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Abstract—IoT protocols are essential for the communication among
diverse devices. In real-world scenarios, IoT protocols utilize flexible
configurations to meet various use cases. These configurations can signif-
icantly impact the protocols’ execution paths, with many bugs emerging
only under specific configurations. Fuzzing has become a prominent
technique for uncovering vulnerabilities in IoT protocol implementations.
However, traditional fuzzing approaches are typically conducted using
fixed or default configurations, overlooking potential issues that might
arise in different settings. This limitation can lead to missing critical bugs
that appear only under alternative configurations.

In this paper, we propose CMFUZZ, a parallel fuzzing framework
designed to improve fuzzing effectiveness of IoT protocols through
configuration identification and scheduling. CMFUZZ first constructs
a generalized protocol configuration model by systematically extracting
configuration items from protocol implementations. Then, based on this
model, CMFUZZ defines the relations among configuration items and
introduces a relation-aware allocation mechanism to distribute them
across parallel fuzzing instances. For evaluation, We implement CMFUZZ
on top of the widely-used protocol fuzzer Peach and conduct experiments
on six popular IoT protocols. Compared to the original parallel mode
of Peach and state-of-the-art parallel protocol fuzzer SPFuzz, CMFUZZ
covers an average of 34.4% and 28.5% more branches within 24 hours.
Additionally, CMFUZZ has detected 14 previously-unknown bugs in these
real-world IoT protocols.

Index Terms—IoT Protocols, Parallel Fuzzing, Configuration Model
Identification and Scheduling.

I. INTRODUCTION

The Internet of Things (IoT) refers to a network of intercon-
nected devices that communicate and exchange data using various
protocols to provide advanced services. These protocols enable es-
sential functionalities across smart homes, healthcare, and industrial
systems, highlighting their significance in modern technology [1]–
[4]. However, IoT protocols are also vulnerable to cyber threats,
particularly in critical infrastructure systems, where disruptions can
impair operations, cause financial loss, or jeopardize safety [5],
[6]. Ensuring the security of IoT protocols is therefore crucial for
maintaining uninterrupted services and protecting public safety.

In IoT systems, protocols are inherently configuration-sensitive, as
they are designed to operate across diverse scenarios and meet a vari-
ety of operational requirements. These protocols often offer extensive
and diverse configuration options, where different combinations can
influence the system’s execution paths and behaviors. Consequently,
certain vulnerabilities may only surface under specific configurations.
For example, CoAP [7] supports block-wise transfers to handle
large payloads by dividing them into smaller, sequential blocks.
This feature is an optional configuration that significantly impacts
the protocol’s execution. When enabled, the protocol introduces
additional logic to manage stateful interactions by tracking individual
block transfers across multiple requests and responses. This added
complexity increases the likelihood of issues such as memory leaks
or resource exhaustion.
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Fuzzing is a testing technique used to detect vulnerabilities in
software by feeding volumes of inputs and observing the system’s
behavior. It plays a crucial role in identifying security flaws in IoT
protocol implementations. Existing protocol fuzzers often build data
models and state models to start the fuzzing process. A data model
defines the structure and format of protocol inputs. While a state
model describes the sequential flow of states that the protocol follows.
Protocol fuzzers like Peach [8] and SPFuzz [9] leverage these two
models to guide the generation of inputs and manage transitions
between protocol states. As a result, they can systematically explore
protocol behaviors and uncover a range of vulnerabilities.

However, traditional fuzzers neglect the configuration model of
protocols, which sets the basic environment of the protocol in-
stance. Thus, they overlook potential behaviors under alternative
configurations in IoT systems. This limitation hinders the effective
exploration of deeper protocol vulnerabilities that may arise in
non-default settings. Therefore, it is essential to acknowledge the
multi-configuration nature of IoT systems and incorporate multiple
configurations during fuzzing under the guidance of configuration
models. In fact, to explore protocol execution paths under various
configurations, a straightforward approach is to run parallel fuzzing
instances with different configurations. However, this presents two
key challenges:

The first challenge is how to generate high quality configurations
for fuzzing. IoT protocols are designed with rich and complex
configurations to support a wide variety of use cases and devices.
The configurations span multiple domains, including security set-
tings, network parameters, resource management, application-specific
options, and so on. Each of these configurations can affect the
protocol’s behavior and execution path, potentially revealing vul-
nerabilities. Automatically constructing realistic and comprehensive
configurations that reflect real-world scenarios is a difficult task. The
second challenge is how to divide configuration item combinations
between different parallel instances. Configuration items often have
dependencies, synergies, or conflicts. Arbitrary assignment across
instances can lead to inefficiencies or initialization failures. The
challenge, therefore, is to quantify the relations among configuration
items and leverage them to group the items into cohesive groups.

