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Abstract
Metadata consistency is crucial for distributed file systems
(DFSes) as it ensures that different clients have a consistent
view of the data. However, DFSes are inherently error-prone,
leading to metadata inconsistencies. Though rare, such incon-
sistencies can have severe consequences, including data loss,
service failures, and permission violations. Unfortunately,
there is limited understanding of metadata inconsistency char-
acteristics, let alone an effective method for detecting them.

This paper presents a comprehensive study of metadata in-
consistencies over the past five years across four widely-used
DFSes. We identified two key findings: 1) Metadata incon-
sistencies are mainly triggered by interrelated cross-node file
operations rather than system faults. 2) The root cause of
inconsistencies mainly lies in the metadata conflict resolution
process. Inspired by these findings, we proposed Horcrux, a
highly effective fuzzing framework for detecting metadata
inconsistencies in DFSes. Horcrux uses cross-node opera-
tion modeling to reduce the infinite input combinations to
a manageable space. In this way, Horcrux captures implicit
cross-node operation relationships and triggers more conflict
resolution logic. Currently, Horcrux has detected 10 previ-
ously unknown metadata inconsistencies. In addition, Hor-
crux covers 20.29%-146.21% more conflict resolution code
than state-of-the-art tools.

1 Introduction

Distributed File systems (DFSes) enable users to access file
storage from multiple devices as if they were accessing local
storage. In a DFS, metadata is responsible for recording the
fundamental elements of the file system, such as file structures
and data properties. Unlike DFSes like HDFS [4], Lustre [5],
and OrangeFS [49], which manage metadata in a central node,
CephFS [61] and GlusterFS [19] adopt a distributed approach
to manage metadata. It is crucial to ensure that the metadata re-
trieved by different clients and nodes meets the requirements
of eventual consistency [6].

∗Yu Jiang is the corresponding author.

In a DFS, file operations initiated by different clients can be
executed concurrently across various distributed nodes. These
operations are referred to as cross-node file operations. Cross-
node file operations spread across the DFS nodes, introducing
additional challenges in maintaining metadata consistency. To
keep metadata consistent, a DFS adopts four steps: 1) Local
Metadata Update: each node updates the metadata locally
according to client’s request. 2) Metadata Propagation: each
node broadcasts metadata updates to others. 3) Conflict Reso-
lution: resolve the metadata updating conflicts. 4) Metadata
Commit: each node store the consistent metadata. Bugs in
each step may result in metadata inconsistencies.

In a DFS, metadata inconsistencies can lead to severe conse-
quences, including data losses and service failures. For exam-
ple, the Greek Research and Technology Network (GRNET)
uses CephFS as the storage backend for its cloud service,
OKEANOS [27]. On October 14, 2016, a metadata inconsis-
tency occurred in CephFS, causing six OSDs to mistakenly
identify innocent nodes as crashed [34]. This incident ulti-
mately led to widespread failures in the client’s I/O and a
significant outage in OKEANOS’s VM services. Thus, under-
standing the causes of metadata inconsistencies and how to
effectively detect them is crucial for the stability and security
of a DFS. Unfortunately, despite the severe consequences,
this issue has been lacking detailed study and analysis, let
alone an effective detection method.

In this paper, we present an in-depth study of 44 real-world
metadata inconsistencies over the past five years across four
widely used DFSes, including CephFS [61], GlusterFS [19],
LeoFS [36] and IPFS [2]. We analyzed the triggering con-
ditions and root causes of these issues and got 2 key find-
ings: 1⃝ Most metadata inconsistencies are triggered by in-
terrelated distinct, cross-node file operations. We found that
all of the bugs are triggered by cross-node file operations,
while only a small percentag (2.27%) involve system faults.
Specifically, distinct operators with potential relations trigger
63.64% of the inconsistencies. As for the operands, related
file paths (parent/child) trigger 54.55% of the inconsistencies.
2⃝ The majority(63.64%) of the metadata inconsistencies are
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caused by flaws in the conflict resolution step. For example,
bug#49912 in CephFS [9] has implementation bugs in the
conflict resolution process for inodes and filenames. Another
bug in GlusterFS [24] failed to properly handle the conflicts
among rm operations on parent and child file nodes.

The existing DFS fuzzer Monarch [43] performs cross-
node testing by mutating syscalls and faults under the guid-
ance of code coverage. However, without exploring the im-
plicit relationships, cross-node syscalls are unlikely to trigger
these inconsistencies. Additionally, the code coverage guided
fuzzing explores various code components rather than concen-
trating on the metadata conflict resolution part. Consequently,
Monarch is not effective in identifying metadata inconsisten-
cies. Other tools [26, 32, 58] aim at traditional file systems
testing. However, these tools lack a holistic infrastructure to
coordinate inputs across the nodes.

Findings 1⃝ and 2⃝ suggest that an effective metadata in-
consistency detection tool should prioritize generating inter-
related cross-node file operations that can trigger metadata
conflict resolution. However, there are two main challenges
to achieve that goal. Challenge 1: Infinite cross-node file
operation combinations. File operations contain file opera-
tors and operands. Though file operators are countable, file
operand is a vast array of file paths. Thus, the number of
cross-node file operation combinations are virtually limitless.
To model how these operations interact, we need to condense
the exploration space into a manageable scope. Challenge
2: Metrics for relationship mining. Conflict resolving code
in DFSes are complex and tightly coupled with other compo-
nents. It’s non-trivial to precisely identify the conflict resolv-
ing code coverage at runtime. Therefore, an easily accessible
metric that can characterize conflict resolution logic is needed
to evaluate whether cross-node operations are well correlated.

To address the aforementioned challenges and effectively
detect metadata inconsistencies in DFSes, we propose Hor-
crux. Its key principle is modeling cross-node file operations
and mining the relationships among them, guided by the du-
ration of temporary inconsistencies. Horcrux constructs an
operation relation table to abstract the workloads in DFSes
and reduce the infinite exploration space of file operations into
a tractable one. Each item in the table represents the relation-
ship weight between two operations. In each fuzzing round,
Horcrux calculates the duration of temporary inconsistencies,
which is measured from the start of instruction processing to
the final confirmation time. If a set of cross-node operations
results in a longer temporary inconsistency duration, Horcrux
considers it beneficial. The weights in such sets are increased
to strengthen the relationships among those operations.

We have implemented and evaluated Horcrux on four com-
monly used DFSes. Totally, Horcrux has detected 10 previ-
ously unknown metadata inconsistencies. In addition, we com-
pared Horcrux with state-of-the-art tools, including Monarch,
Hydra, Syzkaller, and smallfile. The results show that other
tools were able to find only 3 bugs detected by Horcrux. Fur-

thermore, we evaluated the amount of conflict resolution logic
triggered by Horcrux and other tools. The results show that
Horcrux covers 20.29%-146.21% more conflict resolution
code lines than state-of-the-art tools, indicating a higher like-
lihood of triggering metadata inconsistencies.

Our paper makes the following contributions:

• We conducted a thorough study of 44 historical metadata
inconsistencies in DFSes and analyzed their severity,
root causes, and triggering conditions.

• We proposed a method for cross-node operation model-
ing to mine implicit relationships, and implemented it in
Horcrux to detect metadata inconsistencies in DFSes.

• We evaluated Horcrux on 4 DFSes, and detected
10 previously-unknown metadata inconsistencies. We
will open-source Horcrux 1 for practical use.

2 Overview

2.1 Distributed File Systems
A distributed file system (DFS) is a core component in net-
worked computing, enabling the storage, retrieval, and man-
agement of files across multiple interconnected servers or
nodes. Unlike traditional file systems, the workloads in DFSes
are handled by multiple distributed nodes. These workloads
are referred to as cross-node file operations. In a DFS, meta-
data serves as the foundational framework, recording critical
information such as file structures, access permissions, modi-
fication timestamps, and more. Many DFeSs store metadata
in a distributed manner to ensure scalability and robustness.
Consensus protocols are used to maintain the consistency
among distributed nodes. However, consensus protocols incur
significant performance overhead. For DFSes, performance
trade-offs need to be made. Thus, techniques like consistent
hashing are used to determine the metadata storage locations,
ensuring consistency. However, in systems like Ceph, Paxos
is utilized, but only during the synchronization of the MDS.

We now illustrate how DFSes keep metadata consistent by
using CephFS as an example. CephFS [61] supports multiple
active metadata servers (MDSs) to manage metadata and
handle metadata read and write requests from different clients.
In CephFS, each MDS is responsible for a distinct partition
of the file tree to ensure load balancing. As a result, each
MDS forwards requests to the corresponding MDS to handle
operations on different files. However, considering that the
size of metadata can reach the PB level in a complex system,
CephFS uses an object storage cluster rather than the MDS
to store metadata. This means that MDSs in CephFS can be
viewed as caches for the metadata. After each MDS finishes
handling parallel requests from different clients, it persists
the metadata updates to the object storage cluster. Despite

1Horcrux at: https://anonymous.4open.science/r/Horcrux-F00C
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different MDSs managing distinct metadata partitions, each
client should have an identical metadata view, such as file
structures, regardless of which MDS it connects to.

2.2 Fuzz Testing
Fuzz testing is a technique that generates a wide range of
unexpected and invalid inputs to uncover vulnerabilities and
bugs in a program. Essentially, a fuzzing process consists of
four steps: 1) information collection, 2) seed selection, 3) seed
generation, and 4) seed execution. Well-known fuzzers such as
AFL [25], LibFuzzer [41], and Peach [16] follow these steps
for testing. During the information collection phase, a fuzzer
gathers key data from the program under test by instrumenting
the code. This information is then used to identify bugs and
guide seed selection. In the seed selection phase, the fuzzer
chooses high-quality seeds or templates based on the collected
feedback. In the seed generation phase, the fuzzer applies
various strategies to produce new test inputs based on the
selected seeds or templates. Finally, in the seed execution
phase, the fuzzer feeds the new seed into the program and
waits for execution to complete.

