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Abstract—Differential testing is a prevalent strategy for es-
tablishing test oracles in automated DBMS testing. However,
meticulously selecting equivalent DBMSs with diverse imple-
mentations and compatible input syntax requires huge manual
efforts. In this paper, we propose THANOS, a framework that
finds DBMS bugs via storage engine rotation based differential
testing. Our key insight is that a DBMS with different storage
engines must provide consistent basic storage functionalities.
Therefore, it’s feasible to construct equivalent DBMSs based
on storage engine rotation, ensuring that the same SQL test
cases to these equivalent DBMSs yield consistent results. The
framework involves four main steps: 1) select the appropriate
storage engines; 2) extract equivalence information among the
selected storage engines; 3) synthesize feature-orient test cases
that ensure the DBMS equivalence; and 4) send test cases to the
DBMSs with selected storage engines and compare the results.

We evaluate THANOS on three widely used and extensively
tested DBMSs, namely MySQL, MariaDB, and Percona against
state-of-the-art fuzzers SQLancer, SQLsmith, and SQUIRREL.
THANOS outperforms them on branch coverage by 24%–116%,
and also finds many bugs missed by other fuzzers. More impor-
tantly, the vendors have confirmed 32 previously unknown bugs
found by THANOS, with 29 verified as Critical.

Index Terms—DBMS Testing, Differential Testing, Storage
Engine

I. INTRODUCTION

Database Management Systems (DBMSs) provide a struc-
tured framework for efficient and secure data handling in con-
temporary computing. They enable the storage, retrieval, and
management of vast amounts of data, enhancing accessibility
and integrity [1, 2]. Testing DBMSs is essential to guarantee
reliability, performance, and security, directly influencing the
accuracy and consistency of data management in vital business
and technological operations [3].

Establishing test oracles capable of discerning the correct
behavior of a DBMS for a given input is a primary problem
in automated DBMS testing [4, 5]. Differential testing has
emerged as a prevalent strategy in this context [6, 7, 8],
involving the comparison of outputs from equivalent DBMS
implementations with compatible input syntax to detect in-
consistencies. Within this approach, there are two primary
schemes: version-based comparison and vendor-based com-
parison. In version-based comparison, identical SQL queries
are executed across different DBMS versions, as done in
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APOLLO [9] to detect performance regressions in MySQL.
However, this approach may overlook real issues due to minor
version variability. In vendor-based comparison, equivalent
SQL statements are executed on various DBMSs, like the
logic testing of SQLite with different SQLs on PostgreSQL,
MySQL, Microsoft SQL Server, and Oracle [6, 8, 10]. How-
ever, adapting this scheme to more complex systems poses
challenges due to their diverse features, indexing strategies,
and data storage mechanisms. Ideally, a differential testing
scheme should blend diverse DBMS implementations with
similar input syntax to uncover hidden issues and reduce SQL
generation costs. Unfortunately, existing methods struggle to
achieve both goals simultaneously.

Recognizing these limitations, this paper introduces a novel
differential testing scheme for DBMS bug detection. This
scheme blends diversity in implementation with similarity in
input syntax by rotating storage engines, the critical compo-
nent in DBMS that serves as interfaces between the query
planner and the underlying storage infrastructure. In essence,
by equipping the DBMS with various storage engines, we
create equivalent instances of the DBMS to establish test
oracles for detecting bugs. Most production DBMSs support
multiple storage engines [11, 12, 13], each tailored to specific
capabilities (e.g., full-text search) and performance charac-
teristics (e.g., column-based storage). These storage engines
introduce complexity in indexing data, ensuring atomicity, and
defining physical layouts. Moreover, different storage engines
contribute to variations in execution plan optimization for SQL
queries, enhancing diversity in DBMS logic. Since the storage
engine is invoked after SQL parsing, semantic analysis, and
query planning, it also ensures consistency in input syntax,
reducing the cost of tool development.

The main challenge in rotating storage engine lies in ensur-
ing the generated test cases are equivalent across various stor-
age engines while comprehensively testing the full spectrum
of the storage engine’s functionalities. First, the generated
test cases involving the unsupported features of the rotated
storage engines are not entirely equivalent. For instance, in
MySQL, InnoDB supports full-text indexes while Memory
does not [14], which indicates that test cases involving the
creation of full-text indexes are not entirely equivalent for
these two engines. Consequently, the functionalities involved
in the test case must be aligned with the features of the storage



engine. Randomly selecting storage engine-related features
may result in inequivalence, while selecting irrelevant features
may prove ineffective. Second, it is crucial for the generated
test cases to stimulate a broad spectrum of storage engine
features, ensuring the comprehensive testing of the DBMS. It
entails the deliberate selection of test scenarios that not only
cover the basics but also delve into the myriad functionalities
offered by different storage engines. This inclusivity ensures
that the generated cases test a DBMS in diverse ways, exam-
ining its ability to handle multiple storage-related operations,
data structures, and optimization mechanisms.

We take four main steps to address the challenge. Firstly,
we select the appropriate storage engines as the foundation of
equivalent DBMS construction with the guidance of covered
features, which helps cover more storage engine features of
DBMSs; secondly, we extract equivalence information among
the selected storage engines to construct the equivalent DBMS;
thirdly, we synthesize the feature-orient test cases with the
equivalence information and metadata guidance, which not
only promise the semantic correctness but also explore the
full spectrum of storage engine features; and finally, we send
the test cases to the DBMSs with selected storage engines and
compare the results for bug detection.

To demonstrate the effectiveness of our approach, we im-
plement a generic DBMS testing framework called THANOS
and apply THANOS on three well-tested DBMSs: MySQL,
MariaDB, and Percona. THANOS has discovered 32 new bugs
confirmed by the corresponding vendors, including 11 bugs
in MySQL, 17 bugs in MariaDB, and 4 bugs in Percona,
respectively. Among these bugs, 29 bugs were verified as
Critical. To assess the effectiveness of THANOS, we compare
THANOS against contemporary state-of-the-art DBMS test-
ing methods, namely SQLancer, SQLsmith, and SQUIRREL.
THANOS covers 115.95%, 45.23%, 23.72% more branches,
and finds 14, 13, and 11 more bugs in 24 hours on three
DBMSs than SQLancer, SQLsmith, and SQUIRREL, respec-
tively. Meanwhile, we also show the effectiveness of the
feature-oriented test case synthesis.

