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ABSTRACT
Simulink plays an important role in the industry for modeling and
synthesis of embedded systems. Ensuring system stability requires
using numerous test cases to validate the functionality and safety
of the models. However, as requirements increase, the complexity
of the models poses new challenges to traditional testing meth-
ods. Traditional methods such as constraint solving and random
search run into significant obstacles when navigating the complex
branching logic and states within models.

In this paper, we introduce HybridTCG, a test case generation
method by collaboratingmodel fuzzing and state solving for Simulink
models. First, HybridTCG starts a code-based fuzzer to generate
high-coverage test cases rapidly. Then, it refines the test cases
generated by the fuzzer, preserving only those that can achieve
new model coverage. These selected test cases are input into the
state-solving engine to derive corresponding states and resolve
the constraints of subsequent branches. Ultimately, the test cases
produced by the solving engine will be fed back into the fuzzer
as high-quality seeds to enhance the fuzzing process. We have im-
plemented HybridTCG and conducted a comprehensive evaluation
using various benchmark Simulink models. Compared to the built-
in Simulink Design Verifier and state-of-the-art academic work
SimCoTest and STCG, HybridTCG achieves an average improve-
ment of 54%, 108% and 24% on Decision Coverage, 50%, 62% and 6%
on Condition Coverage, 291%, 282% and 45% on Modified Condition
Decision Coverage, respectively. Moreover, HybridTCG is also much
more efficient in testing than other tools.
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1 INTRODUCTION
Simulink is increasingly utilized in embedded design due to its
ability to provide efficient modeling, simulation, and high-quality
code generation [22, 32, 33, 35, 36, 39]. To ensure that the model
meets the functional design requirements and avoids system ex-
ception, developers usually need to provide a large number of test
cases for testing the model[12]. However, writing test cases manu-
ally is a very tedious task. Especially for those deep logics in the
model, it is difficult for testers to construct elaborate test cases
to trigger them. In recent years, a number of automated test case
generation efforts have emerged to effectively reduce the cost of
manual testing, while making it relatively easy to explore deep
logic [6, 10, 15, 16, 25, 27, 31, 37].

Broadly speaking, existing test case generation efforts can be
categorized into two types. The first is the solving-based method,
of which the Simulink Design Verifier (SLDV) [32], a component of
the Simulink toolkit, is a good example. In this method, Simulink
models are converted into specific formal representations, and then
a formal solver is applied to solve for model input values that satisfy
the requirements of model coverage. With this method, model input
data can be accurately solved to meet specific requirements. The
second is the search-based method, typically using tools such as
SimCoTest [25]. In this method, input data for themodel is randomly
generated and executed to obtain coverage feedback. Such feedback
information is then used to further refine and optimize the test
case generation process. This approach can be relatively quick to
achieve high model coverage.

It is undeniable that previous efforts have brought good benefits
to automatic test case generation, but as requirements become
increasingly complex and model scales expand rapidly, these efforts
also face challenges. Specifically, these challenges mainly stem
from the growth of model states and the increasing complexity of
control logic. Traditional constraint-solving methods suffer from a
severe state explosion problem, which makes it difficult to obtain
feasible solutions within limited time and computational resources.
As for search-basedmethods, the probability of generating a specific
model state required by a control condition is extremely low.

To better illustrate the aforementioned challenges, we present
the LAN switch model in Figure 1, which allows multiple devices
on a local area network to communicate with each other. The main
functions of the model include port registration, port checking, data
sending, and port logout. Since the switch needs to connect multiple
device ports, the model requires a port pool and a port state pool to
keep tracking them. To achieve data exchange, especially in the data-
sending function, the model must find the appropriate destination
ports and perform specific functions according to their states. These



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Zhuo Su† , Zehong Yu† , Dongyan Wang‡ , Wanli Chang§ , Bin Gu¶ , Yu Jiang� †

Numerous 
Model States

Complex Model 
Control Logic

Figure 1: An example model with numerous states and com-
plex control logic. This is a LAN Switch model. It mainly
includes the registration, checking, data sending and logout
functions of network devices.

two basic requirements dictate that the model is complex in both
state and control logic. For the constraint-solving methods, it is
difficult to generate a simple test case of two devices communicating.
This is because several preparations such as “registering ports”
and “establishing connections” must be completed before the two
devices can send data to each other. Constraint-solving methods
are exponentially more complex in terms of state space and logic
complexity to generate this series of operations. For search-based
methods, although most of these methods use coverage feedback
to optimize exploration, it is still unrealistic to explore a given set
of logic in a finite amount of time by random mutation.

To address the problems faced by the aforementioned approaches
or methods, we propose HybridTCG, a test case generation tech-
nique that collaborates the model fuzzing method and the state-
solving method. The fuzzer quickly generates test cases with high
coverage and reduces a large number of solving tasks for the state-
solving engine. On the other hand, the state-solving engine also pro-
vides more high-quality seeds for the fuzzer. In detail, HybridTCG
compiles the model fuzz driver, instrumentedmodel code andmodel
input mutator into a coverage-guided fuzzer. Then, the fuzzer is
run continuously. At regular intervals, HybridTCG refines the test
cases generated by the fuzzer by whether they can trigger new
coverage or not. The refined test cases are provided to the state-
solving engine for execution to obtain corresponding model states.
After that, the state-solving engine performs one-step solving of
the uncovered branches on the model state to explore deeper model
logic. Finally, the solved test cases are provided to the fuzzer for
better mutation.

We implemented and evaluated HybridTCG on public benchmark
Simulink models [37]. Compared to the built-in Simulink Design
Verifier and the academic work SimCoTest and STCG, HybridTCG
achieves an average improvement of 54%, 108% and 24% on Decision
Coverage, 50%, 62% and 6% on Condition Coverage, 291%, 282%
and 45% on Modified Condition Decision Coverage, respectively.
Moreover, HybridTCG is also much more efficient than other tools.

