
CONI: Detecting Database Connector Bugs via
State-Aware Test Case Generation

Wenqian Deng Jie Liang∗ Zhiyong Wu
KLISS, BNRist, School of Software, KLISS, BNRist, School of Software, KLISS, BNRist, School of Software,

Tsinghua University, Tsinghua University, Tsinghua University,
Beijing, China Beijing, China Beijing, China

Jigzhou Fu Mingzhe Wang Yu Jiang∗

KLISS, BNRist, School of Software, KLISS, BNRist, School of Software, KLISS, BNRist, School of Software,
Tsinghua University, Tsinghua University, Tsinghua University,

Beijing, China Beijing, China Beijing, China

Abstract—Database connectors are widely used in many appli-
cations to facilitate flexible and convenient database interactions.
Potential bugs in database connectors can lead to various abnor-
mal behaviors within applications, such as returning incorrect
results or experiencing unexpected connection interruption. How-
ever, existing DBMS fuzzing works cannot be directly applied to
testing database connectors as they mainly focus on SQL gener-
ation and use a small subset of connector interfaces. Automated
test case generation also struggles to generate effective test cases
that explore intricate interactions of database connectors due to
a lack of domain knowledge.

The main challenge in testing database connectors is gener-
ating semantically correct test cases that can trigger various
connector state transitions. To address that, we propose CONI, a
framework designed for detecting logic bugs of database connec-
tors with state-aware test case generation. First, we define the
database connector state model by analyzing the corresponding
standard specification. Building upon this model, CONI generates
interface call sequences within test cases to encompass various
state transitions. After that, CONI generates suitable parameter
values based on the parameter information and contextual infor-
mation collected during runtime. Then the test cases are executed
on a target and a reference database connector. Inconsistent
results indicate potential bugs. We evaluated CONI on 5 widely-
used JDBC database connectors, namely MySQL Connector/J,
MariaDB Connector/J, AWS JDBC Driver for MySQL, PGJDBC,
and PG JDBC NG. In total, CONI reported 44 previously
unknown bugs, of which 34 have been confirmed.

I. INTRODUCTION

Database connectors, also known as database drivers, are
intermediary software components allowing applications to
communicate with databases [1]. Database connectors translate
application requests into commands that databases understand
and then translate the results from the database into a format
that the application can use. Through database connectors,
developers can perform various operations such as connecting
to the database, executing queries, and managing transactions.
Database connectors serve as crucial intermediaries, facil-
itating communication between applications and databases.
Therefore, ensuring the reliability of database connectors is

∗Jie Liang and Yu Jiang are the corresponding authors.

important, as any shortcomings or bugs in their functionality
can impact the overall performance of the software system.

To provide applications with increased flexibility and con-
venience in their interactions with databases, most database
vendors implement database connectors following unified stan-
dards such as JDBC (Java Database Connectivity) [2] and
ODBC (Open Database Connectivity) [3]. Due to the richness
of functionality provided by these standards and the variety
of use cases for database connectors, database connector
implementations may have many potential bugs. The issue
tracking systems for popular JDBC implementations such
as PGJDBC [4] and MariaDB Connector/J [5] have already
collected thousands of bug reports in recent years. These
bugs can result in various abnormal behaviors within the
application, such as returning incorrect results or experiencing
unexpected connection interruptions [6, 7, 8, 9].

MariaDB CONJ 1071 Error During Bulk Execution Might Result in Connection Wrong State

id (PK) field

1 Mike

2 Jack

Origin Table t0

Connector

INSERT INTO t0 VALUES (1, null)

INSERT INTO t0 VALUES (2, Lily)

Error: Duplicate entry ‘1’

Error: Duplicate entry ‘2’

SELECT COUNT(*) FROM t0

Error: Duplicate entry ‘2’
Database

Command1

Command2

Command

Result

Fig. 1: A real-world bug example of MariaDB Connector/J.
An error in the second batch INSERT (i.e., duplicate primary
key) caused the following SELECT to return the prior error
message instead of query results.

Figure 1 illustrates a recently fixed bug in MariaDB Connec-
tor/J [7]. This bug directly affects the functionality of applica-
tions that use the connector. In detail, a sequence of statements
is executed through batch processing (i.e., executeBatch()).
The second INSERT statement fails because of the duplicate
entry (i.e., 2), and then all subsequent SELECT queries on the



connection return misaligned results. The developers clarify
that the bug stems from an issue in the batch operation, where
the batch is split into multiple queries sent to the server. This
issue arises due to a change in the type of parameter data
within the batch. Specifically, in Figure 1, the “field” in
the first INSERT statement is of type string, while the
other has a null value. If an error occurs during any of
these statements, the connector may fail to read the complete
results of all statements, leading to an incorrect connection
state. Subsequent commands on this corrupted connection
may retrieve residual data from the preceding error, yielding
inaccurate query results.

Although there are many existing DBMS-related fuzzing
works, they are hard to be directly applied to testing database
connectors. On the one hand, most fuzzers primarily concen-
trate on generating effective SQL queries [10, 11, 12, 13, 14],
whereas database connectors are not directly involved in the
execution of these queries. Therefore, it is challenging for
existing methods to assess the intricate logic embedded within
database connectors thoroughly. On the other hand, existing
fuzzers exhibit limited interaction with the database connector.
They either refrain from utilizing the database connector
entirely or leverage only a small subset of its interfaces to
transmit SQL queries. For example, SQLANCER [11] relies on
JDBC solely to execute SQL queries and retrieve results, with-
out exploring additional functionalities like modifying config-
uration properties or batch execution. In addition, works like
RANDOOP [15] and EVOSUITE [16] have already explored
how to generate test cases automatically for programs [15, 16,
17]. However, due to the lack of domain knowledge, these
tools can only generate test cases that cover limited scenarios
and logic, typically identifying issues like null pointer errors
or boundary condition handling errors. Testing connectors
requires various interactions with databases, but these tools are
almost incapable of generating effective database connections.
Therefore, there is a great need for a framework designed
specifically for testing database connectors.