In conclusion, our paper makes the following contributions:

• We propose a novel differential testing approach to
complement existing methods of defining DBMS test
oracle, which constructs equivalent DBMSs by rotating
the storage engine components, serving as a reference for
validating execution results.

• We implement THANOS, a DBMS testing framework that
synthesizes test cases based on the features of the selected
storage engine to ensure the equivalence of the tested
DBMS instances. Any inconsistent execution results will
be considered potential anomalies.

• We evaluate THANOS on three widely used and ex-
tensively tested DBMSs against other state-of-the-art
techniques. The results show that THANOS outperforms
others and 32 bugs are detected. It also found more basic
blocks and bugs than other techniques.
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Fig. 1: Overview of MySQL Storage Engine Architecture.

II. BACKGROUND AND MOTIVATION

DBMS Storage Engines. The storage engine in a DBMS plays
a pivotal role as the foundational component responsible for
managing data storage, retrieval, and manipulation within the
database. It acts as an intermediary between the DBMS and
the physical data storage, ensuring efficient data processing
and access. Figure 1 illustrates the pluggable storage engine
architecture within the MySQL server, one of the most widely
used DBMSs. It underscores that MySQL supports various
storage engines such as InnoDB, MyISAM, and Memory. These
engines manage disk, memory, and other physical resources,
providing essential storage support for higher-level modules.
The storage engine component possesses several key charac-
teristics: 1) Diversity: Modern DBMSs typically offer support
for multiple storage engines, each with unique features and
capabilities tailored to specific use cases. 2) Significance:
As shown in Figure 1, the storage engines are intricately
linked with many foundational components, such as Optimizer
and Parser, thereby having a decisive impact on the overall
performance of the database. 3) Scalability: According to the
architecture shown in Figure 1, the storage engine component
is highly scalable, allowing for the seamless integration of
new storage engines as plugins. This adaptability ensures that
the system can meet emerging technological challenges and
business needs efficiently.
Storage Engine Features. Storage engine features refer to the
specific functionalities and attributes provided by the storage
engines within a DBMS. These features are designed to opti-
mize various aspects of database operations, ensuring efficient
data management, retrieval, and manipulation. Formally, these
features can be defined as a set F that includes data indexing,
transaction support, data partitioning, and others:

F = {f1, f2, f3, . . . , fn}

where each fi represents a distinct feature provided by the
storage engine. For instance: f1: Data Indexing, f2: Trans-
action Support, f3: Data Partitioning, fn: Other features. In
this paper, our primary focus is on those features that can
be utilized and demonstrated through SQL statements. We
follow the official DBMS documentation and classify storage
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+------+------+------+------+ 
| c0 | c1 | c2 | c3 | 
+------+------+------+------+ 
| NULL | NULL | NULL | NULL | 
| NULL | NULL | NULL | NULL | 
| NULL | NULL | NULL | NULL | 
| NULL | NULL | NULL | NULL | 
+------+------+------+------+
4 rows in set

SQL Test Case
CREATE TABLE test ( v0 INT
PRIMARY KEY, v1 BIT ... );

INSERT INTO test VALUES
(...);

...
SELECT c0, c1, c1 AS c2, c1 
AS c3 FROM ( SELECT v1 AS c0, 
v2 AS c1 FROM test WHERE
EXISTS ( SELECT v3 FROM test 
WHERE v4 > 100 ) ) subq_0;

Fig. 2: A correctness bug found by THANOS in MySQL.

engine features into 10 major categories. The detailed process
of storage engine features collection can be referenced in
Section III-F. Due to the extensive length of the complete
feature list, the detailed list of specific features can be found
on THANOS’s website [15].
Basic Idea of THANOS. The key insight of THANOS is
to construct equivalent DBMSs by leveraging the storage
engines, serving as a reference for validating execution results.
By equipping the DBMS with different storage engines, we
construct equivalent tested DBMS instances to build a test
oracle for bug detection. Specifically, instead of spending
considerable time finding DBMSs for differential comparison,
THANOS opts to construct equivalents by utilizing the storage
engines of the DBMS itself. When equivalent DBMS instances
produce different results while executing the same test case,
it indicates potential bugs in the DBMS’s implementation.

Figure 2 illustrates a correctness bug in MySQL identified
by THANOS utilizing the method of constructing storage
engine-oriented equivalent DBMSs1. This bug exposes an
inconsistency in handling NULL values between the InnoDB
and Memory storage engines. Due to the extensive utilization
of these two storage engines and MySQL’s capability for
real-time engine switching for database tables, the identified
disparity may pose a considerable risk, potentially leading to
severe disruptions in business logic and financial losses. One
developer commented, ”we will definitely verify this bug as
an S2 (serious) bug”. As shown in Figure 2, when the same
test cases generated by THANOS are executed separately by
both MySQL engines, the InnoDB returns an ’empty set’,
whereas the Memory returns a result set with four rows
and four columns of NULL values. Theoretically, these two
engines should return the same results. This inconsistency in
the results indicates errors within the MySQL storage engines’
implementation. In this case, both storage engines successfully
execute the given test cases, generating query results without
any crashes or error messages. Traditional DBMS fuzzing
methods, such as SQUIRREL, would be unable to detect this
issue. Similarly, metamorphic testing tools like SQLancer,
which rely on specially crafted rules still prove ineffective
in detecting this particular problem. As a result, this bug is
difficult for other DBMS testing methods to detect within the
same time frame.