The main difference between HybridTCG and previous hy-
brid software fuzzers. The model execution is stateful, i.e. the
model is executed one step at a model iteration, and each step re-
sults in a new model state that reflects the values of global variables

of the model. The main difference is that hybrid fuzzing techniques
in the software domain do not care about the execution state of
the program, such as Driller[34], SAFL[38] and MEUZZ[8], where
constraint solving only uses the execution paths of the test cases
generated by the fuzzer or solver to collect constraints. HybridTCG,
on the other hand, solves the uncovered branches more deeply
based on different model states obtained from the fuzzer.

2 BACKGROUND AND RELATEDWORK
2.1 Model-driven design.
Model-driven design is an important methodology in embedded
software development. It primarily revolves around four core ele-
ments: behavior modeling, simulation, testing, and code generation
[4, 11, 19, 20, 30]. The process beginswith behaviormodeling, where
a detailed model is created using either text or graphics to precisely
match user requirements. Simulation is critical in the design phase,
allowing debugging and verification of the model’s functionality.
Testing is also an essential step, providing a systematic approach
to thoroughly validating the model and ensuring its reliability. The
final step, code generation, transforms the model into executable
code for use in embedded devices, turning theoretical designs into
practical solutions. Simulink by MathWorks stands out as the most
popular tool. It offers powerful simulation and code generation fea-
tures. Additionally, Simulink provides a comprehensive component
library, serving various industries efficiently, making the system
design and development process highly efficient.

2.2 Model execution and test case
To better understand test case generation, a clear understanding of
the model execution process and the test case format is necessary.

Model execution process. In the embedded domain, the control
logic of a device is usually executed cyclically according to a fixed
clock cycle. A single execution of the control logic is often referred
to as a “step”, and the execution of the Simulink model follows
a similar paradigm. Each step reads data from inports and then
performs a series of calculations and passes the data to outports.
This is equivalent to an embedded device reading and writing data
from pins. In control systems, some system states are usually set
during the execution of step. These states will have an impact on
the subsequent step execution process or results. For example, a
traffic light control system records the current light state for the
countdown and color switching. Accordingly, the Simulink model
is executed in a similar way as described above.

Test case format.Whenwe domodel testing, especially coverage-
guided testing, getting test data from files is a necessary step. De-
pending on the execution logic of the model, a test case may con-
tain many “rows”. Each row represents one-step input, i.e., the data
needed to execute all the inports of the top-level model once. In
each row, the data corresponding to the model inports are arranged
in order. Below is an example of a test case, corresponding to the
model in Figure 1. It contains three steps, register port 1, check port
1, and register port 2. {⟨PortId(i32), CMD(i32), Arg1(i32), Arg2(i32),
Arg3(i32)⟩, ⟨0x01, 0x2711, 0x01, 0x00, 0x00⟩, ⟨0x01, 0x2713, 0x01,
0x10, 0x00⟩, ⟨0x02, 0x2711, 0x01, 0x00, 0x00⟩}.
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Figure 2: Overview of HybridTCG. Two main parts are executed cyclically to obtain test cases. The coverage-guided fuzzer part
focuses on quickly obtaining test cases using model-specific fuzzing techniques. The state-solving engine is used to accurately
solve for coverage metrics based on model-specific states. The coverage-guided fuzzer provides more fundamental state space
for the state-solving engine. The state-solving engine provides more higher-quality input corpus to the coverage-guided fuzzer.
These two parts collaborate to quickly generate high-coverage test cases.

2.3 Model test case generation.
Testing is an indispensable step in the model-driven software devel-
opment process, for ensuring the target is functionally correct and
operationally stable[2, 5, 14, 29]. The adequacy of testing is usually
measured by model coverage metrics, including Decision Coverage,
Condition Coverage, MCDC coverage, and so on [17, 23, 26, 28]. The
more complex the model, the more difficult it is to construct high-
coverage test cases. To reduce the cost of manually constructing
test cases, testers usually start with automated test case generation
tools. They can automatically explore the deeper logic of the model,
effectively avoiding complex manual analysis work. Existing tools
can be divided into two main categories according to how they
work: solving-based test case generation and random search-based
test case generation.

Solving-based test case generation. It usually uses formal
techniques to obtain input cases that satisfy the model coverage re-
quirements. Simulink Design Verifier (SLDV), serves as an integral
component of Simulink, providing automated test case generation
[15]. It extracts the model content related to the coverage metrics
by model slicing. It then transforms the sliced model into a formal
DSL and obtains test cases from the constraint solver. He et al.
demonstrate an approach based on model checking that carefully
navigates the architecture of the model [16]. It can identify the
subset of nodes that maximize the observation of mutants, and
then use this information to generate a concise set of test cases to
achieve high coverage. Another innovative strategy is presented in
AutoMOTGen by Mohalik et al. which leverages the formal SAL
language [18] to articulate Simulink model parameters [27]. This
method integrates coverage metrics directly into the formal rep-
resentation of the model and leverages existing model-checking
mechanisms to simplify the test case generation process. A recent
work STCG maintains a state tree to hold various states of the
model and solves branches based on the state nodes [37]. It uses
the input data derived from the solver to form random sequences
to explore more of the state space.

These constraint-solving strategies based on formal methods
generally suffer from a lack of efficiency. For more complex models,
they may also face the problem of state space explosion, making

them difficult to solve. Instead, HybridTCG decomposes the model
execution into multiple iterative steps for solving, and introduces
fuzzing method to speed up test case generation.

Search-based test case generation. These methods often rely
on dynamic simulation of the model using randomized data, and the
information obtained during simulation, including execution state
and model coverage, is used as valuable feedback to optimize test
case generation, as demonstrated by a large number of researchers
[3, 10, 25, 31]. Reactis is a prominent example of this method [10].
It uses Monte Carlo random search to generate test cases. It com-
bines this technique with guided simulation. This allows the output
values to be examined, effectively assisting in the identification
and selection of test cases that have the potential to reveal hidden
issues. In a slightly different way, REDIRECT focuses on analyzing
the feedback generated by simulated test cases [31]. It utilizes a
specific set of heuristics designed for the complex nonlinear blocks.
SimCoTest can generate test cases for discrete-time and continuous-
time Simulink models. It fully tests the model by maximizing the
diversity of output signals.