The main challenge in testing database connectors lies in
generating semantically correct test cases capable of trig-
gering various connector state transitions. A test case for
testing database connectors comprises the connector interface
call sequences and the corresponding input parameter values.
Ensuring the semantic correctness of a test case poses a
significant hurdle. This correctness encompasses both the
accuracy of the interface call sequence and the correctness of
the input parameter values. Arbitrarily combining interface call
sequences can lead to a combinatorial explosion and introduce
semantic errors due to dependency relationships. Additionally,
incorrect input parameter values can cause database connectors
to return meaningless results or throw errors directly. Further-
more, even with semantically correct test cases, they may still
not be sufficient to trigger a wide range of connector state
transitions. Database connectors often have internal states,
which can change based on factors such as query execution
and data processing. To thoroughly test a connector, generating
test cases that can trigger various state transitions is essential.

In this paper, we propose CONI for testing database connec-
tors with state-aware test case generation. To the best of our
knowledge, it is the first framework specifically designed for
testing database connectors. To generate semantically correct
test cases, we first model the specification of the database
connector standard, identifying the state information. Based
on the defined state model, CONI generates semantically
correct interface call sequences. Then, CONI generates suitable
parameter values based on both the parameter information
and contextual information to ensure the correctness of input
parameter values. To trigger a wide range of connector state
transitions, CONI categorizes interface methods into two sets:
one for interface methods that cause state transitions and
another for those that do not, assigning a higher weight to
the former. After generating test cases, CONI uses differential
testing [18] to detect bugs in database connectors by running
the same test cases on two different but compatible connectors
and identifying inconsistencies in their results.

We applied CONI to 5 widely-used JDBC database connec-
tors mainly provided by major database vendors, including
MySQL Connector/J [19], MariaDB Connector/J [5], AWS
JDBC Driver for MySQL [20], PGJDBC NG [21], and Post-
greSQL JDBC Driver [4], reporting a total of 44 previously
unknown bugs. Among them, 34 bugs have been confirmed
by the developers of corresponding database connectors.

This paper has the following main contributions:
• We propose state-aware test case generation specifically

designed for testing database connectors. Our approach
leverages a detailed state model to generate semantically
correct interface call sequences and parameter values
within test cases.

• We implemented our approach in CONI. It was evaluated
on 5 real-world database connectors and 44 bugs were
reported, of which 34 have been confirmed.

II. BACKGROUND

Database Connectors. Database connectors [1], also known
as database drivers, are software components that enable
applications to connect and interact with database management
systems (DBMSs). The basic workflow of database connectors
is shown in Figure 2. Database connectors initiate the con-
nection with databases and configure connection parameters.
Subsequently, they transmit queries to the database for execu-
tion, retrieve and process the results as required, and ultimately
close the connection to free up resources. For each action in
the workflow, the connector standard specifications provide
a set of available interface methods that can help facilitate
a variety of operations. The database connector can perform
a series of functions in the workflow through a sequence of
interface calls and the corresponding parameter values.

The workflow indicates that database connectors maintain
internal states during the execution of interface call sequences.
For example, when a database connection is established, the
state of the connection in the database connector changes
from closed to open. Modeling these states can help generate
semantically correct test cases.

2



Connector

Database

1 Establish Connection

2 Set Configurations

con.setFetchSize(100)

con.setAutoCommit(false)

3 Send Queries

INSERT INTO t0
VALUES (2, Jack)

SELECT *FROM to

4 Process Results

1 [1]

(1, Mike), (2, Jack)2

Close 
Connection

Fig. 2: The basic workflow of database connectors.

Database Connector Specification. Database connectors are
usually implemented according to standard specifications to
afford applications greater flexibility and convenience. These
standard specifications strictly define the parameters, expected
operations, and return values (e.g., the error code) of interface
methods for interactions between applications and databases.
We use JDBC [2] as an example to introduce the specifications
of database connectors. JDBC is a widely used standard defin-
ing a set of interface methods for Java applications. It supports
most DBMSs, allowing developers to switch between the
underlying DBMS without changing the codebase if needed.

Interface Method Definition in JDBC. We extract interface
method definitions from connector standard specifications such
as JDBC. For example, boolean Statement.execute-

(String sql) is an interface method definition. It contains
four parts: return type (i.e., boolean), interface method (i.e.,
Statement.execute), parameter type (i.e., String), and
parameter name (i.e., sql).
Challenges in Testing Database Connectors. As Figure 3
shows, a test case for database connectors always consists of
two parts: a sequence of interface calls (surrounded by a red
dashed line), and each connector interface call needs to be
instanced with the corresponding parameter values (covered
by a blue background).

Interface Call
Sequence

Parameter
Values

1 prep.setInt(1 , 1);
2 prep.setStr(2 , ”Mike");
3 prep.setInt(1 , 2);
4 prep.setStr(2 , "Kenny");

Fig. 3: An example of test cases for database connectors.

The main challenge in testing database connectors is to
generate semantically correct test cases that can trigger vari-
ous connector state transitions. First, the semantic correctness
of a test case is important but hard to ensure. The semantic
correctness encompasses both the correctness of the interface
call sequence and the correctness of the input parameter
values. Randomly generating sequences by combining various
interface methods not only leads to the issue of combinatorial
explosion but also results in a large number of invalid com-

binations due to the semantic relationships between interface
methods. For example, in the testing process, to perform oper-
ations on a result set, such as accessing metadata or reading the
result data, it is necessary to execute a query statement and
obtain the result set beforehand. If the semantic correctness
of the interface call sequences is not ensured, it may lead to
compilation errors. Besides, the parameter values of the inter-
face call also directly influence the semantic correctness. For
example, the interface call stmt.executeQuery(“random”)
is semantically incorrect due to being filled with a random
string instead of SQL. Consequently, if parameter values are
generated randomly, the database connector will directly throw
an error, failing to test the deep logic of database connectors.

