
PUPPY: Finding Performance Degradation Bugs in
DBMSs via Limited-Optimization Plan Construction

Zhiyong Wu∗ Jie Liang∗ Jingzhou Fu
KLISS, BNRist, School of Software, KLISS, BNRist, School of Software, KLISS, BNRist, School of Software,

Tsinghua University, Tsinghua University, Tsinghua University,
Beijing, China Beijing, China Beijing, China

Mingzhe Wang Yu Jiang†

KLISS, BNRist, School of Software, KLISS, BNRist, School of Software,
Tsinghua University, Tsinghua University,

Beijing, China Beijing, China

Abstract—Database management systems (DBMSs) consis-
tently strive for enhanced performance. For a given query, the
optimizer of a DBMS aims to construct an optimal execution plan
that incorporates multiple optimization operations. However, the
resulting plan may sometimes perform worse than even if no
optimizations were applied. This occurs because the interactions
between optimizations are complex and some situations might
be overlooked in the implementation. We refer to these issues
as Performance Degradation Bugs (PDBs). PDBs can result in
significant consequences from decreased system efficiency and
prolonged query processing times to potential disruptions in
critical business operations.

In this paper, we present PUPPY, an automated approach
for detecting PDBs in DBMSs using limited-optimization plan
construction. The key idea is to compare the performance with
the plan generated with all optimization operations enabled,
against the plan generated with only a subset of optimization
operations in the same DBMS. If the response time of the plan
with the limited optimization set is shorter than that of the fully
optimized plan, it indicates a potential PDB. Specifically, PUPPY
first generates queries that incorporate multiple optimization
sequences, guided by optimization operation sequence coverage.
Secondly, PUPPY analyzes the query plan and selectively disables
specific optimizations to construct the limited optimization plan.
We evaluate PUPPY on five widely-used DBMSs, namely MySQL,
Percona, TiDB, PolarDB, and PostgreSQL against the state-of-
the-art DBMS performance testing tools APOLLO and AMOEBA.
More importantly, PUPPY reports 62 PDBs, with 54 anomalies
confirmed as previously unknown bugs.

I. INTRODUCTION

Database Management Systems (DBMSs) serve as the
backbone for various applications, ranging from simple web
applications to complex, large-scale enterprise systems [36].
Ensuring the efficiency of DBMSs is crucial as it directly
influences the responsiveness, scalability, and user satisfaction
of dependent applications [6, 8, 37, 9, 33].

To meet the growing performance demands, the query opti-
mizer in the DBMS is specifically designed. This component
incorporates amounts of sophisticated optimizations for query
execution and is considered the most crucial component in
the system [17]. The primary objective of the query optimizer

∗Zhiyong Wu and Jie Liang contributed equally to this work.
†Yu Jiang are the corresponding author.

is to determine the most efficient execution plan for a given
query [20]. It aims to minimize the overall time cost of
query execution. The plan generated by the query optimizer
is typically represented as a tree structure of optimization
operations, designed to ensure the optimal performance of
the DBMS [16]. This plan is then traversed and eventually
transformed into an operation sequence for execution.

However, certain “optimal” optimization sequences cal-
culated by the optimizer may sometimes perform signif-
icantly worse than not optimizing at all. This discrepancy
arises from the complexity of optimization operation interac-
tions, wherein certain interactions may be overlooked in the
implementation, resulting in unintended performance. We refer
to these issues as performance degradation bugs (PDBs). For
example, Figure 1 presents a performance degradation bug in
MySQL, which resulted in a 30x performance degradation.
When executing the query with all optimization operations
enabled, MySQL employs BTree Index optimization, resulting
in 34.78 seconds to return results. However, when limiting
the optimization operations by disabling the BTree Index
optimization, MySQL takes only 1.01 seconds to execute
the same query and return the same result. This issue arises
due to the mismatch between the results of the BTree index
optimization and the efficient execution of the ORDER BY
clause. The sequence of these two optimizations leads to
interference and hinders the overall performance.

CREATE TABLE t0(
 v0 bigint, v1 varchar(100),
 v2 int, v3 timestamp,
 PRIMARY KEY (v0),
 KEY t0_v1_IDX(v2) USING BTREE,
 KEY t0_v3_IDX(v3) USING BTREE)
 ENGINE=InnoDB;

SELECT * FROM t0
WHERE v1 < 17
 AND v2 = 'v2'
 AND v3 < '2023-01-17
10:23:08'
ORDER BY v2 LIMIT 2;

execute time: 34.78s
execute time: 1.01s

Enable BTree index optimization

Disable BTree index optimization

Insert
2 millon rows

Execute the queryCreate table t0

performance bug

Fig. 1. A performance degradation bug in MySQL 8.0 resulting in a 30x
decrease in response time.

PDBs can result in significant pitfalls as the DBMS fails to
achieve the intended performance. These pitfalls can range

from decreased system efficiency to potential disruptions
in critical business operations. Additionally, it can hinder
decision-making processes and may lead to decreased user
satisfaction and trust in the DBMS, impacting the overall
reputation of the organization relying on the DBMS. Many
techniques (e.g., APOLLO [19] and AMOEBA [25]) have been
proposed to detect performance bugs in DBMSs. However,
they may struggle to effectively detect PDBs caused by
unfavorable sequences of optimization operations. Specifically,
they typically perform black-box testing on the entire DBMS
and cannot delve deeply into the execution details at the
optimization level. For example, while APOLLO is capable of
identifying performance degradation across different versions
of a DBMS, it cannot pinpoint bugs within the query optimizer.

In this paper, we propose PUPPY, which utilizes limited-
optimization plan construction to detect PDBs in DBMSs.
The core idea is to limit the optimization operations enabled
within a plan by modifying certain optimization options. When
a “limited-optimization” plan outperforms the plan with all
available optimizations enabled, it indicates a potential PDB.
Typically, DBMSs often provide a spectrum of optimization
options to control the availability of specific optimization
operators. By disabling certain options, we can construct a plan
generated with limited optimizations. Nonetheless, implement-
ing this approach still encounters two significant challenges
that need to be addressed:

1) Generating SQL queries that incorporate a diverse range
of optimization operations. To effectively trigger per-
formance degradation bugs in DBMSs, the generated
SQL queries need to include a multitude of optimization
operation sequences. However, in the absence of specific
guidance, the generated queries may inadvertently con-
tain similar optimization operation sequences.

2) Accurately disabling specific optimization options to
construct a plan with limited optimizations. The con-
struction requires understanding the intricacies of the
optimization process. Due to the extensive number of
optimization options present in the DBMS, identifying
and disabling specific options to construct a limited-
optimization plan can be a challenging task.

We overcome the two challenges with optimization-guided
query synthesis and execution-driven limited-optimization plan
construction, respectively. Specifically, we design the opti-
mization operation sequence coverage to steer the SQL query
synthesis, thereby enhancing the diversity of the optimization
operation sequence in one SQL query. Furthermore, we ex-
amine the query plan for the SQL query, gather the options
that can impact the utilized optimization operations within
the query plan, and subsequently deactivate specific optimizer
options based on the information from the execution process
analysis. We evaluated PUPPY on five widely-used DBMSs:
MySQL, Percona, TiDB, PolarDB, and PostgreSQL. PUPPY
reports a total of 62 PDBs, with 54 performance anomalies
have been confirmed as previously unknown bugs. Besides,
PUPPY also finds 20 crash bugs, and 16 of them are con-

firmed. In addition, we compare PUPPY with the state-of-the-
art DBMS validation tools, including both DBMS performance
testing tools APOLLO [19] and AMOEBA [25]. The 48-hour
result shows that PUPPY detects 26 and 25 more performance
bugs, and covered 151,201 and 173,798 more branches than
APOLLO and AMOEBA, respectively.

In summary, our paper makes the following contributions:
1) We find that the performance degradation bugs sig-

nificantly hampered the performance of DBMSs, yet
contemporary testing methodologies largely overlook
these critical bugs.

2) We propose a test oracle to detect the PDBs in DBMS
via limited optimization plan construction. The key idea
is to compare the performance of the SQL query with the
plan generated by the optimizer when all optimizations
are enabled, against the plan generated with only a sub-
set of optimization operations within the same DBMS.