However, search-based methods still struggle to trigger condi-
tions that depend on complex states and have a low probability
of reaching the desired model state. And model-based simulation
is also limited by the efficiency of the simulation engine itself.
Unlike these approaches, HybridTCG uses a code-based fuzzing ap-
proach to maximize the speed of random search. It also leverages
constraint-solving methods to continuously provide the fuzzer with
high-quality seeds.

3 HYBRIDTCG DESIGN
Figure 2 shows an overview of HybridTCG, which takes Simulink
models as input and generates test cases as output. HybridTCG
is executed by two main parts that work together, the coverage-
guided fuzzer and the state-solving engine. The coverage-guided
fuzzer is mainly used to quickly generate initial test cases, while it
receives the test cases output from the state-solving engine as high
quality seeds for further mutation. Specifically, a Simulink model
is first transformed into instrumented fuzzing code, which is then
compiled together with the fuzz driver and model input mutator
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into a coverage-guided fuzzer. We then run the fuzzer continuously
and extract the test cases it generates at regular intervals to the
state-solving engine. As soon as the state-solving engine generates
a new test case, it is added to the fuzzer corpus for further mutation.
The state-solving engine is mainly used to solve one-step model
iteration based on the fuzzer’s test cases to explore those branches
with stringent conditions. Specifically, test cases from the fuzzer
are first refined in terms of whether they can trigger new coverage.
They are then fed into the model for dynamic execution, with each
test case generating a specific internal state of the model. Then, for
the uncovered branches, we use the constraint solver to perform
a one-step solving on these specific states. Once a new solution is
obtained, the solved input of this model iteration is added to the
back of the test case for its corresponding state to obtain a complete
test case. In order to gain a better understanding of how HybridTCG
works, Figure 3 illustrates a workflow.
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Figure 3: Workflow of HybridTCG. The collaborative process
of the coverage-guided fuzzer and state-solving engine.

3.1 Fuzzing Code Generation
Compared to regular model code generation, the code for model
fuzzing requires more content, mainly including fuzz driver gener-
ation and model coverage instrumentation.

Fuzz Driver Generation. It is the entry point for model ex-
ecution and is used to read binary test case files and decompose
multiple-step inputs. The main distinction compared to the tradi-
tional fuzz driver for software testing lies in that our fuzz driver
contains a loop to simulate the execution of the model. Figure 4 il-
lustrates a fuzz driver example that corresponds to the LANSwitch
model in Figure 1. Where the first line is the callback function

header of the fuzzer, which receives the binary test data. The sec-
ond line performs the initialization function of the model. Lines
3-18 determine the number of loops to execute the model logic
based on the length of data required for one-step execution. Lines
5-9 are variables for model input data. The variables in lines 10-11
are used to save the output of the model. Lines 12-16 are used to
get the corresponding input data from the binary data. Finally, the
input data is fed in line 17 to execute one step.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19

void TestOneStepInput(unsigned char *data, int size){
LanSwitch_init();
int dataLen = 20;
for(int offset = 0; offset + dataLen <= size;){

int32 PortId = {};
int32 CMD = {};
int32 Arg1 = {};
int32 Arg2 = {};
int32 Arg3 = {};
int32 Result;
int32 MSG;
memcpy(&PortId, data + offset, 4); offset += 4;
memcpy(&CMD, data + offset, 4); offset += 4;
memcpy(&Arg1,   data + offset, 4); offset += 4;
memcpy(&Arg2,   data + offset, 4); offset += 4;
memcpy(&Arg3,   data + offset, 4); offset += 4;
LanSwitch_step(PortId, CMD, Arg1, Arg2, Arg3,

&Result, &MSG);
}

}

Figure 4: Example fuzz driver for LANSwitchmodel in Figure
1. Five variables in lines 5-9 are model inport variables. They
are passed to the LanSwitch_step function for model one-
step execution.

Model Coverage Instrumentation.Model coverage is more
demanding than traditional code coverage, as testers typically focus
on three coverage metrics, Decision Coverage, Condition Coverage
andMCDC (Modified Condition/Decision Coverage) [24]. Decisions
refer to judgments in the model that trigger different execution
logic. For example, switches and state machine transitions. The
analogy to code is the different branches. Conditions refer to calcu-
lations in the model that trigger different boolean outcomes. For
example, Boolean operations, comparison operations, etc. MCDC
considers whether the reversal of each sub-condition in a decision
can independently affect the overall decision outcome.

To better generate test cases that trigger the above metrics in
coverage-guided fuzzing, we need to insert the relevant metrics sta-
tistics code based on the logic code generated from the model. These
instrumented codes can enhance fuzzer’s exploration of model cov-
erage metrics. Figure 5 exemplifies the instrumentation details for
the expression “𝑖 𝑓 (𝐴&&𝐵 | |𝐶)”, containing two Decision Coverage
metrics, six Condition Coverage metrics and six MCDC metrics.
The code will be instrumented in front of the “𝑖 𝑓 (𝐴&&𝐵 | |𝐶)” ex-
pression. In this case, the first three lines calculate the Condition
Coverage metrics. Lines 4-6 statistic the Decision Coverage metrics.
Finally, lines 7-15 count the MCDC metrics.

3.2 Coverage-Guided Fuzzing
To achieve high coverage test case generation quickly, we introduce
the coverage-guided fuzzing technique. Its main operation is akin
to traditional software fuzzing. First, the fuzzer reads the initial
test cases (initial seeds) from the corpus and generates random
data as an initial seed if it is not available. The initial seeds are
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if(A){StatisticCond(1);}else{StatisticCond(2);}
if(B){StatisticCond(3);}else{StatisticCond(4);}
if(C){StatisticCond(5);}else{StatisticCond(6);}
bool exp_1 = A && B;
bool exp_2 = exp_1 || C;
if(exp_2){StatisticDeci(1);}else{StatisticDeci(2);}
bool masked_A = !B || C;
bool masked_B = !A || C;
bool masked_C = exp_2;
if(!masked_A)

if(A){StatisticMCDC(1);}else{StatisticMCDC(2);}
if(!masked_B)

if(B){StatisticMCDC(3);}else{StatisticMCDC(4);}
if(!masked_C)

if(C){StatisticMCDC(5);}else{StatisticMCDC(6);}

Figure 5: Example instrumented code for enhancing coverage.
It will be inserted in front of the “𝑖 𝑓 (𝐴&&𝐵 | |𝐶)” expression.

then passed one by one to the fuzz driver, corresponding to the
“TestOneStepInput” function in Figure 4. The fuzzer dynamically
executes the model code to obtain coverage information for each
test case. Then, the fuzzer prefers to save those test cases that
trigger more or new coverage into the corpus. These test cases will
be used to mutate to trigger more uncovered branches or paths.

