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Tensor compilers are essential for deploying deep learning applications across various hardware platforms.

While powerful, they are inherently complex and present signi�cant challenges in ensuring correctness.

This paper introduces PolyJuice, an automatic detection tool for identifying mis-compilation bugs in tensor

compilers. Its basic idea is to construct semantically-equivalent computation graphs to validate the correctness

of tensor compilers. The main challenge is to construct equivalent graphs capable of e�ciently exploring

the diverse optimization logic during compilation. We approach it from two dimensions. First, we propose

arithmetic and structural equivalent rewrite rules to modify the data�ow of a tensor program. Second, we

design an e�cient equality saturation based rewriting framework to identify the most simpli�ed and the most

complex equivalent computation graphs for an input graph. After that, the outcome computation graphs have

di�erent data�ow and will likely experience di�erent optimization processes during compilation. We applied

it to �ve well-tested industrial tensor compilers, namely PyTorch Inductor, OnnxRuntime, TVM, TensorRT,

and XLA, as well as two well-maintained academic tensor compilers, EinNet and Hidet. In total, PolyJuice

detected 84 non-crash mis-compilation bugs, out of which 49 were con�rmed with 20 �xed.
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1 Introduction

Over the past decade, the ever-increasing demand for e�cient and scalable execution of deep

learning (DL) models has driven a surge of interest in tensor program compilation in both aca-

demic research and industry. The core process is to transform high-level tensor programs into

optimized low-level code that can be e�ciently executed on a speci�c hardware architecture. Mod-

ern tensor compilers, such as TensorRT [33], XLA [48], and TVM [5], carry out their compilation
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tasks as a series of tensor program transformations. By implementing transformations such as

algebraic simpli�cation and operator fusion, these compilers can optimize memory usage, decrease

computational overhead, and enhance hardware utilization [24].

Despite the proliferation of optimization techniques in tensor program compilation, their cor-

rectness is not always guaranteed. These techniques require multiphase intricate transformations

on the intermediate representation (IR) of the compiled tensor program, making the process error-

prone. However, evaluations of most tensor compiler research [5, 53, 68, 70] tend to focus more on

optimization e�ciency, often neglecting the aspect of correctness. Consequently, potential bugs

may remain concealed within their implementations. For example, versions of TVM from February

to April 2023 incorrectly simpli�es "~− (G%2)" to "~ + (G%2) −1" because of a minor implementation

bug [50]. Such bugs caused by incorrect transformation implementation during compilation are

referred to as mis-compilation bugs.

Di�erent from execution failures, which often present clear symptoms such as program crashes,

mis-compilation bugs tend to emerge silently, making detection particularly challenging. Most

current tensor compiler fuzzers [9, 11, 27–29, 59] focus on identifying execution failures, with a

few [27, 28, 30] employing di�erential testing to uncover mis-compilation bugs. Di�erential testing

achieves this by comparing the execution results of target compilers with those of a reference

executor. However, di�erential testing for tensor compilers produces a non-negligible number of

false positives due to variations in numerical accuracy across di�erent execution environments.

For instance, Xiao et al. [61] reported that di�erential testing yields thousands of inconsistencies

when comparing the execution results between TensorFlow and Glow [39]. Such discrepancies

pose challenges in distinguishing actual bugs from benign di�erences in numerical precision. This

situation underscores the urgent need for a new approach to complement di�erential testing.

class Model0(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.const = const0

    def forward(self, x):
        y = self.const
        add = torch.add(x, y)
        neg = torch.neg(add)
        out = neg.argmin(4)
        return out Tensor

Program
Tensor
Program

class Model1(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.const = const0

    def forward(self, x):
        y = self.const
        x = x.transpose(1, 0)
        y = y.transpose(1, 0)
        add = torch.add(x, y)
        add = add.transpose(1, 0)
        neg = torch.neg(add)
        out = neg.argmin(4)
        return out
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Fig. 1. An equivalent pair of tensor programs generated by PolyJuice. They produce significantly inconsistent

execution results a�er compiled by TVM, triggering a mis-compilation bug.

This paper introduces PolyJuice, a fuzzer for identifying mis-compilation bugs in tensor com-

pilers, aiming to improve the robustness of exisiting tensor compilers. Inspired by the idea of

equivalence modulo inputs (EMI) [21], this paper addresses the limitations of di�erential testing by
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detecting inconsistent results between multiple tensor programs that are semantically equivalent but

syntactically di�erent on the same execution environment. Fig. 1 provides an illustrative example of

how PolyJuice uncovers mis-compilation bugs. The two models depicted in the �gure are clearly

equivalent, with only minor changes in the shapes of some intermediate tensors. These changes

are supposed not to in�uence the outputs. If these two models, when passed to the same compiler

in the same execution environment, produce di�erent results for the same inputs, it indicates the

presence of a mis-compilation bug in the compiler. This approach eliminates the need for a separate

reference executor, thereby avoiding the false positives often caused by cross-platform numerical

accuracy variations, enhancing the reliability of bug detection.

Constructing equivalent tensor programs that can e�ciently detect mis-compilation bugs is

challenging. (1) Equivalence. Traditional compiler testing techniques [21, 22, 49] often construct

equivalent programs by inserting dead code, e.g., if(false){...}, into a given program. However,

this approach cannot be directly applicable to tensor programs. Tensor compilers primarily analyze

the �ow of tensors, and as such, ignore control-�ow-wise dead code by design. An intuitive thought

is to modify the tensors’ �ow of a tensor program, but it is non-trivial to maintain programs’

equivalence after the modi�cation. (2) Test E�ciency. The testing throughput for tensor compilers

is much lower than for other applications (roughly 4 testcases per second [27] v.s. 10,000 testcases per

second [72]). Therefore, each pair of equivalent tensor programs needs to be carefully constructed to

maximize the potential for detecting mis-compilation bugs. However, even though the equivalence

is maintained, tensor programs with naive modi�cations tend to experience the same optimization

transformations, which is unlikely to expose logic bugs in these transformations. Consequently,

a more e�ective modi�cation strategy is needed to diversify the transformations that the tensor

programs undergo. We address these challenges from two dimensions:

First, we propose arithmetic and structural rewrite rules to modify the data�ow of a tensor

program. Arithmetic rewriting rearranges mathematical expressions without altering the �nal

output. This is achieved by manipulating the computation graph using arithmetic properties like

commutativity and associativity. On the other hand, structural rewriting changes the sequence

or structure of tensor operations while keeping the �nal output intact, achieved by adjusting

how intermediate tensors are transposed, sliced, and concatenated. The rationale behind this is

that modifying arithmetic procedures and tensor shapes within tensor programs can often trigger

diverse optimization opportunities.

Second, we design an e�cient rewriting framework to apply the rewrite rules on a given

computation graph and identify "representative" equivalent graphs. We adopt equality saturation

technique [60] to �nd all graphs equivalent to the original graph based on the rules. After that,

we search for two types of graphs among these equivalent graphs: the one that calculates its

outputs using the fewest number of operations (the most simpli�ed graph), and the one that does

so using the maximum number of operations (the most complex graph). The two extreme cases

have signi�cantly di�erent data�ow and likely experience di�erent optimization processes during

compilation, which makes them valuable for tensor compiler testing.

We implemented PolyJuice as a practical fuzzer and applied it to �ve well-tested industrial tensor

compilers, namely PyTorch Inductor [38], OnnxRuntime [31], TVM [5], TensorRT [33], and Tensor-

�ow XLA [48], as well as two well-maintained academic tensor compilers, EinNet [70] and Hidet [7].

In total, PolyJuice detected 84 non-crash mis-compilation bugs, out of which 49 were con�rmed

with 20 �xed. In a 48-hour experiment, compared to the state-of-the-art fuzzers NNSmith [27] and

MT-DLComp [61], PolyJuice additionally uncover 7 and 25 non-crash mis-compilation bugs on

TVM and XLA, respectively. These results collectively demonstrate its e�ectiveness.

Overall, we make the following contributions:
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• New Approach. We proposed a new approach to detect mis-compilation bugs in tensor

compilers. This is achieved by constructing equivalent tensor programs that is capable of

exploring diverse optimization logic during the compilation process.

• Practical Fuzzer. We designed and implemented a fuzzer named PolyJuice, which leverages

equality saturation to rewrite computation graphs and extract representative graphs. To the

best of our knowledge, it is the �rst work to apply equality saturation for testing purposes.

We released the prototype at https://github.com/ChijinZ/PolyJuice-Fuzzer.

• Real-World Bugs. We evaluated PolyJuice on seven well-maintained tensor compilers. In

total, it has detected 84 non-crash mis-compilation bugs with 49 con�rmed.

2 Background

2.1 Tensor Program Compilation

Tensor program compilation involves a series of transformations to transform high-level tensor

programs into optimized low-level code that can be e�ciently executed on a variety of hardware

architectures. Typical optimizations in tensor program compilation mainly include algebraic sim-

pli�cation [14, 18, 51, 53, 63, 70], which reduces the complexity of the computation by exploiting

mathematical properties and identities; operator fusion [7, 15, 16, 48, 66, 67], where multiple oper-

ators are combined into a single operator to reduce computational overhead and improve cache

usage; and loop tiling [5, 40, 44, 64, 68, 69, 71, 76], which partitions computations into smaller "tiles"

to exploit memory hierarchy and parallelism.

These optimization strategies, while powerful, are inherently complex and present signi�cant

challenges in ensuring bug-free implementations. For instance, when dealing with algebraic simpli-

�cation, optimization developers must consider not only the semantics of the relevant operators but

also the intricacies of high-dimensional data structures and the precision of data types. Developers

generally implement many sanity checks to apply an algebraic simpli�cation rule. However, if

these are not thoroughly considered, errors can easily slip through, leading to potential mistakes.

For example versions of TVM between February to April 2023 incorrectly simpli�es "~ − (G%2)"

to "~ + (G%2) − 1" during the optimization of floormod(x,2) [50], potentially corrupting the

correctness of downstream applications.

2.2 Equality Saturation

Equality saturation [47] is a promising technique that leverage equality graph (e-graph) to imple-

ment e�cient term rewrite engines. Given a set of rewrite rules, Starting from a term C , an equality

saturation engine builds an initial e-graph � representing C , and then repeatedly applies the rules

to expand � into a large set of equivalent terms. Fig. 2 (borrowed from the egg paper [60]) presents

an e-graph for the term (0 ∗ 2)/2 and the ones after applying several rewrite rules. Each node along

with its subtree represents a term. All terms represented by nodes in an e-class are equivalent.

For example, "∗" and "≪" in Fig. 2b are in the same e-class, and therefore their represented terms

0 ∗ 2 and 0 ≪ 1 are equivalent. By maintaining the e-graph, the engine can e�ciently store all

equivalent terms for a given term, and thus avoid redundant computation.

The rewriting process terminates when either saturation is reached, meaning the rewrites added

no new information to the e-graph, or until a speci�ed timeout. After that, the engine can extract the

best represented term according to a user-provided cost function. Therefore, it is often used to solve

optimization problems. Many research e�orts have been made to improve the e�ciency of both

e-graph construction and optimal term extraction [19, 35, 60]. As being more and more e�cient,

equality saturation has been successfully applied in the research �eld for program analysis [36, 65],

program optimizations in compilers [63], and hardware designs [52].
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rule (G ∗ ~)/I → G ∗ (~/I).
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(d) A�er applying the rules

G/G → 1 and 1 ∗ G → G

Fig. 2. An example of an e-graph. Dashed boxes show e-classes, and edges connect e-nodes to their e-class

children. Applying rewrites to an e-graph either adds new e-nodes and edges or merges e-classes.

3 Motivation

Test Oracle. Tensor program compilation can be seen as a sequence of program transformations

for optimization, and thus the compiled program can be denoted as

P2><?8;43 = C= (...C1 (P))

where P is an input tensor program and C1, C2, . . . , C= are transformations. These transformations are

designed to preserve the semantic equivalence of the program while enhancing its computational

e�ciency. The goal of our approach is to construct an equivalent tensor program, denoted as P′,

which is distinct in terms of its data�ow from the original tensor program P. Due to data�ow di�er-

ences, this constructed program will trigger a di�erent sequence of optimization transformations,

denoted as C
′

< (...C
′

1
(P′)). This divergence in the optimization procedure serves as the basis for our

testing methodology. Ideally, the execution results of C= (...C1 (P)) and C
′

< (...C
′

1
(P′)) are supposed

to be equal for any inputs. Otherwise, we can infer that at least one of the transformations C8 is

implemented incorrectly, namely a mis-compilation bug. We formally de�ne our idea to detect

mis-compilation bugs as follows:

∃8 ∈ � , 4G42 (C= (...C1 (P)), 8) ≠ 4G42 (C
′

< (...C
′

1 (P
′)), 8)

where P and P′ are equivalent tensor programs, � is the input space of P, 8 is a concrete input

tensor, and 4G42 (?, 8) is the execution result of program ? for input 8 .