3) We implement our approach in PUPPY. PUPPY reported
62 performance degradation anomalies in five widely
used DBMSs, with 54 performance anomalies confirmed
as previously unknown bugs.

II. PERFORMANCE DEGRADATION BUGS

Basic Concepts. Typically, a single query can be executed
through various ways to retrieve the same set of desired results.
An optimization operation refers to a predefined algorithm or
technique used by the DBMS optimizer to enhance SQL clause
performance. For instance, the fundamental approach for data
retrieval involves sequentially scanning a table. However, there
exist several optimization operations that can enhance this
process. For example, if the table is equipped with a B-tree
index and the query predicate pertains to the indexed key, the
DBMS can leverage the index to expedite retrieval. A query
plan consists of a sequence of optimization operations, which
indicates the execution ways [17, 30, 14]. Query optimization
is a process of optimizing DBMS performance for a query.
The instinctive approach to ensuring performance is to select
the optimal execution plan that is expected to run the fastest
with the selected plan.

The SQL clause is a specific command used within an
SQL statement to define various aspects of the query’s be-
havior. SQL clauses provide flexibility and control over the
desired outcome of a query by specifying conditions, sorting
order, grouping criteria, joining multiple tables, and limiting
the number of returned results, among other functionalities.
Typically, containing more kinds of SQL clauses, the SQL
query may trigger more optimization operations of a DBMS.

Definition. A Performance Degradation Bugs (PDB) refers
to the performance of the plan provided by the optimizer
with all optimizations enabled is significantly inferior to the
plan generated when the partial optimization operation is
disabled. In the process of generating plans, an optimizer will
try different access paths, join methods, and join orders. In
particular, the optimizer initiates the process by scanning each
table referenced in the query. Following this, it constructs plans
by creating a tree structure of join operations, with each node

2

having two inputs. Ultimately, it assesses multiple potential
join sequences to identify the most cost-effective ones. How-
ever, the optimization operations in the plan generated by the
optimizer may have some intricate scenarios overlooked in the
operations’ implementation. Executing the plan by combining
these optimizations on specific data will cause performance
degradation compared to not using optimizations.

Table t0 Temporary
Data

Record1
Record2...

ORDER BY
 <= LIMIT

Filter Condi�on

Scan Full Table Fill Field

Order By
Field

Record1
Record2

Result

Table t0

BTree Index
ORDER BY

Order By
Field

...

false

Record1
Record2

Result

true

Disabling B-Tree Index Op�miza�on

Enabling B-Tree Index Op�miza�on

Record1

Check
Field Size

field.size()
>= limit ?

...

Fig. 2. Execution process with BTree Index Optimization disabled/enabled.

Example. In Section I, we provide an example of a PDB
within the optimizer of MySQL. This specific PDB led to a
substantial 30x performance degradation in MySQL. In this
part, we will conduct a root cause analysis of the example
presented in Figure 1 in the plan level. The bug is triggered
with the following steps: 1 Created an initial empty table
with four columns and three indexes, including two BTree
indexes (v1 and v3), as well as a primary key index. 2 Insert
2 million records into the table t0. 3 Execute the SQL query.
MySQL takes 34.78 seconds to return the expected results. 4
Disable the BTree index optimization and re-execute. MySQL
takes only 1.01 seconds to execute the same query and return
the results.

The process indicates that BTree index optimization causes
serious performance degradation. Figure 2 shows the execution
plans for the SQL query. When all optimization operations
are enabled, the optimizer of MySQL generates a plan that
combines ORDER BY and BTree Index optimization. Using
the BTree Index, MySQL will directly retrieve the eligible
records for the ORDER BY field. This retrieval continues until
the number of records in the ORDER BY field reaches the
number of entries specified in the LIMIT clause. When the size
of the result set exceeds the specified value of LIMIT entries,
the execution plan can improve the performance through BTree
index optimization.

However, if the final result set size is less than the LIMIT
entries value, the process will continue to wait for new
records until interrupted by other commands. Differently, in
the limited-optimization plan when disabling BTree Index
optimization, MySQL will have a better performance. Specifi-
cally, MySQL first scans and filters all the records based on the
conditions without waiting. After that, it sorts the temporary
result set for the ORDER BY optimization operators, and
finally calculates the results for the number of LIMIT entries.

III. DESIGN OF PUPPY

Figure 3 provides a step-by-step illustration of the PUPPY’s
approach. In Step 1 , PUPPY creates hundreds of basic tables
in a fresh database and inserts amounts of initial data. These
tables, populated with a random distribution of records ranging
from 1 to 100, are designed with diverse features like indexes
and foreign keys to provoke complex DBMS optimization
behaviors. In Step 2 , PUPPY randomly picks several tables
from this database and synthesizes SQL queries with the
optimization guidance. This query can cover new optimization
operation sequences and trigger different DBMS behaviors.
Moving to Step 3 , PUPPY sends the synthesized query to
DBMS to collect execution time and analyze the execution
plan of the SQL query to collect the options that can influence
the use of optimization operations. In Step 4 , it disables part
of the optimizer options to construct a limited-optimization
plan. The SQL query will be executed with the limited-
optimization plan to collect the execution time again. Finally,
in Step 5 , PUPPY compares the executed time of the same
query with the original plan and the limited-optimization plan.
If the execution time with the limited-optimization plan is
significantly less than that of the optimized plan, PUPPY
detects a PDB in the target DBMS.

There are two major challenges in implementing this ap-
proach. First, PUPPY needs to generate SQL queries rich in op-
timization rules that encompass a wide spectrum of optimiza-
tion combinations during Steps 2 . Second, it’s crucial to pre-
cisely disable certain optimization options, transforming an op-
timized plan into one with limited optimization for PDB detec-
tion in Steps 3 and 4 . we address them through optimization-
guided SQL synthesis (Section III-A) and execution-driven
construction of de-optimized plans(Section III-B), which be
detailed in this section. The implementation details of the data
generation in Step 1 will be described in Section IV.

A. Optimization-Guided SQL Synthesis

Optimization Operation Sequence. A query plan consists
of a series of optimization operations. It illustrates the inter-
actions of different optimization operations and the regularity
of the combination of optimization operations. Query plans
with the same optimization combination sequence trigger
similar interactions among optimization operations. To better
describe the interaction and abstract the problem, we use the
optimization operation sequence as a chronological relation
of the optimization operation. It is represented as a partially
ordered tuple (operation1, operation2, ...). For example, the
optimization operation sequence in Step 3 of Figure 3 is
(Seq Scan, Index Scan, Sort, LIMIT, Aggregate).
To discover more issues among the interactions of optimiza-
tion operations within the optimizer, we design optimization
operation sequence coverage to guide the SQL synthesis.
The optimization operation sequence coverage records all the
sequences that have been generated.

SQL Synthesis. With the generated basic data in Step
1 , PUPPY synthesizes the query with optimization operation

3

v0 v1 v2 v3

1 2 v1 17/10/23

2 1 v2 14/09/21

3 4 v3 17/09/20

4 6 v2 12/09/19

5 7 v4 11/08/24

 Generate tables
and insert data rows

 Synthesize the SQL query
with optimization-guidance

2

Exec Time
1.54s

Exec Time

10.42s

10.42s > 1.54s

SELECT * FROM t0
WHERE v1 < 17
AND v2 ='v2' AND
v3 < '2023-10-
17' ORDER BY v2
LIMIT 2; Aggregate (cost=568.20..)

-> LIMIT : 2
-> Sort (cost=568.20..594.38
rows=2) Sort Key: t0.v2
Index Cond: (v2 = 'v2')
-> Index Scan on v2 (...)
-> Filter Cond: (v1 < 17...)
-> Seq Scan on table t0

Used Optimizer Options
presorted_aggregate = on
sort = on
indexscan = on
firstmatch = on
...