Additionally, semantically correct test cases may not be suf-
ficient to trigger various connector state transitions. Database
connectors have internal states that govern their behaviors,
undergoing changes influenced by factors like connection
status, query execution, and data processing. To ensure com-
prehensive testing of a connector, it is crucial to formulate
test cases encompassing diverse scenarios that can induce a
wide range of state transitions. Consequently, effective testing
of connectors necessitates the creation of semantically correct
test cases with nuanced behaviors.

III. STATE-AWARE TEST CASE GENERATION

We design state-aware test case generation to address the
challenges in synthesizing semantically correct test cases
capable of triggering various connector state transitions for
database connector testing. As Figure 4 shows, firstly we build
the connector state model by analyzing the corresponding stan-
dard specifications, iterating through interface methods, and
manually defining the pre-state and post-state for each method.
Secondly, CONI synthesizes several semantic-correct interface
call sequences according to the constraints in the predefined
state model. Thirdly, CONI generates suitable parameter values
and passes them to each interface call based on the parame-
ter information and contextual information collected during
runtime. Upon generating test cases, CONI utilizes differential
testing to pinpoint bugs in database connectors. This involves
executing identical test cases on two connectors and comparing
their results to identify inconsistencies.

A. State Model Establishment

The interface methods and states of the database connector
are closely related. For example, a database connector can
establish or close connections, causing the connection state
to change. Similarly, it can create a new result set or close
an existing one, leading to changes in the result set’s state.
Consequently, constructing a state model accurately describes
the intricate relationship between these interface methods and
states and thus facilitates the generation of semantically correct
interface call sequences.
State. The state represents the current status of a database
connector when it calls interface methods. Generally, a state
refers to the values of all relevant attributes at a specific point
in time. A database connector has three stateful attributes:

3



Interface
Analysis

State
Exploration

Interface 
Selection

Info 
Collector

Parameter Value
GeneratorState Model

State Model Establishment Interface Sequence Generation

JDBC
Specification

Parameter Value Generation

Connector

Potential Bugs

Contextual 
Info

1 prepare
2 setInt
3 addBatch
4 executeBatch

prepare(“SELECT ?”)
setInt(1,1)
addBatch()
executeBatch()

Interface Sequence Test Case

executeBatch
Pre- and Post-state:
(Open,Batched,-)
(Open,Executed,-)

Parameter
Info

Fig. 4: The Overview of CONI. First, we analyze specifications to define interface pre- and post-states manually, storing this
in the state model. Second, CONI generates interface call sequences based on the state model. Third, CONI generates suitable
parameter values and passes them to interface calls based on the parameter information and runtime contextual information.
Finally, CONI uses differential testing on target and reference connectors to uncover logic bugs through inconsistent results.

connection, statement, and result set. Let C denote the state
of the connection, O represent the state of the statement, and
R represent the state of the result set. S represents the basic
state model of connectors, which is composed of the three
states above:

S = (C,O,R)

We define the values for C, O, and R as follows according
to the definitions in the connector standard specification:

C ∈ {Open,Close}
O ∈ {Created,Batched, Prepared, F illed, Executed, Close}

R ∈ {Created, Scrolled, Updated, Close}

Function. Through the analysis of interface methods in the
specification, we find that the interactions between connectors
and databases involve continuous transitions in states. To
conveniently represent the state transitions within the state
model, we define function objects, which explicitly indicate
the state transitions before and after an interface method call.
We first define the connector state before and after an interface
method call as the pre-state and post-state, respectively. Then
we use F to denote connector functions and define as follows,
wherein, I represents the corresponding interface method, Spre

represents the pre-state of that interface method, and Spost

represents the post-state of that interface method:

F = (I, Spre, Spost)

The fundamental principle for determining pre- and post-
state for an interface method is as follows: the pre-state
is determined based on the objects it depends on, and the
post-state is determined by its return values. Specifically, the
interface method’s dependencies define the pre-state, for ex-
ample, Statement.executeQuery requires both statement
and connection objects to be open, thus its pre-state is (Open,
Open, -). The post-state is defined by the interface method’s
output, for instance, Statement.executeQuery returns a
new result set, and therefore the post-state updates to (Open,
Open, Created).

The state model of the database connector is composed of
the defined functions. To establish the state model, we first
retrieve interface methods from the specification and manually
analyze the possible pre- and post-states of each interface

method based on its input objects and output values. It is a one-
time effort since modeling of a specification can be applied
to all connectors that implement that standard specification.
Then, All the state information is stored as the predefined
state model in the form of functions for future use of CONI.
Through the state model, CONI can determine whether the
state transitions of an interface call sequence are legal, helping
generate semantically correct interface call sequences. Table I
shows examples of functions extracted from JDBC.

TABLE I: A partial display of the functions extracted from
JDBC. The ”-” in the table represents that the state can be
any state.

Interface Method Pre-state Post-state

DriverManager.getConnection Close, Close, Close Open, Close, Close

Connection.createStatement Open, Close, Close Open, Created, Close

Connection.close Open, Close, Close Close, Close, Close

Statement.executeBatch Open, Batched, - Open, Executed, -

Statement.close Open, Not Close, Close Open, Close, Close

ResultSet.next Open, -, Created
Open, -, Scrolled Open, -, Scrolled

ResultSet.updateObject Open, -, Scrolled Open, -, Updated

ResultSet.close Open, Not Close, Not Close Open, Not Close, Close

B. Interface Call Sequence Generation

We design the state-aware interface call sequence generation
to generate semantically correct test cases with various con-
nector state transitions. The insight of the method is that
in a semantically correct sequence of interface calls, the
post-state of the previous interface method must be equal
to the pre-state of the next interface method. Therefore,
with the state information stored in the functions, CONI can
generate semantically correct sequences of interface calls. For
example, after executing DriverManager.getConnection,
the state of the database connector changes from (Close,

Close, Close) to (Open, Close, Close). Next, CONI
can invoke Connection.createStatement as its pre-state
matcheste the current state (Open, Close, Close).