1https://bugs.mysql.com/bug.php?id=112913

III. DESIGN OF THANOS

Figure 3 illustrates the approach overview of THANOS,
utilizing the storage engine as a key point to build equivalent
DBMSs, thus defining test oracle for automated DBMS bug
detection. THANOS consists of four main steps: In Step 1 ,
THANOS selects appropriate storage engines to serve as the
foundation for constructing equivalent DBMSs. In Step 2 ,
THANOS extracts equivalence information among the selected
storage engines from Step 1 . This information includes the
features supported by each storage engine, covering both com-
mon and complementary features. Then, in Step 3 , THANOS
synthesizes feature-oriented test cases using the extracted
equivalence information. These test cases are designed to be
semantically relevant to the DBMSs with the selected storage
engines. In Step 4 , THANOS executes the test cases on
the DBMSs with the selected storage engines and analyzes
the outcomes across different engines. Inconsistencies in the
results indicate potential bugs, which THANOS can then detect.

The following text will provide definitions and detailed
explanations for each step.

A. Definitions

DBMS Equivalence. DBMS equivalence refers to the con-
dition where different DBMS instances, despite variations
in their implementation or configurations, exhibit identical
functional behaviors. Equivalent DBMSs respond consistently
to the same semantic queries and operations.

Formally, given a SQL statement s and a DBMS D, we
denote the result of executing s on D as D(s). A test case
in DBMS testing comprises a series of SQL statements. Two
DBMSs are considered equivalent with respect to these test
cases if the execution results of the SQL statements are
consistent across both systems. Specifically, for any pair of
corresponding semantic SQL statements (s and s′) from two
test cases (T and T ′), two DBMSs D and D′ are equivalent
with respect to T and T ′ if and only if:

D ≡ D’ ⇔ ∀s ∈ T, ∀s′ ∈ T ′, D(s) = D′(s′)

In this paper, our focus is on DBMS equivalence related to
storage engines. We consider a DBMS that supports a variety
of optional storage engines. Let Engines = {e1, e2, . . . , en}
represent the set of these available storage engines, with
Dei defined as the instantiation of the DBMS equipped with
storage engine ei. Additionally, let F = {f1, f2, . . . , fm}
denote the set of distinct features inherent to each storage
engine. Define T = {t1, t2, . . . , tk} as the collection of test
cases for the DBMS, where each test case ti includes SQL
statements that invoke a combination of features from F .

Given two distinct storage engines ei, ej within Engines,
and a test case t from Fequivalent — the subset of test cases
that include features common to both ei and ej — we postulate
that if Dei and Dej exhibit identical results when executing
any given test case t within Fequivalent, these two DBMS
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Fig. 3: Approach Overview of THANOS. In Step 1, THANOS selects storage engines forming the basis for constructing equivalent
DBMSs. Step 2 involves extracting equivalence information among the chosen storage engines, comprising shared features
supported by all selected engines. Moving to Step 3, THANOS synthesizes feature-oriented test cases, guaranteeing the DBMSs’
equivalence. Finally, in Step 4, THANOS dispatches the test cases to the equivalent DBMSs, comparing the execution results
to detect the bugs.

instances are deemed equivalent. This equivalence can be
formally expressed as:

Dei ≡ Dej ⇔ ∀t ∈ Fequivalent,Dei(t) = Dej (t)

B. Feature-Guided Storage Engine Selection

The primary strategy of THANOS entails outfitting the tested
DBMS with various storage engines and generating the equiv-
alent test cases based on these engine features. THANOS first
selects the storage engines as the foundation and extracts the
equivalent information to construct the equivalent DBMSs dur-
ing the testing preparation phase. Some of these storage engine
combinations have more functionalities and code branches
than other combinations and may also have more potential
vulnerabilities. Testing each combination equally could result
in missing the chance to uncover potential vulnerabilities. For
example, if we select two storage engines in MariaDB to
construct the equivalent DBMS, 28 storage engine combina-
tions would be generated. InnoDB and Aria support over 70
equivalent features, but the Archive and Memory only support
40 equivalent features. In practice, 70% of the real bugs we
detected were in InnoDB-related storage engine combinations.
Therefore, selecting the appropriate storage engines as the
basis for constructing the equivalent DBMS during the testing
preparation phase is very important.

We design the feature-guided storage engine selection,
utilizing covered features and code branches as guidance to
choose storage engine combinations. Algorithm 1 shows the
detailed procedures for selecting storage engine combinations
during DBMS testing. THANOS first generates all storage
engine combinations and assigns an equal weight value to
each combination (Lines 1-6). Throughout the DBMS testing
phase, THANOS continually selects storage engine combina-
tions to construct equivalent DBMS instances for testing. If
a combination has a higher weight value, it is more likely
to be chosen for testing (Lines 7-8). Using the selected
combinations, THANOS extracts equivalent information and
generates a specific number of test cases, then dispatches them
to equivalent DBMSs for execution. If THANOS discovers
new features or identifies new bugs during the testing of

Algorithm 1: Feature-Guided Storage Engine Combi-
nation Selection

Input : S: Set of the support storage engines
1 begin
2 C ← generateCombinations (S);
3 foreach c0 ∈ C do
4 f ← supportFeatures (c0);
5 initializeWeight (c0,f );

6 while true do
7 c← chooseCombinationWithWeight (C);
8 if testCombination(c) then
9 addWeight(c);

10 Function testCombination(c0):
11 B ← currentBranches;
12 N ← currentBugNumber;
13 while canBeTested(c0) do
14 executionWithTestcase(c0, B,N);

15 if findNewbranches(B,N) or
findNewBugs(B,N) then

16 return true

17 End Function

selected combinations, it increases the weight value of those
combinations (Lines 11-17).

C. Extract Equivalence Information

After selecting the storage engine combinations, THANOS
then needs to generate the test cases for the DBMSs with the
selected storage engines to perform testing. However, given
the differing features and default configurations of various
storage engines, mere test case generation cannot ensure equiv-
alence among DBMSs employing different storage engines,
potentially resulting in less coverage of storage engine-related
features. To ensure consistency between DBMSs with selected
different storage engines, THANOS extracts equivalence infor-
mation from the selected storage engines to manage feature
differences, using these shared features to maintain DBMS
equivalence across various storage engines.



TABLE I: Illustrative List of Equivalent Features.