Aggregate (cost=568.20..)
-> LIMIT : 2
-> Sort (cost=568.20..594.38
rows=2) Sort Key: t0.v2
Cond: (v2 = 'v2')
-> Seq Scan on v2 (...)
-> Filter Cond: (v1 < 17...)
-> Seq Scan on table t0

Used Optimizer Options
presorted_aggregate = on
sort = on
indexscan = off
firstmatch = on
...

 Compare the execution
time with two plans

 Send SQL for execution and
analyze the execution plan

 Disable the optimizer options to
generate limited-optimization plan

3 4 51

Fig. 3. Approach overview of PUPPY. Step 1: Randomly generate basic tables and insert the initial data rows in the empty databases(Section IV). Step 2:
Synthesize the SQL queries with the optimization guidance (Section III-A). The synthesized SQL query will be sent to the target DBMS for execution. Step
3-4: During the execution, PUPPY analyzes the obtained query plan to extract used optimizer options. With calculated used optimizer options, PUPPY disables
parts of the used optimization options to construct the limited-optimization plan (Section III-B). Step 5: Compare the execution time with the original plan
and limited-optimization plan to identify the PDBs. If the execution time with the limited-optimization plan is shorter than the former, PUPPY detects a PDB.

sequence coverage to trigger more optimization operations. Al-
gorithm 1 outlines the procedure for guiding data evolution and
SQL synthesis with the optimization operation sequence cov-
erage. The algorithm requires four inputs: the SQL grammar,
the target DBMS, an initially empty Optimization Sequence
Set, and the Clause-Optimization Map of the target database.

Algorithm 1: Optimization Operation Sequence
Guided Data Evolution and Query Synthesis

Input : SQL Grammar G,
DBMS D,
Operation Sequence Set O,
Clause-Optimization Map C

Output: SQL Queries Q

1 InitQuery(Qtemp);
2 while Qtemp != null do
3 Qtemp ← SQLClauseSynthesis(G, C, D);
4 P ← extractPlan(Qtemp, D);
5 Op ← getOptimizationSequences(P);
6 Interest ← false;
7 foreach o ∈ OP do
8 if o ̸∈ O then
9 Interest ← true;

10 addToSequenceSet(O, o);
11 end
12 end
13 if Interest then
14 addToPoolForExecution(Qtemp, Q);
15 end
16 end
17 return Q;

First, PUPPY selects some tables from the DBMS and
initializes and synthesizes a SQL query with stored data
and the clause-optimization map following the SQL grammar
(Lines 1-3). A “clause-optimization map” is a data structure

or mapping that associates specific clauses in an SQL query
with optimization operations or strategies that can be applied
to those clauses during the query optimization process. For
example, it may specify that a certain index optimization
should be used for a particular WHERE clause, or it may
guide the DBMS to execute join optimization operations in a
designated sequence for a JOIN clause. Then, PUPPY analyzes
the optimized execution plan and extracts the optimization
operation sequences (Lines 4-5). The optimization operation
sequence within this plan will be analyzed to identify any
novel sequences. The Optimization Operation Sequence Set
maintains a record of all previously discovered sequences.
By checking whether the sequences of this plan exist in this
set, we can ascertain the significance of the corresponding
query. If it discovers new optimization operation sequences,
PUPPY thinks the synthesized SQL query is interesting and
adds it to the SQL query pool for execution (Lines 6-15).
If the synthesized query can not trigger a new optimization
operation sequence, PUPPY extracts the tables used by the
query and then changes the stored data in these tables to
trigger more behaviors of DBMS in the next iteration (Lines
16-19). For example, let’s consider that we generate a query,
and PostgreSQL provides its execution plan. Suppose the plan
comprises the following operation sequence: Seq Scan, Hash
Join, and Seq Scan. Now, if we encounter a new sequence,
such as introducing a previously unused operation like BTree
Index, the query will be deemed interesting, and it will be
added to the query pool for further consideration.

B. Execution-Driven Limited Optimization Plan Construction

After synthesizing amounts of SQL queries, PUPPY then
dispatches these queries to the DBMS for execution. During
the execution, PUPPY analyzes the default optimization exe-
cution plan and constructs limited optimization query plans
by disabling some specific optimization options of the DBMS
optimizer. Subsequently, the response times of the optimized

4

and limited optimization plans are compared to detect potential
optimization degradation issues in the optimizer.

However, selecting appropriate optimization options to dis-
able is challenging. Typically, a DBMS optimizer offers an
extensive array of optimization options, which determine the
utilization of various optimization operations. Yet, a single
SQL query usually triggers only a subset of these optimization
operations. If we were to haphazardly deactivate DBMS opti-
mization options, it might become difficult to create a limited-
optimization execution plan that is customized to the needs of
that particular query.

To address the problem, PUPPY designs the execution-
driven limited optimization plan construction. It has three
steps, namely execution process analysis, limited optimization
plan construction, and PDB detection. First, PUPPY analyzes
the query plan of the SQL query and collects the options that
can influence the use of optimization operations with the query
plan in execution process analysis. Then, PUPPY disables parts
of the optimizer options with the guidance of results in the first
step to construct a limited optimization execution plan. Finally,
each limited optimization plan is executed and their response
times are collected. For each case in which the response time
is significantly less than that of the optimized plan, it serves
as a clear indicator of a PDB.

STEP 1: Execution Process Analysis. The execution pro-
cess analysis consists primarily of two steps. First, it acquires
query plans by instrumenting queries with the EXPLAIN state-
ments. For instance, the query plan for the SQL query shown
in Figure 1 can be obtained with the command “EXPLAIN
SELECT * FROM ...”.

TABLE I
SUBSET OF SQL OPERATIONS TO OPTIONS MAPPINGS IN POSTGRESQL

SQL Operation Optimization Options
Bitmap Scan enable bitmapscan (boolean)
Merge Join enable mergejoin (boolean)
Hash Join enable hashjoin (boolean)
Index Scan enable indexscan (boolean)

Second, PUPPY analyzes the acquired query plan to extract
optimization options sequence using the Operations-Options
Mappings. These mappings document the SQL optimization
options that have the potential to influence the utilization of
corresponding optimization operations within the optimizer.
A subset of these mapping rules is presented in Table I to
showcase their diversity. These mapping rules are constructed
by the documentation provided by the DBMS websites.

Figure 4 gives an example of the execution process analysis
of MySQL. PUPPY first add the ’EXPLAIN ANALYZE’
command to obtain the explain query “EXPLAIN ANALYZE
SELECT * FROM t0 WHERE v1 < 17 AND v2=’v2’ AND
v3 < ’2023-10-17’ ORDER BY v2 LIMIT 2”. Then, PUPPY
sends the explain query for execution to obtain the execution
plan. With the SQL Operations-Options mapping as shown
in Table I and the query execution plan in Figure 4, PUPPY

SELECT * FROM t0 WHERE
v1 < 17 AND v2 ='v2'
AND v3 < '2023-10-17'
ORDER BY v2 LIMIT 2;

EXPLIAN ANALYZE
SELECT * FROM ...

Aggregate (cost=568.20..873.57 rows=2)
-> LIMIT : 2
-> Sort (cost=568.20..594.38 rows=2)
Sort Key: t0.v2
Index Cond: (v2 = 'v2')
-> Index Scan on v2 (...) (...)
-> Filter Cond: (v1 < 17 and v3 < '2023-10-17')
-> Seq Scan on table t0 (cost=0.00..15.70)

Used Optimizer Options

presorted_aggregate = on
sort = on
indexscan = on
firstmatch = on
...

Original Query

Explain Query

Execution Plan of the Query

Spefical Options

Fig. 4. An example of the execution process analysis of MySQL.

analyzes and calculates the SPECIFICAL optimizer options,
which have been used for optimization in the query plan.

STEP 2: Limited-Optimization Plan Construction. With
the optimization option sequence calculated in execution pro-
cess analysis, PUPPY then disables a specific number (i.e.,
limitationCount) of the optimization options to con-
struct a limited-optimization execution plan for the same
query. To ensure the options are disabled differently each
time, we use a memorized option sequence set to record
the options that were chosen to be disabled for plans with
the the same optimization option sequence. The value of
limitationCount is critical for performance anomaly
detection. A small value may reduce the testing efficiency,
but a too-large value will also miss many true anomalies. The
practicable value will be detailed in Section IV.