Challenge. The key challenge is to construct the equivalent tensor programs to maximize

the potential for detecting mis-compilation bugs. The testing throughput for tensor compilers

is signi�cantly lower than for other applications. According to the previous study, the testing

throughput for ONNXRuntime is roughly 3.5 testcases per second [27], while the throughput for

traditional applications generally higher than 10,000 testcases per second [72]. Therefore, each

testcase in our scenario needs to be carefully constructed to ensure the test e�ciency. However,

tensor programswith naive modi�cations tend to experience the same optimization transformations,

which is unlikely to expose logic bugs in these transformations. Supposewe construct two equivalent

tensor programs P and P′ whose experiencing optimization transformations C= (...C1 (P)) and

C
′

< (...C
′

1
(P′)) respectively. Ideally, we hope that their undergoing transformations are as di�erent

as possible, i.e.,

min
P′∈�@(4C (P)

|{C1, C2, . . . , C=} ∩ {C
′

1, C
′

2, . . . , C
′

<}| (I)

where �@(4C (P) is a set of all programs equivalent to P. However, the exact compilation paths

cannot be predetermined before the actual execution. Therefore, during testcase construction, an
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e�ective strategy is needed to identify equivalent tensor programs that may undergo di�erent

transformations when they are compiled.

Motivating Example. Our observations and analyzes indicate that twisting arithmetic procedures

and tensor shapes within tensor programs can often lead to the activation of diverse optimization

opportunities. Fig. 3 provides an example of how two equivalent computation graphs can trigger

di�erent optimization opportunities during compilation.

f64[40]

x

const1 const2

add

add

sqrt

matmul

const3

f64[30,40]

f64[30,40]

f64[1,2,30,40]
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f64[40,50]
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const4
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for i.0 in range( ? ):
 for j.0 in range( ? ):
  for k.0 in range( ? ):
   for i.1 in range( ? ):
    for j.1 in range( ? ):
     C[...] += A[...] * B[...]

[1,2,30,40]

[40,50]

×

Operation
Fusion 1

Loop
Tiling 1

Algebraic
Simplification 1

x const1 const2

add

add
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dim=0

split
num=2,dim=0, index=0
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f64[1,2,30,40] f64[40]

f64[1,2,30,40]

f64[30,40]

f64[1,2,30,40]

f64[2,2,30,40]

f64[1,2,30,40] f64[40,50]

matmul

f64[1,2,40,30] f64[50,40]

f64[1,2,30,40]
const3

f64[1,2,50,30]

f64[1,2,30,50]

fused-add-add

for i.0 in range( ? ):
 for j.0 in range( ? ):
  for k.0 in range( ? ):
   for i.1 in range( ? ):
    for j.1 in range( ? ):
     C[...] += A[...] * B[...][1,2,40,30]

[50,40]

×

Operation
Fusion 2

Loop
Tiling 2

Out

Out

Fig. 3. An illustrating example of two equivalent computation graphs undergo di�erent optimization processes

during compilation. Blue circles represent input tensors; orange circles denote constant tensors, black arrow

denotes the dataflow between operators. Optimization opportunities for employing algebraic simplification,

operation fusion, and loop tiling are highlighted in red, green, and gray respectively.

The two graphs present in the �gure are equivalent because the left one is transformed to the

right one through a series of three semantically-equivalent graph rewriting. First, the original

graph computes G + (2>=BC1 + 2>=BC2). This is arithmetically transformed in the right graph to

(G + 2>=BC1) + 2>=BC2 via an arithmetic rewriting rule that preserves semantic equivalence due to

the commutative law of addition. The second rewriting involves the manipulation of the output

tensor’s shape from the last addition operation. This is achieved using the 2>=20C operator, with

the original shape later restored via the B?;8C operator, i.e.,F = B?;8C (2>=20C (F,F), 2) [0]. The third

rewriting pertains to the inputs of the<0C<D; operator. The shapes of these inputs are transposed

before being passed to the<0C<D; operator. This rewriting rule upholds semantic equivalence, as

<0C<D; (I,~) = CA0=B?>B4 (<0C<D; (CA0=B?>B4 (~), CA0=B?>B4 (I))).

Although equivalent, the two graphs are likely to undergo di�erent optimization processes. For

simplicity, we only consider three straightforward optimizations: algebraic simpli�cation, operator

fusion, and loop tiling. First, the original graph allows for constant folding due to the addition of

two constants, 2>=BC1 + 2>=BC2. This algebraic simpli�cation may be inhibited in the transformed

graph, as it requires the computation of G + 2>=BC1 before adding to 2>=BC2. In addition, the 033

and B@AC operators in the original graph are likely to be fused together because both of them are

injective operators [5], which are supposed to be fused. However, the 2>=20C and B?;8C operators

in the transformed graph prevent this operation fusion. Furthermore, the <0C<D; operator in

the original graph accepts two tensor inputs whose shapes are [1, 2, 30, 40] and [40, 50], while

the<0C<D; operator in the transformed graph accepts [50, 40] and [1, 2, 40, 30] as input shapes.

This potentially enables di�erent loop tiling strategies during the code generation phase of tensor
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compilation. Conversely, the transformed graph may enable additional optimization strategies,

such as fusing the two 033 operators into one.

Insight: Our key insight is to construct tensor programs that, while equivalent, exhibit a broad

diversity in arithmetic procedures and intermediate tensor shapes. This diversity in the structure of

computation graphs potentially enables diverse optimization opportunities, thereby enhancing the

e�ectiveness of each testcase. Therefore, we shift our focus from research goal I to the following

problem:

max
P′∈�@(4C (P)

|$?#D<(P′) −$?#D<(P)| (II)

where P is the given tensor program and $?#D<(?) is the number of arithmetic and structural

operations in the computation graph of tensor program ? . We will give a quantitative analysis of

this insight in Section 6.3.

4 Approach

This section provides a detailed description of our proposed fuzzer PolyJuice, which aims to imple-

ment our insight (research goal II) to e�ciently detect mis-compilation bugs in tensor compilers.

Our approach unfolds in two main procedures. First, we generate a set of equivalent graphs

for a given computation graph by using speci�c arithmetic and structural rewrite rules, which

alter the arithmetic procedures and tensor shapes of intermediate tensors while preserving the

�nal results. Second, from this set of equivalent graphs, we extract two extreme cases: the one that

calculate its output using the fewest number of operations (namely the most simpli�ed graph), and

the one that does so using the maximum number of operations (namely the most complex graph).

Despite equivalent, these two graphs have signi�cantly di�erent data�ow and are likely to undergo

di�erent optimization processes during compilation. In this way, we can explore the full range of

the compiler’s optimization logic using a minimal and highly e�cient set of testcases.

Randomly-Generated Graph E-Graph Representative Equivalent Graphs

same inputs

Model 1

Computation Expression

Eq
ui

va
le

nt
In
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te

nt

Graph Conversion

§4.1
Computation

Expression Rewriting

§4.2
Complexity Aware
Graph Extraction

§4.3

Testcase Generation

§4.4

Model 2

Fig. 4. Overall workflow of PolyJuice.

Fig. 4 illustrates the overall work�ow of PolyJuice. First, it converts the computation �ow of a

given tensor computation graph into a custom internal representation, referred to as Computation

Expression. This unique representation allows for the standardization of diverse computation

�ows into a uni�ed format. Consequently, irrespective of the origin or structural complexity of

the computation graph, our framework can seamlessly process and accept it as input. Second,

it leverages an equality saturation engine to perform equivalent rewriting on this expression to

generate an equality graph (e-graph). This e-graph encapsulates all expressions equivalent to the

original one. Third, within the expansive realm of the e-graph, it identi�es the most simpli�ed and

the most complex equivalent expressions, and converted them back to computation graphs. Finally,

it leverages the computation graphs to generate testcases. We will delve deeper into each of these

steps in the rest of this section.
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4.1 Graph Conversion

In this step, PolyJuice converts the computation �ow within a given tensor computation graph to

a computation expression. Fig. 5 presents the syntax of the computation expression we de�ned.⟨끫뢨끫뢨끫뢨끫뢨𝑔_끫뢸끫뢸끫뢸 ⟩ ∷= 끫뤐끫뤐끫뤐끫뤐끫뤐_끫뤠끫뤠끫뤠 ( 끫뢸끫뢸끫뢸_끫뢤끫뢤끫뢨끫뢨 +)⟨끫뢸끫뢸끫뢸_끫뢤끫뢤끫뢨끫뢨⟩ ∷= 끫뤠끫뤠끫뤠끫뤠끫뤠끫뤠끫뤠(⟨끫뢤끫뢤끫뢨끫뢨⟩)⟨끫뢤끫뢤끫뢨끫뢨⟩ ∷= ⟨끫뢢끫뢤끫뢢_끫뢤끫뢤끫뢨끫뢨⟩ | 끫뢸끫뢸𝑔끫뢤끫뢨_끫뢤끫뢤끫뢨끫뢨⟨끫뢢끫뢤끫뢢_끫뢤끫뢤끫뢨끫뢨⟩ ∷= 끫뤔끫뤠끫뤐끫뤠끫뤠 ( 끫뢬끫뢢 )

| 끫뤈끫뤠끫뤠끫뤈끫뤠 ( 끫뢬끫뢢 )

| 끫뤐끫뤠끫뤠 ( 끫뢤끫뢤끫뢨끫뢨 , 끫뢤끫뢤끫뢨끫뢨 ) /* tensor1, tensor2 */

| 끫뤜끫뤠끫뤜 ( 끫뢤끫뢤끫뢨끫뢨 , 끫뢤끫뢤끫뢨끫뢨 ) /* tensor1, tensor2 */

| 끫뤜끫뤐끫뤠끫뤜끫뤠끫뤜 ( 끫뢤끫뢤끫뢨끫뢨 , 끫뢤끫뢤끫뢨끫뢨 ) /* tensor1, tensor2 */

| 끫뤠끫뤐끫뤐끫뤠끫뤈끫롒끫롒끫롒끫롒 ( 끫뢤끫뢤끫뢨끫뢨 , 끫뢬끫뢬끫뢸 , 끫뢬끫뢬끫뢸 ) /* tensor, trans dim0, trans dim1 */

| 끫뤈끫뤐끫뤜끫뤔끫뤠끫뤨 ( 끫뢤끫뢤끫뢨끫뢨 , 끫뢬끫뢬끫뢸 , 끫뢬끫뢬끫뢸 ) /* tensor, split dim, split output index */

| 끫뤈끫뤠끫뤠끫뤈끫뤐끫뤠끫뤨 ( 끫뢤끫뢤끫뢨끫뢨 , 끫뢤끫뢤끫뢨끫뢨 , 끫뢬끫뢬끫뢸 ) /* tensor1, tensor2, concat dim */끫뢸끫뢸𝑔끫뢤끫뢨_끫뢤끫뢤끫뢨끫뢨 ∷= 끫뤠끫뤠끫뤐끫뤠끫뤐 끫뢸끫뢨끫뢤끫뢨끫뢨끫뢸끫뢸끫뢨_끫뢬끫뢢 , 끫뢤끫뢤끫뢨끫뢨 + , 끫뢬끫뢬끫뢸 /* id, tensor1, …, output index */

Fig. 5. Syntax of PolyJuice’s computation expressions. ⟨6A0?ℎ_>DC⟩ represents the computation flow of

a tensor computation graph. ⟨34 5 _4G?A ⟩ denotes an expression that operated by pre-defined operators.

⟨>Cℎ4A_4G?A ⟩ denotes an expression that operated by operators other than ⟨34 5 _4G?A ⟩. ⟨E0A ⟩+ means that

the variable ⟨E0A ⟩ can repeat one or more times. Comments highlighted in blue indicate the meanings of

arguments accepted by the operators.

In the computation expressions we de�ned, a ⟨6A0?ℎ_>DC⟩ can represent the computation �ow

of a given computation graph. A ⟨>DC_4G?A ⟩ can represent the computation �ow of an output

node of a computation graph. A ⟨4G?A ⟩ denotes a sequence of computation operations acting on

inputs, which we refer to as computation �ow. For example,<0C<D; (033 (G,~), CA0=B?>B4 (I, 0, 1))

represents a computation �ow where inputs G and ~ are added together, and the resultant value is

then matrix-multiplied with a transposed input I.

It is worth noting that our de�ned computation expression does not model all operators. Given

that tensor compilers often provide thousands of operators for user convenience, and the supported

operator sets vary across di�erent compilers, it becomes impractical to model all operators. Conse-

quently, our computation expressions only model the operators used in the computation expression

rewriting step, i.e., ⟨34 5 _4G?A ⟩ in the syntax, while others are kept as the ⟨>Cℎ4A_4G?A ⟩. As per the

de�nition of ⟨>Cℎ4A_4G?A ⟩, it’s clear that it records the inputs (i.e., ⟨4G?A ⟩+) of the operator and the

index of the output of this expression. Therefore, it can express arbitrary operators even they are

multiple inputs and multiple outputs.

