the grammar and features as much as possible. Even
if new features are added in a new version, WINGFUZZ can
also update its mutator to reflect changes in the grammar
files. Handling these diverse grammar helps WINGFUZz to
improve the syntax and semantic correctness. Specifically,
WINGFUZZ employs AST-based dependency analysis. It first
identifies data nodes in the AST. Then it queries the database
metadata to record the dependent data elements and maps
them onto a data dependency table. During mutation, it se-
lects the appropriate data elements from the data dependency
table to populate the nodes to ensure semantic correctness.

Compared to WingFuzz™" without grammar adaption,
WINGFUZZ generates about 10x more semantic-correct test
cases. Moreover, the queries generated by WINGFUZZ con-
tain about 11 SQL statements on average, with one statement
including 19 clauses. To further enhance the complexity re-
quired to expose bugs with more complex conditions, we
can integrate other methods like statement sequence genera-
tion [27] into WINGFUZZ.

Integrate fuzzing into the DBMS development and accu-
mulate corpus to accelerate testing. Incorporating fuzzing
into the DBMS development helps to identify problems early
and minimize damage. It is important to ensure that every
code change undergoes automated fuzzing before deployment.
The most significant outcome of DBMS fuzzing is the cor-
pus of SQL inputs. This corpus serves as a valuable resource
for building and maintaining a diverse set of test cases, en-
abling the fuzzer to continually evolve and adapt to changing
codebases. Based on the corpus, WINGFUZZ utilizes commit
fuzzing to accelerate the verification of updated code. We
compare WINGFUZZ against WingFuzz™~ that disables the
commit fuzzing. With commit fuzzing, WINGFUZZ took 3.5
hours to reach the number of branches that WingFuzz™ in 24
hours, which accelerates the process by 6X respectively.

Isolate test case execution, and directly monitor the
DBMS underlying status based on specific test oracles
to identify vulnerabilities. Isolating test case execution by
dropping databases may bring extra overhead, but it improves
the functionality to reproduce bugs. For example, without
dropping databases, WINGFUZZ executed 3104 more test
cases and detected 1 more crashes in 24 hours on PolarDB.
But only 4 crashes can be reproduced directly. The remaining
bugs require additional human effort to analyze. In contrast,
with dropping enabled, WINGFUZZ identified 11 bugs, all
of which could be reproduced. Moreover, in a large system,
indirect acquisition of anomaly information may be subject
to various internal factors. Therefore, testing tools must be
capable of directly intervening in the system’s execution.

Our work focuses on the challenges in deploying continu-
ous fuzzing for industrial DBMS, but there are also other diffi-
culties in DBMS fuzzing. For example, designing test oracles
for performance bugs is challenging because it’s difficult to
find a ground truth to measure the response time. Additionally,
testing distributed DBMSs presents unique challenges. These
systems introduce complexities related to synchronization,
data consistency, and fault tolerance across multiple nodes
due to their inherent nature, which are not widespread in
monolithic database systems.

8 Related Work

8.1 Continuous Fuzzing

Continuous fuzzing is a security testing methodology that
involves continuously and automatically testing software ap-
plications for vulnerabilities using fuzz testing techniques.
Google’s OSS-Fuzz [44], for instance, continuously tests
more than 600 open-source projects with fuzzing and has
found tens of thousands of bugs. Recently, continuous fuzzing
has been integrated into the development pipeline in prac-
tice [23]. Klooster et al. [25] focus on optimizing fuzzing
for CI/CD by examining ways to reduce unnecessary fuzzing
efforts and developing prioritization strategies for allocating

resources to fuzzing campaigns. CIDFuzz [60] is a fuzzing
tool that addresses the common issue in CI of frequent
code changes that existing methods may not effectively test.
AFLGo [11] and Hawkeye [12] implement directed greybox
fuzzing, which guides fuzzing to test specific code parts and
can be used for patch testing. A study by Zhu and Béhme [62]
analyzes bug reports from OSSFuzz [44] and reveals that 77%
of bugs are due to recent code modifications. Therefore they
present AFLChurn, which implements regression greybox
fuzzing and prioritizes fuzzing efforts on code that has been
changed more frequently or recently. Yoo et al. [58] focus
on enhancing the configurability of continuous fuzzing at the
unit level, specifically in the context of SAP HANA.