Fuzzing a DFS also follows the four steps outlined above.
For information collection, a DFS fuzzer needs to gather exe-
cution data from multiple nodes and integrate the distributed
information into a unified metric. In seed selection, the fuzzer
should maintain a seed pool and choose high-quality seeds
based on the collected information. For seed generation, the
fuzzer needs to generate cross-node file operations. Addi-
tionally, the generation strategy for the operands should be
tailored to the file structures of the DFS, such as by selecting
existing files or directories. In the seed execution phase, the
fuzzer sends the operations to the DFS with DFS clients, typi-
cally mounted using FUSE [13] or the Linux kernel [14]. We
adhered to this workflow in the design of Horcrux.

2.3 Threat Model
Throughout this paper, we use the following threat model. (1)
Attackers’ capabilities. Under our threat model, attackers can
control DFS clients and perform file I/O operations remotely.
They cannot control any DFS node. (2) Bug Definition. We de-
fine the metadata inconsistencies as the view of the metadata
achieved by each client is different. (3) Attacks conduction.
Attackers can issue well-crafted file I/O operations through
specific clients, causing other clients to observe inconsistent
metadata views. This leads to symptoms such as data corrup-
tion, and may further escalate into severe consequences like
DoS, data losses, or permission violations.

The justification for this model is that DFSes allow multiple
clients to mount shared storage. For example, RedHat’s Open-
Stack [48] uses CephFS for this purpose. Metadata inconsis-
tencies, however, pose potential risks, enabling attackers to
exploit them for malicious file I/O that can impact others.

3 Understand DFS Metadata Inconsistencies

3.1 DFS metadata consistency maintenance

Figure 1 shows the four steps involved in a DFS to main-
tain metadata consistency: local metadata update, metadata
propagation, conflict resolution, and metadata commit.

In the example shown in the figure, three clients perform
three file operations concurrently: mv /foo /foo1 ⇔ delete
/foo/bar ⇔ chmod /foo/bar. Here, foo’ and foo1’ are direc-
tories, while ‘bar’ is a file. To maintain consistency, a DFS
follows these steps: 1) Local metadata update. Each node
handles the file operation issued by each client and updates
the metadata locally. In this example, node 0 updates the meta-
data for /foo’, while node 1 and node 2 update the metadata
for /foo/bar’. 2) Metadata propagation. In this step, each
node broadcasts its metadata updates to other nodes and re-
ceives updates from the others simultaneously. 3) Conflict

Node 0 Node 2Step 2: metadata

mv /foo /foo1 delete /foo/bar chmod /foo/bar

Client A

propagation

Client B Client C

Step 1: update /foo

Node 1
Step 1: update /foo/bar Step 1: update /foo/bar

Step 2: metadata

propagation

Node 0 Node 2Step 3: conflict

resolution/foo1, /foo1/bar

Node 1
/foo1, /foo1/bar /foo1, /foo1/bar

Step 3: conflict

resolution

Distributed File System Cluster
Step 4: metadata commit Step 4: metadata commit Step 4: metadata commit

Figure 1: Steps for DFSes to maintain metadata consistency.

resolution. If the metadata updates conflict, DFSes must re-
solve them. In this case, the file ‘/foo/bar’ is deleted in node
1, but still exists in node 0 and node 2. A DFS should resolve
such conflicts to achieve a consistent state. To accomplish
this, GlusterFS uses a healing process to select one node
as the resolution source and sync the metadata updates to
other nodes, while CephFS uses metadata servers (MDS) to
handle conflicts based on the order of received requests. If
node 0 is chosen by GlusterFS as the source, or the request
is handled by the order ‘chmod /foo/bar ⇒ mv /foo /foo1 ⇒
delete /foo/bar’ of CephFS MDS, the resolution results will
be ‘/foo1/bar’. 4) Metadata commit. Finally, the consistent
metadata is persisted. In GlusterFS, each node stores the meta-
data locally, while in CephFS, the MDS sends the metadata
to the corresponding object storage devices (OSDs).

Temporary Inconsistency duration calculation. For DF-
Ses, the nodes maintain metadata to achieve the eventual
consistency. Thus, temporary inconsistency is allowed. In
each DFS, the inconsistency duration can be calculated by
the following way: Duri = Tconsistent −Tissued . Here, Tconsistent
means the first timestamp when every node in a DFS has
the same view of the metadata. While Tissued represents the
timestamp that the cross-node file operations are issued. The
duration also equals to the summary of the duration of each
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phase in metadata consistency maintenance. For example, in
Figure 1, Tissued is the timestamp when three clients issue
the commands: mv /foo /foo1, delete /foo/bar, and chmod
/foo/bar. And the timestamp Tconsistent is the time when step
4 is over, and each node shows the metadata view as ‘/foo1’
and ‘/foo1/bar’.

3.2 Inconsistency Study Methodology

To better understand the characteristics of metadata inconsis-
tencies, we choose 4 popular DFSes as our studying targets,
including CephFS, GlusterFS, LeoFS, and IPFS. DFSes like
HDFS, Lustre, and OrangeFS manage metadata in a central
node, rather than in distributed manners. Thus, metadata in-
consistency doesn’t occur in them. So we did not choose them
as the benchmark.

These targets are ubiquitous in DFSes just like ext3 [62]
is ubiquitous in kernel file systems. CephFS is first pro-
posed by Sage A. Weil, in OSDI 2006 [61]. According to
the data from RedHat [7], Ceph storage is reliably the most
popular storage for OpenStack with more than 50% market
share. Based on the statistics [28], Ceph has been deployed
in 6,119 well-known corporations, including SpaceX [57],
and OpenStack [48]. GlusterFS is another DFS that can scale
to several petabytes. According to statistics, 3,583 compa-
nies have used GlusterFS as an Enterprise Data Storage tool
around the world [29]. LeoFS [36] is a distributed objec-
t/blob store system, which is able to store various kinds of raw
data. While no public market share data is available, LeoFS
has been adopted by several renowned enterprises, including
Rakuten [53]. IPFS [30] is a decentralized DFS that uses
content-addressing to uniquely identify each file in a global
namespace. Lots of applications have been developed on the
top of IPFS, such as a peer-to-peer database OrbitDB [50].

The comparison of these DFSes is shown in Table 1.
CephFS is developed in C++. GlusterFS is implemented in
C. LeoFS is created in Erlang, and IPFS is written in Go.
For access protocols, CephFS, GlusterFS and LeoFS support
POSIX file commands, while IPFS can only be accessed by
the IPFS API. CephFS, GlusterFS, and LeoFS are widely
used in cloud storage and high performance computing. IPFS
is used in Web3 applications and blockchain systems. To
store the metadata, CephFS use distributed Metadata servers.
GlusterFS, LeoFS, and IPFS use DHT algorithms. For node
types, CephFS support mulitiple types of nodes, including
MDS (metadata servers), OSD (object storage devices), MON
(monitors), and etc. While nodes in other three DFSes have
the same type. An in-depth study of metadata inconsistencies
on these targets represent a common feature of such problems.

Inclusion and exclusion for bug selection. We select bugs
from the issue trackers of the above mentioned systems. 1) In-
clusion criteria: we search for resolved and valid bugs whose
titles contain the words ‘metadata’, ‘view’, ‘mismatch’, and

CephFS GlusterFS LeoFS IPFS

Language C++ C Erlang Go
Access

Protocol POSIX POSIX POSIX
IPFS
API

Use Cases
Cloud storage,

HPC
Big data,

cloud storage
cloud

storage
Web3,

blockchain
Metadata
Storage MDS DHT DHT DHT

Node
type

MDS, OSD
MON,etc Full node Full node Full node

Table 1: Detailed comparison of the targeted DFSes. DHT
stands for dynamic hash tables. MDS is the metadata server,
OSD is the object storage device, and MON is the monitor.

‘inconsistency/inconsistent’. The issues should be flagged as
‘bug’ or ‘vulnerability’. 2) Exclusion criteria: we manually
checked the reports to exclude issues unrelated to metadata
inconsistencies. We also excluded the bugs with: i) duplicate
reports of the same issue. ii) reports that were misclassified
as bugs but were actually feature requests or enhancements.
Finally, we get 44 bugs listed in Table 2.

CephFS GlusterFS LeoFS IPFS Total
10 17 13 4 44

Table 2: Analyzed metadata inconsistencies numbers.

It should be mentioned that our analysis focuses on bugs
from the past five years rather than the entire bug history.
This selection ensures relevance to the current systems and
practices. While the resulting set of bugs appears relatively
niche in terms of quantity, these metadata-related issues are of
significant severity, often leading to serious system failures.

3.3 Inconsistency Study Findings
3.3.1 Severity

We found that metadata inconsistencies are significantly more
critical than other bugs in DFSes in three key aspects:

Urgency. 65.91% of the metadata inconsistency issues are
classified as ‘High-Priority’ compared to only 6.47% for other
types of bugs. This includes issues marked as ‘Critical’ or
flagged with other urgency labels. The reason for this discrep-
ancy may be that metadata inconsistencies are directly related
to user-facing functionality. If left unaddressed, they can be
easily exploited maliciously.