We redesign the mutation strategies to be more adaptable to
model-based test case generation. This is because the traditional
mutation strategy in terms of binary bytes can seriously affect
the alignment of the model’s input data sequences. The specific
variation strategies of HybridTCG are shown in Table 1.

Table 1: The strategies of model input mutation

Strategy Description
Change Binary Integer Modify a binary integer value.
Change Binary Float Modify a binary float value.
Erase Rows Remove a range of rows.
Insert Row Insert a new row with random values.
Insert Repeated Rows Insert a sequence of repeated rows.
Shuffle Rows Shuffle the order of rows.
Copy Rows Copy rows into another position.
Rows Cross Over Combine rows from two streams.

The “Row” in Table 1 denotes the set of inport data required
for one step of the model execution. In particular, for the “Change
Binary Integer” and “Change Binary Float” strategies, HybridTCG
does not change the data completely at random. Instead, HybridTCG
makes finer modifications based on their values. For instance, it can
shift an integer, add a constant, or invert a bit. For float numbers,
the sign, exponent, and significand bits are mutated more finely
according to the IEEE 754 standard, including sign bit inversion,
exponent bit modification, etc. The Insert Row and Insert Repeated
Rows strategies use a simple dictionary to generate random data.

3.3 State Solving Engine
The state-solving engine is primarily utilized to explore deeper into
the state space traversed by the coverage-guided fuzzer. Instead of
generating test cases with multiple steps, it adds one-step data that
triggers a new coverage to the back of the test cases provided by
the fuzzer. Choosing single-step solving for the solver is because
compared to multi-step solving, single-step solving is faster and
easier to obtain the solution. The state-solving engine consists of
two main modules: model input execution and one-step solving.

The model input execution module is employed to execute the re-
fined test cases from the fuzzer, obtain the model state after each
test case execution, and tally the uncovered metrics. The one-step
solving module is used to solve for those uncovered metrics on
different model states. The metrics used to be solved by the solver
are consistent with the previous fuzzer part and also include Deci-
sion Coverage, Condition Coverage, and MCDC. These metrics are
encoded as SAT statements to be solved along with the constraints
of the model. Once new coverage is explored, the new step input is
merged behind the corresponding test case and the new test case
will be passed to the fuzzer corpus.

Algorithm 1 shows the exact process of the state-solving engine.
Two of the variables in lines 1-2 are used to collect information
about the model coverage and the state corresponding to each test
case. The refined test cases are then executed separately, in lines
3-6. In lines 7-19, the metrics not yet covered are traversed and
these metrics are solved state by state in lines 12-14. Once an input
step (𝑟𝑒𝑠) has been solved for a state, we append it to the end of the
corresponding test case as a new test case (Length + 1) for output.

To speed up the efficiency of the state-solving engine, we intro-
duce an optimization strategy for the de-duplication of the solving
in our actual tool. That is, before line 13 of Algorithm 1, a repetitive
query is performed for the CRC64 1 [21] value of model state and
uncovered metric that will be solved. If it is found that the same
solving has been performed before, the solving result can be ob-
tained directly. These solving records are stored as files, which can
speed up the test case generation process every time afterward.

Algorithm 1: State Solving
Input:𝑀𝑜𝑑𝑒𝑙 : The model for test case generation

𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 : The test cases from fuzzer
Output: 𝑁𝑒𝑤𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒 : The test case solved out

1 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = ∅ // Record all coverage of the𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠
2 𝑠𝑡𝑎𝑡𝑒𝑀𝑎𝑝 = ∅ // The key is test case, the value is state
3 for 𝑡 in𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 do
4 𝑐𝑜𝑣, 𝑠𝑡𝑎𝑡𝑒 =𝑀𝑜𝑑𝑒𝑙 .run(𝑡 ) // Get coverage and state
5 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = merge(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 , 𝑐𝑜𝑣)
6 𝑠𝑡𝑎𝑡𝑒𝑀𝑎𝑝[𝑡] = 𝑠𝑡𝑎𝑡𝑒

7 𝑐𝑜𝑣𝑀𝑒𝑡𝑟𝑖𝑐𝑠 =𝑀𝑜𝑑𝑒𝑙 .getAllCovMetric()
8 for𝑚 in 𝑐𝑜𝑣𝑀𝑒𝑡𝑟𝑖𝑐𝑠 do
9 if𝑚 in 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 then
10 continue

11 // Traverse all uncovered metrics
12 for 𝑡 , 𝑠𝑡𝑎𝑡𝑒 in 𝑠𝑡𝑎𝑡𝑒𝑀𝑎𝑝 do
13 𝑀𝑜𝑑𝑒𝑙 .setState(𝑠𝑡𝑎𝑡𝑒) // Reset model state
14 𝑟𝑒𝑠 = solve(𝑀𝑜𝑑𝑒𝑙 ,𝑚) // Solving for an uncovered metric

on a specific model state
15 if 𝑟𝑒𝑠 == NULL then
16 // If unsolvable, continue traversing
17 continue

18 𝑁𝑒𝑤𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒 = 𝑡 .addToBack(𝑟𝑒𝑠)
19 return 𝑁𝑒𝑤𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒

1A fast algorithm for calculating data checksum values. In this paper, it is used to
quickly check for duplication of model internal states.
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Table 2: A simple abstraction of the coverage metrics for the example model in Figure 1