To address the above mentioned challenges, we propose CM-
FUZZ. First, in addition to the traditional data model and state
model, CMFUZZ introduces a generalized configuration model for
protocol fuzzing. Given that IoT protocols may define configura-
tions in different forms, such as configuration files and Command-
Line Interface (CLI) options, CMFUZZ systematically extracts and
standardizes these configuration items to build a unified model.
This abstraction accommodates different configuration formats and
paradigms, ensuring adaptability across diverse IoT protocols. By
decomposing protocol configurations into individual items, the model
enables precise exploration of parameter spaces. Then, based on



the generalized configuration model, CMFUZZ defines the pairwise
relations among configuration items and introduces a relation-aware
allocation mechanism to distribute them across parallel fuzzing
instances. In this way, CMFUZZ can effectively explore diverse and
meaningful configuration spaces with minimal redundancy.

For evaluation, we implement CMFUZZ on top of the widely-used
parallel protocol fuzzer Peach. We evaluate it on six real-world IoT
protocol implementations. The results show that CMFUZZ improves
the total number of branches covered by 34.4% on Peach and 28.5%
on SPFuzz. It also achieves a significant speedup in reaching identical
code coverage compared to baseline fuzzers. Furthermore, CMFUZZ

has detected 14 previously unknown bugs in real-world IoT protocols.
These critical vulnerabilities could lead to security breaches, crashes,
or denial of service, posing significant risks to devices operating with
these protocols in real-world environments.

Our main contributions are as follows:
• We introduce the configuration model to protocol fuzzing and

propose a method to construct it, enabling exploration beyond
default setups to uncover additional vulnerabilities.

• We consider dependencies between configurations and design
a relation-aware allocation mechanism to effectively partition
configuration spaces across parallel fuzzing instances.

• We implement and evaluate CMFUZZ on six widely used IoT
protocol implementations. The results demonstrate that CM-
FUZZ outperforms the state-of-the-art fuzzers and has exposed
14 security-critical vulnerabilities.

II. BACKGROUND

A. IoT Protocols

The Internet of Things (IoT) has rapidly expanded, connecting
billions of devices across various domains, from home automation
and healthcare to industrial control systems. IoT protocols are essen-
tial for facilitating communication and interoperability among these
devices, with each protocol adapted to meet the distinct requirements
of IoT environments. Commonly used IoT protocols, such as MQTT,
CoAP, and DDS, are designed to operate efficiently in constrained
environments, supporting lightweight messaging, real-time data han-
dling, and flexible Quality of Service (QoS) controls. These protocols
typically provide mechanisms to ensure data reliability, adaptability to
diverse network conditions, and interoperability across devices with
varying capabilities.

Generally, IoT protocols are designed with a high degree of con-
figurability to address the diverse and dynamic nature of IoT environ-
ments. Configurations, typically applied through configuration files or
command-line interface (CLI) options, allow protocols to be tailored
to match specific application requirements, device capabilities, and
network conditions. For instance, security settings in these protocols
may include options for different authentication methods, encryption
algorithms, and key management strategies to ensure data integrity
and confidentiality across the network. Quality of Service (QoS)
parameters may specify message delivery guarantees, balancing fac-
tors such as latency and reliability. Network configurations define
addressing schemes and routing protocols that support scalability
and efficient communication. Resource management configurations
enable protocols to optimize power consumption, bandwidth usage,
and processing load to suit devices with limited resources.