While semantically correct test cases are important, they
may not be sufficient to trigger various connector behav-
iors. Database connectors typically operate based on various

4



internal state transitions, which are influenced by factors
like whether connectors are connected, executing queries, or
processing data. Therefore, another key aspect in creating
interface call sequences is ensuring they effectively trigger
various state transitions. Figure 5 shows an example of two
generated test cases. Both test cases are semantically correct.
However, the second test case is capable of triggering the bug
shown in Figure 1, whereas the first test case does not trigger
any bugs. When these two test cases are analyzed with state
transitions, it is found that the first test case does not make any
state changes. In contrast, the second test case goes through
multiple state transitions. Based on this discovery, test cases
with more state transitions need to be generated to uncover
more scenarios in the connectors.

1 prep = conn.prepareStatement
("INSERT INTO t0 VALUES (? , ?)");

2 prep.setInt(1 , 1);
3 prep.setNull(2 , Types.VARCHAR);
4 prep.addBatch();
5 prep.setInt(1 , 2);
6 prep.setString(2 , "Kenny");
7 prep.addBatch();
8 prep.executeBatch();

1 prep = conn.prepareStatement
("INSERT INTO t0 VALUES (? , ?)");

2 prep.getResultSetType();
3 prep.getFetchDirection();
4 prep.getQueryTimeout();
5 con.getTransactionIsolation();
6 con.getAutoCommit();
7 con.getHoldability();

--state: (Open, Prepared, Close)

--state: (Open, Prepared, Close)

--state: (Open, Filled, Close)
--state: (Open, Batched, Close)

--state: (Open, Filled, Close)
--state: (Open, Batched, Close)
--state: (Open, Prepared, Close)

Fig. 5: Both test cases are semantically correct, but only the
second triggers the bug in Figure 1. The discrepancy is due
to the first test case does not induce any state changes, while
the second test case undergoes multiple state transitions.

Algorithm 1 shows the overall process of interface call se-
quence generation. In general, CONI first reads the predefined
state model and categorizes it in two function sets Fc and Fs:
Fc for functions that cause state transitions and Fs for those
with consistent pre- and post-states. Then, CONI represents
the current connector state using the variable S and initializes
it (Line 1). CONI defines the initial state as (Close, Close,

Close). After that, CONI generates a random number N as
the interface call sequence size of the test case and selects
functions whose pre-state is equal to the current state to add
them to the interface call sequence (Lines 5–9). Then, CONI
updates the current connector state based on the post-state of
the currently selected function (Line 10).

In detail, to trigger a wider range of connector state transi-
tions, CONI selects functions from two different sets Fc and Fs

separately when generating the test case (Lines 5–9), assigning
a higher weight to functions that cause state transitions. CONI
first selects multiple random functions from Fs that do not
change the current state (Line 5). These functions enrich the
behavior of the connector in the current state. Then, CONI
selects a single function from Fc that changes the current state
(Line 7-8). The selected function ensures that the connector
transitions to a new state. By utilizing the selection approach,
CONI ensures that the connector can generate diverse behav-

Algorithm 1: Interface Call Sequence Generation
Input: Predefined function set Fc with inconsistent pre- and

post-state, Fs with same pre- and post-state
Output: A newly generated interface call sequence T

1 S ← The initial state of connector;
2 N ← Random number of interface calls in T ;
3 T, i← ∅, 0;
4 while i < N do
5 Avails ← selectRandomAvailableFunc (Fs, S);
6 T ← Append Set Avails to T ;
7 Availc ← selectRandomAvailableFunc (Fc, S);
8 F ← Select a random function F ∈ Availc;
9 T ← Append F to T ;

10 S ← F.Spost;
11 i← The current size of T ;
12 end
13 return T

14 Function selectRandomAvailableFunc(FuncList,
CurState):

15 AvailList← ∅;
16 foreach Func ∈ FuncList do
17 if Func.Spre == CurState and

getRandomBool() == True then
18 AvailList← Append Func to AvailList;
19 end
20 end
21 return AvailList;
22 End Function

iors in a given state, while also preventing it from getting
stuck in a single state without state transitions. This approach
balances exploring behaviors in current states and promoting
state transitions, leading to more effective bug detection.

C. Parameter Value Generation

The generated interface call sequences in test cases cannot
be executed directly, since they still lack suitable parameter
values. CONI collects the parameter information and contex-
tual information to instantiate the interface call sequences.
Parameter Information. CONI uses two parts from the inter-
face method definition to generate parameter values: parameter
type and parameter name. 1 Parameter Type: This helps CONI
determine the initial direction for parameter value generation.
2 Parameter Name: Parameters contain rich semantic infor-
mation that cannot be directly inferred from the parameter
types. For instance, certain interface methods require SQL
as input with the parameter type String. The parameter
names can reveal semantic information, such as sql if SQL is
required. Therefore, CONI also saves parameter names to assist
in parameter generation. To collect parameter types and names,
CONI iterates interface method definitions in the specification
and stores corresponding information.
Contextual Information. To generate suitable parameter val-
ues for some special parameters such as SQL, it is not only
necessary to collect the parameter information but also to
maintain the contextual information during runtime. The con-
textual information consists of two parts: the database schema
and the previously generated values. 1 Database Schema: The