Algorithm 2: Limited-Optimization Plan Construction
Input : Query Plan Q,

Operation-Options Mappings M ,
Operation Sequence Set Map H (option

sequence → list of disabled options set),
limitationCount LC

Output: Optimization Option Set to Be Disabled S

1 Sseq ← getOptionSequence(Q, M);
2 Soptions ← getOptionSeqSet(H , Sseq);
3 Stemp ← genOptionsToDisable(Sseq , LC);
4 while Stemp != null do
5 if Stemp /∈ Soptions then
6 S ←Stemp;
7 addToOptionsMap(Soptions, Stemp);
8 Break;
9 end

10 Stemp ← genOptionsToDisable(Sseq , LC);
11 end
12 closeOptimizationoptions(S);
13 return S ;

5

Algorithm 2 outlines the complete procedure for construct-
ing a limited-optimization plan with memorized operation se-
quence set. Given an optimized query plan Q, PUPPY initially
derives the optimization option sequence Sseq . Subsequently,
it uses the option sequence set map H to obtain Soptions,
which is a list of disabled option sequence set for Sseq . H
maps each optimization option sequence to a list of disabled
optimization option sets, which are generated for the sequence
each time (Lines 1-2). H ensures that the set of optimization
options differs each time they are disabled.

Next, PUPPY systematically generates Stemp, which is
a candidate set of optimization options to be disabled for
constructing the limited optimization plan (Line 3). If Stemp

is found within Soptions, it indicates that Stemp has been
utilized previously. In such cases, PUPPY will discard Stemp

and proceed to generate a new one, repeating this process
until it obtains a unique optimization option set that is not
present in Soptions. Following this, the freshly generated
optimization option sequence, Stemp, is incorporated into the
optimization option set Soptions, and the options contained in
it will subsequently be disabled to construct a new limited-
optimization plan (Lines 4-11).

Figure 5 provides an illustrative example of the limited
optimization plan construction. Using the available optimizer
options from the execution process analysis, PUPPY proceeds
to disable two of the optimization options, resulting in the
creation of different limited optimization plans. Note that
the limitationCount is 2 in the example, and PUPPY
will disable different two optimization options to create many
limited optimization plans.

Used Optimizer Options
presorted_aggregate = on
sort = on
indexscan = on
firstmatch = on
...

Used Optimizer Options
presorted_aggregate = on
sort = off
indexscan = off
firstmatch = on
...

Used Optimizer Options
presorted_aggregate=off
sort = off
indexscan = on
firstmatch = on
...

Used Optimizer Options

...

1

23

Limited-Optimization Plan

Limited-Optimization PlanLimited-Optimization Plan

Optimized Plan

Fig. 5. An example of limited optimization plan construction of MySQL.

STEP 3: PDB Detection. Each limited-optimization plan
is methodically crafted and executed, and their respective
response times are recorded. The objective here is to observe
how these limited-optimization plans perform in terms of
query execution time when compared to the plan without
limitations. If we find that the response time of a limited-
optimization plan is notably less than the response time of the
unlimited one, it signals a potential PDB. In other words, it
suggests that the limited-optimization plan is executing faster
than the meticulously optimized plan. This scenario is a cause
for concern because it implies that the DBMS’s optimizations

may not be functioning as intended, and the query execution
may be less efficient than expected. Identifying such potential
PDBs is a critical aspect of performance testing and database
management, as it allows for the detection and subsequent
resolution of issues that can impact the overall performance
and responsiveness of a database system.

IV. IMPORTANT IMPLEMENTATION DETAILS

This section explains other implementation details, which
we consider significant for the outcome.

Data Generation. To provide the raw material for synthe-
sizing the optimization-related queries, PUPPY first generates
the basic data for empty databases, which contain an amount
of initial basic tables and lots of stored data. This process
unfolds in three stages. Firstly, PUPPY generates a diverse
array of tables, each with a randomly chosen quantity (10 to
100) and types of columns. Secondly, it applies two main con-
straints—indexes and foreign keys—across all tables through
a random selection process, ensuring foreign key relationships
are correctly established by matching column data types across
tables. Finally, PUPPY periodically populates these tables with
data, respecting these constraints. This complexity is achieved
by leveraging a comprehensive model of SQL grammar, which
allows for the random generation of data across various types.

LimitationCount Setting. We find most PDBs by setting
the LimitationCount in Algorithm 2 (i.e., the number of
the disabled optimization options) to a low value. A high value
would heavily influence the execution performance of DBMSs,
which may cause low testing performance. For example, when
the set the LimitationCount to 10, PUPPY can only
execute the 46% queries than that with 4.

Noise Elimination. The execution of SQL queries can be
affected by external factors within the DBMS, potentially af-
fecting performance metrics. For example, repeated executions
of a query become faster due to the DBMS caching results af-
ter the first run, introducing variability in performance metrics.
To enhance efficiency and accuracy in detecting performance
degradation bugs within DBMS environments, PUPPY intro-
duces the Noise Elimination Component in PDB reproduction.
To mitigate runtime environment impacts, PUPPY collects
the SQL queries that trigger anomalies, along with database
storage data and optimization settings, to replicate the issue.
During the reproduction process, PUPPY first executes the SQL
query with an optimized plan. Subsequently, it deactivates the
optimization options and reruns the SQL query to neutralize
the influence of the cache mechanism. This process is repeated
5 times to eliminate other external runtime influences.

Effort of Adaption. Adapting PUPPY to a new DBMS is
a straightforward process requiring minimal effort. It encom-
passes three primary steps: SQL grammar adaptation, “clause-
optimization map” adaption, and adaptation of optimizer op-
tions commands. Firstly, PUPPY can autonomously derive the
relevant SQL grammar from the provided SQL description.
For instance, PostgreSQL employs tools like Bison and Flex to
create its SQL parser, allowing the extraction of SQL grammar
for query synthesis. Secondly, the clause-optimization map is

6

manually crafted from the specification of DBMSs, which is
described in the official document on the website. Most DBMS
documentation includes descriptions of optimizer operations
and the current SQL grammar, facilitating the adaptation
process. It only takes no more than 2 hours and 200 lines of
code to build the “clause-optimization map” for MySQL. Fi-
nally, DBMS documentation often provides SQL commands to
configure optimization options directly. For example, MySQL
has more than 30 optimization options related to performance
issues, as detailed in sources like [47, 32]. These options can
be seamlessly incorporated into PUPPY for efficient adaptation.

V. EVALUATION

We evaluate PUPPY in terms of its ability to discover the
performance degradation bugs, as well as its efficiency in
triggering the optimization operation combinations of DBMS.
Our evaluation aims to answer the following questions:

• RQ1: Can PUPPY discover performance degradation bugs
in widely-used DBMSs?

• RQ2: How does PUPPY’s performance compare to other
DBMS testing techniques?

• RQ3: How important is the optimization guided algo-
rithms in identifying PDB?

A. Evaluation Setup

To evaluate the generality and efficiency of PUPPY, we
perform experiments on five popular open-source DBMSs,
namely MySQL [1, 47], Percona [7], TiDB [35, 15], Po-
larDB [3, 2], and PostgreSQL [4, 29], which are widely used in
industry. We conducted experiments on a machine running 64-
bit Ubuntu 20.04 with an AMD EPYC 7742 Processor @ 2.25
GHz, 128 cores, and 504 GiB of main memory. All DBMSs
were tested using docker containers that were downloaded
directly from their websites. We allocated 5 CPU cores and 40
GiB of RAM for the docker containers of each DBMS testing.

B. DBMS Performance Degradation Bug Detection

We applied PUPPY to MySQL, Percona, TiDB, PolarDB,
and PostgreSQL to test performance degradation bugs for six
weeks. These evaluated DBMSs are widely used and have
been tested for decades. Nevertheless, PUPPY still performed
well. 54 PDBs and 16 crash bugs are confirmed as previously
unknown bugs in these DBMSs.