Similar to them, WINGFUZZ considers the issue in the
complexity of the CI system and focuses on fuzzing com-
mitted changes. Differently, WINGFUZz also preserves the
long-term fuzzing to continuously test the latest version and
provides the generated corpus as a valuable source for rapid
commit testing. Additionally, WINGFUZzZ considers the im-
portant DBMS characteristics, utilizing customized mutators
and conducting noise-resilient anomaly assessments to ensure
a thorough and accurate bug finding.

8.2 Generation Based DBMS Fuzzing

Generation-based fuzzers generate SQL test cases following
the pre-defined generating rules. For example, SQLsmith [43]
models SQL specifications into an AST model and generates
amounts of queries. It checks bugs by monitoring if they cause
disconnections to the server. SQLancer [40—42] designs three
test oracles to detect logic errors and generates queries follow-
ing the oracles. For example, its NOREC [40] oracle requires
constructing a SQL query with WHERE and JOIN clauses. Then
it translates the query to an equivalent one by moving the
condition in the WHERE clause after the SELECT. Mo0zI [30]
utilize configuration-based equivalent transformation to find
logic and performance bugs. APOLLO [24] utilizes SQLsmith
as the generator to construct SQL queries and perform re-
gression testing between different DBMS versions to detect
performance anomalies.

Different from them, WINGFUZZ is a mutation-based
fuzzing framework. It leverages coverage to guide the query
generation process. In contrast to the mentioned fuzzers,
WINGFUZZ automatically adapts the grammar of a new
DBMS by constructing a customized mutator from the
DBMS’s grammar file.

8.3 Mutation Based DBMS Fuzzing

Mutation-based fuzzers generate new queries based on the ex-
isting test cases guided by coverage. AFL [59], libFuzzer [31],
and HONGGFUZZ [22] are used in OSS-Fuzz to test in-
memory database system like SQLite. To produce more mean-
ingful test cases, these fuzzers always collect SQL keywords

into a dictionary to help the mutation. Nevertheless, their gen-
erated SQL test cases still have lots of syntax and semantic
errors. The following works import SQL grammar modeling
into the mutation process. SQUIRREL [61] designs an inter-
mediate representation (IR) to represent the AST. It mutates
queries based on the IR to analyze the dependencies between
objects and keep their semantic correctness. RATEL [54] im-
proves the coverage feedback precision by utilizing bijective
block mapping. LEGO [27] finds type-affinities from exist-
ing test cases and utilizes affinities to synthesize cases with
more SQL type sequences. UNICORN [56] designs a hybrid
input synthesis to generate queries with time-series elements
for time-series DBMSs. GRIFFIN [20] presents a grammar-
free mutation strategy that reshuffles statements from existing
queries with metadata-guided semantic fixing. To generate
initial seeds for mutation, SEDAR [19] transfers test cases
from other popular DBMSs with LLMs.

WINGFUZzz also utilizes mutation-based methods to gen-
erate queries. Different from these fuzzers which manually
develop a mutator for each DBMS, WINGFUZZ customizes
the mutator by deriving it from the grammar files. Moreover,
WINGFUZZ isolates the execution environment of each test
case, effectively minimizing noise interference between them.
WINGFUZz also directly captures exceptional signals from
the target system, enhancing its ability to identify anomalies
and gather relevant information for further analysis.