We take the left-side computation graph in Fig. 4 as an example to illustrate the conversion

process. For any given tensor computation graph, we disregard tensor-speci�c information such as

shapes and data types, focusing solely on the computation �ow of each output. When dealing with

operators de�ned in the syntax of computation expressions, like add and mul, we directly convert

them into corresponding ⟨34 5 _4G?A ⟩. For conv2d, an operator we do not model, we convert it

into a ⟨>Cℎ4A_4G?A ⟩ with an assigned operator ID 0x99. Its output index is 0 since $2 is the �rst

(and only) output of conv2d. Thus, we can e�ortlessly convert the graph in Fig. 4 to the following

expression:

$1 = >DC=>34 (<D; (�2, 033 (�1, 21)))

$2 = >DC=>34 (>Cℎ4A (0G99, CA0=B?>B4 (033 (�1, 21), 0, 1), 0))

>DC = 6A0?ℎ_>DC ($1,$2)
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The computation expression only records the computation �ow information. Tensor-speci�c

information such as shape and data type, as well as constant values and weights of operators, are

not included. Therefore, we also maintain a graph’s metadata alongside the computation expression

during the conversion process. The metadata keeps track of tensor-speci�c information to ensure

that a computation expression can be accurately restored to a tensor computation graph.

E�orts for Extension. Including new de�ned operators in the computation expression is

e�ortless. Basically, it requires less than 5 lines of code in our prototype. For simplicity, in Fig. 5,

we only show the operators used in the computation expression rewriting step, which does not

mean that our approach is limited to these operators.

4.2 Computation Expression Rewriting

In this step, PolyJuice performs equivalent rewriting on a given computation expression. We

�rst introduce the equivalent rewrite rules used in PolyJuice, and then introduce how PolyJuice

performs rewriting on computation expressions.

Rewrite Rules. To produce equivalent computation expressions, PolyJuice utilizes a collection

of arithmetic and structural rewrite rules. The rewrite rules we de�ne are listed in Table 1. The

arithmetic rewrite rules are inspired by TASO [14] and primarily based on arithmetic properties

such as commutativity and associativity. The structural rewrite rules are based on the invariant

properties of operators transpose, split2, and concat2.

To ensure the equivalence of structural rewrite rules, we introduce variables A1, A2, ..., A6 whose

values are randomly generated under speci�c constraints. For the sake of simplicity in our discussion,

Table 1. Arithmetic and structural rewrite rules used in PolyJuice. G ,~, and I are logical variables which

can match any ⟨4G?A ⟩ in our computation expression; 2 is a logical variable which can match any constant

⟨4G?A ⟩; A1, A2, . . . , A6 are randomly generated values, each needing to meet specific constraints when a rewrite

rule is applied. "38<" is a function that returns the dimension of a tensor.

Type Rewrite Rule Constraints

Arithmetic

033 (G,~) → 033 (~, G) -

<D; (G,~) →<D; (~, G) -

033 (033 (G,~), I) → 033 (G, 033 (~, I)) -

<D; (<D; (G,~), I) →<D; (G,<D; (~, I)) -

<0C<D; (<0C<D; (G,~), I) →<0C<D; (G,<0C<D; (~, I)) -

<D; (033 (G,~), I) → 033 (<D; (G, I),<D; (~, I)) -

<0C<D; (033 (G,~), I) → 033 (<0C<D; (G, I),<0C<D; (~, I)) -

Structural

CA0=B?>B4 (CA0=B?>B4 (G, 0, 1), 0, 1) → G -

033 (G,~) → CA0=B?>B4 (033 (

CA0=B?>B4 (G, A1, A2), CA0=B?>B4 (~, A3, A4)), A5, A6)

A1 = 38<(G) −<0G38<(G,~) + A5;

A2 = 38<(G) −<0G38<(G,~) + A6;

A3 = 38<(~) −<0G38<(G,~) + A5;

A4 = 38<(~) −<0G38<(G,~) + A6.

<D; (G,~) → CA0=B?>B4 (<D; (

CA0=B?>B4 (G, A1, A2), CA0=B?>B4 (~, A3, A4)), A5, A6)

A1 = 38<(G) −<0G38<(G,~) + A5;

A2 = 38<(G) −<0G38<(G,~) + A6;

A3 = 38<(~) −<0G38<(G,~) + A5;

A4 = 38<(~) −<0G38<(G,~) + A6.

<0C<D; (G,~) → CA0=B?>B4 (<0C<D; (

CA0=B?>B4 (~, A1, A2), CA0=B?>B4 (G, A3, A4)), A5, A6)

A1 = 38<(~) −<0G38<(G,~) + A5;

A2 = 38<(~) −<0G38<(G,~) + A6;

A3 = 38<(G) −<0G38<(G,~) + A5;

A4 = 38<(G) −<0G38<(G,~) + A6.

2>=20C2(G,~, 2) → CA0=B?>B4 (2>=20C2(

CA0=B?>B4 (G, 2, A1), CA0=B?>B4 (~, 2, A2), A3), 2, A4)
A1 = A2 = A3 = A4

G → B?;8C2(2>=20C2(G, G, A1), A2, A3) 0 ≤ A1 = A2 < 38<(G); 0 ≤ A3 ≤ 1.

G → 2>=20C2(B?;8C2(G, A1, 0), B?;8C2(G, A1, 1), A1) 0 ≤ A1 < 38<(G)

6A0?ℎ_>DC (G) → 6A0?ℎ_>DC (A1, G, A2) A1, A2 = 8=C4A<4380C4)4=B>AB ()
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we shorten the term "transpose" to "trans" hereafter. Consider the structural rewrite rule033 (G,~) →

CA0=B (033 (CA0=B (G, A1, A2), CA0=B (~, A3, A4)), A5, A6) as an example. Suppose that we have a concrete

computation expression 033 (�1, �2) where �1, �2 denotes two tensors with shapes [6, 5, 4, 3, 2] and

[1, 3, 2], respectively. Due to the broadcasting principle in tensor operations, the result of adding

these two tensors retains the shape of [6, 5, 4, 3, 2]. When we apply the rewrite rule, we actually

randomly transpose �1 and �2, and then transpose back after the addition of �1 and �2. However, the

dimensions we transpose for these tensors are di�erent. Suppose the expression after rewriting is

CA0=B (033 (CA0=B (�1, A1, A2), CA0=B (�2, A3, A4)), A5, A6). If A1 and A2 are randomly generated as values 2

and 3, then CA0=B (�1, A1, A2) will have a shape of [6, 5, 3, 4, 2]. In this case, A3 and A4 should be values 0

and 1, so that CA0=B (�2, A3, A4) has a shape of [3, 1, 2] and can be added to CA0=B (�1, A1, A2). Similarly, A5
and A6 should be values 2 and 3 to ensure that the rewritten expression is equivalent to the original

033 (�1, �2). Therefore, the expression after rewriting is CA0=B (033 (CA0=B (�1, 2, 3), CA0=B (�2, 0, 1)), 2, 3).

In conclusion, the constraints presented in Table 1 are necessary to ensure the equivalence of these

structural rewrite rules.

Rewriting. Given an expression and the aforementioned rewrite rules, PolyJuice aims to �nd

the expressions that calculate its outputs using the fewest number of operations, and the ones

that do so using the maximum number of operations. However, naively applying the rewrite

rules directly will not �nd the optimal solution. This is because applying a rewrite rule for the

given expression may prevent a better solution. For example, let’s suppose we are trying to �nd

the most simpli�ed expression for 033 (033 (�1, CA0=B (�2)), CA0=B (�3)). If we mistakenly apply the

033 (G,~) → CA0=B (033 (CA0=B (G), CA0=B (~))) to the expression, the expression will transform into

033 (CA0=B (033 (CA0=B (�1), �2)), CA0=B (�3)), which cannot be further simpli�ed. In reality, the simplest

expression should be 033 (�1, CA0=B (�2, �3)). This issue of deciding when to apply which rewrite rule

is known as the phase ordering problem [20, 47, 60] in the compiler community.

To �nd the optimal expressions, we leverage equality saturation technique [60], which is com-

monly used for program analysis and program optimization. By leveraging this technique, we can

e�ciently �nd both the most simpli�ed and the most complex equivalent expressions. Equality

saturation operates by maintaining a data structure known as e-graph, which represents a set of

terms and the equivalences between them. In our scenario, the nodes of an e-graph represent a

⟨4G?A ⟩ in our computation expression syntax. Each node is associated with an equivalence class,

and the e-graph ensures that two nodes are in the same equivalence class if and only if their

corresponding ⟨4G?A ⟩ expressions are equivalent. Each edge in the e-graph connects a ⟨4G?A ⟩ to its

sub-expressions. An e-graph is said to be saturated when no more rewrite rules can be applied to it.

Once an e-graph has been saturated, the equality saturation technique ensures that the e-graph

encapsulates all computation expressions that are equivalent to the original one.

Fig. 6 demonstrates how equality saturation constructs an e-graph and �nd the most simpli�ed

expression for an expression "033 (033 (�1, CA0=B (�2)), �3)". The left-side graph is the initial e-graph

representing the original expression, and the right-side graph is the saturated e-graph. For the sake

of simplicity in our discussion, in this example, we only consider three rewrite rules:

• 033 (G,~) → CA0=B (033 (CA0=B (G), CA0=B (~)))

• 033 (033 (G,~), I) → 033 (G, 033 (~, I))

• CA0=B (CA0=B (G)) → G

Additionally, we prohibit recursive rewriting to prevent an explosion of nodes in the e-graph.

Initially, the e-graph only contains the original computation expression. Equality saturation then

continuously applies the above three rewrite rules to the e-graph, which introduces new nodes into

the graph and annotates them with the appropriate equivalence classes to maintain congruence.

The right-side graph in Fig. 6 is a saturated e-graph, which encapsulates all expressions equivalent
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Fig. 6. E-graph of 033 (033 (�1, CA0=B (�2)), CA0=B (�3)) a�er equality saturation. Solid boxes are nodes and

present ⟨4G?A ⟩. Dashed boxes represent equivalence classes, in which all the values of ⟨4G?A ⟩ nodes are equal.

All computation expressions equivalent to the original expressions are encapsulated in this e-graph. Blue and

green arrows denote the original expression and the most simplified expression, respectively.

to the original graph. We now provide an example to explain how equivalent expressions are

encapsulated in the e-graph. Let’s look at the �ow highlighted with green arrows: it begins from the

top add node, splits into two, with the left arrow leading to the I1 node and the right arrow leading

to an equivalence class containing a trans node and an add node. From this class, the green arrow

chooses to �ow from the trans node to another equivalence class, which also contains a trans

node and an add node. Then, it �ows from the add node in this class, and �nally �ows to I2 and I3

nodes. This green arrow �ow forms a tree structure, which represents the 033 (�1, CA0=B (033 (�2, �3)))

expression. This expression is obviously equivalent to the original expression. Similarly, in this

e-graph, trees rooted from nodes in the same equivalence class represent a set of equivalent

computation expressions. These trees encapsulate all the possible forms of the original computation

that are equivalent, providing a comprehensive view of all equivalent expressions.

4.3 Complexity Aware Graph Extraction

In this step, PolyJuice aims to extract representative computation expressions from the e-graph

and then convert them into corresponding tensor computation graphs. Algorithm 1 depicts the

entire process of extracting expressions and converting them into computation graphs.

First, PolyJuice performs a depth-�rst search for the e-graph � from ⟨6A0?ℎ_>DC⟩ and remove all

back edges (line 1). This ensures the output e-graph �02~2;82 becomes an acyclic graph, and thus sets

an upper bound for the most complex expression. Second, PolyJuice identi�es the most simpli�ed

and the most complex graphs in the e-graph (Line 2-3). This is achieved by applying a �xed-point

traversal over e-classes (Line 7-13). Speci�cally, this traversal records the optimal cost of each

equivalent class, and iteratively update the costs. Once reaching a �xed-point, the traversal �nds an

optimal expression on the e-graph based on the cost function. For the most simpli�ed expression,

the costFuncForMost is employed, where the cost metric (line 8) represents the least number of

nodes constituting the sub-graphs of each e-class. Conversely, for the most complex expression,
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Algorithm 1: Complexity Aware Graph Extraction

Input :Original expression $

Tensor metadata"

Saturated e-graph �

Output :Two equivalent tensor computation graphs �1, �2

1 �02~2;82 ← A4<>E4�02:�364 (�) // break cycles in e-graph

2 <>BC(8<?;$DC ← searchOptimal(�, 2>B�D=2�>A�4F4BC )// search for the most simplified

3 <>BC�><?;$DC ← searchOptimal(�02~2;82 , 2>B�D=2�>A">BC ) // search for the most complex

4 �1 = restoreToGraph(<>BC(8<?;$DC ,")

5 �2 = restoreToGraph(<>BC�><?;$DC ,")

6 return �1, �2

// fixed-point iterations to find the cost-optimal solution

7 Function searchOptimal(E, costFunc):

8 2>BC ← emptyMap() // store optimal value of each eclass

9 while cost still updated do // until reach fixed-point

10 for 42;0BB in � do // update cost of each eclass based on its children’s cost

11 2>BC[42;0BB] = costFunc(2>BC[42;0BB], 2>BC , 42;0BB.2ℎ8;3A4=)

12 end

13 return �ndOptimalExpr(E, cost) // find the optimal expression based on the cost

the costFuncForFewest is employed, where the cost metric represents the greatest number of nodes

constituting the sub-graphs of each e-class. Based on the cost of each e-class, PolyJuice can adopt

a depth-�rst search to extract the optimal expression in the e-graph. This step involves traversing

from the root node and selecting the child node with the minimum/maximum cost from each

e-class. Finally, having identi�ed the extremes of complexity within the expressions, PolyJuice

leverages the recorded metadata, including tensor shape, data type and constant/weight values, to

restore these expressions back into tensor computation graphs (Lines 4-6).