5



Algorithm 2: Parameter Value Generation
Input: A given interface call sequence T , parameter

information Info
Output: T with newly generated parameter values

1 Context← ∅;
2 foreach Function F ∈ T do
3 foreach Parameter P ∈ F do
4 Namep, T ypep ← getParmInfo(P, F, Info);
5 if isContextualType(Namep, T ypep) then
6 PreviousV alue←

getDependentV alue(F,Context.V alues);
7 P.V alue←

genV alueOnDependency(PreviousV alue);
8 end
9 else if isSQLType(Namep, T ypep) then

10 P.V alue← genRandomSQL();
11 Context.Schema← Update if SQL changes

schema;
12 end
13 else if isConfig(Namep, T ypep) then
14 P.V alue←

genRandomConfigV alue(Namep);
15 end
16 else if isPrimitiveType(Namep, T ypep) then
17 P.V alue←

genRandomV alueOnType(Typep);
18 end
19 end
20 Context.V alues← Save the generated values for F ;
21 return T
22 end

connector needs to interact extensively with the database.
To enable CONI to generate meaningful parameter values,
it is necessary to save and maintain the database schema.
For example, to generate a valid SQL query, CONI needs to
know schema information such as table names and columns.
2 Previously Generated Values: Some interface methods are
related, and the parameter values of subsequent interface calls
may depend on the previous interface calls. For example,
When CONI first calls prepareStatement to cache an SQL
statement and then calls setInt to set values, it must refer to
the previously generated values of prepareStatement. To
collect contextual information, CONI maintains the database
schema and the previously generated values during runtime.
For database schema, CONI tracks it by updating table and
column objects when executing SQL queries. For previously
generated values, taking the second test case in Figure 5 as
an example, CONI saves the parameter values of the first
call prepareStatement (e.g., INSERT INTO t0 VALUES

(?, ?)). When generating values for the subsequent call
setInt, CONI looks up previously generated values from
prepareStatement to get the SQL statement and analyzes
it to determine the column type in t0 using database schema,
then generates suitable values.

Algorithm 2 illustrates the process of parameter value
generation for a given interface call sequence. CONI first
iterates over each parameter in each function of the given
sequence and obtains the corresponding parameter type Typep

and name Namep from the collected parameter information
(Lines 2–4). Then, CONI determines which method to use
for generating parameter values based on the parameter type
and name. CONI has established a mapping from parameter
names to corresponding generation methods for non-primitive
parameters (Lines 5–17).

In detail, if the parameter is contextual, in other words, it has
a dependence on previously generated values, the dependent
values for the parameter are first queried based on the depen-
dency relationship (Lines 5–7). This dependency relationship
is predefined and stored in the form of a dictionary. If the
parameter is SQL, CONI generates a random SQL query and
updates the schema if the SQL query alters the database (Lines
9–11). Moreover, if the parameter is configuration, CONI
generates valid configuration values based on the specification
(Lines 13–15). Finally, if the parameter does not fall into
any above conditions, it is considered a primitive type, and a
random method corresponding to its parameter type is called
to generate values randomly (Lines 16–17). For primitive
types, CONI deliberately creates invalid or extreme values for
interface calls to cover more edge cases. After traversing all
parameters of a function and generating values, CONI saves
the generated values in the contextual information (Line 20).

IV. IMPLEMENTATION

We implement CONI on JDBC since Java is one of the
most popular programming languages [22] and JDBC is used
by tens of thousands of developers worldwide [23]. We define
the pre-state and post-state for 70 interfaces to build the state
model, which consists of 25 different states and 91 transitions
between them. Then the state model is stored in files for use
by CONI. The details of the state model are listed on CONI’s
website1. The implementation of CONI comprises two main
components: test case generation and bug detection.

In test case generation, when generating parameter values,
CONI generates SQL queries according to a subset of the
SQL-92 BNF rules [24]. CONI focuses on basic CREATE
TABLE, INSERT, and SELECT clauses and thus can easily
adapt to various databases. Additionally, CONI generates valid
configuration values by building a customized dictionary for
configurations. In bug detection, CONI employs differential
testing in database connectors by running identical test cases
on two compatible connectors and comparing their results for
consistency. CONI wraps the results as strings in a wrapper
result object with a flag for errors and an empty string for
null values, to facilitate the comparison between results. If
the results are different, CONI may discover a potential logic
bug and the bug will be reported to developers for their
verification. Differential testing is effective for CONI because
many connectors, like MariaDB Connector/J and MySQL
Connector/J, are designed to be compatible, which means both
connectors can send the same commands to the same database
and get the results. CONI conducts comparisons on MySQL-
compatible and PostgreSQL-compatible connectors.

1https://github.com/THU-WingTecher/Coni

6

https://github.com/THU-WingTecher/Coni


V. EVALUATION

To evaluate the effectiveness and efficiency of CONI in
detecting bugs in database connectors, we sought to answer
the following questions:

• RQ1: How well does CONI perform in detecting bugs in
real-world connectors?

• RQ2: How does CONI perform compared to other exist-
ing testing techniques?

• RQ3: How is the effectiveness of techniques in state-
aware test case generation?

A. Evaluation Setup

Tested Database Connectors. We tested CONI on 5 JDBC
connectors, namely MySQL Connector/J [19], MariaDB Con-
nector/J [5], AWS JDBC Driver for MySQL [20], PGJDBC
NG [21], and PostgreSQL JDBC Driver [4]. These database
connectors are primarily sourced from popular database ven-
dors such as MySQL [25], MariaDB [26], PostgreSQL [27],
and AWS [28]. PGJDBC NG is a popular open-source con-
nector for PostgreSQL. We chose the latest version available
at that time for experiments, which is MariaDB Connector/J
3.3.0, MySQL Connector/J 8.1.0, AWS MySQL JDBC 1.1.9,
PG JDBC 42.7.2, PG JDBC NG 0.8.9.
Basic Setup. The experiments were conducted on a machine
running 64-bit Ubuntu 20.04 with an AMD EPYC 7742 Pro-
cessor @ 2.25 GHz. We ran CONI in a docker container with 5
CPU cores and 40 GiB of main memory. For the databases, we
chose the one compatible with the corresponding connector.
In detail, when testing MariaDB Connector/J, MySQL Con-
nector/J, and AWS MySQL JDBC we used MySQL 8.0.32 as
the database for the connection, when testing PG JDBC and
PG JDBC NG, we used PostgreSQL 15.