ID Metric Description State Required Difficulty for fuzzer Difficulty for solver
1 Register Success Connect a port to Switch. None Easy Easy
2 Register Failure A port can not connect to Switch. All port slots are occupied. Easy Hard
3 Send Success Send message between two ports. At least two ports are registered. Hard Hard
4 Send Failure (A) Src port or Dst port not found. None Easy Easy
5 Send Failure (B) The Dst port is busy. The Dst port is in busy status. Hard Hard
6 Check Success The checked port is connected. At least one port is registered. Easy Hard
7 Check Failure The checked port is not connected. None Easy Easy
8 Logout Success A connected port logout. At least one port is registered. Easy Hard
9 Logout Failure The target port does not exist. None Easy Easy

3.4 Collaborative Execution Strategy
As shown in Figure 6, HybridTCG uses a glue tool to achieve co-
operation between a coverage-guided fuzzer and a state-solving
engine. First, the glue tool starts fuzzer and then fetches all test
cases from the fuzzer corpus. Next, the glue tool executes the test
cases in order of length, from short to long, and cumulatively counts
the coverage metrics. The test cases that trigger new coverage are
provided to the state-solving engine as refined data. Test cases that
generate new coverage are also output. When a new test case is
generated by the state-solving engine, it is fed back into the fuzzer
corpus. Afterward, the process from obtaining test cases from the
fuzzer to the solver outputting test cases is repeated. It will not
stop until all metrics are covered or a timeout occurs. Note that, the
number of test cases generated by the fuzzer at the beginning does
not affect the coverage results, because the state-solving engine
can be started multiple times.

Start Fuzzing

Fuzzer
Solving
Engine

Glue
Tool

Get Testcases
Testcases

Send Reduced
Testcases

Testcases Reducing

One‐Step
Solving

Output Testcases
New Testcase

Get Testcases
Testcases

Send Reduced
Testcases

Testcases Reducing

One‐Step
Solving

Output Testcases
New Testcase

Get Testcases
Testcases

Testcases Reducing
(All Metrics Covered

or Timeout)
Terminate

………… ……

Figure 6: The way HybridTCG works represented by UML tim-
ing diagram. Where the glue tool is used to perform the
collaboration between the fuzzer and solving engine.

RunningExample.To understandmore clearly how HybridTCG
works, we use the model in Figure 1 here for a running example. But

before that, we need to give a further introduction to the model as
well as a simple abstraction of the coverage metrics. Figure 1 shows
a LANSwitch model, which is mainly used for registering, checking,
and logging out of network ports and sending data between two
ports. The model provides five inports to perform these operations,
which are ⟨𝑃𝑜𝑟𝑡𝐼𝑑,𝐶𝑀𝐷,𝐴𝑟𝑔1, 𝐴𝑟𝑔2, 𝐴𝑟𝑔3⟩. Below is the sample
input data for these operations.

• ⟨0x07, 0x2711, 0x00, 0x00, 0x00⟩: Register the port 7.
• ⟨0x07, 0x2713, 0x00, 0x00, 0x00⟩: Check port 7 status.
• ⟨0x07, 0x2714, 0x00, 0x00, 0x00⟩: Logout port 7.
• ⟨0x07, 0x2712, 0x09, 0x10, 0x00⟩: P7 sends data to P9.

We have abstracted some coverage metrics from the LANSwitch
model, as shown in Table 2. Note that, these coverage metrics are
not concrete evaluation metrics like MCDC, they are just some
abstract concepts to represent the model behavior. For instance,
metric 1 signifies that a port was successfully registered, metric
3 denotes that data was successfully sent between two ports, and
metric 5 implies that data could not be successfully sent due to a
busy destination port. The last two columns of Table 2 indicate how
easy or hard these metrics are for each of the fuzzer and solver.

For the fuzzer, those metrics that only require changing a single
inport data are easy to trigger. This is because the fuzzer’s ability
to rapidly and systematically mutate values allows the data to
quickly meet the conditions. Additionally, since the fuzzer executes
continuously, it is also easy for it to further mutate the already
mutated data to trigger a value that satisfies another condition. For
example, metric 1 is easy because it only needs the CMD port to
be 0x2711 and the rest of the ports to be random data. Metric 2 is
easy because it only requires the register operation to be repeated
a few times. Metric 3 is hard because it not only needs the CMD
port to be 0x2712, but it also needs Arg1 to be an already registered
port ID. For the solver, solving those metrics that require the model
to be in a specific state to be triggered is hard. This is because the
complexity of the problem faced by the solver in solving multiple
steps is exponential. For example, metric 3 requires at least 3 steps
to trigger, registering port 1, registering port 2, and port 1 sending
data to port 2. Next, we exemplify how to cover these metrics in
Table 2 using our model fuzzing and state-solving approach.

Figure 7 illustrates the collaborative process between the two
parts (for short fuzzer and solver) of HybridTCG. We use a tree
diagram to show the model states and the one- or multi-step inputs
that can reach these states. The tree nodes indicate model-specific
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Figure 7: A test case generation example of collaboration
between coverage guided fuzzer part and state solving engine
part, corresponding to the LANSwitch model in Figure 1.
Where circles with the same color represent the same model
state. The text in red color responds the test case row(s).

states, with identical states represented by the same color. The edges
of the tree indicate model inputs and which coverage metric that
input can trigger. Firstly, in the root state, the four metrics Register
Success, Send Failure (A), Check Failure, and Logout Failure are
available for fuzzer and solver to generate the corresponding test
cases. Note that our solver can operate on the root state, which is
equivalent to providing it with empty test case data. The Register
Failure metric requires all port slots of the model to be occupied to
trigger. It is easy for the fuzzer to reach this state, it only needs to
repeat the register operation several times. On the contrary, it is
hard for the solver, as it faces the problem of state-space explosion
when solving for multiple steps as opposed to solving for one step.