Overall Results. Table II shows the statistics of the bugs
detected with PUPPY in six-week continuous DBMS testing.
It shows PUPPY identified a total of 62 unique PDBs. Out of
these, 54 PDBs have been confirmed, while 8 anomalies are
currently undergoing validation by the developers, owing to
the intricacies of the DBMS. Among the confirmed PDBs, 23
have been fixed at the time of writing this paper, and we have
received expressions of gratitude from the developers. Detect-
ing performance degradation bugs is challenging because they
cannot be directly identified by estimating the response time
of an SQL query. Furthermore, these bugs are intertwined
with the optimization operation combinations of the optimizer,
necessitating SQL queries with various clauses to trigger them.

Besides PDBs, PUPPY also detected 20 crash bugs in the
tested DBMS, 16 of them have been confirmed as previously
unknown crash bugs and 12 of them have been fixed. These
bugs are discovered because PUPPY generates queries that
encompass a variety of distinct optimization operation com-
binations. Thus PUPPY covers deep behaviors of the DBMSs
and triggers these crashes.

TABLE II
NUMBER OF CONFIRMED AND FIXED UNIQUE BUGS DETECTED BY PUPPY.

PDB Crash
DBMS Reported Confirmed Fixed Reported Confirmed Fixed
MySQL 15 13 6 5 4 4
Percona 20 17 8 8 6 4
TiDB 9 9 5 3 2 2
PolarDB 12 11 4 3 3 1
PostgreSQL 6 4 1 1 1 1

Total 62 54 23 20 16 12

Bug Severity. Based on the analysis conducted by DBMS
developers, the PDBs identified by PUPPY are associated with
309 optimization operation combinations within the optimiz-
ers of the tested DBMSs. While these bugs are elusive to
detect, their consequences result in significant performance
degradation of the DBMSs. Among 62 identified PDBs, 41
bugs cause over 500% performance degradation. As of the
time of writing this paper, a total of 23 bugs have been fixed.
In our communications with the developers, they expressed
their astonishment at the extent of performance degradation
caused by these bugs and their keen interest in our methods
for detecting them. As one developer of MySQL said,

“We greatly appreciate your raising this issue as it has
brought to light an oversight in our optimization design!
We will promptly address and rectify this design concern.”

Case Study: A limited optimization bug resulting in a
220-fold performance decline caused by semi-join and in-
dex scan in Percona. Figure 6 illustrates the complete process
of triggering the performance degradation bug. In Step 1 ,
PUPPY creates two complex tables incorporating primiary key
constraints. With these constraints in place, Percona optimizes
data retrieval by scanning the primiary key column using
the index scan operation. In Step 2 , PUPPY populates these
tables with records adhering to the defined constraints. Subse-
quently, PUPPY formulates a SQL query containing intricate
clauses that necessitate scanning specific records from table t0,
thereby invoking Percona’s semi-join optimization. Notably,
Percona requires 22.92 seconds to execute this SQL query in
Step 3 . However, in Step 4 , upon disabling the semi-join
optimization, the identical SQL query is executed by Percona
in a mere 0.01 seconds. This noteworthy contrast underscores
the substantial performance decline induced by the semi-join
optimization, resulting in a 200-fold slowdown compared to
its absence during execution.

The root cause of the bug. In Percona, the semi-join repre-
sents a classical technique for joining operations, where rows

7

CREATE TABLE t0(v0 NUMERIC, v1 VARCHAR(100),
 v2 DECIMAL ZEROFILL,
 PRIMARY KEY(v0));
CREATE TABLE t1(v0 VARCHAR, v1 BIGINT, PRIMARY KEY(v0));

INSERT INTO t0(v0,v1,v2) values
(random_number,random_string,random_float)--130 rows;
INSERT INTO t1(v0,v1) values
(random_string,random_number)--20 rows;

Create Table

Insert Records

SELECT t0.v0 FROM t0
 WHERE t0.v1 IN
(SELECT t1.v0 FROM t1
 WHERE(t1.v1 NOT IN
(SELECT t1.v1 FROM t1 WHERE
t1.v1==1984728405023) and t1.v0=``)

Execute Generated Query +---------------+
| v0 |
+---------------+
| 1984728405023 |
+---------------+

result: 1 rows in set
(22.92 sec)

SET optimizer_switch='semijoin=off'
Close Optimization Options

Re-execute Same Query
SELECT t0.v0 FROM t0
 WHERE t0.v1 IN
(SELECT t1.v0 FROM t1
...

+---------------+
| v0 |
+---------------+
| 1984728405023 |
+---------------+

result: 1 rows in set
(0.01 sec)

①

②

③

④

⑤

Fig. 6. The steps to trigger a performance degradation bug in Percona.

from one table are filtered based on matching rows in another
table. Unlike regular joins, which yield a blend of columns
from both tables, a semi-join exclusively returns rows from the
first table if they meet a specified condition with the second ta-
ble. Usually, employing the semi-join optimization is expected
to yield better performance than not using optimization.

In this case, Percona does not deal with the situation
that the two IN optimizations and semi-join optimization are
both enabled. Specifically, in Step 3 , three tables need to
be optimized with semi-join. During the execution, the IN
expression of the NOT IN statement first calculates the zero
rows that meet the condition of the next joined table. The
semi-join optimization hangs until the NOT IN statement
finally returns the real result. Consequently, semi-join and
optimization led to a staggering 220-fold performance decline
when applied with IN expression optimization in comparison
to its absence. To fix the bug, the developers of MySQL add
codes for semi-join optimization to handle the combination
with nested IN optimizations.

Why the bug was only discovered by PUPPY? We also test
Percona with APOLLO and AMOEBA but they do not find
this bug. This bug is tied to enabling and disabling semi-
join optimization within the Percona, presenting a challenge
for detection using traditional DBMS testing methods. For
example, AMOEBA identifies bugs by generating equivalent
SQL queries and comparing their performance. However,
since these queries do not impact the DBMS optimization
operations, AMOEBA is hard to detect this specific bug. Simi-
larly, APOLLO identifies performance regression bugs through
a comparison of response times between DBMS versions
with identical operation options. Consequently, this method
is unable to reveal this particular bug.

In contrast, PUPPY utilizes a distinctive methodology for
bug detection. It generates the executed SQL query using
optimization-guided SQL synthesis, meticulously analyzes the
query plan and optimization operations to construct a de-
optimized execution plan, and subsequently compares the
response time with the optimized plan. This process enables
PUPPY to identify performance degradation issues effectively
and it successfully detected the performance degradation bug
by disabling the semi-join optimization of Percona. In sum-
mary, these results unequivocally demonstrate that PUPPY
excels at uncovering previously unknown correctness and
performance bugs, providing a robust response to RQ1.

C. Compare with Other Techniques

To evaluate the effectiveness of our test oracle, we
conducted a comparison experiment between PUPPY with
APOLLO and AMOEBA, two state-of-the-art DBMS perfor-
mance testing methods. Note that AMOEBA only provides
an artifact to test PostgreSQL and source code is currently
not available, we implement it following its paper [26] based
on the equivalent SQL query construction on MySQL, TiDB,
Percona, and PolarDB. We ran the testing tools on each DBMS
for 48 hours and recorded the number of detected performance
bugs and covered branches as the metric.

TABLE III
NUMBER OF PERFORMANCE BUGS DETECTED BY APOLLO, AMOEBA AND

PUPPY IN 48 HOURS.

DBMS APOLLO AMOEBA PUPPY

MySQL 1 1 9
Percona 1 1 8
TiDB 0 1 5

PolarDB 2 1 6
PostgreSQL 0 1 2

Total 4 5 30

PUPPY outperforms other performance testing techniques in
finding performance anomalies. Table III displays the number
of performance bugs detected by each tool. In 48 hours,
PUPPY detected a total of 30 performance degradation bugs
on MySQL, Percona, TiDB, PolarDB, and PostgreSQL in
48 hours, while APOLLO and AMOEBA only found 4 and
5 performance bugs, respectively. Compared to APOLLO and
AMOEBA, PUPPY detected 26 and 25 more performance
anomalies, respectively.