B. Database Connector Bugs

Overall Results. CONI has reported a total of 44 bugs on five
database connectors. Among them, 34 reported bugs have been
confirmed as previously unknown bugs, and 10 bugs are still
being analyzed. At the time of writing this paper, 17 confirmed
bugs have been fixed. Among fixed bugs, 1 was labeled as
critical and 10 were labeled as major due to their impact on
many users. Besides, the developers of MariaDB Connector/J
and AWS MySQL JDBC have added 14 of our test cases to
their official test sets.

Statistic. Table II shows the statistics of bugs, including the
number of reported bugs and confirmed bugs among all the
reported bugs in each connector. CONI reported 44 bugs in
the five database connectors. Specifically, CONI reported 14,
15, 6, 3, and 6 bugs in MariaDB Connector/J, MySQL Con-
nector/J, AWS MySQL JDBC, PG JDBC, and PG JDBC NG,
respectively. They were detected because CONI synthesizes
various semantic correct test cases with state-aware test case
generation. These test cases can explore various behaviors of
the database connector and detect previously unknown bugs.
Case Study. To give an intuition on what kinds of bugs CONI
can detect, we show a selection of confirmed bugs. For brevity,
the bugs are reduced to demonstrate the core problem instead

TABLE II: Number of previously unknown bugs reported and
confirmed by CONI

Connector Version Reported Confirmed

MariaDB Connector/J 3.3.0 14 11
MySQL Connector/J 8.1.0 15 15
AWS MySQL JDBC 1.1.9 6 6
PG JDBC 42.7.2 3 2
PG JDBC NG 0.8.9 6 0

Total - 44 34

of providing the original test cases. Then, we analyze why
CONI can find these bugs to show its effectiveness.

a) Case 1: OutOfMemoryError Bug in MariaDB Con-
nector/J: Listing 1 shows details messages of a OutOf-

MemoryError bug detected in MariaDB Connector/J. The test
case in Listing 1 triggers a “java.lang.OutOfMemoryError” of
the database connectors and causes critical memory allocation
failure during routine operations, which can lead to application
crashes and instability in production environments. This bug
occurs when running a execute() method after setting a huge
fetch size. The cause of this bug is that MariaDB Connector/J
does not limit the size of the fetch size, leading to potential
Out-of-memory risks.

The reason for detecting the bug by CONI. The bug is
invoked by an unexpected parameter value for the setFetch-
Size interfaces, which is rarely set by users as well as testing
tools. As a result, the bug hides for over 5 years. CONI
can correctly fill the interface with random parameter values
and keep the semantic correctness of test cases, which could
explore uncovered codes by existing tools.

Listing 1: OOM bug in MariaDB Connector/J
stmt = con.createStatement();
stmt.setFetchSize(1600000000);
stmt.execute("SELECT id FROM t0 WHERE id >= 1");
// java.lang.OutOfMemoryError: Java heap space

error

b) Case 2: ResultSet Type Mismatch Bug in MariaDB
Connector/J: The following Listing 2 shows a bug identified
in MariaDB Connector/J, which affects the Statement.get-
ResultSetType() method, causing it to fail in changing
the ResultSet type as expected. This type mismatch can
lead to unexpected behavior in applications that rely on the
ResultSet type for processing, potentially causing logic
errors or exceptions in ResultSet handling. This bug occurs
when a Statement is created TYPE_SCROLL_INSENSITIVE.
However, the following ResultSet retrieved from the get-

GeneratedKeys() method after an update operation does
not reflect the type set initially. Instead, it defaults to
TYPE_FORWARD_ONLY.

The reason for detecting the bug by CONI. The bug is caused
by an oversight in handling modifications to the ResultSet

metadata. CONI can trigger this bug because it changes the
configuration values when creating Statement and Result-

Set objects, instead of using the default values. Therefore,

7



when querying the configuration values again, it is discovered
that the configuration has not been successfully changed.

Listing 2: Type mismatch bug in MariaDB Connector/J
stmt = con.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE,
ResultSet.CLOSE_CURSORS_AT_COMMIT);

stmt.executeUpdate("INSERT INTO t0 VALUES(...)",
Statement.RETURN_GENERATED_KEYS);

rs = stmt.getGeneratedKeys();
System.out.println(rs.getType());
// expected result: actual:

TYPE_SCROLL_INSENSITIVE | TYPE_FORWARD_ONLY

c) Case 3: Inconsistent Statement Execution Bug in
MySQL Connector/J: In Listing 3, an inconsistency bug has
been found in the MySQL Connector/J when the rewrite-

BatchedStatements is set to true. This inconsistency can
lead to data integrity issues and unpredictable application
behavior, as developers cannot rely on the consistent execution
of batches. In detail, with rewriteBatchedStatements set
to true, according to the developers of MySQL Connector/J,
when one of the queries in the batch violates the database’s
uniqueness constraints and fails, the subsequent queries in the
batch will not be executed. However, in our test case, we
find that the preceding statement executes successfully (i.e.,
TRUNCATE), resulting in the data in table t0 truncated.

The reason for detecting the bug by CONI. This bug is
caused by setting configuration values rewriteBatched-

Statements and executing SQL queries that violate database
constraints. CONI can discover this bug because it first changes
the configuration value when connecting to the database, and
then executes randomly generated SQL queries in a batch.
Therefore, by comparing the return results of different con-
nectors, CONI notices an inconsistency and thus discovers this
bug.