B. Protocol Fuzzing

Fuzzing is a widely used technique to identify vulnerabilities
in network protocol implementations by generating and injecting
unexpected or malformed packets into the protocol to observe how it

responds. Based on how packets are generated, fuzzers can be catego-
rized into two types: mutation-based and generation-based. Mutation-
based fuzzers generate test cases by randomly mutating existing valid
inputs from a predefined corpus, applying various transformations
such as bit flipping, field truncation, or inserting unexpected values.
This approach simplifies fuzzing setup, as it does not rely on protocol
specifications. In contrast, generation-based fuzzers construct inputs
according to the protocol’s structure and rules, producing well-
formed messages that can effectively target specific states or fields.
This allows them to thoroughly exercise the protocol’s logic and
identify vulnerabilities in various scenarios, making them particularly
effective for complex protocols with structured interactions.

Traditional protocol fuzzers are typically based on two models: the
data model and the state model. The data model defines the structure
and format of packet fields, such as field lengths, types, and value
ranges, allowing the fuzzer to craft near-valid protocol messages. The
state model captures interaction sequences and transitions within the
protocol, simulating how states change in response to different inputs.
By adhering to protocol data formats, these two models help fuzzers
produce highly tailored, protocol-compliant inputs, reaching deeper,
less frequently accessed protocol states. This structured approach is
especially advantageous for protocols with intricate dependencies or
stateful interactions, as it ensures comprehensive coverage of both
common and edge-case scenarios.

III. SYSTEM DESIGN

We present an overview of CMFUZZ’s design in Figure 1. CM-
FUZZ starts with a set of inputs comprising the protocol under
test and its configurations, defined through various sources such as
command-line interface (CLI) options and configuration files. The
objective of CMFUZZ is to systematically extract and organize these
configurations to enable efficient and diverse parallel fuzzing. The
framework outputs a set of cohesive configuration groups, which are
then distributed to different parallel fuzzing instances.
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Fig. 1: CMFUZZ System Overview. It mainly consists of two compo-
nents: (i) a configuration model identification module for extracting
configuration items and constructing generalized model; (ii) a con-
figuration model scheduling module for distributing configurations
across parallel fuzzing instances.

CMFUZZ introduces a configuration model to explore a broader
range of execution paths, supplementing the traditional data and
state models used in existing protocol fuzzers. Starting with various
protocol configuration formats, CMFUZZ first extracts a comprehen-
sive list of configuration items to capture all adjustable parameters.
These items are then organized into a generalized configuration



model, consisting of entities that represent each configuration item.
Each entity includes the item’s name, type, mutability flag, and
a set of typical mutation values. With this configuration model
in place, CMFUZZ then quantifies the pairwise relation weights
between configuration entities by assessing their impact on startup
coverage. Using these weights, CMFUZZ finally employs a cohesive
grouping and allocation strategy, grouping interdependent entities
together and assigning them to the same parallel fuzzing instance.
This relation-aware allocation ensures that each instance explores a
distinct and meaningful subset of configurations, thereby enhancing
overall coverage and effectiveness in parallel protocol fuzzing.

A. Protocol Configuration Model Identification

1) Configuration Items Extraction: IoT protocol configurations are
primarily found in two formats: command-line interface (CLI) options
and configuration files. CLI options often follow predictable patterns,
such as --option=value or -flag. To identify and extract these
options, CMFUZZ uses a pattern-matching parser. For configuration
files, formats vary widely, including key-value pairs (e.g., .ini files),
structured hierarchies (e.g., JSON, XML), or unstandardized formats.
CMFUZZ applies format-specific static analysis to handle each file
structure: (i) For key-value formats, it directly parses each line to
extract keys and values. (ii) For hierarchical formats, it recursively
parses the structure to retrieve keys and default values based on
the file’s nested organization. (iii) For custom formats, CMFUZZ

uses heuristics and configurable parsing rules to identify adjustable
parameters based on keywords and contextual clues.