Next, suppose we obtain a test case for registering port 7 and
obtain the state S1, i.e., port 7 was successfully registered. Based on
the state S1 and the existing test case corpus, it is easy for fuzzer to
cover Logout Success and Checkmetrics. It is also easy for the solver
to solve for one-step input on the S1 state to achieve them. Due to
the fuzzer’s randomness, suppose it again randomly generates the
operation to register port 9 on top of S1, we obtain the state S3. Note
that the state S3 cannot be reached by the solver because Register
Success is an already covered metric. To trigger the Send Success
metric afterward, we can only do it via solver. Because the metric
requires the parameter Arg1 to specify a port ID that has already
been registered, which is hard for fuzzer. Solver can directly solve
for the input data required to trigger Send Success in state S3 and
then obtain state S4 (Port 9 working). To trigger the Send Failure
(B) metric, Port 9 needs to be in a busy status. Here again, we need
to rely on the fuzzer’s fast random generation capability to repeat
sending data to port 9 multiple times as a way to reach state S5
(Port 9 busy). Finally, based on S5, another data send is performed
to trigger the Send Failure (B) metric. As can be discerned from the
path S0->S1->S3->S4->S5 in Figure 7, it is the collaboration between
the fuzzer and solver that facilitates the coverage of metrics that
would otherwise be arduous for each method.

4 EVALUATION
4.1 Tool Implementation.
HybridTCG2 is implemented in C++, comprising 37,087 lines of
code. In the fuzzing code generation module, we have leveraged
the Simulink Embedded Coder for the generation of the model
logic. All subsequent processes are automated by code. The cov-
erage instrumentation code we designed is inserted into the main
logic code of the model. In the coverage-guided fuzzer part, we
implement the model input mutation function based on LibFuzzer
[13]. In this way, the three parts of the instrumented logic code, the
fuzz driver and the modified LibFuzzer can be compiled together
to form a complete coverage-guided fuzzer. For the state-solving
engine part, we utilize the CBMC tool to convert the code of the
Simulink model into SAT statements, and then employ the MiniSAT
constraint solver to implement one-step solving[9]. For setting the
model state before solving, we implemented this by initializing the
values of the model global variables, since model states are stored
using global variables in the model. Next, as shown earlier in Figure
6, we also implemented a glue tool for collaboration between the
fuzzer and the solver. Furthermore, we additionally implemented a
test case converter, which transposes the binary test cases output
by HybridTCG into a Simulink-readable Excel file format. This al-
lows us to use Simulink’s coverage statistics feature to make fair
comparisons with other works [24].

4.2 Experiment Setup.
To evaluate the effectiveness of HybridTCG, we conducted compara-
tive experiments with Simulink’s built-in verification toolkit, SLDV,
and two academic tools, SimCoTest and STCG, on the coverage
results. Since other academic and commercial tools are not publicly
accessible, we can not compare HybridTCG with them. In addition,
the experimental results were analyzed in more depth to illustrate
the validity of the methodology of this paper. All experiments are
conducted on the same environment (Windows 10, Intel i7-8550U
CPU, 16GB RAM, Simulink 2022b, SLDV 4.8) with the same dura-
tion (1 hour, the results for 24 hours were the same as for 1 hour).
We repeat the experiment 10 times to obtain the average coverage
result for a fair comparison. Note that, the final coverage results
are almost same of each tool. Although some of the tools contain
random strategy, the evaluation results are stable over an hour. All
benchmark models are derived from publicly available model sets,
which are deployed in embedded scenarios[37]. Table 3 shows the
details of these models, including model functionality, number of
branches, and number of blocks.

4.3 Evaluation on Coverage Rate.
We use the most widely used Decision Coverage, Condition Cov-
erage and MCDC to measure the effectiveness of different tools
in generating test cases[1, 24]. A higher coverage metric signifies
a more comprehensive examination of the model, while earlier
achievement of coverage indicates more efficient testing.

Table 4 shows the coverage of the test cases generated by the dif-
ferent tools for benchmark models. Compared to SLDV, SimCoTest

2The implementation and the benchmark models are uploaded on the anonymous
website: https://anonymous.4open.science/r/HybridTCG-7514.
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Table 3: The description of benchmark models

Model Functionality #Branch #Block
CPUTask AutoSAR CPU task dispatch system 107 275
SVPWM Space vector pulse width modulation 916 1233
TWC Train wheel speed controller 80 214
NICProtocol Vehicle NIC communication protocol 46 294
LANSwitch LAN Switch controller 131 570
UTPC Underwater thruster power control 92 214
LEDLC LED matrix load control 94 270
TCP TCP three-way handshake protocol 146 330
RAC Robotic arm controller 179 667
TCS1 Control model dedicated to testing 1597 1742
TCS2 Control model dedicated to testing 2752 7196
FMTM Factory Multi-point Temperature Monitor 89 152

and STCG, HybridTCG improves the Decision Coverage for 54%,
108% and 24%, Condition Coverage for 50%, 62% and 6%, and MCDC
for 291%, 282% and 45%, respectively. From the table, we can see
that HybridTCG achieves higher coverage compared to the other
tools. For example, HybridTCG achieves 100% Decision Coverage,
100% Condition Coverage and % MCDC on three models, CPUTask,
NICProtocal and UTPC.

We carefully investigated the models for which we achieved
substantially higher coverage that other tools did not, and we found
that there was more complex logic in these models than in other
models. For example, the SVPWM model contains a large number
of numerical judgments and much deeper logic that can only be
triggered in very demanding model states. Solving-based methods
such as SLDV and STCG are limited by solving complexity and
have difficulty exploring the model states on which they rely. For
SimCoTest, random search has difficulty triggering model branches
that require sophisticated constraints. In contrast, HybridTCG uses
fuzzing methods to quickly explore the state space and accurately
achieves deep branch coverage using constraint solving. Note that
the SVPWM model has a maximum decision coverage of only 63%,
which is due to the model’s configuration parameters resulting in
some branches not being executed.

In addition, we can discern from Table 4 that HybridTCG achieves
a much higher MCDC improvement than Decision Coverage and
Condition Coverage compared to other tools. This is due to our
instrumentation of theMCDCmetrics in the coverage-guided fuzzer
and the accurate solving of each metric in the state-solving engine.