Correctness. A tensor computation graph may contain multiple output nodes. This algorithm

guarantees the correct extraction of both the most simpli�ed and the most complex graphs across

all output nodes. Speci�cally, this means that for the most simpli�ed graph, the computational �ow

leading to each output node involves the fewest possible operations, while for the most complex

graph, it involves the maximum number of operations. We take the extraction of the most simpli�ed

graph as an example to illustrate the correctness. After the �xed-point iteration, each e-class in the

e-graph has an optimal cost value, which denotes the fewest number of nodes among all the sub-

graphs rooted from this e-class. Next, Algorithm 1 line 13 �nds optimal expressions based on these

cost values, i.e., selecting the child node with the minimum cost from each e-class. Consequently, for

a graph’s expression >DC = 6A0?ℎ_>DC ($1,$2, . . . ), the resulting sub-graph for each output node$8

is guaranteed to incorporate the minimal number of nodes among all sub-graphs originating rooted

by the e-class of$8 . For the extraction of most complex graph, the process is similar. Therefore, the

correctness of Algorithm 1 is guaranteed.

4.4 Testcase Generation

After obtaining equivalent tensor computation graphs, PolyJuice converts them into an executable

testcase that can be sent to tensor compilers, during which PolyJuice ensures that the parameters

(including constant values and weights of operators like Conv2d) of the equivalent models are

consistent. Most tensor compilers accept ONNX, Torch, and TensorFlowmodels as inputs. Therefore,
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PolyJuice supports the conversion of computation graphs into these three model types. The

following python code is an illustrative testcase example consisting of two models.

class Model1 (...):

...

class Model2 (...):

...

while(MAX_TIMES):

inputs = rand()

res1 = Model1 ().run(inputs)

res2 = Model2 ().run(inputs)

for out in outputs:

assert_allclose(res1[out], res2[out])

The two models are lowered from the generated equivalent graphs. PolyJuice feeds a set of

identical inputs to the two models and check if every output is consistent. If an inconsistency is

detected, then a mis-compilation bug has been found in the tensor compiler being tested.

5 Implementation

Implementation Details. We implemented PolyJuice in roughly 3,000 lines of Python code and

roughly 2,000 lines of Rust. We reuse NNSmith [27], a tensor compiler test tool that can generate

diverse and valid tensor computation graphs, to randomly generate inputs for PolyJuice’s rewriting

module. Our rewriting module is designed to support arbitrary computation graphs as inputs,

allowing for seamless collaboration with NNSmith. During computation expression rewriting, we

use egg [60] as the equality saturation engine. Our search for the most simpli�ed and most complex

equivalent graphs is conducted on the top of egg’s EGraph data structure.

After the rewriting process, PolyJuice generates a set of equivalent tensor computation graphs,

which are then converted into executable testcases. PolyJuice can lower its tensor computation

graphs to three types of model formats: Torch, ONNX, and TensorFlow. For Torch model format, we

leverage Torch.Fx [41] to generate python code of the model lowered by our computation graphs.

For ONNX model format, we �rst lower the graphs to Torch model, and then export to ONNX

models. For TensorFlow model format, we implement lower code for every operator in order to

generate Python code of TensorFlow models.

We mitigate �oating-point numerical stability issues [37] in the same way as NNSmith [27].

Speci�cally, since the overall magnitude of most di�erences caused by the issue is small, we check

output equivalence by comparing the relative di�erence between two outputs with high error

tolerance. We also exclude certain structural patterns known to exacerbate numeric discrepancies,

such as Sigmoid followed by Floor.

6 Evaluation

We applied PolyJuice to real-world tensor compilers to assess its e�ectiveness in identifying

mis-compilation bugs. Our evaluation investigates the following questions:

• RQ1(§6.1): Can PolyJuice detect mis-compilation bugs in real-world tensor compilers?

• RQ2(§6.2): How well does PolyJuice perform compared to state-of-the-art related fuzzers?

• RQ3(§6.3): Can our equality saturation based rewriting approach generate tensor programs

that undergo di�erent compilation paths?

• RQ4(§6.4): Does the rewriting process introduce signi�cant overhead during testing?

Experiment Setup. We conducted our evaluation on a machine equipped with an AMD EPYC

7763 CPU (2.25GHz) with 128 cores and an NVIDIA GPU (V100-32G), running Ubuntu 22.04 LTS.

We applied PolyJuice to �ve widely-used industrial tensor compilers, namely Torch Inductor [38],
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Table 2. Tensor compilers tested by PolyJuice.

Tensor Compiler Vendor/Published at Description

Torch Inductor Meta A built-in compiler in PyTorch.

TensorRT Nvidia A runtime highly optimized for NVIDIA GPUs.

ONNXRuntime Microsoft A graph-optimized DNN library for ONNX models.

XLA Google A built-in compiler in TensorFlow.

TVM Apache/OSDI’18 An end-to-end compiler with auto scheduling.

Hidet ASPLOS’23 A tensor compiler improves parallelizable computations.

EinNet OSDI’23 A derivation-based tensor program optimizer.

TensorRT [33], TVM [5], ONNXRuntime [31], and XLA [48], and two representative and well-

maintained academic tensor compilers: EinNet [70] and Hidet [7]. Their brief introductions are

listed in Table 2. We tested their latest stable versions during our real-world bug detection. For

our comparative study, we used two related tensor compiler fuzzers as benchmarks: NNSmith [27]

and MT-DLComp [61]. NNSmith, one of the most successful tensor compiler fuzzers, is known

for its ability to generate diverse and valid computation graphs. MT-DLComp, on the other hand,

integrates two equivalent mutation strategies for metamorphic testing.

6.1 Mis-Compilation Bug Detection

We intermittently ran PolyJuice for a month to �nd mis-compilation bugs in the latest stable

versions of the industrial and academic tensor compilers listed above. It’s important to note that

while PolyJuice identi�ed a number of crash/exception bugs, we only reported the bugs that

triggered inconsistent outputs between two equivalent tensor programs constructed by PolyJuice.

This is because our primary contribution is to uncover a new detection approach of silent mis-

compilation bugs. The crash/exception detection capability of PolyJuice aligns with NNSmith, as

we built PolyJuice on the top of NNSmith. This capability is not attributed to our proposed test

oracle. The evaluation in this section only focuses on the unique contribution of PolyJuice.

Table 3. Statistics of non-crash mis-compilation bugs reported by PolyJuice.

Reported Con�rmed Fixed

Torch Inductor 12 9 9

TensorRT 10 8 7

ONNXRuntime 11 0 0

TVM 7 0 0

XLA 25 13 0

Hidet 4 4 4

EinNet 15 15 0

Total 84 49 20

Bug Overview. Table 3 presents the statistics of the non-crash mis-compilation bugs reported

by PolyJuice. We have �led a total of 84 bugs for the seven tensor compilers. Out of these, 49

have been con�rmed, with 20 already �xed. Only PyTorch evaluated the severity of bugs, where

4 were marked with "high-priority bug" label out of the 10 bugs we reported. All reported bugs

were identi�ed by PolyJuice when it discovered pairs of equivalent tensor programs producing

inconsistent outputs for identical inputs. These bugs, which do not cause crashes, are challenging to
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detect given that most existing tensor compiler testing tools primarily focus on crash bugs. We will

provide more details on the comparative study in Section 6.2. Overall, this shows that PolyJuice

can e�ectively detect mis-compilation bugs.

Bug Classi�cation. The equivalent tensor programs are constructed based on arithmetic and

structural rewrite rules. In total, out of all the 49 con�rmed bugs, 24 are caused by arithmetic

rewrite rules, and 25 are caused by structural rewrite rules. This indicates that both arithmetic and

structural rules are e�ective for bug detection. In terms of reproducibility across di�erent hardware,

1 of the con�rmed bugs were reproducible on both GPU and CPU backends. 14 of the con�rmed

bugs were reproducible on the GPU backend, and 34 were reproducible on the CPU backend. The

reason that we found more bugs on CPU backend is twofold. First, existing tensor compilers tend

to be more robust on the GPU backend than on the CPU backend. Second, our testing environment

had more CPU resources than GPU, leading us to allocate more testing tasks to the CPU backend

of tensor compilers.

Feedback from Developers. The quantity of reported bugs in each compiler largely depends on

the responsiveness of the developers. We usually waited for developers’ feedbacks before continuing

our bug-�nding e�orts. Therefore, a higher number of reported bugs in a compiler doesn’t indicate

lower code quality, but rather, it signi�es the high responsiveness of the developers. In the case

of ONNXRuntime and TVM, we did not receive any feedbacks after reporting bugs, so we only

reported bugs found in the �rst 12 hours. The developers of other tensor compilers were responsive

to our reports, typically con�rming the reported bugs within a week. Two of our reported Inductor

bugs are simpli�ed and merged into PyTorch code base as unit tests by developers. All our reported

Hidet bugs are merged into Hidet code base as unit tests by developers. We received positive

feedback from developers, which not only validated our e�orts but also indicated their commitment

to �x these bugs. For example, Hidet developers commented "Thanks for reporting these bugs (seems

found by some awesome fuzzer) to us! ... I can reproduced all the bugs you have found. ... This issue is

more serious than I thought." on our reported issues.

class Model0(torch.nn.Module):
  def __init__(self):
    super().__init__()

  def forward(self, x):
    reshape = const0.reshape(30)
    neg = torch.neg(const1)
    add = torch.add(reshape, x)
    mul = torch.mul(add, neg)
    sum = mul.sum(0)
    return sum

const unsigned char* in_ptr0,in_ptr1,in_ptr2 = ...;

// long i0: range(0,30); long i1: range(0,40);

auto tmp0 = in_ptr0[i0 + (30L*i1)];

auto tmp2 = in_ptr1[i0];

auto tmp3 = in_ptr2[0L];

auto tmp1 = decltype(tmp0)(-tmp0); // tmp1 is "char"

auto tmp4 = tmp2 + tmp3; // tmp4 is "int"

auto tmp5 = decltype(tmp1)(tmp1 * tmp4);

auto tmp6 = static_cast<long>(tmp5);

const unsigned char* in_ptr0,in_ptr1,in_ptr2 = ...;

// long i0: range(0,30); long i1: range(0,40);

auto tmp0 = in_ptr0[i0 + (30L*i1)];

auto tmp2 = in_ptr1[i0];

auto tmp3 = in_ptr2[0L];

auto tmp1 = decltype(tmp0)(-tmp0); // tmp1 is "char"

auto tmp4 = tmp2 + tmp3; // tmp4 is "int"

auto tmp5 = decltype(tmp4)(tmp4 * tmp1);

auto tmp6 = static_cast<long>(tmp5);

Inconsistent because of type casting for tmp5

class Model1(torch.nn.Module):
  def __init__(self):
    super().__init__()

  def forward(self, x):
    reshape = const0.reshape(30)
    neg = torch.neg(const1)
    add = torch.add(reshape, x)
    mul = torch.mul(neg, add)
    sum = mul.sum(0)
    return sum

Converted  to C++ code
by Torch Inductor

  x: uint8[1]
  const0: uint8[40,30]
  const1: uint8[30]

Tensor Information
  x: uint8[1]
  const0: uint8[40,30]
  const1: uint8[30]

Tensor Information

Fig. 7. A mis-compilation bug in Torch Inductor. Python code on the top are the equivalent tensor programs

constructed by PolyJuice. The di�erence between them is the input order of torch.mul. C++ code on the

bo�om is generated by Torch Inductor. The root cause is the implicit type casting for the tmp5 variable.
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Bug Study 1: Incorrect TypeCasting. Fig. 7 shows amis-compilation bug detected by PolyJuice

in Torch Inductor (PyTorch version: 2.1.0). The two tensor programs are constructed by the arith-

metic rewrite rule<D; (G,~) =<D; (~, G). While simple, this rewrite rule can reveal deeply hidden

mis-compilation bugs. After being compiled into executable code, the two tensor programs produce

signi�cantly di�erent outputs. Both converted C++ programs in the �gure are identical except for

the type casting of the tmp5 variable: one is casting to the type of tmp1, and the other is casting

to the type of tmp4. This type casting is the root cause of this bug. Both tmp2 and tmp3 are of

unsigned char type, however, according to C99 Standard section 6.3.1.1 [34], adding two char-type

variables triggers an integer promotion, so tmp4 is promoted to an int type. Subsequently, when

calculating tmp5, Torch Inductor explicitly converts the type of tmp5 to the type of its �rst argument.

Therefore, when tmp1 is the �rst argument, tmp5 is of char type; whereas when tmp4 is the �rst

argument, tmp5 is of int type. This di�erence leads to the inconsistent outputs of the two compiled

tensor programs. Developers patch this issue by explicit typecasting for the add operator of char

type, making tmp4=decltype(tmp2)(tmp2+tmp3). Developers also added a unit test based on our

report to prevent this issue from happening again. Although this bug is buried deep, PolyJuice

detects it within one-hour testing, demonstrating its e�ectiveness.