Algorithm 1: Configuration Items Extraction
Input: Coptions: CLI Options Configurations
Input: Cfiles: Configuration Files
Output: SetCI : The set of configuration items

1 Algorithm
2 SetCI ← ∅
3 Options← GETCLIOPTIONS(Coptions)
4 Files← GETCONFIGFILES(Cfiles)
5 Extracion( Options, F iles)

6 Procedure Extracion( SetOptions, SetFiles)
7 if SetOptions¬∅ then
8 for OC ∈ SetOptions do
9 Item← EXTRACTCLIOPTIONS(OC)

10 SetCI ← SetCI ∪ Item

11 if SetFiles¬∅ then
12 for FC ∈ SetFiles do
13 Format← DETECTFILEFORMAT(FC)
14 switch Format do
15 case KeyValue do
16 SetFI ← EXTRACTKEYVALUE(FC)
17 case Hierarchical do
18 SetFI ← EXTRACTHIERARCHICAL(FC)
19 otherwise do
20 SetFI ← EXTRACTCUSTOMFORMAT(FC)

21 SetCI ← SetCI ∪ SetFI

22 return

Algorithm 1 illustrates the detailed workflow of CMFUZZ for
extracting configuration items from various formats of IoT protocol
configurations. The algorithm begins with two primary inputs: CLI
Options Configurations and Configuration Files. First, we initialize
an empty set SetCI to store all configuration items extracted from
these sources (line 2). Next, we retrieve CLI options and configuration
files as structured data from the inputs (lines 3–4). Following this,

we extract detailed configuration items according to their specific
formats using the Extraction procedure. For each CLI option in
SetOptions, we extract relevant details, including the configuration
name, value and ranges, and add each item to SetCI (lines 8–10).
For each file in Files, we determine the format (line 13) and use
format-specific extraction functions to parse the file’s structure and
content accordingly (lines 15–20). Items extracted from each file are
then added to SetCI , creating a consolidated set of configuration
items for model construction (line 21).

2) Generalized Model Construction: Following the extraction of
individual configuration items, CMFUZZ organizes these items into
a generalized configuration model, which serves as the core structure
within our framework.
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Fig. 2: Entities in the config model derived from the config item

As shown in Figure 2, this model is composed of 4-tuple entities,
with each entity encapsulating essential attributes corresponding to a
configuration item extracted from the protocol. The Name attribute
is inherited directly from the configuration item. The Type attribute
is inferred from the item’s value patterns, for instance, numeric
values are labeled as Number, boolean-like values as Boolean, and
values resembling file paths or URLs as String. The Flag attribute
indicates whether a value is likely to change during typical protocol
operations. Static values, such as paths or system directories, are
marked as IMMUTABLE, while adjustable values, like numeric ranges
or mode settings, are marked as MUTABLE. The V alues attribute,
representing the typical set of values for each configuration, is
derived from the item’s defined ranges or common values using
heuristic-based rules. This standardized configuration model provides
a structured foundation for subsequent processes.

B. Protocol Configuration Model Scheduling

1) Pairwise Relation Weight Quantification: To leverage inter-
dependencies among configurations and distribute the configuration
model across parallel fuzzing instances, CMFUZZ enhances the orig-
inal configuration model into a relation-aware configuration model,
as illustrated in Figure 3. This transformation involves constructing
a weighted relation graph, where each configuration entity is repre-
sented as a node, and edges with quantified weights connect pairs of
entities. These weights reflect the strength of relationships between
entities.
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Fig. 3: Enhance an original config model into a relation-aware config
model. CMFuzz achieves this by calculating the startup coverage.

When quantifying relations between configuration entities, CM-
FUZZ utilizes code coverage as a primary metric. Coverage serves as
an effective indicator of configuration dependencies, as configurations



with synergistic relations often unlock new execution paths when used
together. Conversely, configurations with conflicting relations, such
as an encryption mode incompatible with a compression setting, may
cause startup failures, resulting in zero code coverage. To improve
efficiency, CMFUZZ uses startup coverage as a lightweight proxy
for overall code coverage. Because configurations are loaded and
initialized during the startup phase, initial coverage provides a strong
indication of the configuration’s impact on later stages of execution.

By analyzing the startup coverage for each pair of configuration
entities, CMFUZZ then calculates the relation weight between them.
Since each configuration entity may contain multiple typical values,
CMFUZZ explores all possible value combinations for each pair of
entities and records the coverage achieved for each combination.
To capture the peak interaction effect, CMFUZZ selects the highest
coverage across all combinations as the final relation weight between
the two entities. This strategy ensures that the weight reflects the
strongest potential interaction between entities, capturing critical
synergies that might only emerge under specific values. Specifically,
if the coverage for a pair of entities is zero across all combinations,
CMFUZZ does not create an edge between these entities. Finally,
to ensure consistency and comparability across all relation weights,
CMFUZZ normalizes the calculated weights, scaling them to a
standard range of [0, 1]. This normalization facilitates the grouping
and clustering of configuration entities in subsequent phases.