Consequences. We found that the majority of (54.55%)
the metadata inconsistencies result in data loss (e.g., LeoFS
bug#702 [60]), 27.27% lead to service unavailability (e.g.,
GlusterFS bug#919 [22]), and the remainder cause permis-
sion violations (e.g., CephFS bug#63906 [42]). This indicates
that, although the relative number of metadata inconsisten-
cies is small, their consequences are severe. For example,
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bug#1115 [46] in LeoFS causes different clients to see in-
consistent views of the data. In some client views, data that
should have existed appears to be deleted. As another exam-
ple, bug#63906 [42] in CephFS can cause two clients to fetch
inconsistent modes for the same file. One client may see the
file mode as 32768 (indicating a regular file), while the other
sees it as 32776 (indicating a file with root permissions). As
a result, the second client may mistakenly gain elevated per-
missions on the file, potentially exposing credential data and
leading to privacy leaks.

Impacts. We found that only 31.82% of metadata incon-
sistencies were detected before the corresponding versions
were released, meaning the majority (68.18%) were exposed
in production. This highlights the significant risks posed by
such issues in live environments. Given that these bugs can be
easily exploited and their potential consequences are severe,
it is crucial to address them before releasing new versions.

3.3.2 Triggering Conditions.

Although most distributed system fuzzers [18, 44] inject sys-
tem faults to detect bugs, we found that only one (2.27%)
of the metadata inconsistencies are related to system faults.
The case is the bug#112 in IPFS [66]. In that case, when
two removed nodes re-enter the cluster, the state of certain
files cannot be synchronized to them due to consensus fail-
ures. The reason may be that injecting faults is effective in
detecting error-handling code bugs. According to our study,
metadata inconsistencies do not occur in the error-handling
processes. Thus, system faults are less likely to trigger meta-
data inconsistencies.

In contrast, all the metadata inconsistencies we analyzed
require a set of cross-node file operations to expose. Further-
more, our study revealed two unique characteristics of such
operations, shedding light on effective detecting tools:

1) Distinct operators. We found that distinct operators with
potential relations, such as hardlink/create and create/mv, trig-
ger 63.64% of the inconsistencies. Although the same opera-
tors trigger many inconsistencies as well, distinct operators
that are related to each other are more effective in triggering
metadata inconsistencies. For a testing tool, it’s easy to con-
struct cross-node operations with the same operators. How-
ever, tapping into the underlying relationships between dis-
tinct operators will likely make a testing tool more effective
and stand out.

2) Related operands. As for the operands, operations involv-
ing related files (parent/child file nodes) trigger 54.55% of the
metadata inconsistencies. While operations with exactly the
same operands also trigger some bugs, generating cross-node
operations with related operands can significantly improve
the effectiveness of metadata inconsistencies detection.

3.3.3 Root Causes.

We analyzed the root causes of metadata inconsistencies based
on the four steps required to maintain consistency. Our anal-
ysis revealed that the majority of metadata inconsistencies
(63.64%) are caused by conflicts during the conflict resolu-
tion phase. Additionally, 22.73% are attributed to issues in
the local metadata update phase, and 9.09% result from bugs
in metadata propagation. The remaining two cases (4.55%)
are caused by flaws in the metadata commit phase. To better
understand how these flaws lead to metadata inconsistencies,
we will present examples for each root cause.

Conflict Resolution Bugs. The majority of metadata incon-
sistencies stem from this issue. For example, bug#49912 in
CephFS [9] causes different files to point to the same inode
during the resolution of renaming conflicts. (An inode is a
data structure in a Unix-style file system that describes a file-
system object such as a file or directory.) This bug can lead
certain threads to mistakenly assume they can safely acquire
the lock and update the data, which may result in data loss.
Another case is the bug#3677 in GlusterFS [24]. In that case,
the DFS failed to handle the conflicts caused by cross-node
file operations rm /B/D1 ⇔ rm /B/D2 ⇔ rm /B}.

Local Metadata Update Bugs. Another part of the root
causes is the bugs in the local metadata update phase. For
example, the bug#63906 of CephFS [42] occurs during the
processing of ‘chmod’ request locally and leads to metadata
inconsistencies. The handling function returns before the
‘chmod’ is actually accomplished.

Metadata Propagation Bugs. 4 cases are due to bugs in
the metadata propagation phase. For example, the bug#51068
in CephFS [3] missed to sync some STS (subtree snap in
CephFS) metadata properties such as roles and policies during
metadata synchronization. As a result, various clients may
not get inconsistent STS properties.

Metadata Commit Bugs. The last category of root causes
for metadata inconsistencies is bugs in the metadata commit
phase. For example, bug#1017 [47] in LeoFS results from
implementation flaws in the data compaction process during
metadata commitment. Similarly, bug#2845 [21] in GlusterFS
is related to data flushing issues.

3.4 Requirements
Based on the findings, two key requirements can be derived
for effectively detecting DFS metadata inconsistencies:

1. Try to characterize and mine the relationships between
cross-node file operations. Based on the findings from the
triggering conditions, the underlying relationships between
cross-node operations play a crucial role in detecting meta-
data inconsistencies. An effective tool should model these
relationships and learn them during the testing.

2. Try to trigger more conflict resolution code. According
to the findings in root cause analysis, metadata conflict
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resolving is the main reason for inconsistencies in DFSes.
An effective detection tool should trigger more conflict
resolution logic. A metric is required to evaluate which
cross-node file operations are most effective at triggering
such logic, guiding the generation of further test inputs.

4 Motivating Example

4.1 A Metadata Inconsistency in GlusterFS
We use an example of a metadata inconsistency in GlusterFS
to illustrate how it happens and how to effectively detect it.
The example is the bug#1546 in GlusterFS [23]. Figure 2
shows the workflows to trigger this bug. Overall, this bug is
caused by interrelated distinct cross-node file operations
{ create DC0 ⇔ touch DC0/F0 } due to a conflict resolu-
tion flaw. DC0 here stands for a directory, and F0 means a
file. In this case, three datacenters are sending requests to
the GlusterFS cluster. The first datacenter sends an operation
‘create DC0’ to node 0. The second datacenter sends the op-
eration ‘touch DC0/F0’ to node 1. The last datacenter sends
‘lookup DC0’ to node 2. These cross-node operations trig-
ger both data and metadata synchronization. First, each node
synchronizes the data. After this step, each node contains
the directory ‘DC0’. However, for nodes 1 and 2, none of
the extended attributes (xattrs) are set on the directory ‘DC0’
until the metadata sync is completed. Here, xattrs represent
extended file attributes, which are filesystem features that al-
low users to associate computer files with metadata that is not
interpreted by the filesystem itself. At this point, the cluster
handles the ‘touch’ request and sets a default xattr ‘root’ on
the directory ‘DC0’ of node 1.

Datacenter 0

GlusterFS node 0
create DC0 (with user A)

Datacenter 1

GlusterFS node 1
touch DC0/F0

Datacenter 2

GlusterFS node 2

Conflict
Resolution

lookup DC0

node 0 node 1 node 2

DC0
(user A)

DC0
(root) DC0

node 0 node 1 node 2

DC0
(user A)

DC0
(root)

DC0
(root)

choose 
source

Figure 2: A metadata inconsistency in GlusterFS due to
conflict resolution flaws, which is triggered by distinct cross-
node operations { create DC0 ⇔ touch DC0/F0 }.

During the metadata synchronization process, conflicts
among the xattrs across nodes should be resolved. To ad-
dress these conflicts, GlusterFS selects one node as the syn-
chronization source. However, a bug exists where the cluster
mistakenly selects node 1 as the source, despite the fact that
the xattr for the entry ‘DC0’ is just a default value: ‘root’.
This incorrect value gets synchronized, resulting in a situation
where only datacenter 0 sees the permission of ‘DC0’ as ‘user
A’, while the other datacenters incorrectly see the permission

as ‘root’. This bug has been fixed by the corresponding de-
velopers [31]. They implemented an ‘outcast’ logic in the
metadata sync process, which prevents entries that have not
completed the initial metadata synchronization from being
selected as the source for conflict resolution.

4.2 Challenges and Our Key Insights
Limitations of existing tools. Existing tools have limitations
in generating interrelated cross-node operations that trigger
the deep logic of metadata conflict resolution in DFSes. In
this case, the relationships with the file operations are essen-
tial to trigger this bug. Specifically, the operator ‘create’ set
the permission to ‘user A’ while the operator ‘touch’ set the
permission to ‘root’. Thus, the cross-node operations { create
DC0 ⇔ touch DC0/F0} are key to this inconsistency.

However, existing DFS fuzzing tool Monarch [43] mu-
tates syscalls and system faults without knowing the implicit
relationship of these operations. Besides, the faults are not
helpful to trigger the bug in this case. While traditional file
system testing tools such as Hydra [32], Healer [58] and
Syzkaller [26] failed to generate cross-node inputs, let alone
to mine the relationships and trigger conflict resolution.

In this case, our design will constantly generate cross-node
file operations like ‘create’, and ‘touch’. After the execution
of each set of cross-node operations, our approach calculates
the duration of metadata inconsistency. The cross-node opera-
tions {create DC0 ⇔ touch DC0/F0 ⇔ lookup DC0} will lead
to longer inconsistency duration compared with operations
like {create DC0 ⇔ create DC1 ⇔ lookup DC2}. Conse-
quently, these operations are more likely to occur under our
approach. Thus, we successfully generate such cross-node
operations, ultimately detecting this bug.

5 Horcrux Design

Our key insights. To address the challenges faced by existing
tools, we adopt a cross-node operation modeling approach
and capture the relationships among operators and operands
guided by the temporary inconsistency duration. Table 3 de-
scribes the comparison of our design and the existing works.
Our approach generates cross-node fie operations to trigger
deep logic of conflict resolution. The guidance in our design
is the inconsistency duration. This is based on an insight that
more complex conflict resolution processes lead to a longer
period of temporary inconsistency. While other approaches
use code coverage to guide the fuzzing process. Furthermore,
only Monarch and our approach support generating cross-
node inputs. And only our design generates conflict testing
inputs in an effective way.