# fused_add_negative_argmin
for .. in T.parallel(3):
  min_arg = -1
  min_val = T.int64().MAX
  for index in range(60):
    min_arg = if(min_val < T.int64(0) - 
                 input0[index] - input1[index]) {

            min_arg
                 } else { index }
    min_val = if(...) { ... } else { ... }

class Model0(torch.nn.Module):
  def __init__(self):
    super().__init__()

  def forward(self, x):
    add = torch.add(x, const0)
    neg = torch.neg(add)
    argmin = neg.argmin(4)
    return argmin

class Model1(torch.nn.Module):
  def __init__(self):
    super().__init__()

  def forward(self, x):
    trans_0 = x.transpose(1, 0)
    trans_1 = const0.transpose(1, 0)
    add = torch.add(trans_0, trans_1)
    add_trans = add.transpose(1, 0)
    neg = torch.neg(add_trans)
    argmin = neg.argmin(4)
    return argmin

# fused_negative_argmin
for ... in T.parallel(3):
  min_arg = -1
  min_val = T.int64().MAX
  for index in range(60):
    min_arg = if(min_val + input0[index] < T.int64(0)) { 
                  min_arg
            } else { index }
    min_val = if(...) { ... } else { ... }

Integer
Overflow

Converted  to LLVM IR
by TVM

Fusion

Fusion

  x: int64[3,1,1,1,1]
  const0: int64[3,1,1,1,60]

Tensor Information

  x: int64[3,1,1,1,1]
  const0: int64[3,1,1,1,60]

Tensor Information

Fig. 8. A mis-compilation bug in TVM. Python code on the top are the equivalent tensor programs constructed

by PolyJuice. In the negative-argmin fusion kernel, TVM creates a condition that causes integer overflow and

always returns false when finding the index of minimal values. The correct condition in this fusion kernel

should be min_val < 0 - input0[index].

Bug Study 2: Incorrect Operator Fusion. Fig. 8 shows a mis-compilation bug detected by

PolyJuice in TVM (version 0.12.0). The presented two tensor programs are constructed by the

structural rewrite rule 033 (G,~) → CA0=B (033 (CA0=B (G, A1, A2), CA0=B (~, A3, A4)), A5, A6). The 0A6<8=

operator is to �nd the index of the minimum value in the given tensor along a speci�c dimension. For

the left-side tensor program, TVM fuses the add, neg, and argmin operations into a fusion kernel.

To �nd the index of minimum values, the kernel �rst initializes variables min_arg and min_val

to -1 and the maximum int64 value, respectively. It then traverses indexes and updates min_arg

and min_val by �nding the smaller "-input0[index]-input1[index]" each time. During the

compilation of this tensor program, everything works as expected.
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However, for the right-side tensor program, TVM only fuses the neg and argmin operators into

a fusion kernel. When �nding the index of minimum values, it is supposed to �nd the minimum

"-input[index]", i.e., if the min_val < -input[index] condition is false, it will update min_val.

In TVM’s implementation, it mistakenly converts the condition to min_val + input[index] <

0. Since min_val is initialized to the maximum int64 value, the min_val + input[index] causes

integer over�ow, and is less than 0 in most cases (depending on how LLVM handles the over�ow).

As a result, the min_arg cannot be properly updated. Although this bug is buried deep, PolyJuice

detects it within half-hour testing, showing its e�ectiveness.

Bug Study 3: Incorrect Tensor Processing. Fig. 9 illustrates a mis-compilation bug detected by

PolyJuice in Hidet (version 0.3,0). The outputs ~1 and ~2 of the two tensor programs are expected

to be identical because the second tensor program only additionally outputs an intermediate tensor

I2, which should not in�uence the result of ~2. The right-side �gure shows the internal process

logic of Hidet when executing the second tensor program. During Hidet’s optimization process, it

allocates two memory areas (denoted as I2 and C<?) for storing the output of the abs operation,

but only updates the output to the �rst memory area, i.e., the one denoted by I2. As a result, the

second memory area (i.e., C<?) retains all zero values. However, it uses the second memory area to

calculate ~2, leading to an incorrect result for ~2. The Hidet developers acknowledged the severity

of this bug, commenting, "This issue is more serious than I thought." PolyJuice was able to detect

this bug within ten minutes of testing.

abs

flatten

f64[4]

f64[4]

f64[4]

abs

flatten

f64[4]

f64[4]

f64[4]

Inconsistent

[1.1, 1.2, 1.3, 1.4]

[0.0, 0.0, 0.0, 0.0] [0.0, 0.0, 0.0, 0.0]

[1.1, 1.2, 1.3, 1.4]

[1.1, 1.2, 1.3, 1.4] [0.0, 0.0, 0.0, 0.0]

abs

1. Initialize GPU memory

2. calculate abs

[1.1, 1.2, 1.3, 1.4]

[1.1, 1.2, 1.3, 1.4] [0.0, 0.0, 0.0, 0.0]

3. calculate flatten

[0.0, 0.0, 0.0, 0.0]

flatten

Fig. 9. A mis-compilation bug in Hidet. During execution of the second tensor program, a�er calculating the

abs, it allocates two memory area I2 and C<? , but only stores the result to I2. However, it uses the value in

another memory area for ~2 calculation.

6.2 Comparative Study

We evaluate the e�ectiveness of our approach by comparing it with two representative comparators:

MT-DLComp [61], which uses two mutation strategies to add dead code to computation graphs for

mis-compilation bug detection; and NNSmith [27], which generates diverse and valid computation

graphs and uses exception monitor and di�erential testing as its bug detectors. It is worth noting

that PolyJuice is built on the top of NNSmith, and thus inherits NNSmith’s exception monitor

and di�erential testing capabilities. However, in this comparative study, we disable PolyJuice’s

di�erential testing capability to investigate the unique contribution of our proposed test oracle. We

chose TVM ( version 0.12) and XLA (version 2.15.0) as the test targets because these two compilers

are the only ones supported by all three tools. We ran each test tool on each compiler for 48 hours,

repeated three times. We triaged crash/exception bugs based on their runtime failure stacktrace,
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and triage mis-compilation bugs based on the graph structure of the testcases. We manually �ltered

out false positives from di�erential testing, which is mainly introduced by numerical accuracy

variations across di�erent platforms.

0 00

0

1 0

0

NNSmith MT-DLComp

PolyJuice

TVM Crash/Exception Bugs

0 00

0

3 0

0

NNSmith MT-DLComp

PolyJuice

XLA Crash/Exception Bugs

6 00

7

0 0

0

NNSmith MT-DLComp

PolyJuice

TVM Mis-Compilation Bugs

12 00

25

0 0

0

NNSmith MT-DLComp

PolyJuice

XLA Mis-Compilation Bugs

Fig. 10. The overlap of crash bugs and mis-compilation bugs reported by the three test tools in TVM and XLA

a�er 48-hour fuzzing campaigns.

As shown in Fig. 10, our proposed test oracle can detect mis-compilation bugs that are not

detected by NNSmith and MT-DLComp. In terms of crash/exception bugs, PolyJuice performs in

line with NNSmith. This is because PolyJuice reuses NNSmith’s code for the original computation

graph generation, enabling PolyJuice to generate all graphs that NNSmith can generate. In terms

of mis-compilation bugs, the area within NNSmith denotes the bugs detected by di�erential testing.

In total, 6 bugs and 12 bugs were detected by di�erential testing in TVM and XLA, respectively. The

area within the PolyJuice represents bugs found by our proposed test oracle. PolyJuice detected

additional 7 and 25 bugs in TVM and XLA, respectively, indicating that the proposed test oracle

can complement di�erential testing. MT-DLComp did not report any bugs in TVM and XLA, which

is inline with the result in its paper’s evaluation [61].

6.3 E�ectiveness of Equality Saturation Based Rewriting

In our equality saturation based rewriting, we extract two representative equivalent graphs, i.e.,

the most simpli�ed and the most complex graphs among all equivalent computation graphs. This

rewriting strategy is based on an insight that the two extreme cases can experience di�erent

transformations during compilation. In this subsection, we validate if this insight works.

We use NNSmith (with its default settings) to generate 5,000 computation graphs. For each graph,

we run the equality saturation engine and generate an e-graph, which encapsulates all graphs that

equivalent to the original graph. Upon the e-graph, we compare two di�erent extraction strategies:

(1) extracting the most simpli�ed and the most complex graphs, denoted as PolyJuice; (2) randomly

extracting two graphs, denoted as PolyJuice=08E4 . Next, we run the graphs extracted by PolyJuice

and PolyJuice=08E4 through TVM to observe the transformations they undergo.

We use Longgest Common Subsequence (LCS) di�erence and edit distance to measure the

di�erence between the transformations of two extracted graphs. Let us consider that after two

graphs are executed, the transformation sequences are )1 = [C1, C2, . . . , C=] and )2 = [C
′

1
, C
′

2
, . . . , C

′

<].
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The LCS di�erence, aligned with the POSIX di� utility [13], computes the LCS of )1 and )2, then

identi�es the number of elements not part of the LCS. The edit distance measures the minimum

number of operations required to convert )1 to )2, implemented by Levenshtein Algorithm [3].

We calculate the average improvement as (
∑#

8=1 (
38 5 5 8

1
−38 5 5 8

2

38 5 5 8
2

))/# , where 38 5 5 8
1
is the executed

transformation di�erence (LCS Di� or edit distance) between two graphs extracted by PolyJuice

for the 8-th testcase, and 38 5 5 8
2
is the di�erence between two graphs extracted by PolyJuice=08E4

for the same testcase.

Table 4. PolyJuice’s improvement over PolyJuice=08E4 on the di�erences of transformations that extracted

equivalent tensor programs experience during compilation.

LCS Di�erence Edit Distance

avg impr stderr avg impr stderr

112.98% 0.09 150.06% 0.27

Table 4 presents the results of the comparison. Three out of 5,000 testcases include 38 5 5 8
2
= 0 and

thus are excluded from the calculation of average improvement to prevent division by zero. The

average improvement of LCS di�erence and edit distance are 112.98% and 150.06%, respectively.

Based on the standard error of the mean (denoted as stderr in the table), we can establish a 95%

con�dence interval for the average improvement: interval [95.34%, 130.62%] for the LCS di�erence,

and interval [97.14%, 202.98%] for the edit distance. This indicates that the two extreme cases

of equivalent graphs extracted by PolyJuice are likely to undergo considerably more varied

transformations than two randomly extracted graphs do. Therefore, our insight is validated.