2) Cohesive Grouping and Parallel Allocation: With the Relation-
Aware Configuration Model constructed, CMFUZZ proceeds to divide
the graph into cohesive groups of configuration entities and allocate
each group to a distinct parallel fuzzing instance.

Algorithm 2: Allocation Algorithm
Input: RACModel: Relation-Aware Configuration Model
Input: Nf : The number of fuzzing instances
Output: Groups: The array of configuration groups allocated to

each instance
1 Algorithm
2 Groups← ∅, GroupCnt← 0
3 SetEdges ← SORTBYWEIGHT(RACModel)

4 for Es ∈ SetEdges do
5 GroupNextEdge( Es,Nf)

6 return Groups

7 Procedure GroupNextEdge( E,N)
8 C1 ← E.C1, C2 ← E.C2

9 if ¬ISSET(C1) ∧ ¬ISSET(C2) then
10 if GroupCnt < N then
11 NewGroup← {C1, C2}
12 Groups← Groups ∪ {NewGroup}
13 GroupCnt← GroupCnt+ 1

14 else
15 for C ∈ {C1, C2} do
16 BestGroup← FINDBEST(C, Groups)

17 BestGroup← BestGroup ∪ C

18 else if ISSET(C1)⊕ ISSET(C2) then
19 CurGroup← ISSET(C1) ? FIND(C1) : FIND(C2)
20 CurGroup← CurGroup ∪ (ISSET(C1) ? C2 : C1)
21 return

Algorithm 2 illustrates our allocation strategy, which aims to max-
imize the relation weights within groups and minimize the relation
weights between groups. The algorithm starts with two inputs: the
Relation-Aware Configuration Model RACModel and the number
of fuzzing instances Nf . First, we initialize an empty set Groups

to store the divided configuration groups and a counter GroupCnt
to track the number of groups created (line 2). Next, we sort all
edges in RACModel by weight in descending order, storing the
sorted edges in SetEdges (line 3). This sorting prioritizes edges
with higher weights, promoting the formation of tightly connected
groups by processing the strongest relationships first. For each edge
in SetEdges, we call the GroupNextEdge procedure, which deter-
mines how the two connected configuration entities (nodes) should
be grouped (lines 4-5). In this procedure, if neither of the entities is
assigned to a group (line 9), we verify whether the current number
of groups GroupCnt has reached the target number of instances N
(line 10). If not, we create a new group with these two entities, add
it to Groups, and increment GroupCnt by one (lines 11-13). Once
the maximum number of groups N has been reached, each new entity
is placed into an existing group that best preserves its relations using
the FINDBEST function (lines 15-17). Alternatively, if one entity is
already part of a group, we assign another unassigned entity to the
same group, thereby preserving their connection (lines 18-20).

Specifically, to identify the most appropriate existing group for an
entity, the FINDBEST function computes a suitability score for each
candidate group Gi based on the strength of the entity’s connections
to members of the group. The score is defined by:

Score(Gi, C) =

(∑
C′∈Gi

w(C, C′)
)2

|Gi|
where w(C, C′) represents the relation weight between the new entity
C and each entity C′ in group Gi, and |Gi| denotes the number of
entities in group Gi. In this formula, the numerator represents the
strength of the relationship between the new node and existing nodes
in Gi, while the denominator |Gi| accounts for the balance in the
number of entities across groups. The numerator is squared to amplify
the effect of stronger connections.

Once cohesive groups have been formed, each group is assigned to
a separate parallel fuzzing instance. Each instance then reassembles
the configuration entities within its assigned group back into runtime-
ready forms, such as configuration files or CLI options. During execu-
tion, each instance evaluates the Flag attribute of each configuration
entity to determine if the configuration value should be mutated. If
mutation is required, it is applied based on the V alues attribute,
which guides how the mutation should be performed. Mutations are
introduced adaptively and are only applied if the current instance’s
coverage has reached saturation, meaning coverage has not increased
over a set duration. Additionally, to prevent cross-contamination be-
tween instances, each fuzzing instance operates in an isolated network
namespace. Through this structured parallel approach, each fuzzing
instance is empowered to fully explore its assigned configuration
subset, maximizing the chances of uncovering configuration-specific
vulnerabilities.