Data type Index type Health-check Partition Encryption Transaction ...INT BIT BLOB ... B-tree Hash ... Check Repair
InnoDB ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓
MyISAM ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ×
Archive ✓ × ✓ × × ✓ ✓ × ✓ ×
Mroonga ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ×

The equivalence information extracted by THANOS, denoted
as Fequivalent, includes features commonly supported by the
selected storage engines, as well as those not supported by
any of them(complement features). To better understand the
computation of Fequivalent, consider U as the universal set of
all features across storage engines, k represents the number of
selected storage engines. The formula for Fequivalent is thus
defined as:

Fequivalent =

k⋂
i=1

fi ∪

(
U −

k⋃
i=1

fi

)
This formula calculates Fequivalent as the union of two sets:
the intersection of feature sets (fi) of all k selected engines,
representing the common features to all engines, and the
complement features indicates the features that are absent in all
selected engines. In other words, the equivalence information
includes features that are either shared by all the engines or
missing in all of them, thus forming a basis for evaluating
DBMS behavior equipped with different storage engines.

Table I presents the part of extracted equivalence informa-
tion of four storage engines: InnoDB, MyISAM, Archive and
Mroonga by THANOS as an example. The extracted equiva-
lence information by THANOS contains the support status for
various features of the selected storage engines, including data
types, index types, partitioning, transactions, encryption, and
so on. Due to space constraints, Table I does not encompass
all features related to these storage engines. A comprehensive
list of features and their support across different engines is
available on our website [15]. THANOS automatically extracts
the equivalence information, Fequivalent, based on the formula
previously mentioned. This information corresponds to the
features highlighted with a gray background in the table. For
instance, all these engines support data encryption and none
supports using hash indexes. These equivalent features will be
used to synthesize test cases for equivalent DBMSs.

D. Feature-Oriented Test Case Synthesis

Using the extracted equivalence information from selected
storage engines, THANOS systematically generates feature-
oriented test cases. These test cases activate and schedule
various storage engine features within the scope of equiva-
lence information. This method ensures THANOS’s ability to
establish equivalence across DBMS instances using different
storage engines while also conducting a thorough DBMS
assessment by leveraging their unique features. Algorithm 2
illustrates the feature-oriented test case synthesis approach. To
enhance comprehension, Figure 4 provides a synthesis process

Algorithm 2: Feature-Oriented Test Case Synthesis
Input : E: The chosen storage engines

Fequivalent: The equivalent features
Output : T : Test cases for chosen storage engines

1 begin
2 testcase←init ();
3 Tables, testcase←createTables (Fequivalent);
4 foreach t ∈ Tables do
5 t.index, testcase←createIndex (t,

Fequivalent);

6 Metadata ← getMetadata (Tables);
7 tables ← randomChooseTable (Tables);
8 foreach t ∈ tables do
9 t, Metadata ← changeTable(t,Fequivalent) ;

10 testcase←generateQuery (Metadata);

11 testcase←addStorageRelatedStmts (testcase,
Fequivalent);

12 T ← convertForChosenEngines(testcase, E);
13 return T ;

example. We’ll offer a detailed explanation of the algorithm,
using Figure 4 to highlight key concepts and steps.

THANOS takes the chosen storage engines and equivalent
features as input, corresponding to the results of step 1 and
step 2 of THANOS, respectively. The upper-left corner of
Figure 4 shows the equivalent feature specification derived
from Table I. It consists of standard SQL features and Non-
standard SQL features. The standard SQL features represent
the features that can be expressed as keywords or clauses
on standard SQL statements. The Non-standard SQL features
represent storage engine features that are expressed through
non-standard SQL statements, such as health check statements
(CHECK TABLE, REPAIR TABLE).

THANOS first synthesizes the data definition language
(DDL) to construct the storage foundations, such as CREATE
TABLE statements, CREATE INDEX statements, and so on,
which involve managing physical storage (Lines 1-5). Then,
THANOS synthesizes the data modification language (DML)
as well as data query language (DQL) to modify and query the
data stored in storage engines (Lines 6-10). Executing storage-
related statements, such as data modification statements, in
areas with frequent data changes will cause difficulty in
generating semantic-correct SQL statements. To address these
challenges, we have developed a metadata pool. This pool
serves to preserve essential metadata, encompassing details
about tables, columns, indexes, and data types within the
DBMSs. With the metadata, THANOS can synthesize the
semantic-correct test cases after complex operations such as



Feature-Oriented Test Case Synthesis
--Construct storage foundations
CREATE TABLE Test (
id INT, ...... data BLOB)
ROW_FORMAT=COMPRESSED;
CREATE INDEX i ON Test(id) USING HASH;
--Generate storage-related operations
ALTER TABLE Test ADD COLUMN c INT;
UPDATE Test SET c = 99 WHERE id = 1;
INSERT INTO Test ....
SELECT * FROM Test WHERE id = 1;
--Add storage-related statements
CHECK TABLE Test;

Equivalent Feature Specification
Standard SQL :

Data type:

INT, BLOB, ……

Compression:

ROW_FORMAT=COMPRESSED

Index:

HASH
……

None-standard SQL:

CHECK TABLE

REPAIR TABLE
……

Convert For Chosen Storage Engines
For InnoDB:
SET default_storage_engine=INNODB;
……
For MyISAM:
SET default_storage_engine=MYISAM;
……
For Archive:
SET default_storage_engine=ARCHIVE;
……

Metadata

Fig. 4: An example of test case synthesis based on the
equivalent features from selected storage engines.

data insertion and table structure modification. While the
previous steps are related to standard SQL features of storage
engines, there are some engine features expressed in non-
standard SQL statements. When Fequivalent includes these
statements, THANOS incorporates them into the test case
(Line 11). THANOS constraints the test cases with features in
Fequivalent by pushing the equivalent feature element into the
SQL statement skeleton. For example, following the operation
in Line 3, THANOS first synthesizes the “CREATE TABLE
Test (node, node, node);” skeleton, then it replaces the node
with the data type in Fequivalent(e.g. id INT). Lines 5 and 9
have the same usage for equivalent features as Line 3.