p
a
ss

0
p
a
ss

1
p
a
ss

2
p
a
ss

3
p
a
ss

4
p
a
ss

5
p
a
ss

6
p
a
ss

7
p
a
ss

8
p
a
ss

9
p
a
ss

1
0

p
a
ss

1
1

p
a
ss

1
2

p
a
ss

1
3

p
a
ss

1
4

p
a
ss

1
5

p
a
ss

1
6

p
a
ss

1
7

p
a
ss

1
8

p
a
ss

1
9

p
a
ss

2
0

p
a
ss

2
1

p
a
ss

2
2

p
a
ss

2
3

p
a
ss

2
4

p
a
ss

2
5

p
a
ss

2
6

p
a
ss

2
7

p
a
ss

2
8

p
a
ss

2
9

p
a
ss

3
0

p
a
ss

3
1

p
a
ss

3
2

p
a
ss

3
3

p
a
ss

3
4

p
a
ss

3
5

p
a
ss

3
6

p
a
ss

3
7

p
a
ss

3
8

p
a
ss

3
9

p
a
ss

4
0

p
a
ss

4
1

p
a
ss

4
2

p
a
ss

4
3

p
a
ss

4
4

p
a
ss

4
5

p
a
ss

4
6

p
a
ss

4
7

p
a
ss

4
8

p
a
ss

4
9

p
a
ss

5
0

p
a
ss

5
1

p
a
ss

5
2

p
a
ss

5
3

p
a
ss

5
4

p
a
ss

5
5

p
a
ss

5
6

p
a
ss

5
7

p
a
ss

5
8

p
a
ss

5
9

p
a
ss

6
0

p
a
ss

6
1

p
a
ss

6
2

p
a
ss

6
3

p
a
ss

6
4

p
a
ss

6
5

p
a
ss

6
6

p
a
ss

6
7

p
a
ss

6
8

p
a
ss

6
9

p
a
ss

7
0

p
a
ss

7
1

p
a
ss

7
2

p
a
ss

7
3

p
a
ss

7
4

p
a
ss

7
5

p
a
ss

7
6

p
a
ss

7
7

p
a
ss

7
8

p
a
ss

7
9

p
a
ss

8
0

p
a
ss

8
1

p
a
ss

8
2

p
a
ss

8
3

p
a
ss

8
4

p
a
ss

8
5

p
a
ss

8
6

p
a
ss

8
7

p
a
ss

8
8

p
a
ss

8
9

p
a
ss

9
0

p
a
ss

9
1

p
a
ss

9
2

p
a
ss

9
3

p
a
ss

9
4

p
a
ss

9
5

p
a
ss

9
6

p
a
ss

9
7

p
a
ss

9
8

p
a
ss

9
9

p
a
ss

1
0
0

p
a
ss

1
0
1

p
a
ss

1
0
2

p
a
ss

1
0
3

p
a
ss

1
0
4

p
a
ss

1
0
5

p
a
ss

1
0
6

p
a
ss

1
0
7

p
a
ss

1
0
8

p
a
ss

1
0
9

p
a
ss

1
1
0

p
a
ss

1
1
1

p
a
ss

1
1
2

p
a
ss

1
1
3

p
a
ss

1
1
4

p
a
ss

1
1
5

p
a
ss

1
1
6

p
a
ss

1
1
7

p
a
ss

1
1
8

p
a
ss

1
1
9

p
a
ss

1
2
0

p
a
ss

1
2
1

p
a
ss

1
2
2

p
a
ss

1
2
3

p
a
ss

1
2
4

p
a
ss

1
2
5

p
a
ss

1
2
6

p
a
ss

1
2
7

p
a
ss

1
2
8

p
a
ss

1
2
9

p
a
ss

1
3
0

p
a
ss

1
3
1

p
a
ss

1
3
2

p
a
ss

1
3
3

p
a
ss

1
3
4

p
a
ss

1
3
5

p
a
ss

1
3
6

p
a
ss

1
3
7

p
a
ss

1
3
8

p
a
ss

1
3
9

p
a
ss

1
4
0

p
a
ss

1
4
1

p
a
ss

1
4
2

p
a
ss

1
4
3

p
a
ss

1
4
4

p
a
ss

1
4
5

p
a
ss

1
4
6

p
a
ss

1
4
7

p
a
ss

1
4
8

p
a
ss

1
4
9

p
a
ss

1
5
0

p
a
ss

1
5
1

p
a
ss

1
5
2

p
a
ss

1
5
3

p
a
ss

1
5
4

p
a
ss

1
5
5

p
a
ss

1
5
6

p
a
ss

1
5
7

p
a
ss

1
5
8

p
a
ss

1
5
9

p
a
ss

1
6
0

p
a
ss

1
6
1

p
a
ss

1
6
2

p
a
ss

1
6
3

p
a
ss

1
6
4

p
a
ss

1
6
5

p
a
ss

1
6
6

p
a
ss

1
6
7

p
a
ss

1
6
8

p
a
ss

1
6
9

p
a
ss

1
7
0

p
a
ss

1
7
1

p
a
ss

1
7
2

p
a
ss

1
7
3

p
a
ss

1
7
4

p
a
ss

1
7
5

p
a
ss

1
7
6

p
a
ss

1
7
7

p
a
ss

1
7
8

p
a
ss

1
7
9

p
a
ss

1
8
0

p
a
ss

1
8
1

p
a
ss

1
8
2

p
a
ss

1
8
3

p
a
ss

1
8
4

p
a
ss

1
8
5

p
a
ss

1
8
6

p
a
ss

1
8
7

p
a
ss

1
8
8

p
a
ss

1
8
9

p
a
ss

1
9
0

p
a
ss

1
9
1

p
a
ss

1
9
2

p
a
ss

1
9
3

p
a
ss

1
9
4

p
a
ss

1
9
5

p
a
ss

1
9
6

p
a
ss

1
9
7

p
a
ss

1
9
8

p
a
ss

1
9
9

p
a
ss

2
0
0

p
a
ss

2
0
1

p
a
ss

2
0
2

p
a
ss

2
0
3

p
a
ss

2
0
4

p
a
ss

2
0
5

p
a
ss

2
0
6

p
a
ss

2
0
7

p
a
ss

2
0
8

p
a
ss

2
0
9

p
a
ss

2
1
0

p
a
ss

2
1
1

p
a
ss

2
1
2

p
a
ss

2
1
3

p
a
ss

2
1
4

p
a
ss

2
1
5

p
a
ss

2
1
6

p
a
ss

2
1
7

p
a
ss

2
1
8

p
a
ss

2
1
9

p
a
ss

2
2
0

p
a
ss

2
2
1

p
a
ss

2
2
2

p
a
ss

2
2
3

p
a
ss

2
2
4

p
a
ss

2
2
5

p
a
ss

2
2
6

p
a
ss

2
2
7

p
a
ss

2
2
8

p
a
ss

2
2
9

p
a
ss

2
3
0

p
a
ss

2
3
1

p
a
ss

2
3
2

p
a
ss

2
3
3

p
a
ss

2
3
4

p
a
ss

2
3
5

p
a
ss

2
3
6

p
a
ss

2
3
7

p
a
ss

2
3
8

p
a
ss

2
3
9

p
a
ss

2
4
0

p
a
ss

2
4
1

p
a
ss

2
4
2

p
a
ss

2
4
3

p
a
ss

2
4
4

p
a
ss

2
4
5

p
a
ss

2
4
6

p
a
ss

2
4
7

p
a
ss

2
4
8

p
a
ss

2
4
9

p
a
ss

2
5
0

p
a
ss

2
5
1

p
a
ss

2
5
2

p
a
ss

2
5
3

p
a
ss

2
5
4

p
a
ss

2
5
5

p
a
ss

2
5
6

p
a
ss

2
5
7

p
a
ss

2
5
8

p
a
ss

2
5
9

p
a
ss

2
6
0

p
a
ss

2
6
1

p
a
ss

2
6
2

p
a
ss

2
6
3

p
a
ss

2
6
4

p
a
ss

2
6
5

p
a
ss

2
6
6

p
a
ss

2
6
7

p
a
ss

2
6
8

p
a
ss

2
6
9

p
a
ss

2
7
0

p
a
ss

2
7
1

p
a
ss

2
7
2

p
a
ss

2
7
3

p
a
ss

2
7
4

p
a
ss

2
7
5

p
a
ss

2
7
6

p
a
ss

2
7
7

p
a
ss

2
7
8

p
a
ss

2
7
9

p
a
ss

2
8
0

p
a
ss

2
8
1

p
a
ss

2
8
2

p
a
ss

2
8
3

p
a
ss

2
8
4

p
a
ss

2
8
5

p
a
ss

2
8
6

p
a
ss

2
8
7

p
a
ss

2
8
8

p
a
ss

2
8
9

p
a
ss

2
9
0

p
a
ss

2
9
1

p
a
ss

2
9
2

p
a
ss

2
9
3

p
a
ss

2
9
4

p
a
ss

2
9
5

p
a
ss

2
9
6

p
a
ss

2
9
7

p
a
ss

2
9
8

p
a
ss

2
9
9

p
a
ss

3
0
0

p
a
ss

3
0
1

p
a
ss

3
0
2

p
a
ss

3
0
3

p
a
ss

3
0
4

p
a
ss

3
0
5

p
a
ss

3
0
6

p
a
ss

3
0
7

p
a
ss

3
0
8

p
a
ss

3
0
9

p
a
ss

3
1
0

p
a
ss

3
1
1

p
a
ss

3
1
2

p
a
ss

3
1
3

p
a
ss

3
1
4

p
a
ss

3
1
5

p
a
ss

3
1
6

p
a
ss

3
1
7

p
a
ss

3
1
8

p
a
ss

3
1
9

p
a
ss

3
2
0

p
a
ss

3
2
1

p
a
ss

3
2
2

p
a
ss

3
2
3

p
a
ss

3
2
4

p
a
ss

3
2
5

p
a
ss

3
2
6

p
a
ss

3
2
7

p
a
ss

3
2
8

p
a
ss

3
2
9

p
a
ss

3
3
0

p
a
ss

3
3
1

p
a
ss

3
3
2

p
a
ss

3
3
3

p
a
ss

3
3
4

p
a
ss

3
3
5

p
a
ss

3
3
6

p
a
ss

3
3
7

p
a
ss

3
3
8

p
a
ss

3
3
9

p
a
ss

3
4
0

p
a
ss

3
4
1

p
a
ss

3
4
2

p
a
ss

3
4
3

p
a
ss

3
4
4

p
a
ss

3
4
5

p
a
ss

3
4
6

p
a
ss

3
4
7

p
a
ss

3
4
8

p
a
ss

3
4
9

p
a
ss

3
5
0

p
a
ss

3
5
1

p
a
ss

3
5
2

p
a
ss

3
5
3

p
a
ss

3
5
4

p
a
ss

3
5
5

p
a
ss

3
5
6

p
a
ss

3
5
7

p
a
ss

3
5
8

p
a
ss

3
5
9

p
a
ss

3
6
0

p
a
ss

3
6
1

p
a
ss

3
6
2

p
a
ss

3
6
3

p
a
ss

3
6
4

p
a
ss

3
6
5

p
a
ss

3
6
6

p
a
ss

3
6
7

p
a
ss

3
6
8

p
a
ss

3
6
9

p
a
ss

3
7
0

p
a
ss

3
7
1

p
a
ss

3
7
2

p
a
ss

3
7
3

p
a
ss

3
7
4

p
a
ss

3
7
5

p
a
ss

3
7
6

p
a
ss

3
7
7

p
a
ss

3
7
8

p
a
ss

3
7
9

p
a
ss

3
8
0

p
a
ss

3
8
1

p
a
ss

3
8
2

p
a
ss

3
8
3

p
a
ss

3
8
4

p
a
ss

3
8
5

p
a
ss

3
8
6

p
a
ss

3
8
7

p
a
ss

3
8
8

p
a
ss

3
8
9

p
a
ss

3
9
0

p
a
ss

3
9
1

p
a
ss

3
9
2

p
a
ss

3
9
3

p
a
ss

3
9
4

p
a
ss

3
9
5

p
a
ss

3
9
6

p
a
ss

3
9
7

p
a
ss

3
9
8

p
a
ss

3
9
9

p
a
ss

4
0
0

p
a
ss

4
0
1

p
a
ss

4
0
2

p
a
ss

4
0
3

p
a
ss

4
0
4

p
a
ss

4
0
5

p
a
ss

4
0
6

p
a
ss

4
0
7

p
a
ss

4
0
8

p
a
ss

4
0
9

p
a
ss

4
1
0

p
a
ss

4
1
1

p
a
ss

4
1
2

p
a
ss

4
1
3

p
a
ss

4
1
4

p
a
ss

4
1
5

p
a
ss

4
1
6

p
a
ss

4
1
7

p
a
ss

4
1
8

p
a
ss

4
1
9

p
a
ss

4
2
0

p
a
ss

4
2
1

p
a
ss

4
2
2

p
a
ss

4
2
3

p
a
ss

4
2
4

p
a
ss

4
2
5

p
a
ss

4
2
6

p
a
ss

4
2
7

p
a
ss

4
2
8

p
a
ss

4
2
9

p
a
ss

4
3
0

p
a
ss

4
3
1

p
a
ss

4
3
2

p
a
ss

4
3
3

p
a
ss

4
3
4

p
a
ss

4
3
5

p
a
ss

4
3
6

p
a
ss

4
3
7

p
a
ss

4
3
8

p
a
ss

4
3
9

p
a
ss

4
4
0

p
a
ss

4
4
1

p
a
ss

4
4
2

p
a
ss

4
4
3

p
a
ss

4
4
4

p
a
ss

4
4
5

p
a
ss

4
4
6

p
a
ss

4
4
7

p
a
ss

4
4
8

p
a
ss

4
4
9

p
a
ss

4
5
0

p
a
ss

4
5
1

p
a
ss

4
5
2

p
a
ss

4
5
3

p
a
ss

4
5
4

p
a
ss

4
5
5

p
a
ss

4
5
6

p
a
ss

4
5
7

p
a
ss

4
5
8

p
a
ss

4
5
9

p
a
ss

4
6
0

p
a
ss

4
6
1

p
a
ss

4
6
2

p
a
ss

4
6
3

p
a
ss

4
6
4

p
a
ss

4
6
5

p
a
ss

4
6
6

p
a
ss

4
6
7

p
a
ss

4
6
8

p
a
ss

4
6
9

p
a
ss

4
7
0

p
a
ss

4
7
1

p
a
ss

4
7
2

p
a
ss

4
7
3

p
a
ss

4
7
4

p
a
ss

4
7
5

p
a
ss

4
7
6

p
a
ss

4
7
7

p
a
ss

4
7
8

p
a
ss

4
7
9

p
a
ss

4
8
0

p
a
ss

4
8
1

p
a
ss

4
8
2

p
a
ss

4
8
3

optimization pass

0

20

40

60

80

100

vi
si
t
ti
m
es

the simplified graph

p
a
ss

0
p
a
ss

1
p
a
ss

2
p
a
ss

3
p
a
ss

4
p
a
ss

5
p
a
ss

6