Listing 3: Inconsistent statement execution bug in MySQL
Connector/J
//The original records in table t0(c0 PK): (1)
props.setProperty("rewriteBatchedStatements",

"true");
con = DriverManager.getConnection(url, props);
stmt = con.createStatement();
//The insertion violates the uniqueness constraints
stmt.addBatch("INSERT INTO t0 VALUES (1)");
stmt.addBatch("TRUNCATE t0");
stmt.executeBatch();
// expected result: actual:
Error "Duplicate entry 1"| Error "..."
TRUNCATE is canceled | TRUNCATE is executed

In summary, CONI has reported a total of 44 bugs on five
database connectors, among them 34 have been confirmed.
The results indicate that CONI can detect previously unknown
bugs in database connectors, which adequately answers RQ1.

C. Comparison with Existing Techniques
Compared Techniques. To the best of our knowledge, CONI
is the first fuzzing framework for database connectors. There-
fore, we selected closely related work as the evaluation base-
line. RANDOOP [15] and EVOSUITE [16] are two prominent

and open-source automated tools for generating test cases of
Java programs, while CONI generates test cases for JDBC,
which can be considered as a Java library. In addition,
SQLANCER [11] is a popular open-source tool for testing
databases using JDBC. We implemented SQLANCER+ by
adapting the target database connector and collecting results
from different connectors to identify inconsistencies. We eval-
uated these techniques using two metrics, namely branch
coverage and unique detected bugs. Coverage was collected
using Jacoco [29] instrumentation. The bugs were deduplicated
automatically by comparing the interface call information and
the returned result, identifying inconsistencies. Then the dedu-
plicated bugs were reported to developers for their verification.
We ran the testing tools on five tested database connectors
for 24 hours and collected the branch coverage and unique
detected bugs.
Coverage. Table III displays the number of branches cov-
ered by each technique in 24 hours. The result shows
that CONI covered 5950, 6608, and 6587 more branches
than SQLANCER+, RANDOOP, and EVOSUITE respectively.
The main reason that CONI covered more branches is that
CONI is capable of generating effective test cases that
cover various functional scenarios. Specifically, SQLANCER+

only uses the database connector to send SQL queries,
utilizing getConnection to create a database connection,
createStatement to create a statement, and execute to
execute SQL queries. For RANDOOP and EVOSUITE, the
main problem is that due to the lack of domain knowledge,
these tools can only generate test cases that cover limited
scenarios and logic. Testing connectors requires complex in-
teractions with databases, but these tools, without the state
model, are almost incapable of generating effective database
connections. CONI attempts to alter configurations in the
database connector, perform batch executions, and modify
query results. Therefore, CONI can cover more branches than
other techniques.

TABLE III: Number of branches covered by each technique
in 24 hours

Connector CONI SQLANCER+ RANDOOP EVOSUITE

MariaDB Connector/J 1073 466 583 581
MySQL Connector/J 2430 1256 1473 1489
AWS MySQL JDBC 2826 1445 1734 1739
PG JDBC 1660 987 1197 1181
PG JDBC NG 2425 1796 1621 1597

Total 10414 5950 6608 6587

Improvement - 4464↑ 3806↑ 3827↑

Bugs. Table IV shows the number of detected bugs in database
connectors by each technique in 24 hours. During the evalu-
ation, CONI found 5, 6, 3, 2, and 5 bugs in MariaDB Con-
necor/J, MySQL Connector/J, AWS MySQL JDBC, PG JDBC,
and PG JDBC NG respectively, while other techniques did not
find any bug. The main reason is as follows: SQLANCER+

did not call the interface methods that can trigger bugs, nor
did it attempt to pass illegal values or set configurations for
interface methods. For example, SQLANCER+ cannot find the

8



bug in Listing 1 because it did not call the setFetchSize

method. RANDOOP and EVOSUITE focused on unit testing,
which can only generate the test cases for several simple
methods. Although they reported some potential errors during
the experiment, they were all false positives which are Null-

PointerException caused by invalid sequences of interface
calls. The performance improvement of CONI is primarily
attributed to the validity and complexity of the generated test
case. CONI generates test cases that explore more state space
because the state-aware method covers more interface methods
and their interactions.

TABLE IV: Number of detected bugs in database connectors
by each technique in 24 hours.

Connector CONI SQLANCER+ RANDOOP EVOSUITE

MariaDB Connector/J 5 0 0 0
MySQL Connector/J 6 0 0 0
AWS MySQL JDBC 3 0 0 0
PG JDBC 2 0 0 0
PG JDBC NG 5 0 0 0

Total 21 0 0 0

Improvement - 21↑ 21↑ 21↑

In summary, CONI is unique in its ability to find bugs in
database connectors, and compared to other techniques, it can
cover more branches within the database connectors, which
adequately answers RQ2.

D. Effectiveness of Test Case Generation

To understand the contribution of each technique in CONI,
we implemented two variants of CONI!s and CONI!p. CONI!s

disabled the state-aware interface call sequence generation and
generated random sequences. CONI!p disabled the parameter
value generation method and generated the values randomly.
To avoid early errors in test cases from failed database
connections, we used DriverManager.getConnection to
build valid connections first for CONI!s and CONI!p and then
subsequent interface call sequences or input parameter values
were generated randomly.
Bugs. Table V shows the number of detected bugs by CONI!s,
CONI!p and CONI. Specifically, CONI found 11 and 14 more
bugs than CONI!s and CONI!p respectively. The evaluation
results show that state-aware interface sequence call generation
and the parameter value generation method help CONI detect
more potential bugs in database connectors. The main reason
is that CONI, by generating effective test cases, can trigger
various scenarios in the database connector, while CONI!s and
CONI!p cause many interface calls to throw errors at runtime,
preventing the execution of subsequent logic.
Semantic Correctness Rate. Figure 6 shows the semantic
correctness rate of test cases of CONI!s, CONI!p, and CONI.
In our evaluation, we considered an interface call semantically
correct if it did not throw an error. The result shows that the
semantic correctness rate of test cases of CONI accounted
for 88.2%, 87.9%, 85.1%, 81.9%, and 84.8%, on MariaDB
Connecor/J, MySQL Connector/J, AWS MySQL JDBC, PG
JDBC, and PG JDBC NG respectively. Specifically, CONI