The bottom-left part of Figure 4 displays a simpli-
fied synthesized test case. Firstly, THANOS generates some
CREATE TABLE and CREATE INDEX statements to con-
struct the storage foundations. Secondly, THANOS main-
tains the metadata and synthesizes DML and DQL in-
cluding the ALTER TABLE statement, UPDATE statement,
INSERT statement, and SELECT statement. Thirdly, THANOS
synthesizes the functionality-related statements. In the test
case, lines highlighted with a background color correspond
to specific storage engine features. For instance, including
ROW_FORMAT=COMPRESSED indicates the implementation
of row compression during table creation. In the lower right
corner, it is shown that THANOS continuously records the
metadata of tables, allowing for accurate data modeling. Fi-
nally, THANOS converts the test cases into versions executable
by the specified selected storage engines (Line 12), which cor-
responds to the upper right part of Figure 4. THANOS specifies
the storage engine for executing the test cases by setting the
configuration parameter of default_storage_engine.

E. Discrepancy Analysis of Execution Results

THANOS detects correctness bugs in the DBMS by dis-
tributing test cases generated in Section III-D for execution
and analyzing result discrepancies. THANOS focuses on three
types of DBMS information discrepancies during analysis.

The first two types are compared immediately after each SQL
statement execution, while the third type is compared only
after completing the entire test case.
Discrepancies in Query Results. When test cases contain
query statements (e.g., SELECT), the DBMS generates query
results. THANOS then compares these results, reporting any
discrepancies as potential correctness bugs. It is important to
note that the order of data in query results may vary across
DBMSs. THANOS accounts for this by ignoring the order
during comparison.
Discrepancies in Error Message. Error messages are a
crucial aspect as well. If equivalent DBMS instances produce
inconsistent warnings or errors, THANOS will report these
discrepancies. Furthermore, if the content of error messages
differs between the various DBMSs, THANOS will also record
these inconsistencies.
Discrepancies in Database Final States. After executing the
test case’s statements, THANOS compares the final state of
databases between tested DBMS instances, such as verifying
table consistency. If there is any inconsistency, THANOS
reports the discrepancies in the final state of the databases.

When discrepancies are found, THANOS employs a widely-
used deduplication method. Firstly, it minimizes test cases to
reveal bugs. Secondly, THANOS logs each test case with its
configuration and output data. If both match previous records,
the test case is marked as a duplicate. Also, if the tested DBMS
crashes, we log the bug’s call stack for further deduplication
and comparison.

F. Implementation

We follow the official DBMS documentation [11, 12, 13]
and classify storage engine features into 10 major categories:
Data type, Index type, Data Integrity, Partition, Encryption,
Compression, Transaction, Health check, Cache, and Update
statistics. Secondly, for each engine, we count the number
of features in each category. Each category typically includes
around 2 to 40 specific features. Thirdly, we define the smallest
unit of the counted feature as ”feature–storage engine” (e.g.,
BTree-MyISAM), representing one feature supported by one
storage engine. The detailed feature count for each DBMS can
be found on THANOS’s website [15].

The fundamental elements of THANOS include the selection
of appropriate storage engines (detailed in Algorithm 1) and
the generation of test cases ensuring their equivalence based
on the shared features of the chosen engines (as outlined
in Algorithm 2). THANOS implements the abstract syntax
tree (AST) model for synthesizing feature-oriented test cases
following the SQL-2003 standard [16], leveraging BISON
3.3.2 [17] and FLEX [18] to generate parser and lexer files.
To prevent interference between DBMSs employing different
storage engines, we utilize the Open Database Connectiv-
ity (ODBC) client interface. Through unified interface and
scheduling, THANOS can establish direct connections to each
equivalent DBMS.



IV. EVALUATION

In this section, we evaluate the effectiveness of detecting
bugs with the test oracle constructed by THANOS. Our evalu-
ation aims to answer the following research questions:

• RQ1: Can THANOS find DBMSs’ bugs?
• RQ2: How does THANOS perform compared to other

DBMS testing techniques?
• RQ3: How effective is the feature-oriented test case

synthesis algorithm?

A. Evaluation Setup

Tested DBMSs and Compared Techniques. We evaluated
THANOS on three widely used DBMSs, namely MySQL [19],
MariaDB [20], and Percona [21]. All three tested DBMSs sup-
port multiple storage engines and have been extensively tested
by existing works. To evaluate the effectiveness of THANOS,
we compared THANOS with the state-of-art DBMS test tools,
SQUIRREL [22, 23], SQLancer [24], and SQLsmith [25, 26].
SQLsmith construct the AST model to generate amounts of
queries for detecting crash bugs. SQLancer generates SQL
queries and detects the logic bugs of DBMSs. SQUIRREL uses
the coverage to guide the SQL generation for detecting the
crash bugs of DBMSs.
Experiment Environment. We perform the evaluation on a
machine running 64-bit Ubuntu 20.04, each DBMS testing
instance runs in a docker container with 5 CPU cores (AMD
EPYC 7742 Processor @ 2.25 GHz) and 40 GiB of main mem-
ory. The three tested DBMSs are compiled by AFL++ [27] for
collecting coverage and feedback.

B. DBMS Bug Detection

THANOS successfully detected 32 previously unknown bugs
in three well-tested DBMSs within three weeks. All 32 bugs
were reported to and confirmed by developers, with no false
positives. Of these, 29 were verified as Critical. Table II
displays the distribution of bugs found by THANOS across
various DBMS components and the severity of each bug.

Note that, different DBMSs have different severity levels.
We use Critical to denote Critical and Serious in MySQL,
Blocker and Critical in MariaDB, Urgent and High in Percona.

From Table II, we also observe that the bugs detected by
THANOS span 12 components. Apart from identifying bugs
related to Storage Engines, it also uncovers issues in other
DBMS critical components such as the Optimizer and Parser.
The storage engine acts as a bridge between the DBMS’s
physical storage and its key functionalities, closely linking
to the core components of the DBMS. THANOS aims to
expose vulnerabilities in the DBMS through storage engine
rotations and extensive testing. THANOS tested the storage
engine features, and while the DBMS executed these features,
it also triggered critical business logic in other core com-
ponents, thereby uncovering hidden bugs and vulnerabilities.
The following are analyses of three bugs found by THANOS,
each corresponding to one of the three types of discrepancies
detected and analyzed by THANOS.