One of the main reasons that PUPPY discovered more bugs
is that PUPPY can cover more branches and trigger more
behaviors of DBMSs than APOLLO and AMOEBA. Table IV
shows the number of branches covered by each technique in
48 hours. It shows that PUPPY covers more branches in 48
hours when compared to APOLLO and AMOEBA. Specifically,
compared to the other two performance testing methods,
PUPPY covered a total of 151,201 and 173,798 more branches
than APOLLO and AMOEBA, respectively. The ability to cover
more branches can be attributed to PUPPY’s generation of SQL

8

TABLE IV
NUMBER OF BRANCHES COVERED BY THREE TOOLS IN 48 HOURS.

DBMS APOLLO AMOEBA PUPPY

MySQL 45,532 43,194 74,658
Percona 49,523 32,932 77,863
TiDB 33,532 29,345 54,924

PolarDB 53,923 44,563 69,837
PostgreSQL 43,556 53,435 99,985

Total 226,066 203,469 377,267

queries guided by optimization operation sequence coverage.
This approach facilitates the activation of a broader range of
optimization strategy sequences and the exploration of a wider
spectrum of optimizer behaviors in DBMSs. In summary, the
results indicate that PUPPY can detect more performance bugs
and cover more branches than APOLLO and AMOEBA, which
adequately answers RQ2.

D. Efficiency of the Optimization Guided Algorithm

Section III-A highlights that PUPPY proposes the optimiza-
tion operation sequence coverage to guide the SQL clause
synthesis, which increases the number of unique optimization
strategy sequences of the execution plans for the SQL queries.

To investigate the effectiveness of the optimization op-
eration sequence coverage guidance on PUPPY to discover
the performance degradation issues, we implement PUPPY-,
which disables the optimization operation sequence coverage
guidance algorithms. Note that PUPPY- generates the SQL
query by synthesizing the SQL clause randomly. We compare
PUPPY against PUPPY- on MySQL, Percona, TiDB, PolarDB,
and PostgreSQL for 48 hours and collect the number of trig-
gered PDBs as well as the number of optimization operation
sequences as the metric.

TABLE V
THE NUMBER OF PERFORMANCE BUGS AND OPTIMIZATION OPERATION
SEQUENCE NUMBER TRIGGERED BY PUPPY AND PUPPY- IN 48 HOURS

PDBs Optimization Operation Sequences
PUPPY- PUPPY PUPPY- PUPPY Improvement

MySQL 6 9 364,853 539,048 47.74%↑
Percona 4 8 394,836 574,938 45.61%↑
TiDB 3 5 422,192 736,372 74.42%↑

PolarDB 5 6 382,193 628,228 64.37%↑
PostgreSQL 0 2 563,182 826,927 46.83%↑

Total 18 30 2,127,256 3,305,513 55.39%↑

Table V shows the number of detected PDBs as well as
the number of optimization strategy sequences triggered by
PUPPY and PUPPY- on MySQL, Percona, TiDB, PolarDB,
and PostgreSQL after testing for 48 hours. From the left
part of the table, we can see that PUPPY discovered 12
more PDBs than PUPPY- on five DBMSs. Specifically, PUPPY
detected 3, 4, 2, 1, and 2 more PDBs on MySQL, Percona,
TiDB, PolarDB, and PostgreSQL in 48 hours, respectively. The
reason behind the enhancement in the number of detected bugs

can be elucidated by the impact on the quantity of activated
optimization operation sequences in the execution plan.

From the right part of the table, we can also notice that
PUPPY total achieves a total of 55.39% improvement in
the number of triggered optimization operation sequences on
five DBMS. Specifically, PUPPY triggered 47.74%, 45.61%,
74.42%, 64.37% and 46.83% more optimization operation
sequences than PUPPY-on MySQL, Percona, TiDB, PolarDB,
and PostgreSQL, respectively. The result is reasonable be-
cause our design of optimization-guided SQL synthesis was
intended to stimulate a broader array of optimization operation
sequences within the optimizer. Without optimization guiding,
PUPPY- only synthesizes new SQL queries by randomly
selecting SQL clauses. Therefore, most of the inputs gen-
erated by PUPPY- triggered repetitive optimization operation
sequences and failed to explore a broader state space within
the DBMS. In contrast, PUPPY synthesizes SQL queries
with the optimization operation sequences coverage guidance.
Therefore, PUPPY can trigger more optimization operation
sequences and detect more performance bugs when compared
to PUPPY-.

In summary, the experiments have demonstrated that opti-
mizing operation sequence coverage contributes to an increase
in the number of optimized sequences covered in generated
queries and the discovery of performance issues. This provides
a comprehensive answer to RQ3.

VI. DISCUSSION

False Positives Analysis. PUPPY identifies performance
anomalies by comparing the execution response time be-
tween the limited optimization plan and the unlimited plan.
When this disparity exceeds a specified degradation margin,
PUPPY flags it as a PDB. We report the detected performance
anomalies to developers, and only the confirmed anomalies by
developers are considered real bugs, the others are considered
false positives. The degradation margin parameter significantly
influences the occurrence of false positives. A low degradation
margin value can lead to a high number of false positives,
while an excessively high degradation margin may cause
genuine anomalies to go undetected.

TABLE VI
NUMBER OF REPORTED ANOMALIES, FALSE POSITIVES, AND TRUE

POSITIVES OF PUPPY ON VARIOUS DEGRADATION MARGIN VALUES.

Degradation Margin Reported False Positives True Positives

1.2 20 10 10
1.5 11 2 9
2 8 1 7
3 6 0 6
4 6 0 6
5 5 0 5

To find a pragmatic degradation margin, We conduct the
experiment that runs PUPPY on MySQL with different degra-
dation margin values, ranging from 1.2 to 5. We established a

9

minimum threshold of 1.2 for identifying performance anoma-
lies, based on our communication with DBMS developers
during the bug-reporting process. Table VI shows the number
of reported anomalies, false positives, and true positives of
PUPPY in 48 hours. According to the experimental data, as the
degradation margin increases from 1.2 to 5, false positives con-
tinuously decrease. However, due to strict threshold settings,
the tool’s reported true positives also decreased. In the table,
we observe that when the threshold is raised from 1.2 to 1.5,
false positives decrease by 80%, while true positives decrease
by only 1. In cases where human resources are abundant, a
lower threshold can be set, allowing for manual verification
even with a higher occurrence of false positives. However, in
our experiments, to minimize false positives while capturing
more genuine issues, we opted for a threshold of 1.5.

Compare With Other DBMS Testing Tools. In Sec-
tion V-C, we compare PUPPY with APOLLO and AMOEBA
to evaluate its ability to detect performance bugs. To fur-
ther evaluate the performance of PUPPY, we also compare
PUPPY with SQLancer, SQLsmith, and SQUIRREL, which
are widely used in industry. Table VII shows the number
of detected bugs by each tool in 48 hours. It shows that
PUPPY outperforms SQLancer and SQLsmith in detecting
bugs. Specifically, PUPPY detect detected a total of 35 bugs
(including 30 performance bugs and 5 crash bugs) in 48 hours,
while SQLancer, SQLsmith and SQUIRREL only detected 29,
31, and 30 bugs in total.

TABLE VII
DETECTED BUGS BY SQLANCER, SQLSMITH AND PUPPY IN 48 HOURS.

DBMS SQLancer SQLsmith SQUIRREL PUPPY

MySQL 2 1 2 11
Percona 2 1 1 9
TiDB 1 0 0 5

PolarDB 1 1 2 8
PostgreSQL 0 1 0 2

Total 6 4 5 35

VII. RELATED WORK

A. DBMS Fuzzing

Fuzzing is an automated software testing technique, which
generates random data as program inputs. It has been widely
adopted in practice for finding bugs in many critical ar-
eas, including operating systems [43], networking proto-
cols [28, 27], third-part libraries [34, 23], and DBMS.
DBMS Fuzzing is an effective technique for finding bugs in
DBMSs. It could be divided into generation-based fuzzing or
mutation-based fuzzing. Generation-based fuzzing generates
SQL queries based on pre-defined syntax or grammar mod-
els. SQLsmith [41] generates queries based on built-in code
that embeds the AST generation rules for the target DBMS.
SQLancer [40, 39, 38] aims to find logic bugs and it generates
queries based on the test oracle it builds.