9 Conclusion

In this paper, we present the practice of implementing and
deploying continuous fuzzing on enterprise-level DBMSs.
In contrast to utilizing fuzzing on function libraries or util-
ity programs, the process is more challenging. The diverse
input grammar, ongoing evolving code, and system noises
in a DBMS introduce difficulties in automatically adapting
to diverse grammars, continuously fuzzing evolving code,
and capturing and analyzing implicit anomalies. We ana-
lyze these obstacles and propose WINGFUZz which utilizes
specification-based mutator construction, corpus-driven evolv-
ing code fuzzing, and noise-resilient anomaly assessment to
address them. We implement WINGFUZZ to test 12 enterprise-
level DBMSs and found a total of 236 previously undiscov-
ered bugs. Because of positive testing outcomes, we received
praise from these vendors and WINGFUZZ has been incorpo-
rated into the development processes of ClickHouse.

Acknowledgements

This research is sponsored in part by the National Key Re-
search and Development Project (No. 2022YFB3104000),
NSFC Program (No. 62302256, 92167101, 62021002), and
China Postdoctoral Science Foundation (No. 2023M731953).

References

[1]

[4]

[5]

[6

=

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

Bugs found in database management systems. https://
www.manuelrigger.at/dbms-bugs. Accessed: June 12, 2024.

Clickhouse syntax. https://clickhouse.com/docs/en/sql-
reference/syntax. Accessed: June 12, 2024.

Continuous integration checks. https://clickhouse.com/docs/en/
development/continuous-integration. Accessed: June 12, 2024.

databases. https://en.wikipedia.org/wiki/Database. Accessed:
June 12, 2024.

Google chrome impacted by new magellan 2.0 vulnerabilities.
https://www.zdnet.com/article/google-chrome-impacted-
by-new-magellan-2-0-vulnerabilities/. Accessed: June 12,
2024.

Postgresql 14beta3 documentation. https://www.postgresql.org/
files/documentation/pdf/14/postgresql-14-A4.pdf. Ac-
cessed: June 12, 2024.

Postgresql” grammar description file. https://github.com/
postgres/postgres/blob/master/src/backend/parser/
gram.y. Accessed: June 12, 2024.

Sql commands. https://www.postgresql.org/docs/13/sql-
commands.html. Accessed: June 12, 2024.

Sqlite patches use-after-free bug that left apps open to code ex-
ecution, denial-of-service exploits. https://portswigger.net/
daily-swig/sqlite-patches-use-after-free-bug-that-
left-apps-open-to-code-execution-denial-of-service-
exploits. Accessed: June 12, 2024.

Sqlsmith score list. https://github.com/ansel/sqlsmith/
wiki#score-1list. Accessed: June 12, 2024.

BOHME, M., PHAM, V.-T., NGUYEN, M.-D., AND ROYCHOUDHURY,
A. Directed greybox fuzzing. In ACM Conference on Computer and
Communications Security (CCS) (2017).

CHEN, H., XUE, Y., L1, Y., CHEN, B., XIE, X., WU, X., AND LIU, Y.
Hawkeye: Towards a desired directed grey-box fuzzer. In Proceedings
of the 2018 ACM SIGSAC conference on computer and communications
security (2018), pp. 2095-2108.

Query billions of rows in milliseconds. https://clickhouse.com/,
12024. Accessed: June 12, 2024.

Clickhouse server 23.7.1.857 terminated by sigabrt through create table
and select stmts. https://github.com/ClickHouse/ClickHouse/
issues/52049,7 2023. Accessed: June 12, 2024.

CORONEL, C., AND MORRIS, S. Database systems: design, imple-
mentation and management. Cengage learning, 2019.

Damengdb. https://en.dameng.com/, 1 2024. Accessed: June 12,
2024.

DUVALL, P. M., MATYAS, S., AND GLOVER, A. Continuous integra-
tion: improving software quality and reducing risk. Pearson Education,
2007.

FOWLER, M., AND FOEMMEL, M. Continuous integration, 2006.