p
a
ss

7
p
a
ss

8
p
a
ss

9
p
a
ss

1
0

p
a
ss

1
1

p
a
ss

1
2

p
a
ss

1
3

p
a
ss

1
4

p
a
ss

1
5

p
a
ss

1
6

p
a
ss

1
7

p
a
ss

1
8

p
a
ss

1
9

p
a
ss

2
0

p
a
ss

2
1

p
a
ss

2
2

p
a
ss

2
3

p
a
ss

2
4

p
a
ss

2
5

p
a
ss

2
6

p
a
ss

2
7

p
a
ss

2
8

p
a
ss

2
9

p
a
ss

3
0

p
a
ss

3
1

p
a
ss

3
2

p
a
ss

3
3

p
a
ss

3
4

p
a
ss

3
5

p
a
ss

3
6

p
a
ss

3
7

p
a
ss

3
8

p
a
ss

3
9

p
a
ss

4
0

p
a
ss

4
1

p
a
ss

4
2

p
a
ss

4
3

p
a
ss

4
4

p
a
ss

4
5

p
a
ss

4
6

p
a
ss

4
7

p
a
ss

4
8

p
a
ss

4
9

p
a
ss

5
0

p
a
ss

5
1

p
a
ss

5
2

p
a
ss

5
3

p
a
ss

5
4

p
a
ss

5
5

p
a
ss

5
6

p
a
ss

5
7

p
a
ss

5
8

p
a
ss

5
9

p
a
ss

6
0

p
a
ss

6
1

p
a
ss

6
2

p
a
ss

6
3

p
a
ss

6
4

p
a
ss

6
5

p
a
ss

6
6

p
a
ss

6
7

p
a
ss

6
8

p
a
ss

6
9

p
a
ss

7
0

p
a
ss

7
1

p
a
ss

7
2

p
a
ss

7
3

p
a
ss

7
4

p
a
ss

7
5

p
a
ss

7
6

p
a
ss

7
7

p
a
ss

7
8

p
a
ss

7
9

p
a
ss

8
0

p
a
ss

8
1

p
a
ss

8
2

p
a
ss

8
3

p
a
ss

8
4

p
a
ss

8
5

p
a
ss

8
6

p
a
ss

8
7

p
a
ss

8
8

p
a
ss

8
9

p
a
ss

9
0

p
a
ss

9
1

p
a
ss

9
2

p
a
ss

9
3

p
a
ss

9
4

p
a
ss

9
5

p
a
ss

9
6

p
a
ss

9
7

p
a
ss

9
8

p
a
ss

9
9

p
a
ss

1
0
0

p
a
ss

1
0
1

p
a
ss

1
0
2

p
a
ss

1
0
3

p
a
ss

1
0
4

p
a
ss

1
0
5

p
a
ss

1
0
6

p
a
ss

1
0
7

p
a
ss

1
0
8

p
a
ss

1
0
9

p
a
ss

1
1
0

p
a
ss

1
1
1

p
a
ss

1
1
2

p
a
ss

1
1
3

p
a
ss

1
1
4

p
a
ss

1
1
5

p
a
ss

1
1
6

p
a
ss

1
1
7

p
a
ss

1
1
8

p
a
ss

1
1
9

p
a
ss

1
2
0

p
a
ss

1
2
1

p
a
ss

1
2
2

p
a
ss

1
2
3

p
a
ss

1
2
4

p
a
ss

1
2
5

p
a
ss

1
2
6

p
a
ss

1
2
7

p
a
ss

1
2
8

p
a
ss

1
2
9

p
a
ss

1
3
0

p
a
ss

1
3
1

p
a
ss

1
3
2

p
a
ss

1
3
3

p
a
ss

1
3
4

p
a
ss

1
3
5

p
a
ss

1
3
6

p
a
ss

1
3
7

p
a
ss

1
3
8

p
a
ss

1
3
9

p
a
ss

1
4
0

p
a
ss

1
4
1

p
a
ss

1
4
2

p
a
ss

1
4
3

p
a
ss

1
4
4

p
a
ss

1
4
5

p
a
ss

1
4
6

p
a
ss

1
4
7

p
a
ss

1
4
8

p
a
ss

1
4
9

p
a
ss

1
5
0

p
a
ss

1
5
1

p
a
ss

1
5
2

p
a
ss

1
5
3

p
a
ss

1
5
4

p
a
ss

1
5
5

p
a
ss

1
5
6

p
a
ss

1
5
7

p
a
ss

1
5
8

p
a
ss

1
5
9

p
a
ss

1
6
0

p
a
ss

1
6
1

p
a
ss

1
6
2

p
a
ss

1
6
3

p
a
ss

1
6
4

p
a
ss

1
6
5

p
a
ss

1
6
6

p
a
ss

1
6
7

p
a
ss

1
6
8

p
a
ss

1
6
9

p
a
ss

1
7
0

p
a
ss

1
7
1

p
a
ss

1
7
2

p
a
ss

1
7
3

p
a
ss

1
7
4

p
a
ss

1
7
5

p
a
ss

1
7
6

p
a
ss

1
7
7

p
a
ss

1
7
8

p
a
ss

1
7
9

p
a
ss

1
8
0

p
a
ss

1
8
1

p
a
ss

1
8
2

p
a
ss

1
8
3

p
a
ss

1
8
4

p
a
ss

1
8
5

p
a
ss

1
8
6

p
a
ss

1
8
7

p
a
ss

1
8
8

p
a
ss

1
8
9

p
a
ss

1
9
0

p
a
ss

1
9
1

p
a
ss

1
9
2

p
a
ss

1
9
3

p
a
ss

1
9
4

p
a
ss

1
9
5

p
a
ss

1
9
6

p
a
ss

1
9
7

p
a
ss

1
9
8

p
a
ss

1
9
9

p
a
ss

2
0
0

p
a
ss

2
0
1

p
a
ss

2
0
2

p
a
ss

2
0
3

p
a
ss

2
0
4

p
a
ss

2
0
5

p
a
ss

2
0
6

p
a
ss

2
0
7

p
a
ss

2
0
8

p
a
ss

2
0
9

p
a
ss

2
1
0

p
a
ss

2
1
1

p
a
ss

2
1
2

p
a
ss

2
1
3

p
a
ss

2
1
4

p
a
ss

2
1
5

p
a
ss

2
1
6

p
a
ss

2
1
7

p
a
ss

2
1
8

p
a
ss

2
1
9

p
a
ss

2
2
0

p
a
ss

2
2
1

p
a
ss

2
2
2

p
a
ss

2
2
3

p
a
ss

2
2
4

p
a
ss

2
2
5

p
a
ss

2
2
6

p
a
ss

2
2
7

p
a
ss

2
2
8

p
a
ss

2
2
9

p
a
ss

2
3
0

p
a
ss

2
3
1

p
a
ss

2
3
2

p
a
ss

2
3
3

p
a
ss

2
3
4

p
a
ss

2
3
5

p
a
ss

2
3
6

p
a
ss

2
3
7

p
a
ss

2
3
8

p
a
ss

2
3
9

p
a
ss

2
4
0

p
a
ss

2
4
1

p
a
ss

2
4
2

p
a
ss

2
4
3

p
a
ss

2
4
4

p
a
ss

2
4
5

p
a
ss

2
4
6

p
a
ss

2
4
7

p
a
ss

2
4
8

p
a
ss

2
4
9

p
a
ss

2
5
0

p
a
ss

2
5
1

p
a
ss

2
5
2

p
a
ss

2
5
3

p
a
ss

2
5
4

p
a
ss

2
5
5

p
a
ss

2
5
6

p
a
ss

2
5
7

p
a
ss

2
5
8

p
a
ss

2
5
9

p
a
ss

2
6
0

p
a
ss

2
6
1

p
a
ss

2
6
2

p
a
ss

2
6
3

p
a
ss

2
6
4

p
a
ss

2
6
5

p
a
ss

2
6
6

p
a
ss

2
6
7

p
a
ss

2
6
8

p
a
ss

2
6
9

p
a
ss

2
7
0

p
a
ss

2
7
1

p
a
ss

2
7
2

p
a
ss

2
7
3

p
a
ss

2
7
4

p
a
ss

2
7
5

p
a
ss

2
7
6

p
a
ss

2
7
7

p
a
ss

2
7
8

p
a
ss

2
7
9

p
a
ss

2
8
0

p
a
ss

2
8
1

p
a
ss

2
8
2

p
a
ss

2
8
3

p
a
ss

2
8
4

p
a
ss

2
8
5

p
a
ss

2
8
6

p
a
ss

2
8
7

p
a
ss

2
8
8

p
a
ss

2
8
9

p
a
ss

2
9
0

p
a
ss

2
9
1

p
a
ss

2
9
2

p
a
ss

2
9
3

p
a
ss

2
9
4

p
a
ss

2
9
5

p
a
ss

2
9
6

p
a
ss

2
9
7

p
a
ss

2
9
8

p
a
ss

2
9
9

p
a
ss

3
0
0

p
a
ss

3
0
1

p
a
ss

3
0
2

p
a
ss

3
0
3

p
a
ss

3
0
4

p
a
ss

3
0
5

p
a
ss

3
0
6

p
a
ss

3
0
7

p
a
ss

3
0
8

p
a
ss

3
0
9

p
a
ss

3
1
0

p
a
ss

3
1
1

p
a
ss

3
1
2

p
a
ss

3
1
3

p
a
ss

3
1
4

p
a
ss

3
1
5

p
a
ss

3
1
6

p
a
ss

3
1
7

p
a
ss

3
1
8

p
a
ss

3
1
9

p
a
ss

3
2
0

p
a
ss

3
2
1

p
a
ss

3
2
2

p
a
ss

3
2
3

p
a
ss

3
2
4

p
a
ss

3
2
5

p
a
ss

3
2
6

p
a
ss

3
2
7

p
a
ss

3
2
8

p
a
ss

3
2
9

p
a
ss

3
3
0

p
a
ss

3
3
1

p
a
ss

3
3
2

p
a
ss

3
3
3

p
a
ss

3
3
4

p
a
ss

3
3
5

p
a
ss

3
3
6

p
a
ss

3
3
7

p
a
ss

3
3
8

p
a
ss

3
3
9

p
a
ss

3
4
0

p
a
ss

3
4
1

p
a
ss

3
4
2

p
a
ss

3
4
3

p
a
ss

3
4
4

p
a
ss

3
4
5

p
a
ss

3
4
6

p
a
ss

3
4
7

p
a
ss

3
4
8

p
a
ss

3
4
9

p
a
ss

3
5
0

p
a
ss

3
5
1

p
a
ss

3
5
2

p
a
ss

3
5
3

p
a
ss

3
5
4

p
a
ss

3
5
5

p
a
ss

3
5
6

p
a
ss

3
5
7

p
a
ss

3
5
8

p
a
ss

3
5
9

p
a
ss

3
6
0

p
a
ss

3
6
1

p
a
ss

3
6
2

p
a
ss

3
6
3

p
a
ss

3
6
4

p
a
ss

3
6
5

p
a
ss

3
6
6

p
a
ss

3
6
7

p
a
ss

3
6
8

p
a
ss

3
6
9

p
a
ss

3
7
0

p
a
ss

3
7
1

p
a
ss

3
7
2

p
a
ss

3
7
3

p
a
ss

3
7
4

p
a
ss

3
7
5

p
a
ss

3
7
6

p
a
ss

3
7
7

p
a
ss

3
7
8

p
a
ss

3
7
9

p
a
ss

3
8
0

p
a
ss

3
8
1

p
a
ss

3
8
2

p
a
ss

3
8
3

p
a
ss

3
8
4

p
a
ss

3
8
5

p
a
ss

3
8
6

p
a
ss

3
8
7

p
a
ss

3
8
8

p
a
ss

3
8
9

p
a
ss

3
9
0

p
a
ss

3
9
1

p
a
ss

3
9
2

p
a
ss

3
9
3

p
a
ss

3
9
4

p
a
ss

3
9
5

p
a
ss

3
9
6

p
a
ss

3
9
7

p
a
ss

3
9
8

p
a
ss

3
9
9

p
a
ss

4
0
0

p
a
ss

4
0
1

p
a
ss

4
0
2

p
a
ss

4
0
3

p
a
ss

4
0
4

p
a
ss

4
0
5

p
a
ss

4
0
6

p
a
ss

4
0
7

p
a
ss

4
0
8

p
a
ss

4
0
9

p
a
ss

4
1
0

p
a
ss

4
1
1

p
a
ss

4
1
2

p
a
ss

4
1
3

p
a
ss

4
1
4

p
a
ss

4
1
5

p
a
ss

4
1
6

p
a
ss

4
1
7

p
a
ss

4
1
8

p
a
ss

4
1
9

p
a
ss

4
2
0

p
a
ss

4
2
1

p
a
ss

4
2
2

p
a
ss

4
2
3

p
a
ss

4
2
4

p
a
ss

4
2
5

p
a
ss

4
2
6

p
a
ss

4
2
7

p
a
ss

4
2
8

p
a
ss

4
2
9

p
a
ss

4
3
0

p
a
ss

4
3
1

p
a
ss

4
3
2

p
a
ss

4
3
3

p
a
ss

4
3
4

p
a
ss

4
3
5

p
a
ss

4
3
6

p
a
ss

4
3
7

p
a
ss

4
3
8

p
a
ss

4
3
9

p
a
ss

4
4
0

p
a
ss

4
4
1

p
a
ss

4
4
2

p
a
ss

4
4
3

p
a
ss

4
4
4

p
a
ss

4
4
5

p
a
ss

4
4
6

p
a
ss

4
4
7

p
a
ss

4
4
8

p
a
ss

4
4
9

p
a
ss

4
5
0

p
a
ss

4
5
1

p
a
ss

4
5
2

p
a
ss

4
5
3

p
a
ss

4
5
4

p
a
ss

4
5
5

p
a
ss

4
5
6

p
a
ss

4
5
7

p
a
ss

4
5
8

p
a
ss

4
5
9

p
a
ss

4
6
0

p
a
ss

4
6
1

p
a
ss

4
6
2

p
a
ss

4
6
3

p
a
ss

4
6
4

p
a
ss

4
6
5

p
a
ss

4
6
6

p
a
ss

4
6
7

p
a
ss

4
6
8

p
a
ss

4
6
9

p
a
ss

4
7
0

p
a
ss

4
7
1

p
a
ss

4
7
2

p
a
ss

4
7
3

p
a
ss

4
7
4

p
a
ss

4
7
5

p
a
ss

4
7
6

p
a
ss

4
7
7

p
a
ss

4
7
8

p
a
ss

4
7
9

p
a
ss

4
8
0

p
a
ss

4
8
1

p
a
ss

4
8
2

p
a
ss

4
8
3

optimization pass

0

20

40

60

80

100

vi
si
t
ti
m
es

the complex graph

Fig. 11. An example of the visiting frequency distribution of optimization passes in TVM between two

equivalent graphs extracted by PolyJuice.