Table 4: Comparison of the test coverage of different tools

Model Tool Decision
Coverage

Condition
Coverage MCDC

CPUTask

SLDV 89% 72% 42%
SimCoTest 72% 56% 21%
STCG 100% 100% 100%
HybridTCG 100% 100% 100%

SVPWM

SLDV 45% 55% -
SimCoTest 34% 75% -
STCG 17% 63% -
HybridTCG 63% 96% -

TWC

SLDV 46% 68% 40%
SimCoTest 15% 57% 20%
STCG 92% 97% 100%
HybridTCG 96% 98% 100%

NICProtocal

SLDV 75% 83% 10%
SimCoTest 30% 43% 33%
STCG 95% 98% 100%
HybridTCG 100% 100% 100%

LANSwitch

SLDV 72% 76% 15%
SimCoTest 78% 81% 15%
STCG 100% 98% 55%
HybridTCG 100% 98% 55%

UTPC

SLDV 44% 59% 44%
SimCoTest 40% 58% 44%
STCG 100% 100% 100%
HybridTCG 100% 100% 100%

LEDLC

SLDV 55% 41% 43%
SimCoTest 55% 41% 43%
STCG 98% 100% 100%
HybridTCG 98% 100% 100%

TCP

SLDV 63% 64% 33%
SimCoTest 82% 74% 17%
STCG 99% 100% 67%
HybridTCG 99% 100% 83%

RAC

SLDV 64% 71% 12%
SimCoTest 71% 76% 12%
STCG 98% 98% 23%
HybridTCG 100% 99% 73%

TCS1

SLDV 60% 65% 16%
SimCoTest 86% 68% 28%
STCG 99% 85% 41%
HybridTCG 99% 96% 99%

TCS2

SLDV 79% 83% 43%
SimCoTest 79% 87% 56%
STCG 85% 94% 92%
HybridTCG 86% 94% 98%

FMTM

SLDV 76% 77% 25%
SimCoTest 64% 55% 15%
STCG 95% 95% 35%
HybridTCG 96% 96% 70%

Average
Improvement

vs SLDV ↑ 54% ↑ 50% ↑ 291%
vs SimCoTest ↑ 108% ↑ 62% ↑ 282%
vs STCG ↑ 24% ↑ 6% ↑ 45%

* Since SVPWM does not contain AND and OR logic, it does not involve the
MCDC metric.
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Figure 8: Ablation study on fuzzer part (coverage-guided fuzzer) and solver part (state solving engine) of HybridTCG
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Figure 9: The folded line plot of the Decision Coverage versus time. The X-axis is time (s) and the Y-axis is Decision Coverage
(%). “◦” indicates that this coverage boost is achieved by the coverage-guided fuzzer. “△” indicates that this coverage boost is
achieved by the state solving engine.

4.4 Ablation Study on Fuzzer and Solver Part
We ran the fuzzer part and solver part separately for the ablation
experiment. The specific experimental setup is as follows: For the
coverage-guided fuzzer, we let its corpus be generated and used
only by itself. At the same time, we store all test cases that generate
new coverage and the corresponding timestamps. For the state-
solving engine, we let it start solving from the model initialization
state. Whenever a new test case is obtained, we save it. Immediately
afterward, the saved test cases are fed directly into the solver part
for execution. The execution of the state-solving engine is looped
through in this way. We also record the timestamp of each test case.

Figure 8 shows the comparison of Decision Coverage, Condition
Coverage and MCDC for the fuzzer part, solver part and HybridTCG
respectively. Comparing the fuzzer part, HybridTCG is on average
42%, 28% and 49% higher in Decision Coverage, Condition Coverage
and MCDC, respectively. Despite the same coverage results on the
CPUTask model, HybridTCG is 7.1x more efficient. HybridTCG has
better coverage results compared to the solver part for all bench-
mark models, it is on average 46%, 30% and 125% higher in Decision
Coverage, Condition Coverage and MCDC, respectively. These re-
sults mean HybridTCG can trigger metrics that can not covered by
those two parts.
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4.5 Efficiency of HybridTCG
The capability of coverage is paramount, as is the efficiency of gen-
erating such test cases. We plotted a folded line graph of Decision
Coverage versus time by selecting the median coverage efficiency
in each model’s experiments. In Figure 9, the X-axis is time (s)
and the Y-axis is Decision Coverage (%). We can see from Figure 9
that HybridTCG’s test case generation efficiency is also higher than
other tools, and HybridTCG always generates more coverage than
the other three tools.

To analyze the underlying reasons behind HybridTCG’s high effi-
ciency and high coverage in depth, we recorded the source of each
test case’s output, i.e. whether it came from the coverage-guided
fuzzer or the state-solving engine. As shown in Figure 9, “◦” indi-
cates that this coverage boost is achieved by the coverage-guided
fuzzer. “△” indicates that this coverage boost is achieved by the
state-solving engine. We can see that the two parts mostly alter-
nate in generating test cases, which suggests that they both play
a pretty important role. Looking more closely, we can see that in
many subgraphs there is a circular marker “◦” directly above a tri-
angular marker “△”. This phenomenon indicates that as soon as the
state-solving engine generates a new test case, the coverage-guided
fuzzer immediately generates a higher coverage. For example, when
HybridTCG in the CPUTask model triggered about 95% coverage
using the state-solving engine, the coverage-guided fuzzer quickly
generated test cases that achieved 100% coverage. This observation
substantiates the fact that the collaboration between the two parts
of HybridTCG is efficacious.

An interesting observation in Figure 9 is that for the NICProtocol
model, the efficiency of HybridTCG in generating test cases is much
higher than for the other three tools. This is because this model
has a remarkably large number of internal states. This has a huge
impact on the performance of the other three tools, particularly
SLDV, whereas HybridTCG’s state-solving engine automatically
removes states that are irrelevant to the constraints during the
formal transformation of the model. This allows the state-solving
engine to have a faster solving speed.