Fu, J., LIANG, J., WU, Z., AND JIANG, Y. Sedar: Obtaining high-
quality seeds for DBMS fuzzing via cross-dbms SQL transfer. In
Proceedings of the 46th IEEE/ACM International Conference on Soft-
ware Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024
(2024), ACM, pp. 146:1-146:12.

Fu, J., LIANG, J., WU, Z., WANG, M., AND JIANG, Y. Griffin:
Grammar-free dbms fuzzing. In Conference on Automated Software
Engineering (ASE’22) (2022).

Hipp, R. Potential database corruption in sqlite versions
3.35.0 through 3.37.1. https://sqlite.org/forum/forumpost/
ac381d64d804407e?raw, 1 2022. Accessed: June 12, 2024.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]
[38]

[39]

[40]

Security oriented fuzzer with powerful analysis options. https://
github.com/google/honggfuzz. Accessed: June 12, 2024.

JONATHAN METZMAN, G. O. S. S. T. Clusterfuzzlite: Continuous
fuzzing for all. https://github.com/google/clusterfuzzlite,
11 2021. Accessed: June 12, 2024.

JUNG, J., HU, H., ARULRAJ, J., KM, T., AND KANG, W. APOLLO:
Automatic Detection and Diagnosis of Performance Regressions in
Database Systems (to appear). In Proceedings of the 46th International
Conference on Very Large Data Bases (VLDB) (Tokyo, Japan, Aug.
2020).

KLOOSTER, T., TURKMEN, F., BROENINK, G., HOVE, R. T., AND
BOHME, M. Continuous fuzzing: A study of the effectiveness and
scalability of fuzzing in ci/cd pipelines. In 2023 IEEE/ACM Interna-
tional Workshop on Search-Based and Fuzz Testing (SBFT) (2023),
pp. 25-32.

KUMAR, V., AND SON, S. H. Database recovery, vol. 12. Springer
Science & Business Media, 2012.

LIANG,J., CHEN, Y., WU, Z., Fu, J., WANG, M., JIANG, Y., HUANG,
X., CHEN, T., WANG, J., AND L1, J. Sequence-oriented dbms fuzzing.
In 2023 IEEE International Conference on Data Engineering (ICDE),
IEEE.

LIANG, J., WANG, M., CHEN, Y., JIANG, Y., AND ZHANG, R. Fuzz
testing in practice: Obstacles and solutions. In 2018 IEEE 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER) (Los Alamitos, CA, USA, mar 2018), IEEE Computer Society,
pp. 562-566.

LIANG, J., WANG, M., ZHoU, C., WU, Z., JIANG, Y., L1u, ., LIU,
Z., AND SUN, J. Pata: Fuzzing with path aware taint analysis. In
2022 2022 IEEE Symposium on Security and Privacy (SP)(SP). IEEE
Computer Society, Los Alamitos, CA, USA (2022), pp. 154-170.

LIANG, J., Wu, Z., Fu, J., WANG, M., SUN, C., AND JIANG, Y.
Mozi: Discovering DBMS bugs via configuration-based equivalent
transformation. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, ICSE 2024, Lisbon, Portugal,
April 14-20, 2024 (2024), ACM, pp. 135:1-135:12.

Libfuzzer. https://www.llvm.org/docs/LibFuzzer.html.
cessed: June 12, 2024.

Liu, X., ZHOU, Q., ARULRAJ, J., AND ORSO, A. Automatic detec-
tion of performance bugs in database systems using equivalent queries.
In Proceedings of the 44th International Conference on Software Engi-
neering (2022), pp. 225-236.

MANES, V. J., HAN, H., HAN, C., CHA, S. K., EGELE, M.,
SCHWARTZ, E. J., AND W00, M. The art, science, and engineer-
ing of fuzzing: A survey. IEEE Transactions on Software Engineering
47,11 (2019), 2312-2331.

Mariadb. https://mariadb.org/, 1 2024. Accessed: June 12, 2024.

MILLER, B. P., FREDRIKSEN, L., AND SO, B. An Empirical Study of
the Reliability of UNIX Ultilities. Commun. ACM 33, 12 (Dec. 1990).