Why simply extending existing tools doesn’t work? To
detect metadata inconsistencies in this case, a straightforward
approach may be equip each DFS client with a single-node
filesystem testing tool like Hydra and Syzkaller to generate
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Test
Inputs

Guidance
Metrics

cross-node
inputs

conflict
inputs

Monarch
system calls
and faults

code
coverage ✓ ✗

Syzkaller
system
calls

code
coverage ✗ ✗

Hydra
system calls
and images

code
coverage ✗ ✗

smallfile
file

operations
no

guidance ✗ ✗

Our
Design

file
operations

inconsistency
duration ✓ ✓

Table 3: Comparison between our design and other tools.

cross-node file operations. However, such cross-node oper-
ations are random, without relationships. In addition, each
Hydra (or Syzkaller) instance are independent. Without a uni-
fied operation generator, interrelated cross-node operations
cannot be conducted even we know the relationships.

For Monarch, a simple extension may be eliminating the
system faults and adding inconsistency monitors. However,
to learn the implicit relationships, a metric is needed to judge
what cross-node file operations have good relations. And a
model of cross-node operations is also needed to strengthen
the relations for further testing inputs generation. Monarch
uses the code coverage as the metric. It may direct the fuzzer
to other code components rather than conflict resolution. And
without a proper model, Monarch has no way to fetch the rela-
tionships among cross-node file operations. Besides, directly
manipulate the inputs to the conflict resolving code through
fault-injection is ineffective too. This approach may import
false positives, because some input cases may not valid due
to the upper-level function may checks the parameters.

Overall design. Figure 3 shows the overall workflow of
Horcrux. 1) The combinations of cross-node file operations
are virtually limitless. The combination can be calculated by
the product of the operators’ number and the operands’ num-
ber, raised to the power of the clients’ number. To reduce the
infinite exploration space, Horcrux constructs a relation table
by making abstractions of both file operators and operands.
2) To generate interrelated cross-node operations and trigger
complex metadata conflict resolution, Horcrux leverages the
inconsistency duration to update the relation table and gener-
ate high-quality cross-node workloads. The heuristic is based
on the insight that more complex conflict resolution processes
will lead to longer periods of temporary inconsistency. We
will introduce the details of each step.

5.1 Cross-Node Operations Modeling
5.1.1 Operations Abstraction

In order to reduce the infinite combinations of cross-node file
operations into a tractable one, Horcrux models the operations.
In Horcrux, a file operation is defined as ⟨Opti,Opdi⟩. Opti

Cross-Node Operations Modeling

Relation Table Construction

Inconsistency Duration Guiding

Inconsistency

Duration Calculation

Cross-Node Operations Generation

Operand 

Abstraction

Operator 

Abstraction
+

Relation Table Updating

gained cross-node relationships

Consistency Checking
Topology File Property

consistent

inconsistent

bugs
mv /foo /foo1 create /foo/bar …

execution

Figure 3: The overall workflow of Horcrux. Horcrux first con-
structs a cross-node file operation relation table for operation
modeling. Afterward, Horcrux leverages the temporary incon-
sistency duration to guide the generation of the cross-node
operations and try to trigger metadata conflict resolution.

represents the operator of a file command such as ‘mv’. Opdi
records the operands of the operator. Some operators have
two operands, while others have only one. To accommodate
this, we define Opdi as a list [opd1,opd2], where the second
element may be None if the operator only has one operand.

Operator Abstraction. Considering that different DFSes
tend to have distinct operators, constructing a unified model
for all operators is challenging. However, we found that all op-
erators can generally be divided into two categories: POSIX-
standard operators and non-POSIX ones. For DFSes that sup-
port POSIX operators, such as CephFS, Horcrux only needs
to model the POSIX operators. For other DFSes, like IPFS,
we collect the operators based on their documentation.

Operand Abstraction. The operands of file operations are
primarily file paths. Although file paths are virtually infinite,
we found that the relationships among these paths can be
abstracted into four types. The first type is sel f , which means
the two operands are exactly the same. The second type is
parent, which represents that one path is the parent of another.
The third type is child, indicating that one path is a child of
another. The last type is noRel, which means two paths have
no relationships. With this abstraction, Horcrux reduces the
infinite exploration space into a manageable one.

5.1.2 Operation Relation Table Construction

To characterize the relationships between cross-node file op-
erations, Horcrux maintains a file operation relation table,
as shown in Figure 4. As depicted in the figure, the rows of
the relation table correspond to the root operations, while the
columns represent the cross-node operations. A root opera-
tion is the initial operation chosen by Horcrux in each fuzzing
round. Based on the root operation, Horcrux locates the cor-
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responding row in the table and fetches (n-1) cross-node op-
erations from that row, where ‘n’ represents the number of
clients during testing. The Wrelation in the table indicates the
relation weight between operations. Initially, all the relation
weights are set to 1. A higher weight in a given row increases
the likelihood of choosing that operation during the fuzzing.

<𝑚𝑣, [𝑓𝑎𝑡ℎ𝑒𝑟, 𝑠𝑒𝑙𝑓]>

<𝑚𝑣, [𝑠𝑒𝑙𝑓, 𝑠𝑒𝑙𝑓]>

<𝑐𝑟𝑒𝑎𝑡𝑒, 𝑠𝑒𝑙𝑓 >

<𝑙𝑖𝑛𝑘, [𝑠𝑒𝑙𝑓, 𝑠𝑒𝑙𝑓]>

… …

𝑊!"#$%&'(: 1.0

𝑊!"#$%&'(: 4.0

𝑊!"#$%&'(: 3.0

<𝑚𝑣, [𝑐ℎ𝑖𝑙𝑑, 𝑛𝑜𝑅𝑒𝑙]>

…

𝑊!"#$%&'(: 1.0

𝑊!"#$%&'(: 2.0

𝑊!"#$%&'(: 1.0

… <𝑑𝑒𝑙𝑒𝑡𝑒, [𝑠𝑒𝑙𝑓]>

…

𝑊!"#$%&'(: 1.0

𝑊!"#$%&'(: 3.0

𝑊!"#$%&'(: 1.0

…

…

…

Root Op
Cross-node

Op

Figure 4: The file operation relation table of Horcrux.
Wrelation in the table represents the relation weights between
cross-node operations.

When querying the table, Horcrux will replace the con-
crete operands with the abstraction sel f . For example, if the
current root operation is ⟨mv, [A,B]⟩, Horcrux will match it
to the row ⟨mv, [sel f ,sel f ]⟩. For the operand opd1, there are
three possible choices: sel f , parent, child. sel f selects the
same file in the root operation, parent chooses the parent
node of the file, and child selects one of the children. While
the operand opd2 can be chosen from {sel f , parent, child,
noRel}, where noRel randomly chooses an existing file or
directory or randomly generates a new file.

5.2 Inconsistency Duration Guiding
5.2.1 Cross-Node File Operation Generation

Horcrux generates cross-node operations based on the file
operation relation table. First, it randomly produces a root
operation. For all supported operators, Horcrux randomly
select one. According to the operator, Horcrux generates the
corresponding operands by randomly selecting an existing
file/directory or generating a new file/directory.

After generating the root operation, Horcrux generates the
other cross-node operations by referencing the relation table.
The number in the table represents the probability of the corre-
sponding operation being chosen. In this way, Horcrux selects
several operations from the table as the cross-node operation
templates. Based on these templates, Horcrux generates the
concrete operators and operands. For operator generation,
Horcrux chooses the operator provided by the template. For
example, if the table gives a template ⟨mv, [sel f ,noRel]⟩, the
chosen operator will be mv. For operands generation, Hor-
crux uses the length of operands in the root operation and the
template to categorize the strategies.

The same length. If both the root and template operations
have one operand, Horcrux will generate operands based on
the template’s guidance. If the template operand is sel f , the
generated operation will have the same operand as the root

operation. If the template operand is parent, Horcrux will
select the parent node of the operand in the root operation.
For a child operand in the template, Horcrux will randomly
choose one of the children files. If both the root and template
operations have two operands, the first operand is generated
in the same manner. The second operand may also include
noRel. The noRel operand instructs Horcrux to randomly
choose an existing file or directory, or to generate a new one.

Lengths are 1 and 2. If the root operation has one operand
and the template operation has two operands, Horcrux will
adapt the template to match the root operation’s structure
by keeping the same operator and first operand. The second
operand in the template will be set to noRel. Thus, for the
first operand, Horcrux will choose the operand in the root op-
eration itself, its parent, or its child. For the second operand,
Horcrux will either select an existing file/directory or ran-
domly generate a new one.

Lengths are 2 and 1. If the root operation has two operands
and the template operation has one, Horcrux will generate the
operand based on the first operand of the root operation.

After generating the cross-node operations, Horcrux sends
them to the DFS cluster via various clients. Then Horcrux
waits for the execution to finish, and checks whether a meta-
data inconsistency exists. If an inconsistency is found, Hor-
crux reports the corresponding issues and exits the fuzzing
process. Otherwise, it collects the current metadata consis-
tency maintenance logs and calculates the duration to further
guide the updating of the relation table.