4.6 Comparison with Software Testing Methods
There is a lot of work on test case generation, especially for soft-
ware or code. Therefore, advanced testing work in the software
domain can be used for testing the models. Three well-known test-
ing tools, Libfuzzer, Driller and KLEE, were selected for additional
experiments[7, 13, 34]. Libfuzzer is an in-process coverage-guided

fuzzing tool. Driller is a concolic testing tool that combines fuzzing
with symbolic execution. KLEE is a symbolic execution engine built
on top of the LLVM compiler infrastructure. It is worth noting that
our hybrid approach of fuzzing and solving does not use solver
to obtain the complete input data as in the case of the constraint
execution approach. HybridTCG uses the state space obtained from
the fuzzer to solve test cases for model steps, which is more con-
cerned with the iterative nature of model execution. We used the
model-generated code for testing. We utilized the fuzz driver of
HybridTCG so that the testing tool could automatically read the
test files to execute the code. After the test case generation process,
we converted the binary test case files to Excel format to provide
coverage statistics for Simulink. The results are shown in Figure 10.
Compared to Libfuzzer, HybridTCG was on average 173%, 103% and
690% higher in Decision Coverage, Condition Coverage, andMCDC,
respectively. Compared to Driller, HybridTCG was on average 216%,
153% and 512% higher, respectively. Compared to KLEE, HybridTCG
was on average 147%, 85% and 431% higher, respectively.

We have analyzed in depth the reason why software testing
methods do not work well on models. The main bottleneck is that
many of the coverage metrics required for testing on models are
discarded by software testing methods. For example, the judgment
logic of the truth table for AND and OR blocks. The true and false
values of the input data for these boolean blocks are Condition
Coverage metrics. They are more concerned with capturing the
coverage of blocks of code. The results of the fuzzer part of our
ablation study, which includedmodel coveragemetrics, also confirm
this conclusion.

5 DISCUSSION
5.1 The Challenge of Permanently False Metrics
In our tools, both the coverage-guided fuzzer and the state-solving
engine can only check the satisfiability of metrics. However, it is
not possible to identify which metrics are always uncoverable, i.e.,
permanently false metrics. This leads to the fact that the state-
solving engine may solve for a permanently false metric on many
states, which consequently wastes a lot of time. This is even more so
for the fuzzer. And once the remaining uncovered metrics are only
those that are permanently false, we have no way of knowing when
it is time to terminate HybridTCG. This also leads to a meaningless
execution of the fuzzer and solver after that.

We currently do not have a fully effective solution to deal with
this complex issue. However, we have devised simple strategies
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Figure 10: Comparison of coverage with test case generation methods in the software domain. Libfuzzer is an in-process
coverage-guided fuzzing tool. Driller is a concolic testing tool that combines fuzzing with symbolic execution.
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to mitigate this problem: for those metrics that cannot be solved
multiple times, we try stateless solving, where the model state is
set to indeterminate values to be solved. If the metric still cannot be
solved, it is considered to be permanently false. This is equivalent to
themetric being unsatisfiable in any state.Whereas if the metric can
be solved, we cannot conclude that it is satisfiable. This is because
we cannot determine whether the model state on which the metric
depends can be reached by executing multiple input steps.

5.2 Effect of Initial Parameters of the Model
In our experiments, we found that some models would be set with
initial parameters before execution, which resulted in some of the
logic in the model being restricted by parameter conditions and not
being able to be executed. This means that different model initial pa-
rameters can enable different model coverages to be triggered. The
two benchmark models, SVPWM and TCS2, are strongly influenced
by the initial parameters.

However, as we know from our industry partners, the initial
parameters of the model are often used as part of the test cases.
For this reason, we have added a simple method to generate the
initial parameters in the HybridTCG. It reads the corresponding
data from the binary stream at the beginning of the fuzz drive as
initial parameters. The subsequent data are then the inputs for each
step of the model. Each time the state solver engine dynamically
executes a test case, it first reads and sets the initial parameters for
the model. In this approach, we re-ran the test case generation with
initial parameters for the SVPWM and TCS2 models. As a result,
they obtained more than 95% coverage on all metrics.

5.3 One-Setp Solving vs Multi-Step Solving
We experimented on the performance of multi-step solving. For the
benchmark models, two-step solving and three-step solving take
3x and 6x longer, respectively, than one-step solving. We tried two
strategies for applying multi-step solving, including “try multi-step
solving immediately when one-step solving fails” and “try multi-
step solving when one-step solving fails on all model states”. The
experimental results show that both strategies cause significant
performance overhead (the efficiency was reduced by 180% and
40%, respectively), but a limited improvement in coverage. Only the
TWC model improved its decision coverage from 96% to 98%.

From the results, it appears that there are some coverage metrics
that need to be solved for multiple steps to be triggered. However,
the introduction of multi-step solving does not bring significant
benefits to HybridTCG, but rather has significant side effects. Based
on the methodological analysis, we believe that the fuzzing part
of HybridTCG has reached the coverage exploration capability of
multi-step solving. This is because once the solving engine has
explored a new coverage, the fuzzer will mutate the new test case
to explore more coverage. This can be confirmed by the folded line
plot in Figure 9.

6 CONCLUSION
In this paper, HybridTCG is proposed to optimize the test case
generation for Simulink models, especially for the control mod-
els that have complex logic and internal states. More specifically,

the coverage-guided fuzzer uses model-specific fuzz driver genera-
tion, coverage metrics instrumentation, and model input mutation
to generate test cases quickly and consistently. The state-solving
engine solves one step input further based on the state explored
in the test cases output by the fuzzer. These two parts collabo-
rate to achieve efficient and high-coverage test case generation.
Experiments show that HybridTCG can perform well on bench-
mark Simulink models. Compared to SLDV, SimCoTest and STCG,
HybridTCG achieves improvements in Decision Coverage, Condi-
tion Coverage and MCDC. Not only that, it is also much more
efficient than other tools. We demonstrate the effectiveness of the
collaboration between the fuzzer part and the solver part through
ablation experiments. We also compare HybridTCG with the testing
work in the software domain, and the experimental results show
that our method is more suitable for model testing. Our future work
will address the permanently false metrics and the metrics with
specific pre-conditions to facilitate the efficiency of HybridTCG.
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