Ac-

The database system to speed up your analytical jobs.
www.monetdb.org/, 1 2024. Accessed: June 12, 2024.

Mysql. https://www.mysql.com/, 1 2024. Accessed: June 12, 2024.

Polardb. https://www.alibabacloud.com/product/polardb, 1
2024. Accessed: June 12, 2024.

https://

Postgresql. https://www.postgresql.org/, 1 2024. Accessed: June
12, 2024.

RIGGER, M., AND SU, Z. Detecting optimization bugs in database en-
gines via non-optimizing reference engine construction. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(2020), pp. 1140-1152.

https://www.manuelrigger.at/dbms-bugs
https://www.manuelrigger.at/dbms-bugs
https://clickhouse.com/docs/en/sql-reference/syntax
https://clickhouse.com/docs/en/sql-reference/syntax
https://clickhouse.com/docs/en/development/continuous-integration
https://clickhouse.com/docs/en/development/continuous-integration
https://en.wikipedia.org/wiki/Database
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://www.postgresql.org/files/documentation/pdf/14/postgresql-14-A4.pdf
https://www.postgresql.org/files/documentation/pdf/14/postgresql-14-A4.pdf
https://github.com/postgres/postgres/blob/master/src/backend/parser/gram.y
https://github.com/postgres/postgres/blob/master/src/backend/parser/gram.y
https://github.com/postgres/postgres/blob/master/src/backend/parser/gram.y
https://www.postgresql.org/docs/13/sql-commands.html
https://www.postgresql.org/docs/13/sql-commands.html
https://portswigger.net/daily-swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits
https://portswigger.net/daily-swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits
https://portswigger.net/daily-swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits
https://portswigger.net/daily-swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits
https://github.com/anse1/sqlsmith/wiki#score-list
https://github.com/anse1/sqlsmith/wiki#score-list
https://clickhouse.com/
https://github.com/ClickHouse/ClickHouse/issues/52049
https://github.com/ClickHouse/ClickHouse/issues/52049
https://en.dameng.com/
https://sqlite.org/forum/forumpost/ac381d64d804407e?raw
https://sqlite.org/forum/forumpost/ac381d64d804407e?raw
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://github.com/google/clusterfuzzlite
https://www.llvm.org/docs/LibFuzzer.html
https://mariadb.org/
https://www.monetdb.org/
https://www.monetdb.org/
https://www.mysql.com/
https://www.alibabacloud.com/product/polardb
https://www.postgresql.org/

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

RIGGER, M., AND SU, Z. Finding bugs in database systems via query
partitioning. Proceedings of the ACM on Programming Languages 4,
OOPSLA (2020), 1-30.

RIGGER, M., AND SU, Z. Testing database engines via pivoted query
synthesis. In /4th USENIX Symposium on Operating Systems Design
and Implementation OSDI 20) (2020), pp. 667-682.

SELTENREICH, A., TANG, B., AND MULLENDER, S. Sqlsmith: a
random sql query generator.

SEREBRYANY, K. OSS-Fuzz - google’s continuous fuzzing service for
open source software. USENIX Association.

SHAHIN, M., BABAR, M. A., AND ZHU, L. Continuous integration,
delivery and deployment: a systematic review on approaches, tools,
challenges and practices. IEEE access 5 (2017), 3909-3943.

SLUTZ, D. R. Massive stochastic testing of SQL. In VLDB’98, Pro-
ceedings of 24rd International Conference on Very Large Data Bases,
New York, USA, Morgan Kaufmann, pp. 618-622.

Sqlite home page. https://www.sqlite.org/index.html, 1 2024.
Accessed: June 12, 2024.

Embrace industry 4.0 with tdengine — the next generation data histo-
rian. https://tdengine.com/, 1 2024. Accessed: June 12, 2024.

Tendb cluster. https://github.com/Tencent/TenDBCluster—
TenDB, 1 2024. Accessed: June 12, 2024.