5.2.2 Consistency Checking

To check whether metadata has achieved consistency, we first
model the metadata in a DFS. Metadata typically describes
basic information about a DFS, such as file structures and data
properties. Thus, we define metadata in DFSes as a rich tree
that contains both topology information and property informa-
tion. A node in the metadata tree is defined as ⟨C,P⟩, where
C represents the child list of that node, and P denotes the
property of the current file or directory. In BNF grammar [64],
we define C and P as:

<C >::=< child > |< child >,<C > | /0

< P >::=< name >,< authority >,< time >

Children list C can be an empty set, or a set of child
nodes. Each node is identified by its inode. If a node has
multiple children, they are sorted according to the alphabet-
ical order of their names. The property P contains three el-
ements: name,authority, time. name represents the node’s
name, while authority indicates the permissions held by each
user on this node, such as who can write to this file and who
is the owner of this file. The property time records the last
modification time, access time, and creation time.
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According to the metadata definition, we define two moni-
tors for checking metadata inconsistencies: the topology mon-
itor and the property monitor. 1) Topology monitor: This
monitor checks whether different clients observe the same
metadata tree topology. It does this by traversing the tree
and ensuring that the child list C of each node is consistent
across all clients. 2) Property monitor: This monitor checks
whether all three properties of a node are the same from
multiple clients. For each node, it first verifies that the name
is the same across clients. For example, a historical bug in
CephFS [9] violated this assertion. Next, it checks whether
the authority properties are consistent across clients. This
includes verifying the owner of the file and the permissions
for each user. A bug in CephFS [17] caused a metadata incon-
sistency regarding layout permissions on the root directory,
violating this rule. Finally, the monitor checks the time prop-
erties of each node. Multiple clients compare modification,
access, and creation times. A bug in CephFS [37] caused a di-
rectory’s modification time to be overwritten during a update
cap request when creating directories, breaking this monitor.
In each fuzzing round, Horcrux verifies metadata consistency.
After issuing cross-node file operations, it records a times-
tamp. If both monitors confirm that the metadata is consistent,
Horcrux records a second timestamp. Using these timestamps,
it calculates the duration of the inconsistency.

Bugs Identification. If all monitors confirm that the meta-
data is consistent, Horcrux will proceed with the next round
of fuzzing. However, if any monitor detects metadata incon-
sistencies, Horcrux will not immediately classify it as a bug.
Given the complex conflict resolution mechanisms, nodes in
DFSes may take some time to achieve eventual consistency.
Therefore, Horcrux will continue to recheck the consistency
using the two monitors. If the metadata remains inconsistent,
Horcrux will then classify it as a bug.

5.2.3 Operation Relation Table Updating

To handle the seeds that trigger more conflict resolving logic,
Horcrux updates the relation table weights for a high possibil-
ity for further generation. Based on the calculation of the in-
consistency duration, Horcrux determines whether the current
cross-node file operations are good. In the fuzzing process,
Horcrux will record the maximum inconsistency duration Dm.
Dm is dynamically updated. If a longer inconsistency duration
is found, we will update the Dm to restore the maximum dura-
tion. And Horcrux will consider the operations as good ones.
For good cross-node operations, Horcrux recognizes the first
operation as the root operation and updates the values in the
relation table according to other operations.

Algorithm 1 outlines the process of updating the file op-
eration relation table in Horcrux. The input of the algorithm
contains the original relation table, the current cross-node file
operations, and the metadata tree. The output is the updated
relation table. First, as shown in line 1, Horcrux fetches the

Algorithm 1: File Operation Relation Table Updating
Input :Torg: Original file operation relation table

Oc: Cross-node file operations
Tree: The metadata tree

Output :Tnew: New file operation relation table
1 Tnew=Torg, root_op = Oc[0];
2 for each op in Oc[1:] do
3 opr = [], opt = extractOpt(op);
4 opr_root = extractOpr(root_op);
5 opr_op = extractOpr(op);
6 if len(opr_root) == len(opr_op) then
7 opr = cmpOpr(Tree,opr_root,opr_op);
8 end
9 if len(opr_root) == 1 then

10 opr_1 = cmpOpr(Tree,opr_root,opr_op[0]);
11 opr = [opr_1,noRel];
12 end
13 if len(opr_root) == 2 then
14 opr = cmpOpr(Tree,opr_root[0],opr_op);
15 end
16 target_op = join(opt,opr);
17 Tree[root_op][target_op] += 1;
18 end

root_op. For other operations, Horcrux extracts the operators
and the operands as described in lines 3-5. The length of
opr_root and opr_op can be 1 or 2 (operators like ‘create’
have one operand and ‘mv’ has two operands).

If opr_root and opr_op have the same length, as shown in
lines 6-8, Horcrux directly determines the relation between
the operands from opr_root and opr_op. This relation could
be ‘parent’, ‘self’, ‘child’, or ‘noRel’. As lines 9-12 indicate,
if the length of opr_root is 1 and the length of opr_op is
2, Horcrux will only calculate the relation between the first
operands, which is stored as opr1. Unlike the opr in line 7,
the second operand in the list opr will be set to noRel, since
the second operand in oprroot is none As line 14 shows, if
the length of opr_root is 2 and the length of opr_op is 1,
opr will only be calculated by the first operands in opr_root
and opr_op. Horcrux combines opt and opr to determine
the target operation target_op in line 16. As line 17 shows,
Horcrux updates the target_op’s item in the table.

We now use three examples to illustrate this process, cate-
gorized based on the lengths of opr_root and opr_op.

• The same length. Suppose opr_root is ⟨cp, [A,B]⟩ and
opr_op is ⟨link, [C,B]⟩, where A is the parent of C. Since
both operations have two operands, the opr at line 7 will
be [child,sel f ]. The target_op will be ⟨link, [child,sel f ]⟩.
Horcrux will increment the value at row ⟨cp, [sel f ,sel f ]⟩
and column ⟨link, [child,sel f ]⟩ in the relation table by 1.

• Lengths are 1 and 2. Suppose opr_root is ⟨create, [A]⟩ and
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opr_op is ⟨link, [C,B]⟩, where A is the parent of C. The opr
at line 11 will be [child,noRel] and the target_op will be
⟨link, [child,noRel]⟩. Horcrux will increment the value at
row ⟨create, [sel f ]⟩ and column ⟨link, [child,noRel]⟩ by 1.

• Lengths are 2 and 1. Suppose opr_root is ⟨cp, [A,B]⟩ and
opr_op is ⟨delete, [A]⟩. The opr at line 14 will be [sel f ] and
the target_op will be ⟨delete, [sel f ]⟩. Horcrux updates the
value at row ⟨cp, [sel f ,sel f ]⟩ and column ⟨delete, [sel f ]⟩.

6 Implementation

Figure 5 illustrates the implementation details of Horcrux. To
ensure adaptability to different platforms, the implementation
is divided into three main parts. The first part is the Horcrux
Fuzz Engine, which includes a cross-node operation genera-
tor and a file operation relation table. These components are
consistent across all DFS platforms. The second part is the
Mount component, responsible for mounting the DFS under
test and forwarding the file operations generated by Horcrux
to the DFS cluster. This part provides two mounting methods:
the kernel FUSE module and command modeling. By using
FUSE, Horcrux can call POSIX APIs [63] directly on DFSes
like CephFS, GlusterFS, and LeoFS. For DFSes that do not
support FUSE (such as IPFS), Horcrux models the file com-
mands of the DFS by writing a JSON file that records each
command’s operator and operands.

Kernel FUSE

Commands Modeling

Mount Inconsistency Duration Calculation

Consistency Checking
++

Fuzz Engine

File Operation Relation TableCross-node Operation Generator +

Start and End Time Identify

Figure 5: The implementation of Horcrux. is divided into
three parts on 4 DFSes.

For metadata inconsistency detection, Horcrux uses dif-
ferent ways according to the mount methods. If the DFS is
mounted by FUSE, metadata checking can be accomplished
by using commands like ‘tree’ (for file structure) or ‘ll’ (for
properties). Otherwise, Horcrux uses platform-specific com-
mands to check metadata. For example, for IPFS, Horcrux
uses ‘ipfs-cluster-ctl status’ to check the property of each file.

7 Evaluation

To evaluate the effectiveness of Horcrux, we compared
it with state-of-the-art file system testing tools, including

Monarch [43], Hydra [32], Syzkaller [26] and smallfile [1].
The experiments are conducted on four widely used dis-
tributed file systems which contain CephFS [61], Glus-
terFS [19], LeoFS [36] and IPFS [2]. We did not choose
HDFS, Luster or OrangeFS because they manage the meta-
data in a central manner. We ran each distributed system in
a cluster on 10 virtual machines. The servers are deployed
in our lab, allowing us to customize the experimental envi-
ronment. Each machine has a 2.25 GHz 128-core CPU(with
sufficient resources, the number of cores has little impact on
the results of this experiment), 128 GB of RAM, and a 500
GB SATA SSD. They are connected with each other via a
10 Gbps bandwidth network. All the machines are operated
by Ubuntu 22.04.3 with Linux kernel version 5.15.0. For
CephFS, we deployed 5 monitor nodes, 5 metadata servers on
5 virtual machines, and 10 object storage devices. For Glus-
terFS and IPFS, we deployed 10 nodes on the 10 machines.
For LeoFS, we deployed 3 manager nodes and 7 data storage
nodes. Besides, we built 5 clients for each DFS where each
client connects directly to one node in the DFS. All the exper-
iments are conducted 5 times, and the results use the average
values. We designed the experiments to address the following
research questions:

• RQ1: Is Horcrux effective in detecting metadata incon-
sistencies in DFSes?

• RQ2: Can Horcrux trigger more metadata conflict reso-
lution logic compared to other state-of-the-art tools?

• RQ3: Is inconsistency duration guidance effective?