Mutation-based fuzzers mutate existing queries to produce
new queries. SQUIRREL [51], LEGO [22] and Ratel [46]
mutates queries based on their AST structure. DynSQL [18]
captures DBMS state information for each statement to in-
crementally generate complex and valid SQL queries. GRIF-
FIN [13] introduces a grammar-free way to reshuffle existing
statements from different queries and then repairs their seman-
tic correctness by tracking database schema. Sedar [12] import
the LLM help transfer the existing test cases for fuzzing.
QPG [5] gradually mutates DDL and DML statements to
change database states, aiming to cover more unique query
plans to cover more DBMS logic. Unicorn [48] detects the
implicit exceptions in the time-series database with hybrid
input synthesis. WingFuzz [24] implements continuous fuzzing
for DBMS.

PUPPY could be regarded as a generation-based fuzzer. Dif-
ferent from other generation-based fuzzers, PUPPY generates
SQL queries that incorporate a diverse range of optimization
strategies. It utilizes optimization operation sequence coverage
to guide the process of inserting different SQL clauses into
the queries. Compared to QPG which utilizes plan-based
guidance, using the sequence of optimization operations within
the plan offers a finer-grained form of guidance. This enables
PUPPY to achieve a more precise coverage of various opti-
mization operations.

B. DBMS Performance Testing

The enduring goal within the realm of the DBMS has
always been to attain exceptional performance. Traditional
performance testing like TPC-H [45] benchmarks by executing
DBMS under pre-defined workloads. APOLLO [19] utilizes
differential testing on multiple versions to test regression test-
ing. AMOEBA [25] generates equivalent queries and compares
their response time to find performance issues.

PUPPY is designed to detect PDBs, essentially a facet
of performance testing. Unlike conventional approaches that
establish performance baselines through pre-defined values
(e.g., TPC-H), comparisons with different versions of a DBMS
like APOLLO, or equivalent query execution values as seen
with AMOEBA, PUPPY takes a unique approach. It selectively
disables specific optimizations within a DBMS and evaluates
whether the same query runs unexpectedly slowly.

C. DBMS Configuration Tuning

DBMS configuration tuning is a practice focused on en-
hancing the performance and efficiency of a DBMS by fine-
tuning various configurations. Both DB2 of IBM and Oracle
have implemented a heuristic-based approach for memory
allocation management, which relies on performance measure-
ments [42, 10]. Oracle and Microsoft provide SQL analyzer
tools that assess the potential performance impact of DBMS
modifications for configuration adjusting [50, 31]. Other re-
search endeavors aim to automate the adjustment of DBMS
configurations. They typically execute a workload in the target
DBMS, make configuration changes, and then rerun the same
workload to assess whether there has been a performance

10

improvement [11, 49, 44, 21]. For example, iTuned [11]
employs a “cycle stealing” strategy to continually evaluate the
influence of adjusting specific configurations on performance.
OtterTune [44] leverages a mix of supervised and unsupervised
machine learning techniques to identify critical configurations,
adapt to new workloads, and recommend optimal settings.

PUPPY is designed to uncover performance degradation
bugs rather than seeking an optimal configuration. It achieves
this by selectively disabling certain well-established optimiza-
tion strategies to identify potential performance issues.

VIII. CONCLUSION

We propose PUPPY to detect performance degradation bugs.
We find that some specific optimization operation sequences in
the optimizer may cause serious performance degradation of
DBMSs. However, current works usually test DBMSs without
changing the optimization operation sequence of the SQL
query, which might ignore the performance degradation bugs.
Consequently, we design an automated approach to detect
performance degradation bugs using limited-optimization plan
construction and implement it in PUPPY. We evaluate PUPPY
on widely-used DBMSs and find 62 previously unknown
performance bugs and 20 crash bugs.

ACKNOWLEDGMENT

We appreciate the valuable comments provided by the re-
viewers. This research is partly sponsored by the National Key
Research and Development Project (No. 2022YFB3104000),
NSFC Program (No. 62302256, 92167101, 62021002), and
Chinese Postdoctoral Science Foundation (2023M731953).

REFERENCES

[1] Mysql. https://www.mysql.com/. Accessed: August 19,
2024.

[2] Polardb documentation. https://www.alibabacloud.com/
help/en. Accessed: August 19, 2024.

[3] Polardb github. https://github.com/polardb/polardbx-sql.
Accessed: August 19, 2024.

[4] Postgresql. https://www.postgresql.org/. Accessed: Au-
gust 19, 2024.

[5] BA, J., AND RIGGER, M. Testing database engines via
query plan guidance. In Proceedings of International
Conference on Software Engineering (ICSE) (2023).

[6] BANNISTER, A. Sqlite patches use-after-free bug that
left apps open to code execution, denial-of-service
exploits. https://portswigger.net/daily-swig/sqlite-
patches-use-after-free-bug-that-left-apps-open-to-code-
execution-denial-of-service-exploits, 5 2021. Accessed:
August 19, 2024.

[7] BLÅUDD, A. M. Percona website. https://
www.percona.com/. Accessed: August 19, 2024.

[8] CIMPANU, C. Google chrome impacted
by new magellan 2.0 vulnerabilities. https:
//www.zdnet.com/article/google-chrome-impacted-by-
new-magellan-2-0-vulnerabilities/, 12 2019. Accessed:
August 19, 2024.

[9] COMMUNITY, P. Postgresql bug list. https://
www.postgresql.org/. Accessed: August 19, 2024.

[10] DIAS, K., RAMACHER, M., SHAFT, U., VENKATARA-
MANI, V., AND WOOD, G. Automatic performance
diagnosis and tuning in oracle. In CIDR (2005), pp. 84–
94.

[11] DUAN, S., THUMMALA, V., AND BABU, S. Tuning
database configuration parameters with ituned. Proceed-
ings of the VLDB Endowment 2, 1 (2009), 1246–1257.

[12] FU, J., LIANG, J., WU, Z., AND JIANG, Y. Sedar:
Obtaining high-quality seeds for dbms fuzzing via cross-
dbms sql transfer. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering
(2024), pp. 1–12.

[13] FU, J., LIANG, J., WU, Z., WANG, M., AND JIANG, Y.
Griffin: Grammar-free dbms fuzzing. In Conference on
Automated Software Engineering (ASE’22) (2022).

[14] GROUP, T. P. G. D. Using explain. https:
//www.postgresql.org/docs/current/using-explain.html, 1
2024. Accessed: August 19, 2024.

[15] HUANG, D., LIU, Q., CUI, Q., FANG, Z., MA, X., XU,
F., SHEN, L., TANG, L., ZHOU, Y., HUANG, M., ET AL.
Tidb: a raft-based htap database. Proceedings of the
VLDB Endowment 13, 12 (2020), 3072–3084.

[16] IOANNIDIS, Y. E. Query optimization. ACM Computing
Surveys (CSUR) 28, 1 (1996), 121–123.

[17] JARKE, M., AND KOCH, J. Query optimization in
database systems. ACM Computing surveys (CsUR) 16,
2 (1984), 111–152.

[18] JIANG, Z.-M., BAI, J.-J., AND SU, Z. Dynsql: Stateful
fuzzing for database management systems with complex
and valid sql query generation, 2023.

[19] JUNG, J., HU, H., ARULRAJ, J., KIM, T., AND KANG,
W. APOLLO: Automatic Detection and Diagnosis of
Performance Regressions in Database Systems (to ap-
pear). In Proceedings of the 46th International Confer-
ence on Very Large Data Bases (VLDB) (Tokyo, Japan,
Aug. 2020).

[20] LAN, H., BAO, Z., AND PENG, Y. A survey on advanc-
ing the dbms query optimizer: Cardinality estimation,
cost model, and plan enumeration. Data Science and
Engineering 6, 1 (2021), 86–101.

[21] LI, G., ZHOU, X., LI, S., AND GAO, B. Qtune: A query-
aware database tuning system with deep reinforcement
learning. Proceedings of the VLDB Endowment 12, 12
(2019), 2118–2130.