TRAN, S. Fuzzing collaboration with wingfuzz- part 1. https://
clickhouse.com/blog/fuzzing-wingfuzz, 8 2023. Accessed: June
12, 2024.

VAN DER LANS, R. F. The SQL standard: a complete guide reference.
Prentice Hall International (UK) Ltd., 1989.

Vastbase. https://www.vastdata.com.cn/, 1 2024. Accessed: June
12, 2024.

VERHOFSTAD, J. S. Recovery techniques for database systems. ACM
Computing Surveys (CSUR) 10, 2 (1978), 167-195.

[54]

[55]

[56]

[57]

[58]

[591

[60]

[61]

[62]

[63]

WANG, M., Wu, Z., XU, X., LIANG, J., ZHOU, C., ZHANG, H.,
AND JIANG, Y. Industry practice of coverage-guided enterprise-level
dbms fuzzing. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP)
(2021), IEEE, pp. 328-337.

WIDENIUS, M., AXMARK, D., AND ARNO, K. MySQL reference
manual: documentation from the source. " O’Reilly Media, Inc.", 2002.

WU, Z., LIANG, J., WANG, M., ZHOU, C., AND JIANG, Y. Unicorn:
Detect runtime errors in time-series databases with hybrid input syn-
thesis. In Symposium on Software Testing and Analysis (ISSTA’22)
(2022).

Yashandb. https://www.yashandb.com/, 1 2024. Accessed: June 12,
2024.

Yoo, H., HONG, J., BADER, L., HWANG, D. W., AND HONG, S. Im-
proving configurability of unit-level continuous fuzzing: An industrial
case study with sap hana. In 2021 36th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE) (2021), pp. 1101—
1105.

ZALEWSKI, M. american fuzzy lop. http://lcamtuf.coredump.cx/
afl/. Accessed: June 12, 2024.

ZHANG, J., Cul, Z., CHEN, X., YANG, H., ZHENG, L., AND L1U, J.
Cidfuzz: Fuzz testing for continuous integration. IET Software 17, 3
(apr 2023), 301-315.

ZHONG, R., CHEN, Y., HU, H., ZHANG, H., LEE, W., AND WU, D.
Squirrel: Testing database management systems with language validity
and coverage feedback. In The ACM Conference on Computer and
Communications Security (CCS), 2020 (2020).

ZHU, X., AND BOHME, M. Regression greybox fuzzing. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security (New York, NY, USA, 2021), CCS ’21, Association
for Computing Machinery, p. 2169-2182.

ZHU, X., WEN, S., CAMTEPE, S., AND XIANG, Y. Fuzzing: a survey
for roadmap. ACM Computing Surveys (CSUR) 54, 11s (2022), 1-36.

https://www.sqlite.org/index.html
https://tdengine.com/
https://github.com/Tencent/TenDBCluster-TenDB
https://github.com/Tencent/TenDBCluster-TenDB
https://clickhouse.com/blog/fuzzing-wingfuzz
https://clickhouse.com/blog/fuzzing-wingfuzz
https://www.vastdata.com.cn/
https://www.yashandb.com/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Introduction
	Background
	Obstacles in Continuous DBMS Fuzzing
	Step 1: Customize Query Generator
	Step 2: Fuzz Evolving Codebase
	Step 3: Detect and Analyze Anomalies

	Solutions of WingFuzz
	Specification-Based Mutator Construction
	Corpus-Driven Evolving Code Fuzzing
	Noise-Resilient Anomaly Assessment

	Implementation
	Evaluation
	Compared with Existing Fuzzers
	Contributions of Each Component
	Practice of Deploying WingFuzz
	Process of Deployment
	DBMS Vulnerability Results
	Case Studies

	Lessons Learned
	Related Work
	Continuous Fuzzing
	Generation Based DBMS Fuzzing
	Mutation Based DBMS Fuzzing

	Conclusion