7.1 Metadata Inconsistencies Detection

Horcrux has detected 10 previously unknown metadata in-
consistencies in the commonly-used DFSes. Specifically, we
found 3 inconsistencies in CephFS, 4 in GlusterFS, 2 in LeoFS
and 1 in IPFS. 7 metadata inconsistencies are of the property
inconsistency type, and 3 are of the topology inconsistency
type. Bug #2 occurs in the local metadata update phase. Bug
#3 occurs in the metadata propagation phase. And other 8
bugs are found in the conflict resolution phase.

Table 4 shows the details of the metadata inconsistencies
found by Horcrux. We also used the workloads generated
from Monarch, Hydra, and Syzkaller to test these DFSes. For
smallfile, it can generate distributed file operations for various
hosts. For Hydra and Syzkaller, we equipped each client with
a workload generator provided by them. As a result, Monarch,
Hydra and Syzkaller found 3 of the metadata inconsistencies
detected by Horcrux (Bug #5, Bug #6, and Bug #9). Monarch
finds 3 bugs mainly because the file operations it generates
are not inter-related, and thus cannot effectively triggering
conflict resolution code, which is the main reason for metadata
inconsistencies. While smallfile found 0 bugs.
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Table 4: Previously-unknown metadata inconsistencies found by Horcrux in 24 hours on 4 widely-used DFSes. Horcrux detected
3, 4, 2, and 1 bugs in CephFS, GlusterFS, LeoFS, and IPFS, respectively. The identifiers are anonymized for double-blind review.

# Platform Bug Type Bug Description Identifier

1 CephFS Property Inconsistency Writing to a file in parallel, some clients report 0 sizes, while others report over 200 MB. Bug#63013
2 CephFS Property Inconsistency Cephfs different nodes have a different view of the REPORTED state due to interface bugs. Bug#62704
3 CephFS Property Inconsistency A metadata server map decoding bug during PAXOS sync processes, leads to service failures. Bug#65423
4 GlusterFS Topology Inconsistency The view of gluster nodes becomes inconsistent after a series of mutated file operations due to sync error. Bug#4163
5 GlusterFS Property Inconsistency One of the nodes in the cluster becomes a read-only filesystem while other nodes remain normal. Bug#4164
6 GlusterFS Topology Inconsistency After removing plenty of files, only the data of some nodes is deleted. The other nodes remains unchanged Bug#4170
7 GlusterFS Topology Inconsistency Parallel executing chmod, rm, metadata became inconsistent due to the write-conflict error. Bug#4182
8 LeoFS Property Inconsistency Parallel rewriting data with different data sizes but the checksum is not changed while data have changed. Bug#1209
9 LeoFS Property Inconsistency INCONSISTENT HASH between the manager node and other nodes due to errors in synchronize_ring. Bug#1211
10 IPFS Property Inconsistency Simultaneous execution of gc and add causes the gc to get stuck, leading to inconsistent file storage. Bug#1993

Bug Severity. Metadata inconsistencies tend to cause se-
vere consequences to the DFSes. Specifically, the bugs de-
tected by Horcrux can lead to client I/O failure, data losses,
and widespread service outages. 3 bugs can lead to the im-
proper processes of client I/O requests, including Bug #1,
Bug #5, and Bug #10. Clients cannot read or write any data
to the file system which may affect the business logic of their
applications and finally lead to property losses. For example,
developers from Ceph triaged and confirm the Bug #1 that the
vulnerability is related to file(lock) in the MDS and can lead
to io hang. 3 bugs, including Bug #4, Bug #6, and Bug #7 may
lead to data losses by losing some topology information of the
file systems. A client may upload some files into the DFSes
and cannot find them due to the inconsistency in metadata
topology. 4 bugs, including Bug #2, Bug #3, Bug #8, and Bug
#9 may lead to widespread service outage. These bugs corrupt
some key properties like file hash or node statuses. This may
influence the further handling logic of DFS nodes and finally
lead to widespread service outages just like the incident in
October 2016 [34] as we mentioned in Section I.

Bug Exploitation. The metadata inconsistencies can be ex-
ploited to conduct attacks. Attackers can control DFS clients
and perform file I/O operations remotely to leverage these
vulnerabilities. The prerequisite for exploiting these vulner-
abilities is that the attacker needs to mount a file system to
the DFS storage cluster. DFS is designed to support multi-
ple users, so there are many real-world deployment scenarios
where different users mount to the same storage cluster. For
example, in the OKEANOS [27] case mentioned in Section
1, the client can access the backend storage of the GRNET.
Similarly, in the OpenStack [48] service provided by Redhat,
users can also mount to the same storage backend. Specif-
ically, Bug#2, Bug#3, Bug#8, and Bug#9 can be exploited
to conduct DoS attacks. Bug#6 and Bug#7 can be leveraged
to cause data losses. Bug#1, Bug#5, and Bug#10 result in
permission violations.

Bug Discover Time. Figure 6 describes the time for Hor-
crux, Monarch, Hydra, and Syzkaller to discover the bugs. We
listed all the bugs in four DFSes in the same plot.

Horcrux detected six bugs (over half of all the bugs) within

3h 6h 9h 12h 15h 18h 21h

2
4
6
8

10
12
14

D
et

ec
te

d
B

ug
s

Horcrux Monarch Syzkaller Hydra

Fig. 1. The

1

Figure 6: Bugs found by Horcrux and other tools over time.
After 6 hours, the points of Monarch, Syzkaller, and Hydra
coincide, as they find no new bugs beyond that time.

the first six hours, demonstrating its ability to effectively iden-
tify metadata inconsistencies in shallow consistency mainte-
nance logic. In contrast, other bugs were buried deeper within
the DFSes’ code and were harder to trigger in the early stages.
These issues took longer for Horcrux to uncover. For instance,
it took 19 hours and 34 minutes to trigger Bug #1. In contrast,
other tools detected three bugs hidden in the shallow logic but
took more time than Horcrux. Specifically, Monarch, Hydra,
and Syzkaller identified Bug #5, Bug #6, and Bug #9, respec-
tively, with an average detection time of 3.8, 2.8, and 1.2 hours.
While Horcrux used 3.3, 2.7, and 0.8 hours, respectively.

Bug Case Analysis. We now present a case to illustrate how
Horcrux detects metadata inconsistencies in DFSes. The case
involves Bug #4 listed in Table 4, a topology inconsistency
bug found in GlusterFS. This bug prevents the resolution of
metadata conflicts between nodes and leads to an unrecover-
able state in the DFS. The code snippet in Figure 7 describes
the detailed information of this metadata inconsistency.

Function ‘glusterd_brick_sync()’ is responsible for syn-
chronizing the metadata of brick data among nodes when
an inconsistency conflict occurs. Each time the brick syn-
chronization process begins, an immediate service connection
attempt is made, as shown in lines 9-13. However, this con-
nection is a long-lasting channel that consumes significant
resources. Once the brick synchronization is complete, the
connection is closed, as shown in line 16. When the code is
executed during the occasional metadata conflicts, everything
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1 // sync to resolve the conflict among connected nodes
2 static int glusterd_brick_sync(...) {
3 + if (!gf_is_service_connected(pidfile, &pid)) {
4 + reconnect = true;
5 + }
6 ...
7 connect:
8 + if (reconnect) {
9 ret = gf_service_connect(brickinfo, socketpath);

10 if (ret) {
11 gf_msg(GF_ERROR, "Failed to connect to brick");
12 goto out;
13 }
14 + }
15 out:
16 gf_service_close();
17 return ret;
18 }

Figure 7: A metadata inconsistency in GlusterFS. It stops
conflict resolving between nodes and causes inconsistency.

works fine, and no bugs occur. However, intensive metadata
conflicts occur when this function is called across several dis-
tributed storage nodes simultaneously where multiple clients
operate the same data. And this triggers the brick data syn-
chronization logic. Then the function ‘gf_service_connect’ is
called at a high frequency. This results in the occupation of
a large number of network resources, and blocks the normal
metadata communication update of some nodes, and eventu-
ally leads to the inconsistency. Consequently, the GlusterFS
service gets stuck, and key data cannot be synchronized, re-
sulting in data losses. This bug has been fixed by adding a
connection status checker, as shown in lines 3-5 and line 8.

In our experiments, this metadata inconsistency was de-
tected solely by Horcrux. Normally, this bug cannot be trig-
gered when the code snippet is executed on a single node.
However, in the fuzzing environment created by Horcrux, a
series of cross-node file operations with conflicts are sent to
the storage nodes. As a result, nodes are likely to trigger the
brick synchronization process repeatedly within a short time
frame, ultimately leading to the bug. Exploiting this issue, at-
tackers could initiate chaos attacks to bring down any normal
node in the system.

Bug exploitation. Based on this bug, attackers can break
down any normal node by conducting DoS attacks. This
bug can be exploited by the following steps: 1) Attackers
mount multiple clients to glusterFS nodes. 2) Attackers issue
cross-node file operations from multiple clients simultane-
ously, access the same data and trigger the function ’glus-
terd_brick_sync’. 3) This bug is triggered and the whole clus-
ter is stuck, leading to DoS attacks.

Historical Bug Evaluation We also adapt Horcrux and
other tools on the previous versions of the 4 DFSes and evalu-
ate whether they could successfully reproduce the 44 metadata
inconsistencies we analyzed. Previous versions mean the ver-

sions where those bugs were not fixed. The result is shown
in Table 5, Horcrux reproduced 31 bugs, Monarch, Syzkaller
and Hydra reproduced 15, 10, and 10 bugs respectively, while
smallfile reproduced 13 bugs. All bugs reproduced by other
tools can be found by Horcrux.