TABLE II: Statistics of bugs detected by THANOS.

DBMS Component Bug Severity and Number
(Reported/Confirmed)

MySQL (11/11)

Optimizer Critical (2)
DDL Moderate (2)
Options Critical (1)
Storage Engines Critical (4), Moderate (2)

MariaDB (17/17)

Optimizer Critical (7)
Storage Engines Critical (5)
Window Critical (1)
Handler Critical (1)
Parser Critical (2)
Update Critical (1)

Percona (4/4)
Optimizer Critical (2)
Storage Engines Critical (1), Moderate (1)

Total 12 components 32 confirmed

Listing 1: Inconsistent query results among InnoDB, Memory
and MyISAM.
CREATE TABLE test ( v1 DECIMAL, v2 DATE, v3 FLOAT

);
INSERT INTO test VALUES (......);
WITH cte AS ( SELECT v1 AS c0, v3 AS c2 FROM test

WHERE EXISTS ( SELECT v1 FROM test WHERE v3 >
50 ) ) SELECT c0, c2 FROM cte WHERE EXISTS (
SELECT c0 FROM cte WHERE c2 < 100 );

-- Result of INNODB -- Result of MEMORY and MYISAM
-- Empty set -- +------+------+

-- | c0 | c1 |
-- +------+------+
-- | NULL | NULL |
-- | NULL | NULL |
-- +------+------+
-- 2 rows in set

Case 1: Discrepancies in Query Results. Listing 1 demon-
strates a bug we reported to MySQL2, which was detected by
THANOS due to discrepancies in query results. The Listing 1
includes a simplified SQL test case that triggered the issue.
When executing the same test case using MySQL’s InnoDB,
MyISAM, and Memory storage engines, the InnoDB returns
set, while the MyISAM and Memory return a result set with
two rows and two columns of NULL values. This issue
stems from varying implementations of NULL across different
storage engines. The presence of inconsistent storage engine
implementations poses significant security risks, as users may
employ commands such as ALTER TABLE to change the
storage engine of existing tables. Once the inconsistency is
triggered, serious business logic issues may arise, potentially
leading to financial losses. We have reported this inconsistency
issue, sparking extensive discussions among developers, and
efforts are underway to resolve and fix the problem.

Existing DBMS fuzz testing methods, such as SQUIRREL,
typically focus on detecting issues like crashes. Or they require
adherence to specific rules, as seen in SQLancer where the
NOREC test oracle is optimizer-related, and TLP necessitates
a pivot row. Identifying this issue, which involves comparing

2https://bugs.mysql.com/bug.php?id=112917



execution results across multiple engines, is challenging using
current DBMS testing methods.

Listing 2: Inconsistent error message between CSV and
ARCHIVE.
-- ENGINE = CSV
CREATE TABLE test (v0 INT NOT NULL, v1 CHAR(5)

NOT NULL);
CREATE INDEX index0 ON test (v0) USING BTREE;
-- ERROR 1069 (42000): Too many keys specified;

max 0 keys allowed

-- ENGINE = ARCHIVE
CREATE TABLE test (v0 INT NOT NULL, v1 CHAR(5)

NOT NULL);
CREATE INDEX index0 ON test (v0) USING BTREE;
-- ERROR 1030 (HY000): Got error -1 - ’Unknown

error -1’ from storage engine

Case 2: Discrepancies in Error Message. Listing 2 demon-
strates a bug we reported to MySQL3, which was detected
by THANOS due to discrepancies in error messages. The
listing contains simplified SQL test cases that trigger the
identified issue. Both the CSV storage engine and the Archive
storage engine in MySQL do not support the creation of B-
tree indexes. When the Archive storage engine executes a
statement to create a B-tree index, it throws an ”unknown
error,” while the CSV storage engine provides error messages
with user-friendly prompts. Within the same DBMS, error
messages originating from similar issues should maintain user-
friendly and consistent information prompts. The developers
have acknowledged the issue and have stated their intention
to address and fix it.

THANOS has also identified several similar issues through
error message prompts, such as inconsistent error codes for
analogous problems. Although these issues have minimal
impact on security, they are crucial for the reliability and
robustness of the DBMS. Current DBMS testing tools are un-
able to assist developers in identifying such problems, whereas
THANOS, through its testing, can automate the detection of
these issues.

Listing 3: Discrepancies in database final state with Mroonga
storage engine, which has been hidden for almost a decade.
SET default_storage_engine=Mroonga;
CREATE TABLE test(pk INT AUTO_INCREMENT, a INT, b

INT, c INT, d INT, PRIMARY KEY (pk), KEY (a));
INSERT INTO test(a, b) VALUES (0,100),(200,2000);
INSERT INTO test(c, d) VALUES (0,100),(200,2000);
CREATE TRIGGER tr1 AFTER UPDATE ON test FOR EACH

ROW SET @a= 100;
UPDATE test SET b = 3 WHERE a = 0;
-- Server crash

Case 3: Discrepancies in Database Final States. Listing 3
demonstrates a bug we reported to MariaDB4, which has been
hidden over 10 years and was detected by THANOS due to
discrepancies in database final state. When executing the test
case in Listing 3 using the Mroonga storage engine, it triggers

3https://bugs.mysql.com/bug.php?id=113300
4https://jira.mariadb.org/browse/MDEV-32488

a server crash. However, when executed on InnoDB or other
storage engines, the query results can be obtained normally.
This test case first creates a table test with 5 columns
and then inserts data into the table. After the data insertion,
THANOS creates a trigger tr1 on the updated data region of
table test. If the data stored in table test are updated, the
trigger tr1 will automatically reset the value of column a in
table test. Then THANOS executes the UPDATE statement
to update the data in table test and finally triggers the crash
of MariaDB with Mroonga storage engine.