IV. EVALUATION

We have implemented CMFUZZ on the state-of-the-art parallel
protocol fuzzer Peach [8]. In the Configuration Model Identification
module, we employ the Python Configuration File Parser [10] along
with other specific libraries (such as json, yaml, pyparsing,
and others) to convert configuration files into configuration items.
For CLI options, we use Python Regular Expression Operations [11]
to flexibly identify configuration items. In the Configuration Model
Scheduling module, we leverage the networkx library to construct
a weighted graph, where configuration entities serve as nodes and
relations as weighted edges. For parallel fuzzing, we use Linux
Network Namespaces (netns) via the ip networking tool to iso-



late network environments. Additionally, we use Clang to insert
trace-pc-guard instrumentation, a feature in LLVM Sanitizer-
Coverage [12], to collect branch coverage for pairwise relation weight
quantification and parallel execution. For evaluation, we answer the
following two research questions:

• RQ1 Is CMFUZZ more efficient than traditional parallel proto-
col fuzzers when applied to IoT protocols?

• RQ2 Is CMFUZZ effective in exposing previously unknown
vulnerabilities in real-world IoT protocols?

A. Experiment Setup

Subjects. We selected six widely used IoT protocols: MQTT [13],
CoAP [7], DDS [14], DTLS [15], AMQP [16] and DNS [17]. We use
their corresponding popular open-source implementations as the test
subjects, including Mosquitto [18], libcoap [19], CycloneDDS [20],
OpenSSL [21], Qpid [22] and Dnsmasq [23].

Metrics. We employed three metrics for our evaluation: (i) branch
coverage achieved, (ii) speedup in reaching the same coverage level
as the compared fuzzers, and (iii) the number of bugs detected. The
first metric is commonly used to measure the effectiveness of fuzzers,
the second metric assesses the speed of parallel fuzzing, and the third
metric indicates vulnerability detection capabilities.

Experiment Settings. Since the fuzzing performance fluctuates to
a certain degree due to the inherent randomness, we ran each fuzzing
tool on each selected project with a 24-hour time budget and repeated
each 24-hour experiment five times to establish statistical significance
of results [24]. For fairness, we use the same Pit files that specify the
data and state models for each protocol. The experiment is executed
in a Docker container with 4 CPU cores and 8 GB of RAM.

B. Coverage Analysis

To assess the efficiency of CMFUZZ, we compared it to the state-
of-the-art parallel-mode protocol fuzzers Peach [8] and SPFuzz [9].
Each fuzzer was run with four instances per project. We tracked and
analyzed the number of branches covered by each fuzzer over 24
hours and calculated the speedup achieved by CMFUZZ in reaching
the same coverage level as the other fuzzers. Detailed results and
improvements are summarized in Table I. The Speedup metric is
defined as the baseline fuzzer’s time to reach its final coverage divided
by the time CMFUZZ requires to achieve the same coverage. On
average, CMFUZZ improved branch coverage by 34.4% over Peach
and 28.5% over SPFuzz across all tested protocol implementations.
In terms of speedup, CMFUZZ achieved an average acceleration
of 3,544× compared to Peach and 2,746× compared to SPFuzz.
These results reflect CMFUZZ’s significant enhancements in fuzzing
efficiency for IoT protocols.

TABLE I: Average number of branches covered by each fuzzer
running with four parallel instances over a 24-hour period.