Table 5: Historical bugs found by Horcrux and other tools.
Tool CephFS GlusterFS LeoFS IPFS Total

Horcrux 6/10 12/17 10/13 3/4 31/44
Monarch 3/10 7/17 5/13 0/4 15/44
Syzkaller 2/10 5/17 3/13 0/4 10/44

Hydra 2/10 5/17 3/13 0/4 10/44
smallfile 3/10 6/17 4/13 0/4 13/44

The 13 inconsistencies that cannot be found by Horcrux are
mainly due to two reasons. The first is that they are related to
data races. These bugs can be hard to trigger because the race
conditions are usually hard to be well-created in distributed
systems. The other reason is that some bugs are related to
specific requests beyond file operations. For example, the
bug#1123 in LeoFS [51] requires the requests such as ‘reset-
brick’ to trigger. Horcrux doesn’t support them for now, but
they can be integrated into Horcrux’s model. To achieve this,
developers can define a json file to describe the information
of this command. The file contains the name, the number of
arguments, the arguments’ types, the weight and the previous
commands. We will introduce more details in Section 14.

1 relookup:
2 dn = dir->dir->dentries[dname];
3 ...
4 // Add the following code to fix the MIB
5 + if (!is_rename && dn->is_renaming) {
6 + wait_on_list(waiting_for_rename);
7 + goto relookup;
8 + }
9 ...

10 r = do_lookup(dir,dname,mask,target,perms);

Figure 8: The bug has been fixed by developers by checking
whether the wanted dn is being renamed. As shown by lines
5-8, it waits for the renaming to be finished and relookup.

Only Horcrux can reproduce this bug. This is because it
is challenging to create such conflict conditions effectively
without understanding the relationships among cross-node
file operations. The developers have already fixed this bug
by adding a check statement to verify if another thread is
renaming a file before proceeding with the lookup. The related
code is shown in Figure 8. As shown in lines 5-8, the code
checks whether the wanted dn is being renamed by another
thread. If so, it will wait for the renaming to finish and re-
lookup the dn.

7.2 Conflict Resolution Logic Triggering
In this section, we evaluate whether Horcrux triggers more
metadata conflict resolution logic compared to state-of-the-
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art tools by analyzing the conflict resolution code coverage.
To perform this evaluation, we first instrumented the DFSes
and collected the code line coverage data. For CephFS and
GlusterFS, we used gcov [15] to collect the coverage infor-
mation. Since LeoFS is written in Erlang, we utilized ExInte-
grationCoveralls [65] for coverage collection. For IPFS, we
employed goc [52] to gather the coverage data.

We collected the total code coverage of each tool (denoted
as Covt) after 24 hours and manually identified the conflict
resolution code coverage at the function level (denoted as
Covc). The main reason is that the coverage and the conflict
resolution logic coverage basically converged (with the incre-
ment of less than 2%). Besides, according to the best practice
of fuzzing proposed by existing works [33, 54], 24 hours is
a reasonable fuzzer runtime. We collected all the function
names and parameters in the different covered codes. We
determined whether the function is related to conflict reso-
lution 2 based on its name and parameters. The results may
not be absolutely accurate, but since these systems are mature
open-source projects, functions names and parameters contain
rich semantic information, making our statistics persuasive.

Table 6: The code coverage of Horcrux and other tools. Covt
and Covc represent total coverage and conflict resolution re-
lated code coverage, respectively. ‘/’ means the tool does not
support the DFS.

CephFS GlusterFS LeoFS IPFS
Covt Covc Covt Covc Covt Covc Covt Covc

Horcrux 57,357 15,981 38,446 14,535 8,067 1,168 6,530 1,135
Monarch 42,401 / 37,311 / / / / /
Syzkaller 34,026 7,229 33,236 9,968 6,370 892 / /

Hydra 33,504 7,081 31,051 9,315 6,116 844 / /
smallfile 37,530 8,246 34,229 10,611 6,805 971 / /

The conflict resolution code coverage is shown in Ta-
ble 6. Monarch does not support LeoFS and IPFS, while
Syzkaller, Hydra, and Smallfile do not support IPFS. Addi-
tionally, Monarch only released the code image without sym-
bols, making it impossible to identify the specific code lines
it covered or calculate Covc. As the data demonstrates, Hor-
crux covered 20.29%-146.21% more lines of code in conflict
resolution logic compared to other tools. This suggests that
Horcrux triggers consistency maintenance logic that other
tools cannot, increasing the likelihood of exposing metadata
inconsistencies. The results imply that the duration of incon-
sistency is effective for exploring conflict resolution logic.

7.3 Horcrux’s Guidance Effectiveness
To check whether the inconsistency duration guidance of Hor-
crux is effective, we implemented Horcruxcov and Horcruxran,
which generate cross-node file operations under code cover-
age guidance and without any guidance. To implement the
Horcruxcov, we collected the code coverage right after the

2The functions we identified are listed at:
https://anonymous.4open.science/r/Horcrux-F00C/syncRelated/

executing of the cross-node file operations. And if the code
coverage is increased, Horcruxcov deems the cross-node file
operations as good ones. For good cross-node operations,
Horcruxcov recognizes the first operation as the root operation
and updates the relation table to add the weights for other oper-
ations. It should be mentioned that this is a heuristic approach.
When Horcruxcov covers previously uncovered branches, we
give more weights for the current operation combinations.
This allows for more possibilities for further mutation based
on the retained combination. However, we cannot guarantee
that new mutations can cover uncovered code. As for the im-
plementation for Horcruxran, we randomly update the relation
table after each fuzzing round. We compared Horcruxcov and
Horcruxran with the original Horcrux on their effectiveness
of bug detection and conflict resolution logic triggering. The
results are shown in Table 7.

Table 7: Bug numbers and conflict resolution code coverage
of Horcrux, Horcruxcov and Horcruxran in 24 hours.

Horcrux Horcruxcov Horcruxran
Bugs Coverage Bugs Coverage Bugs Coverage

CephFS 3 15,918 1 14,638 0 7,501
GlusterFS 4 14,535 2 12,869 1 10,091
LeoFS 2 1,168 1 1,074 1 966
IPFS 1 1,135 0 995 0 748

The data shows that Horcrux found 6 and 8 more metadata
inconsistencies, and covered 10.75% and 67.67% more lines
of conflict resolution code than Horcruxcov and Horcruxran.
We found that without the inconsistency duration guidance,
it is hard to mine the relationships among cross-node file op-
erations. Thus, Horcruxcov and Horcruxran cannot expose the
metadata inconsistencies hidden in deep conflict resolution
logic. This indicates the effectiveness and necessity of the
inconsistency duration guidance.

8 Discussion

8.1 Threats to the Duration Guidance
In our testing environment, the duration of inconsistencies is
primarily influenced by the conflict resolution process. All
nodes run within VMs on the same physical machine, elim-
inating significant network delays. Additionally, we disable
all garbage collection (GC) pauses to prevent outliers from
affecting the test results. We also control for other potential
outlier effects, such as system faults, ensuring they do not in-
terfere with the inconsistency duration feedback mechanism
in Horcrux.

Additionally, an intuitive guidance mechanism involves us-
ing conflict resolution code coverage. In this context, a set of
cross-node file operations is considered effective if it covers
more lines of conflict resolution code. However, as previously
discussed, achieving this is non-trivial because such code is
often tightly coupled with other components. While we manu-
ally collected conflict resolution code coverage in Sections 7.2
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and 7.3, identifying this code at runtime remains challenging.
Therefore, for scalability, Horcrux is designed to be guided
by inconsistency duration. To further demonstrate the equiva-
lence of the two approaches, we manually equipped Horcrux
with conflict resolution code coverage guidance, denoted as
Horcruxcon f lict_cov, by pre-marking all conflict-related code.
The results in Table 8 show that the number of bugs found by
Horcrux under both guidance mechanisms is identical, with
the conflict code coverage varying by only +/-4%.

Table 8: Bug numbers and conflict resolution code coverage
of Horcrux and Horcruxcon f lict_cov in 24 hours.

Horcrux Horcruxcon f lict_cov
Bugs Coverage Bugs Coverage

CephFS 3 15,918 3 15,201
GlusterFS 4 14,535 4 14,492
LeoFS 2 1,168 2 1,157
IPFS 1 1,135 1 1,090

8.2 Scalability on Bug Types
Horcrux is highly scalable in terms of the vulnerability types
it can detect. The existing Horcrux framework defines two
oracles including topology oracle and property oracle, which
enable the detection of metadata inconsistencies. Furthermore,
through a refined design of these oracles, Horcrux can be
effectively tailored to accommodate a wider spectrum of error
scenarios in distributed file systems.

For example, the imbalance issue stands as a prevalent
performance vulnerability in DFSes [11], where there is an
uneven distribution of data or workloads across the nodes or
storage devices within the system. For example, an imbalance
issue [59] in GlusterFS can result in severe consequences
such as diminished performance, resource wastage, and com-
promised system reliability. Horcrux can be adapted to detect
the imbalance issue with enriched oracles that check the re-
source distribution among nodes. Additionally, adapting the
synchronization duration calculation strategy may help guide
Horcrux to prompt the rebalance procedure and trigger the
error-prone situations.

9 Related Work

File System Testing. For distributed file system testing,
Monarch [43] is the only fuzzer that generates syscalls and
system faults. Similarly, the patent [12] describes a testing
method to inject faults to the file blocks in DFSes to de-
tect file corruption. Another tool smallfile [1] produces dis-
tributed file workloads on various hosts. These tools leverage
a holistic infrastructure to feed inputs to DFSes. Besides,
fuzzing has established itself as a widely employed technique
for testing traditional file systems. Furthermore, some open-
source testing suites like Teuthology [8] for CephFS and
gluster-performance-test-suite [20] for GlusterFS focus on

data-intensive workloads for performance and functional test-
ing. They generate file I/Os to test the limitation of the DFSes.