Based on the call stack information, we identified the issue
originating from a problem in the Mroonga storage engine
when handling the auto increment feature, and this part of
the code has not been updated for 10 years. In other words,
THANOS discovered an issue in the Mroonga storage engine
that had been hidden for nearly a decade. Existing DBMS
testing methods struggle to identify this problem as they
perform DBMS testing only with the default storage engine
and do not change the storage engines during the test period.
THANOS can detect the bug with the storage engine-orient
equivalent DBMS construction. First, with the feature-guided
storage engine combination selection, THANOS can select
the Mroonga and InnoDB combination and then extract the
equivalence information. Then, with the feature-orient test case
synthesis algorithm, the synthesized test cases contain amounts
of intensive data storage-related operations, which could be
more likely to trigger issues related to DBMS storage engines.

C. Comparison with Existing Techniques

To assess the effectiveness of THANOS, we conducted a
comparative study that pitted THANOS against contemporary
state-of-the-art DBMS testing methods, namely SQLancer,
SQLsmith, and SQUIRREL. Each DBMS underwent a 24-
hour testing period using these tools, and we documented

TABLE III: Number of bugs detected by THANOS, SQLancer,
SQLsmith and SQUIRREL on 3 DBMSs in 24 hours.

DBMS SQLancer SQLsmith SQUIRREL THANOS

MySQL 0 1 1 6
MariaDB 0 0 1 5
Percona 0 0 1 3

Total 0 1 3 14

Increment 14 ↑ 13 ↑ 11 ↑ –

TABLE IV: Number of branches covered by THANOS,
SQLancer, SQLsmith, and SQUIRREL on 3 DBMSs in 24
hours.

DBMS SQLancer SQLsmith SQUIRREL THANOS

MySQL 59,242 93,742 109,323 120,156
MariaDB 60,293 88,923 100,920 132,532
Percona 63,829 89,987 109,823 143,293

Total 183,364 272,652 320,066 395,981

Increment 115.95% ↑ 45.23% ↑ 23.72% ↑ –



TABLE V: The number of triggered features and feature-related statements ratios in test cases generated by THANOS- and
THANOS in 24 hours.

DBMS Number of Triggered Features Feature-Related Statements Ratios
Name Features THANOS- THANOS Increment THANOS- THANOS Increment

MySQL 289 70 257 187↑ 67.18% 83.32% 16.14%↑
MariaDB 492 161 434 273↑ 63.11% 85.59% 22.48%↑
Percona 359 92 306 214↑ 65.15% 82.75% 17.60%↑

the number of bugs they uncovered. All identified bugs were
reported to the developers, and the confirmed bug count was
used as the final result. To ensure a fair comparison, we
collected the generated test cases from each testing method and
dry-ran the test cases to collect the uniform branch coverage.

THANOS outperforms other DBMS testing methods in de-
tecting bugs and covering new branches. Table III shows
the number of bugs detected by each method in 24 hours.
THANOS detected a total of 14 bugs. From the table, we can
see that THANOS finds more bugs than other state-of-the-art
DBMS testing methods. Specifically, THANOS found 14, 13,
and 11 more bugs than SQLancer, SQLsmith, and SQUIRREL,
respectively. Note that all 14 bugs discovered by THANOS
during the 24-hour experiment were subsequently confirmed
as previously unknown bugs. Table IV shows the number
of branches covered by each DBMS testing method in 24-
hour experiments. From the table, we can see that THANOS
outperformed other testing methods in terms of branch cover-
age. Specifically, THANOS totally covered 115.95%, 45.23%,
and 23.72% more branches than SQLancer, SQLsmith, and
SQUIRREL, respectively.

The main reason for THANOS’s improvement in bug de-
tection and branch coverage stems from its adept utilization
of the DBMS storage engine components for testing pur-
poses. On one hand, THANOS systematically tests various
storage engines during the evaluation of each DBMS, whereas
conventional DBMS testing methods typically focus on the
default storage engine. Consequently, THANOS conspicuously
manages to test a more extensive portion of DBMS code.
Figure 5 illustrates the branch coverage results after a 24-
hour test on the storage engine components, showcasing
that THANOS achieves an average coverage of approximately
60% more branches compared to other testing methods. As
mentioned earlier, the storage engine components serve as the
core link between the underlying storage and the database
system. By thoroughly testing the features of storage engines,
comprehensive evaluation, and testing of the overall features of
the DBMS system become possible. Therefore, from a holistic
perspective, the improvement in coverage is quite significant
for the DBMS.

On the other hand, THANOS aims to construct the equivalent
DBMSs and thoroughly test its features. In comparison to
existing tools, it can test a broader spectrum of DBMS func-
tionalities. Specifically, the NoREC test oracle in SQLancer
detects logical errors in the DBMS optimizer by constructing
equivalent optimized and unoptimized queries based on op-

timizer rules. However, this method only covers SQL syntax
that complies with optimizer rules. In contrast, THANOS lacks
such limitations, as the storage engine, being the underly-
ing software of the DBMS, essentially encompasses all the
functionalities of the DBMS. Meanwhile, THANOS performs
a comprehensive functional modeling of the DBMS storage
engine components, enabling thorough testing of the DBMS
when generating test cases. Even during the generation of
test cases, THANOS incorporates numerous non-standard SQL
statements related to storage engine features. In comparison,
tools like SQLancer and SQLsmith use standard SQL syntax to
build test cases, resulting in THANOS covering more branches
and detecting more bugs.

D. Effectiveness of Feature-Oriented Test Case Synthesis

To evaluate the effectiveness of our feature-oriented test
case synthesis algorithm, we developed a comparison tool,
THANOS-, which generates test cases randomly without a
focus on the storage engines’ features. We conducted a 24-hour
experiment running both THANOS- and THANOS on MySQL,
MariaDB, and Percona. During this period, we collected data
on the number of features triggered and the proportion of
feature-related statements produced by each tool for compar-
ative analysis.