Subject CMFUZZ Peach Improv Speedup SPFuzz Improv Speedup
Mosquitto 8,835 5,668 +55.9% 2,195× 6,244 +41.5% 30×
libcoap 5,498 4,064 +35.1% 450× 4,230 +30.0% 269×
cyclonedds 28,729 22,698 +26.6% 79× 23,155 +24.1% 146×
OpenSSL 7,318 6,069 +20.6% 8,820× 6,222 +17.6% 7,351×
Qpid 16,166 14,009 +15.4% 117× 14,440 +12.0% 41×
Dnsmasq 1,963 1,284 +52.9% 9,600× 1,348 +45.6% 8,640×
AVERAGE +34.4% 3,544× +28.5% 2,746×

Figure 4 illustrates that CMFUZZ consistently achieves the highest
branch coverage across all six projects, significantly outperforming
the baseline tools Peach and SPFuzz. This underscores its effective-
ness in exploring diverse execution paths. At the start of each session,
all fuzzers exhibit an initial boost in coverage. CMFUZZ achieves a
considerable early lead because many of its extracted configuration

items are loaded at startup, allowing rapid exploration of initial
coverage. As time progresses, Peach and SPFuzz reach a saturation
point, while CMFUZZ continues to increase coverage by dynamically
adjusting typical values from V alues field in configuration entities.
This mechanism is particularly effective in protocols like CoAP,
where varying block mode values allow exploration of alternative
handling methods. Overall, in projects like Mosquitto and Dns-
masq, CMFUZZ shows substantial improvement due to the extensive
configurations in these protocols. For instance, Mosquitto supports
varied QoS levels, authentication methods, and unique features like
bridge connections, enabling CMFUZZ to activate diverse paths by
simulating different settings. In contrast, CMFUZZ ’s improvements
on OpenSSL, CycloneDDS, and Qpid are modest due to limitations in
flexibility. For instance, DTLS relies on fixed cryptographic settings,
DDS’s structured management restricts configuration diversity, and
AMQP’s predefined structure limits exploration.
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Fig. 4: Average number of branches achieved by CMFUZZ and
baseline parallel fuzzers within 24 hours for 5 repetitions on each
IoT protocol implementation. All fuzzers are run with 4 instances.

C. Bug Detection Capability

In addition to the fuzzing efficiency improvement, CMFUZZ has
also uncovered 14 serious previously unknown vulnerabilities in these
target protocols. These vulnerabilities pose significant security risks
to devices operating with these protocols, potentially leading to device
crashes, unauthorized access, or even complete system compromise.
Table II summarizes the vulnerabilities discovered by CMFUZZ. Each
of them presents critical threats to IoT systems. Specifically, heap-
use-after-free allows attackers to reuse freed memory, leading to



unpredictable behavior or remote code execution. SEGV is triggered
by invalid memory accesses, and may expose sensitive information or
allow code injection. Memory leaks, which cause memory to be ex-
hausted over time, are particularly dangerous in resource-constrained
IoT devices, potentially leading to system unresponsiveness and dis-
rupted services. Allocation-size-too-big occurs when an abnormally
large memory is allocated, potentially exhausting system resources or
leading to denial-of-service attacks. Stack-buffer-overflow and heap-
buffer-overflow involve writing data beyond allocated boundaries,
potentially overwriting critical memory areas, leading to crashes or
enabling attackers to execute malicious code.

TABLE II: Summary of vulnerabilities detected by CMFUZZ

No. Protocol Vulnerability Type Affected Function

1

MQTT

heap-use-after-free Connection::newMessage
2 heap-use-after-free neu node manager get addrs all
3 heap-use-after-free mqtt packet destroy
4 SEGV loop accepted
5 memory leaks multiple functions

6
CoAP

SEGV coap clean options
7 stack-buffer-overflow CoapPDU::getOptionDelta
8 SEGV coap handle request put block

9 AMQP stack-buffer-overflow pthread create

10

DNS

stack-buffer-overflow get16bits
11 heap-buffer-overflow dns question parse, dns request parse
12 allocation-size-too-big dns request parse
13 heap-buffer-overflow printf common
14 heap-buffer-overflow config parse

Case Study: Bug #8 in libcoap (CoAP). Figure 5 illustrates a
SEGV vulnerability exposed by CMFUZZ in the CoAP protocol.
The bug occurs within coap_handle_request_put_block
function, where lg_srcv->body_data is explicitly set to NULL
(line 6) if lg_srcv is not found in the current session (line 3).
However, if the block transfer process is incomplete or certain
expected blocks fail to arrive, lg_srcv->body_data may remain
NULL without being updated with valid data.

1 int coap_handle_request_put_block(...) {
2 ...
3 if (!lg_srcv) {
4 ...
5 // Initialize lg_srcv->body_data to NULL
6 lg_srcv->body_data = NULL;
7 LL_PREPEND(session->lg_srcv, lg_srcv);
8 }
9 ...