In addition to transformation sequence di�erences, We also investigate the visiting frequency

di�erence of transformations. Fig. 11 shows a random example of the visiting frequency distribution
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of optimization passes in TVM between two equivalent graphs extracted by PolyJuice. Each x-

axis label represents an optimization pass, numbered starting from 0. We can see that the two

graphs exhibit di�erent visiting frequency distributions, indicating that the two graphs undergo

di�erent transformations during compilation. This further validates the e�ectiveness of our equality

saturation based rewriting approach.

6.4 Overhead During Testing

Fuzzing throughput is a critical metric for evaluating the e�ectiveness of a fuzzer [25, 55–57, 72]. We

conduct a 5000-iteration testing campaign on TVM and XLA to evaluate the overhead introduced

by PolyJuice. Table 5 provides a detailed breakdown of the time consumption during testing. The

expression rewriting and graph extraction columns represent the overhead introduced by PolyJuice.

Two other steps of PolyJuice, namely graph conversion and testcase generation, consume less than

0.01 ms, and hence, their details have been omitted from the table. The original graph generation

column denotes the time spent by NNSmith for generating the initial tensor computation graphs.

From the table, we can observe that the majority of the time is spent in the execution of the

compiler and the original graph generation. Notably, TVM expends more than 1,000 milliseconds

on its compilation and code execution processes. By contrast, PolyJuice typically uses less than 2

milliseconds for expression rewriting and graph extraction tasks. As a result, PolyJuice introduces

a maximum overhead of 0.11% and 1.53% when testing TVM and XLA, respectively. It is also

noteworthy that the number of graph nodes does not signi�cantly in�uence the time spent by

PolyJuice, but it does largely impact the execution time of tensor compilers. Therefore, as the

number of graph nodes increases, the overhead introduced by PolyJuice becomes negligible.

Table 5. Average time taken during PolyJuice’s testing. Time spent by expression rewriting and graph

extraction are the overhead caused by PolyJuice.

Compiler
# graph

node

original graph

generation

expression

rewriting

graph

extraction

compiler

execution

TVM

5 26.76ms 0.33ms 1.16ms 1367.85ms

10 41.72ms 0.33ms 1.63ms 1865.97ms

15 53.04ms 0.35ms 1.64ms 2059.14ms

XLA

5 22.35ms 0.27ms 1.23ms 74.09ms

10 35.92ms 0.26ms 1.23ms 97.24ms

15 87.00ms 0.26ms 1.25ms 121.11ms

7 Discussion

Design Choices. PolyJuice is designed to be a non-intrusive test tool, capable of testing tensor

compilers without requiring access to their source code. This design choice makes PolyJuice easily

be applied to a wide range of tensor compilers regardless of their code availability. A potential

improvement is to incorporate code instrumentation to obtain �ne-grained source-code-level

optimization information. This would enable our test tool to know the execution path of tensor

compilers when executing a tensor program, potentially leading to a more e�ective graph extraction

strategy. However, since some compilers are close-sourced, we choose our current design for broad

applicability and ease of use. We leave the instrumentation-based approach as our future work.

False Positives. Despite our test oracle eliminating false positives caused by di�erential testing’s

cross-environment numerical accuracy issues, PolyJuice reported two types of false positives. The
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�rst type stems from triggering unde�ned behavior in tensor compilers. For instance, in divide-by-

zero scenarios, most tensor compilers output NaN. However, after certain optimizations, TensorRT

outputs a number other than NaN, which developers consider expected. We mitigate this by �ltering

out graphs that trigger unde�ned behaviors.

where(condition, input, other)

Input

[
 [1., 1., 1.],
 [1., 1., 1.]
]

dtype: f32

shape: [2,3]

[
 [[0., 0., 0.],
  [0., 0., 0.]],
 [[0., 0., 0.],
  [0., 0., 0.]]
]

Other
dtype: f32

shape: [2,2,3]

True

Out
dtype: f32

shape: [2,2,3]

[
 [[1., 1., 1.],
  [1., 1., 1.]],
 [[x., x., x.],
  [x., x., x.]]
]

Fig. 12. A false positive reported by PolyJuice due to unstable outputs in TensorRT. In other tensor frame-

works/compilers, the appended values (highlighted in red) are filled with the same values of the Input tensor.

In TensorRT, these values are filled with random values from GPU memory.

The second type is related to unstable outputs when some compilers process speci�c operators.

For example, TensorRT processes the where(cond,x,y) operator di�erently from other libraries

or compilers. where(cond,x,y) returns a tensor of elements selected from either tensor x or

tensor y, depending on the condition cond. As Fig. 12 shows, when handling this operator, if the

shapes of x and y di�er, TensorRT �lls the di�erence with random values from GPU memory,

resulting in random outputs. Developers con�rmed that this behavior is expected in TensorRT.

We mitigate this by �ltering out these unstable operators during graph generation. These false

positives constitute less than 8% of the bugs reported by PolyJuice, thus not signi�cantly impacting

its overall e�ectiveness. Besides, once we encounter a false positive and �lter it out according to

developers’ feedback, this false positive will never present again. Therefore, we believe that false

positives are not a major concern for PolyJuice.

Common Mis-Compilation Bugs. While bugs vary greatly across di�erent tensor compilers,

the majority of bugs we uncovered originate from operator fusion and low-level code generation.

During the operator fusion phase, certain compilers may have implicit preconditions for input

models to perform fusion. However, some edge cases may fail to meet these conditions, leading

to bugs. During low-level code generation, the transition of data types between high-level code

and low-level code is particularly susceptible to errors. Our practice corroborates the �ndings of

previous studies [45] that type problems and incorrect code logic are the most common bugs in

tensor compilers.

Test Tool Deployment. PolyJuice can be integrated into tensor compiler development in two

main ways. Developers can run PolyJuice on their compilers for a speci�ed time slot (e.g., 24

hours) to identify bugs. Alternatively, they can use PolyJuice to generate a test suite for continuous

integration during development. We will release a test suite of 10,000 testcases, each in three

formats: ONNX �le, PyTorch code, and TensorFlow code. We believe that PolyJuice and this test

suite can enhance the code quality of tensor compilers.
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Future Work. PolyJuice enables several promising opportunities for future work. First, the

development of more e�ective equivalent rewrite rules is a promising direction. PolyJuice provides

a platform for researchers to e�ortlessly experiment with various rewrite rules. We believe that

a new class of rewrite rules, beyond arithmetic and structural rewriting, could also contribute

signi�cantly to the robustness of tensor compilers. Second, future work could investigate new bug

type based on PolyJuice. We believe the concept of equivalent graphs could be applicable to other

types of bugs, such as performance bugs and high GPU memory usage bugs. Third, it would be

also promising to extend PolyJuice to test bugs in all kinds of deep learning hardware accelerators

other than CPU and GPU. Recently, many new hardware accelerators [42] have been proposed to

assist deep learning model to deploy in various real-world scenarios. This would be a good backend

target for mis-compilation bug �ndings.

8 Related Work

Reliability Study on ML Systems. Research e�orts have been made to study the reliability

of DL frameworks such as PyTorch, TensorFlow, as well as their compilers. Notably, studies on

real-world bugs in DL frameworks provide insights into the reliability of these systems. For example,

Shen et al. [45] analyze the root cause of 603 bugs arising in three popular tensor compilers and

provide a series of valuable guidelines for improving the reliability of tensor compilers. Cao et al. [4]

analyze 210 StackOver�ow posts related to performance problems in ML systems, and point out

that API misuse and buggy DL libraries often cause performance problems. Guan et al. [10] analyze

371 model optimization bugs in model training, compiling and deployment stages, and unveil

the major root causes of these bugs. All these studies highlight the importance of reliability in

ML systems and developers can bene�t from them to implement more reliable ML systems. Our

work complements these studies by implementing a test approach to detect mis-compilation bugs,

facilitating the improvement of the tensor compilers’ reliability.

Tensor Compiler Testing. Testing serves as an essential method for uncovering the weaknesses

within software systems, including DL libraries and tensor compilers. A variety of techniques

have been proposed in recent years. Most of these techniques such as Audee [11], Lemon [59],

GraphFuzzer [29], Mu�n [9], NNSmith [27], Tzer [28], and HirGen [30] aim to construct valid

testcases through program analysis to expose bugs in target systems. As large language models

(LLMs) become more popular, some research e�orts, e.g., FuzzGPT [6], have begun to harness the

power of LLMs to generate testcases that are not only e�ective but also highly nuanced, targeting

deep learning libraries and tensor compilers. These techniques focus on testcase (i.e., computation

graph) generation, which serve as the initial input for PolyJuice’s work�ow. Orthogonally, our

work focuses on mis-compilation bug detection by constructing equivalent computation graphs.

On the other hand, a few test oracles are proposed for testing DL libraries and tensor compilers.

EAGLE [54] uses di�erent APIs to implement identical computation graphs and verify their execu-

tion results, targeting implementation bugs in DL library APIs. Our work adopts a totally di�erent

approach and focuses on di�erent types of bugs. MT-DLComp [61] introduces two types of dead

code in tensor programs to construct equivalent programs to detect mis-compilation bugs. The �rst

type is to insert universal obscure conditions as dead code, and the second is to insert per-input

obscure conditions. Di�erent from it, our contribution is to provide arithmetic and structural

rewriting strategies to rewrite a tensor program, and implement a framework to �nd representative

equivalent programs to trigger diverse transformation logic in tensor compilers.

Traditional Compiler Testing. Compiler testing has been studied extensively over the past few

decades. One key direction is to generate valid testcases to expose bugs in compilers. Csmith [62]

tests C/C++ compilers by generating C/C++ programs that avoid unde�ned behaviors. CodeAl-

chemist [12] assembles and mutate existing code snippets to generate JavaScript programs for
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JavaScript engines. On the other hand, several techniques focus on constructing test oracles to

detect mis-compilation bugs. Notably, for C/C++ compiler testing, a practical technique named

EMI [21] was proposed. This technique constructs equivalent C/C++ programs by inserting dead

code into a given program. JIT-Picking [2] detects non-crash JIT bugs by executing the JavaScript

code twice: once with the JIT compiler enabled and once without it, i.e., solely relying on the

interpreter. For Java virtual machine testing, CSE [23] inserts semantics-preserving code into Java

programs to e�ciently explore compilation space in order to detect crashes or mis-compilation

bugs in JVM. Our work di�ers from these techniques in that we focus on tensor compilers and our

proposed test oracle is based on tensor-compiler domain-speci�c knowledge, i.e., arithmetic and

structural invariant instead of dead code insertion.

New Oracle for Testing Other Systems. Since correctness bugs are often silent in complex

systems, many research e�orts are paid to combine domain knowledge to design new test oracle to

detect correctness bugs in speci�c systems. For database engine testing, PQS [43] was introduced

to generate queries that are designed to retrieve a speci�c data entity for verifying the integrity

of the database engine; Mozi [8, 26, 58] constructs equivalent database engines through adjusting

con�gurations to detect correctness bugs. For operating system testing, B3 [32] and Hydra [17] �nds

di�erent test oracle such as formal speci�cations and crash consistencies to validate correctness

of �lesystems; BVF [46] leverages structured and sanitized Programs to verify the correctness of

eBPF programs. For web browser testing, Janus [73–75] leverages rendering change statuses of two

web pages to conduct di�erential testing to detect rendering logic bugs in web browsers. Our work

serves as a new test oracle for tensor compilers, which can inspire the design of test oracles for

other complex systems.

Term Rewriting Systems. Term rewriting is a time-tested approach for equation reasoning.

Equality saturation [47, 60] is a technique to implement term rewriting e�ciently using an e-graph.

Among all the equality saturation engines, egg [60] is the most successful one, so we reuse it

in our expression rewriting process. This engine is often used in the research �eld for program

analysis [36, 65], program optimizations in compilers [63] and hardware designs [52]. In contrast

to the these applications, we focus on a distinct use case: leveraging equality saturation to assess

the reliability of tensor compilers.

9 Conclusion

We presented a new test approach which constructs semantically-equivalent tensor programs to

detect mis-compilation bugs in tensor compilers. We realized it as PolyJuice, which generates

equivalent tensor programs that have signi�cantly di�erent data�ow and are likely to experience

di�erent optimization processes during compilation. During our testing period with PolyJuice, it

has detected 84 non-crash mis-compilation bugs on seven well-maintained tensor compilers. 49

bugs were con�rmed by developers, out of which 20 were �xed. Our future work will focus on

integrating more equivalent rewriting rules into PolyJuice.

Data-Availability Statement

The artifact that supports Section 6 is available on Zenodo [1]. We also release the prototype of

PolyJuice at https://github.com/ChijinZ/PolyJuice-Fuzzer.
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