Table V presents the number of features activated and
the proportion of statements in the test case with features
for both tools across three DBMSs (MySQL, MariaDB, and
Percona). The data indicates that THANOS generates more
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feature-related test cases than THANOS-, which benefits from
its feature-oriented test case synthesis approach. In detail,
THANOS activated 187, 273, and 214 more features than
THANOS- in MySQL, MariaDB, and Percona, respectively.
This is primarily because the feature-oriented synthesis sig-
nificantly enhances the proportion of test cases that include
storage engine features, with increases of 16.14%, 22.48%, and
17.60% in each DBMS, respectively. These outcomes align
with our expectations, as the test case synthesis algorithm
was specifically designed to trigger a broader range of storage
engine features and behaviors within the DBMS. In contrast,
random test case synthesis is less effective in this regard,
often failing to adequately explore and activate diverse storage
engine features.

V. DISCUSSION

THANOS is adaptable to DBMSs supporting multiple stor-
age engines. THANOS provides a template for feature lists [15]
with 8 commonly used storage engines for adaptation, al-
lowing for efficient organization based on existing lists. To
improve the effectiveness of one specific storage engine, one
could also gather other supported features from the DBMS’s
official documentation and add them to the feature list. The
cost of the adaptation is acceptable since the manual effort is a
one-time task, and the template can be reused. For example, it
takes about 6 hours for a master to collect features of MySQL.

For DBMSs with a single storage engine, testing can still
be conducted using an approach that involves constructing
the equivalent DBMSs. For instance, we can perform differ-
ential testing using storage engines from different versions
of DBMS, reusing the feature-oriented test case generation
method. Alternatively, we can build equivalent DBMSs by
replacing other components of the DBMS or modifying con-
figurations related to the DBMS storage engine. In the future,
we plan to expand our capabilities to support single-storage-
engine configurations.

THANOS conducts DBMS bug detection through differential
testing. Table II displays the distribution of bugs discovered
by THANOS, indicating that approximately 40% (13/32) of
the bugs are attributed to the storage engine. The remaining
bugs occurred in core components closely associated with the
storage engine, such as the Optimizer and Parser. These bugs
are identified as a result of storage engine features triggering
critical business logic during test case execution.

VI. RELATED WORK

Differential Testing. DBMS differential testing involves ex-
ecuting identical SQL statements across different DBMSs to
compare behaviors and outputs, aiming to identify inconsis-
tencies, performance issues, and potential bugs. This method
highlights how each system handles the same queries differ-
ently. It is categorized into version-based and vendor-based
comparison schemes. In version-based comparison, identical
SQL queries are executed across different versions of the
same DBMS. For example, APOLLO [9] focuses on detecting
performance bugs by comparing SQL execution speed across

different DBMS versions. Vendor-based comparison entails
running equivalent SQL statements on various DBMSs. For
instance, RAGS [6] validates SQL outputs by comparing
results from multiple DBMS vendors.

THANOS employs a specialized form of differential testing
to evaluate DBMSs. It equips a DBMS with various storage
engines and constructs equivalent test cases, thereby creating
equivalent DBMSs. In doing so, THANOS combines diverse
DBMS implementations with similar input syntax to uncover
hidden issues and minimize the cost of SQL generation.
Metamorphic Testing. Metamorphic testing in DBMS in-
volves transforming SQL queries and verifying if the resulting
output changes align with expected behavior [28, 29, 30, 31].
It relies on metamorphic relations, logical links between input
and output, for test case design, with transformations including
sorting, filtering, or aggregating data. Developers use this to
ensure correct and robust database functions, maintaining con-
sistent accuracy despite input variations, crucial for revealing
hidden bugs and bolstering DBMS reliability. Methods like
Amoeba [32] detect performance bugs by comparing response
times of semantically equivalent query pairs. SQLancer pro-
poses constructing functionally equivalent queries to test one
DBMS [30, 31, 33]. TxCheck [34] detects transactional bugs
of DBMSs through graph-based oracle construction. DQE [35]
verifies consistency of rows fetched by SQL statements de-
signed to access the same rows.

Compared to metamorphic testing, our approach focuses
more on changing the DBMS itself, specifically by altering
the storage engine. Metamorphic testing relies on manually
defining metamorphic relations, whereas our method automat-
ically generates equivalent DBMSs, currently applicable for
correctness testing. This approach can also be extended to
other types of test oracles, such as authorization testing and
compliance testing.
DBMS Fuzzing. Fuzz testing continuously generates and
executes SQL test cases on a DBMS, monitoring system re-
sponses. DBMS fuzzers [22, 25, 33, 36, 37, 38, 39, 40, 41, 42],
automate this process, focusing on creating complex SQL
queries to uncover memory safety issues. They are catego-
rized into generation-based and mutation-based approaches.
Generation-based fuzzing generates large SQL queries using
predefined models. SQLsmith [25] is a leading generation-
based DBMS fuzzer that creates semantically correct SQL
queries using an AST model, primarily limited to SELECT
statements due to grammar constraints. Mutation-based fuzzers
modify existing queries. Squirrel [22] enhances syntactic ac-
curacy by aligning with SQL grammar and utilizing an Inter-
mediate Representation (IR), facilitating type-based mutations
while maintaining syntax correctness. LEGO [36] generates di-
verse SQL statement sequences by analyzing various types and
relationships, while Griffin [37] introduces metadata graphs
for SQL statements, offering a grammar-independent method
to mutate SQL test cases.

To the best of our knowledge, THANOS is the first frame-
work to utilize storage engine rotation based differential test-
ing. Inspired by existing works, THANOS employs feature-



oriented test case synthesis techniques to assure equivalence
among DBMSs and thereby offers a noteworthy extension to
existing methodologies.

VII. CONCLUSION

In this paper, we propose THANOS, a framework for dis-
covering bugs in DBMSs via storage engine rotation based
differential testing. By equipping the DBMS with different
storage engines and generating test cases that trigger common
features, THANOS constructs equivalent DBMS instances. Bug
detection is achieved by comparing the execution results of
these equivalent DBMSs. Experimental results indicate that
THANOS outperforms existing testing methods by covering
more branches and discovering more bugs, thereby demon-
strating its effectiveness. Moreover, THANOS has discovered
32 new bugs confirmed by the corresponding vendors, includ-
ing 11 bugs in MySQL, 17 bugs in MariaDB, and 4 bugs in
Percona, with 29 verified as Critical.
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