[22] LIANG, J., CHEN, Y., WU, Z., FU, J., WANG, M.,
JIANG, Y., HUANG, X., CHEN, T., WANG, J., AND LI,
J. Sequence-oriented dbms fuzzing. In 2023 IEEE
International Conference on Data Engineering (ICDE),
IEEE.

[23] LIANG, J., WANG, M., ZHOU, C., WU, Z., JIANG, Y.,
LIU, J., LIU, Z., AND SUN, J. Pata: Fuzzing with path
aware taint analysis. In 2022 2022 IEEE Symposium on
Security and Privacy (SP)(SP). IEEE Computer Society,
Los Alamitos, CA, USA. 154ś170 (2022).

11

https://www.mysql.com/
https://www.alibabacloud.com/help/en
https://www.alibabacloud.com/help/en
https://github.com/polardb/polardbx-sql
https://www.postgresql.org/
https://portswigger.net/daily-swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits
https://portswigger.net/daily-swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits
https://portswigger.net/daily-swig/sqlite-patches-use-after-free-bug-that-left-apps-open-to-code-execution-denial-of-service-exploits
https://www.percona.com/
https://www.percona.com/
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/using-explain.html
https://www.postgresql.org/docs/current/using-explain.html

[24] LIANG, J., WU, Z., FU, J., BAI, Y., ZHANG, Q.,
AND JIANG, Y. {WingFuzz}: Implementing continuous
fuzzing for {DBMSs}. In 2024 USENIX Annual Techni-
cal Conference (USENIX ATC 24) (2024), pp. 479–492.

[25] LIU, X., ZHOU, Q., ARULRAJ, J., AND ORSO, A. Auto-
matic detection of performance bugs in database systems
using equivalent queries.

[26] LIU, X., ZHOU, Q., ARULRAJ, J., AND ORSO, A.
Automatic detection of performance bugs in database
systems using equivalent queries. In Proceedings of the
44th International Conference on Software Engineering
(2022), pp. 225–236.

[27] LUO, Z., ZUO, F., JIANG, Y., GAO, J., JIAO, X., AND
SUN, J. Polar: Function code aware fuzz testing of
ICS protocol. ACM Trans. Embed. Comput. Syst. 18,
5s (2019), 93:1–93:22.

[28] LUO, Z., ZUO, F., SHEN, Y., JIAO, X., CHANG, W.,
AND JIANG, Y. Ics protocol fuzzing: coverage guided
packet crack and generation. In 2020 57th ACM/IEEE
Design Automation Conference (DAC) (2020), IEEE,
pp. 1–6.

[29] MOMJIAN, B. PostgreSQL: introduction and concepts,
vol. 192. Addison-Wesley New York, 2001.

[30] Understanding the query execution plan.
https://dev.mysql.com/doc/refman/8.0/en/execution-
plan-information.html, 1 2024. Accessed: August 19,
2024.

[31] NARAYANAN, D., THERESKA, E., AND AILAMAKI, A.
Continuous resource monitoring for self-predicting dbms.
In 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommu-
nication Systems (2005), IEEE, pp. 239–248.

[32] ORACLE. Mysql explain manual. https://dev.mysql.com/
doc/refman/8.0/en/using-explain.html. Accessed: August
19, 2024.

[33] ORACLE. Mysql bug list. https://bugs.mysql.com/, 1
2014. Accessed: August 19, 2024.

[34] Continuous fuzzing for open source software.
https://opensource.googleblog.com/2016/12/announcing-
oss-fuzz-continuous-fuzzing.html, 2016. Accessed:
August 19, 2024.

[35] PINGCAP. Tidb. https://github.com/pingcap/tidb. Ac-
cessed: August 19, 2024.

[36] RAMAKRISHNAN, R., GEHRKE, J., AND GEHRKE, J.
Database management systems, vol. 3. McGraw-Hill
New York, 2003.

[37] RIGGER, M. Bugs found in database management
systems. https://www.manuelrigger.at/dbms-bugs, 2024.
Accessed: August 19, 2024.

[38] RIGGER, M., AND SU, Z. Finding bugs in database
systems via query partitioning. pacmpl 4 (oopsla)(nov
2020).

[39] RIGGER, M., AND SU, Z. Detecting optimization bugs
in database engines via non-optimizing reference engine
construction. In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering
(2020), pp. 1140–1152.

[40] RIGGER, M., AND SU, Z. Testing database engines via
pivoted query synthesis. In 14th USENIX Symposium on
Operating Systems Design and Implementation OSDI 20)
(2020), pp. 667–682.

[41] SELTENREICH, A., TANG, B., AND MULLENDER, S.
Sqlsmith: a random sql query generator.

[42] STORM, A. J., GARCIA-ARELLANO, C., LIGHTSTONE,
S. S., DIAO, Y., AND SURENDRA, M. Adaptive self-
tuning memory in db2. In Proceedings of the 32nd
international conference on Very large data bases (2006),
pp. 1081–1092.

[43] SUN, H., SHEN, Y., WANG, C., LIU, J., JIANG, Y.,
CHEN, T., AND CUI, A. HEALER: relation learning
guided kernel fuzzing. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021 (2021),
R. van Renesse and N. Zeldovich, Eds., ACM, pp. 344–
358.

[44] VAN AKEN, D., PAVLO, A., GORDON, G. J., AND
ZHANG, B. Automatic database management system
tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM international conference on
management of data (2017), pp. 1009–1024.

[45] VERSHININ, I., AND MUSTAFINA, A. Performance anal-
ysis of postgresql, mysql, microsoft sql server systems
based on tpc-h tests. In 2021 International Russian
Automation Conference (RusAutoCon) (2021), IEEE,
pp. 683–687.

[46] WANG, M., WU, Z., XU, X., LIANG, J., ZHOU, C.,
ZHANG, H., AND JIANG, Y. Industry practice of
coverage-guided enterprise-level dbms fuzzing. In 2021
IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-
SEIP) (2021), IEEE, pp. 328–337.

[47] WIDENIUS, M., AXMARK, D., AND ARNO, K. MySQL
reference manual: documentation from the source. ”
O’Reilly Media, Inc.”, 2002.

[48] WU, Z., LIANG, J., WANG, M., ZHOU, C., AND
JIANG, Y. Unicorn: Detect runtime errors in time-series
databases with hybrid input synthesis. In Symposium on
Software Testing and Analysis (ISSTA’22) (2022).

[49] XI, B., LIU, Z., RAGHAVACHARI, M., XIA, C. H.,
AND ZHANG, L. A smart hill-climbing algorithm for
application server configuration. In Proceedings of the
13th international conference on World Wide Web (2004),
pp. 287–296.

[50] YAGOUB, K., BELKNAP, P., DAGEVILLE, B., DIAS,
K., JOSHI, S., AND YU, H. Oracle’s sql performance
analyzer. IEEE Data Eng. Bull. 31, 1 (2008), 51–58.

[51] ZHONG, R., CHEN, Y., HU, H., ZHANG, H., LEE, W.,
AND WU, D. Squirrel: Testing database management
systems with language validity and coverage feedback. In
The ACM Conference on Computer and Communications
Security (CCS), 2020 (2020).

12

https://dev.mysql.com/doc/refman/8.0/en/execution-plan-information.html
https://dev.mysql.com/doc/refman/8.0/en/execution-plan-information.html
https://dev.mysql.com/doc/refman/8.0/en/using-explain.html
https://dev.mysql.com/doc/refman/8.0/en/using-explain.html
https://bugs.mysql.com/
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://github.com/pingcap/tidb
https://www.manuelrigger.at/dbms-bugs

	Introduction
	Performance Degradation Bugs
	Design of Puppy
	Optimization-Guided SQL Synthesis
	Execution-Driven Limited Optimization Plan Construction

	Important Implementation Details
	Evaluation
	Evaluation Setup
	DBMS Performance Degradation Bug Detection
	Compare with Other Techniques
	Efficiency of the Optimization Guided Algorithm

	Discussion
	Related Work
	DBMS Fuzzing
	DBMS Performance Testing
	DBMS Configuration Tuning

	Conclusion