Several unsupervised kernel fuzzing frameworks [26, 38,
39, 55, 56, 58] are designed to generate system calls based
on predefined grammar rules. These frameworks can be ef-
fectively employed in the assessment of file systems. Addi-
tionally, there exist specialized fuzzers tailored for file sys-
tem testing. Hydra [32] stands out as an extensible fuzzing
framework specifically engineered to detect file system se-
mantic bugs. B3 [45] focuses on finding crash-consistency
bugs through bounded black-box crash testing. And a recent
work SnapCC [40] tests the consistency of the traditional file
system by exploring systematic states.

Distributed System Fuzzing. Fuzzing is also effective in
uncovering vulnerabilities in distributed systems. Notably,
CrashFuzz [18] employs a coverage-guided fault injection
approach to test crash recovery behaviors, exposing crash re-
covery bugs in distributed cloud systems. Mallory [44] is a
grey box fuzzer for distributed systems that applies timeline-
driven testing for adaptive fault injection. Another tool named
Chronos [10] leverages deep-priority fuzzing to inject tran-
sient delays to distributed systems and tries to detect bugs
in timeout handling logic. Besides, TaxDC [35] contributes
by creating a comprehensive taxonomy of non-deterministic
concurrency bugs in distributed systems.

Main Difference. Different from Monarch, Horcrux fo-
cuses mainly on metadata inconsistencies by covering con-
flict resolution logic and mining relationships among cross-
node file operations. The method in the patent [12] and Mal-
lory [44] inject faults rather than generates inter-related cross-
node file operations like Horcrux for inconsistencies detection.
Similarly, open-source testing suites do not target interrelated
cross-node file operations either. Healer [58] also mine the
relationships among testing inputs. However, it learns the se-
quential relationships between syscalls on one node, rather
than the distributed nodes. Similarly, Hydra [32] generates
sequential syscalls regardless the distributed features. While
TaxDC schedules the threads in the system, which is irrelevant
to inconsistency triggering.

10 Conclusion

In this paper, we conducted a thorough analysis of metadata
inconsistencies over the past five years in four DFSes. Based
on our findings, we proposed Horcrux, a fuzzing framework
designed for detecting metadata inconsistency bugs in DFSes.
Horcrux maintains a file operation relation table to capture the
relationships between various operations. Guided by inconsis-
tency duration, Horcrux updates the relation table and gener-
ates cross-node file operations accordingly. Horcrux defines
two monitors to detect metadata inconsistencies. We imple-
mented Horcrux on four widely-used DFSes and successfully
identified 10 previously unknown metadata inconsistencies.
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Appendix

13 Horcrux under Various Cluster Scales

To test whether Horcrux is effective under a large-scale net-
work that is closer to the real-world scenario, we calculate
the coverage of Horcrux with 5, 10, 20 clients and 10, 20, 50
server nodes. The results are shown in the Table 9.

Table 9: Bug numbers and code coverage under different node
scale in GlusterFS.

Node Scale Clients(Cluster Nodes=10) Cluster Nodes(Client=5)
5 10 20 10 20 50

Coverage 38,947 39,968 39,149 38,998 38,473 39,563
Bugs 4 4 4 4 4 4

We can find that the coverage does not vary much under dif-
ferent scales of clients (with only a variance of 1.5%), and so
as the cluster nodes (with only a variance of 1.4%). Besides,
there are no new bugs found when the scale of the clients or
cluster nodes increases. This indicates that the cluster size
does not appear to affect the performance of Horcrux. The
consistent coverage observed across varying client scales can
be attributed to the robustness of Horcrux’s metadata synchro-
nization duration guidance. This guidance effectively triggers
synchronization failure scenarios, irrespective of the number
of cross-node operations. Besides, the stability of coverage
across different scales of clusters is because the increase of
cluster nodes does not trigger new logic of the consistency
maintenance process. The triggering of conflict resolution
depends on the workloads generated by Horcrux, not the size
of the cluster.

14 Adaption to other DFSes

Horcrux can be adapted to other DFSes that manage meta-
data in a distributed manner. For DFSes that support FUSE,
Horcrux can be directly adapted because it generates POSIX

file operations. For DFSes that do not support FUSE (such
as IPFS), Horcrux models the file commands of the DFS by
writing a JSON file that records each command’s operator and
operands. Figure 9 shows an example of the file operations
json file in IPFS.

The json file defines the IPFS command, and each com-
mand has a name and a description to describe the information
of such command. Besides, each command also has a weight
to show the probability to be chosen in each fuzzing round.
The argument_num and the arguments items in the command
describe its operands. And the last item ‘pre_command’ de-
fines the command that must exist before the current com-
mand. For example, the ‘delete’ command must have a ‘create’
command before, because it has to make sure that there exist-
ing some files to be deleted.

{"commands": [
{

"name": "create",
"description":"create a file",
"weight": 1.0,
"argument_num" : 1,
"arguments":["NEW_FILE_NAME"],
"pre_command": []

},
{

"name": "delete",
"description":"delete a file",
"weight": 1.0,
"argument_num" : 1,
"arguments":["EXISTING_FILE_NAME"],
"pre_command": ["create"]

},

{
"name": "pinadd",
"description":"pin add a file",
"weight": 1.0,
"argument_num" : 1,
"arguments":["EXISTING_FILE_NAME"],
"pre_command": ["create"]

},
{

"name": "ipfsgc",
"description":"gc files",
"weight": 1.0,
"argument_num" : 0,
"arguments":["EXISTING_FILE_NAME"],
"pre_command": ["create"]

}
]}

Figure 9: A json file example for IPFS. To adapt Horcrux to
other DFSes without the support of FUSE.

15 System Precision

According to our empirical study, metadata inconsistencies
are not affected by the garbage collection process. So, no
false positives are imported when we disable it. As for false
negatives, among the 44 historical metadata inconsistencies,
Horcrux found 31, indicating a false negative rate of 29.5%.
The false negatives are due to two reasons: the first is that
Horcrux cannot find inconsistencies related to data races. The
other is that some bugs are related to specific requests beyond
file operations. Indeed, the metric may hide metadata errors
because that the metric only guides the fuzzing process to the
conflict resolution logic. But all the cross-node file operations
generated by Horcrux can trigger the local metadata update,
metadata propagation, and the metadata commit phases. Thus,
metadata inconsistencies in these phases can also be triggered.
For example, bug#2 found by Horcrux occurs in the local
metadata update phase.

Besides, delta debugging can be used to minimize the file
operations by the following aspects: 1) minimize the cross-
node file operation sequences. Most of the bugs found by
Horcrux can be triggered by one set of cross-node file oper-
ations. To locate the precise operation set, we can use delta
debugging to decrease the sequence length and find the exact
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operation set. 2) Not all the operations in the cross-node file
operation contribute to the bug triggering. Using delta debug-
ging may help locate which two or three parallel operations
can lead to the bug.

16 System Throughput

We also evaluated the throughput of Horcrux on the four DFS
systems. We ran Horcrux on each DFS for 24 hour and cal-
culated the average IOPS, which stands for the file I/O per
second. The results are shown in the following table. As the

CephFS GlusterFS LeoFS IPFS
IOPS 2.3 5.2 4.6 2.5

Table 10: The throughput of Horcrux for each DFS. The unit
is IOPS, which stands for file I/O per second.

table shows, Horcrux sends 2.3-5.2 file operations per second.
The main overhead that affect the throughput is the relation
table updating phase and the cross-node file operations gener-
ation phase. Besides, Horcrux needs to wait for the execution
to be finished before entering the next fuzzing round, which
is also time-consuming. We will try to further improve the
testing efficiency for Horcrux by optimizing these phases.

17 Historical Bug Case

We utilized a historical bug, bug#49912 in CephFS [9],to
demonstrate how Horcrux identified it. This bug can only be
reproduced by Horcrux, and other tools failed to reproduce it.
The conditions to trigger this bug are illustrated in Figure 10.

Client A Client BCephFS Cluster

a.1) stat file COMPLETE

a.2) stat file INPROGRESS

b.1) stat file COMPLETE

b.2) stat file INPROGRESS

inode is: 5497607496147 inode is: 5497607496147

No such file

sleep

inode is: 5497607496147

b.3) rename file COMPLETE 
to INPROGRESS

Succeed: point inode 5497607496147
to file INPROGRESS

File COMPLETE and
INPROGRESS are the same

a.3) rename file COMPLETE 
to INPROGRESS

Time 
Direction

Figure 10: An inconsistency in CephFS during the lease/cap
conflict handling process. One inode points to two file names.

The application that triggers this bug uses files in CephFS
as a form of locking mechanism. Multiple threads use a file
named ‘INPROGRESS/COMPLETE’ to determine if the lock

has been acquired or released. Thus, plenty of ‘mv’ opera-
tions are conducted by these threads to change the file’s name
between ‘INPROGRESS’ and ‘COMPLETE’. In CephFS,
when handling a ‘mv’ operation, it first checks the state of
both the source file and the destination file. As Figure 10
shows, Client A and Client B send the operation ‘mv COM-
PLETE INPROGRESS’ in parallel. Client A first checks the
state of file ‘COMPLETE’, and the CephFS cluster returns
the inode of that file. Then, Client B checks the states of both
files and successfully renames the file from ‘COMPLETE’ to
‘INPROGRESS’. After that, Client A continues checking the
state. However, the ‘mv’ operation from Client B has already
been committed and the inode ‘549760749614’ has pointed to
the file ‘INPROGRESS’. As a result, the CephFS tells Client
A that both files ‘COMPLETE’ and ‘INPROGRESS’ exist,
and they are the same file.
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