10 #if COAP_Q_BLOCK_SUPPORT
11 if (block_option == COAP_OPTION_Q_BLOCK1) {
12 if (check_all_blocks_in(...)) {
13 goto give_app_data;
14 }
15 }
16 ...
17 give_app_data:
18 ...
19 // Potential null dereference
20 pdu->body_data = lg_srcv->body_data->s;
21 ...
22 }

Fig. 5: The simplified code snippets related to the Bug#8.

When the non-default Q-Block1 configuration, which enables
blockwise transfers, is activated (lines 10-11), the function checks
if all blocks have been received (line 12). If they have, the code pro-
ceeds to the give_app_data label to reassemble and process the
complete message body (line 13). At this label, pdu->body_data
is assigned lg_srcv->body_data->s directly (line 20), assum-
ing it is valid. However, if lg_srcv->body_data is still NULL,
this assignment will cause a null pointer dereference, leading to a

segmentation fault. This bug is critical as it potentially leads to server
crashes and denial of service when handling blockwise transfers
under specific configurations. Notably, it cannot be triggered under
the default configuration, as it requires specific blockwise transfer
settings to activate the vulnerable code path.

V. RELATED WORK

Protocol Fuzzing. Numerous studies emphasize the extensive use
of generation-based fuzzing for protocol implementation testing [8],
[25]–[28]. Predominantly, existing research concentrates on enhanc-
ing algorithms that generate test packets. For example, Bleem [26]
proposes a generation strategy focusing on packet sequences. Con-
versely, Logos [27] utilizes protocol server logs to conduct deep
and efficient fuzzing within black-box environments. PAVFuzz [28]
adopts a dynamic method to iteratively learn relationships between
packet fields, aiming to improve packet generation. All these ap-
proaches focus on refining packet or sequence generation, and
their effectiveness can be further bolstered by integrating CMFUZZ.
Our approach, CMFUZZ, can autonomously determine and schedule
configurations for parallel protocol fuzzing tasks and improve the
effectiveness of the vulnerability detection. Thus, CMFUZZ can be
integrated with these existing methodologies to significantly boost
fuzzing efficiency across multi-core computational resources.

Parallel Fuzzing. The enhancement of fuzzing efficiency is signifi-
cantly driven by augmenting computational resources and leveraging
parallel processing [29], [30]. Current research efforts concentrate
on optimizing mutation-based fuzzers through information synchro-
nization mechanisms and the strategic orchestration of fuzzing path
scheduling. For example, tools such as AFL [31] and its protocol-
oriented variant AFLNet [32] enable parallel fuzzing through syn-
chronized seed sharing; AFLTeam [33] employs a dynamic task
allocation model that refines task distribution, while PAFL [34]
integrates a real-time synchronization framework for fuzzing status.
Furthermore, SPFuzz [9] adopts a state-aware path-based method
to enhance autonomous vehicle system scenarios. However, current
fuzzing methodologies predominantly depend on standard config-
urations, neglecting the exploration of potential system behaviors
under diverse configurations within IoT environments. This narrow
focus restricts the ability to uncover deeper, configuration-specific
protocol vulnerabilities that could emerge beyond default settings.
Thus, recognizing the inherent multi-configuration complexity of IoT
systems and integrating varied configurations into the fuzzing process
becomes crucial for comprehensive vulnerability analysis.

VI. CONCLUSION

In this paper, we propose CMFUZZ, a fuzzing framework that
enhances parallel fuzzing for IoT protocols by dynamically iden-
tifying and scheduling configuration models. CMFUZZ constructs
a generalized configuration model by extracting protocol configu-
ration items and grouping them based on inter-item relations. This
approach enables parallel instances to explore diverse configuration
combinations, significantly increasing coverage and the likelihood of
discovering configuration-dependent bugs. Experimental results show
that CMFUZZ improves coverage by an average of 34.4% and 28.5%
over Peach and SPFuzz, with significant speedups achieved for both
baseline fuzzers. Furthermore, CMFUZZ has uncovered 14 previously
unknown vulnerabilities in real-world IoT protocols.
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