TABLE V: Number of detected bugs in database connectors
by CONI!s, CONI!p, and CONI in 24 hours

Connector CONI!s CONI!p CONI

MariaDB Connector/J 3 2 5
MySQL Connector/J 2 1 6
AWS MySQL JDBC 1 1 3
PG JDBC 1 1 2
PG JDBC NG 3 2 5

Total 10 7 21

included 8.4%, 11.7%, 8.9%, 8.9%, and 12.1% more semantic
correct interface calls than CONI!s, and 47.9%, 43.5%, 41.4%,
43.7%, and 45.3% more than CONI!p. It indicates that CONI
is capable of generating more effective test cases with a
higher rate of semantic correctness. The main reason is that
through the state model, CONI can ensure that dependencies
between interface calls in the sequence are met, reducing the
likelihood of errors during interface execution. By collecting
rich information to generate parameter values, CONI can
produce valid parameter values, thus decreasing the probability
of execution termination due to invalid parameters during
interface execution.

Fig. 6: The semantic correctness rate of the test cases of
CONI!s, CONI!p, and CONI in 24 hours.

In summary, the state model and parameter generation meth-
ods play an important role in the performance of CONI. These
two methods not only help CONI to increase the semantic
correctness of its test cases but also enable it to trigger more
bugs, which adequately answers RQ3.

VI. DISCUSSION

State Model Automation. We manually decide the pre-state
and post-state for each interface method in the state model
establishment process in Figure 4. This manual confirmation
is necessitated by the intricate semantics of interfaces, which
challenge the formulation of generalized automated rules.
However, extracting states from the specification is a one-
time effort since modeling a standard specification such as
JDBC can be applied to all connectors that implement that
specification. To model more efficiently, the latest techniques
such as Large Language Models (LLMs) can be used as

9



auxiliary tools to help analyze interface documentation, code
comments, and method names to predict the pre and post-
states, thereby automating the process [30].
Adaptability of CONI. CONI can easily adapt to a wide
range of JDBC database connectors to generate effective test
cases with minimal effort. Since CONI models the JDBC
standard specification, it inherently provides compatibility
with any database connector based on the JDBC standard. The
primary task may involve minor updates to the configuration
dictionaries, as different database connectors may have their
own specific configurations. Differential testing is performed
by comparing the results of compatible connectors separately.
Many other DBMSs have multiple JDBC implementations
(e.g., SQLite [31], ClickHouse [32], Oceanbase [33]), and
CONI can also test these. To migrate CONI to another standard,
such as ODBC, the primary task would be to redefine the state
model of the ODBC interface methods.
Detecting Other Potential Bugs. In addition to identifying
logic bugs, CONI can also uncover other types of bugs in con-
nectors by altering the comparison criteria. For example, CONI
can detect configuration-related bugs by comparing different
configurations of the same connector. Many connectors pro-
vide a set of available connection configurations; for instance,
the MySQL Connector/J documentation lists numerous config-
uration options, such as rewriteBatchedStatements. For
most configurations, changing the values should not lead to
inconsistent results. Furthermore, CONI can detect regression
bugs by comparing different versions of the same connector. If
the newer and older versions produce different results for the
same command, it could indicate a potential regression error.
Objects for Comparison. The effectiveness of CONI in
differential testing depends on the comparison objects used.
If two connectors produce consistent results due to identical
logic errors, CONI may fail to detect these errors. To mitigate
this, a practical solution is to expand the range of connectors
used for comparison in CONI. For instance, to thoroughly
test the AWS MySQL JDBC connector, it can be compared
not only with MySQL Connector/J but also with MariaDB
Connector/J. This broader comparison increases the likelihood
of uncovering unique errors specific to each connector.

VII. RELATED WORK

DBMS Fuzzing. Fuzzing [34] is an automated software testing
technique. When applying fuzzing techniques to test DBMSs,
the main challenge is to generate correct and effective SQL
queries [11, 12, 13, 35, 36, 37]. For example, SQLANCER [11]
generates valid SQL queries based on AST. SQUIRREL [12]
employs mutation-based fuzzing on DBMSs. Griffin [13]
introduces metadata graphs for SQL, providing a grammar-
free method for mutating SQL test cases. LEGO [35] enhances
DBMS fuzzing by generating SQL sequences with a diverse
range of types. Unicorn [36] proposed the hybrid input synthe-
sis and designed the time-series model to generate time-series
queries. These works are difficult to directly adapt to testing
database connectors, since they focus on SQL generation,

while database connectors don’t execute SQL queries. Addi-
tionally, many existing fuzzers do not use database connectors
or only use a limited subset of them to send SQL queries
and get results, which makes it difficult to test the deep logic
of database connectors. It is necessary to apply fuzzing to
database connectors to ensure the security and reliability of
the interaction between databases and applications.
Test Case Generation. Many works have already explored
how to generate test cases automatically [15, 16, 17, 38, 39,
40]. RANDOOP [15] generates unit tests for Java programs via
a feedback-directed method. JDriver [17] utilizes dependency
analysis to automate the construction of driver classes for
fuzz testing, simplifying the fuzzing process and enhancing
the detection of vulnerabilities. JFD [39] have further refined
fuzz driver synthesis through static and value set analyses,
creating an effective mechanism for Java library testing. EVO-
SUITE [16] applies a novel hybrid approach that generates
and optimizes whole test suites to satisfy a coverage criterion.
However, these methods have not adequately incorporated
connector domain knowledge and also lack an effective test
oracle, making it difficult to detect logic errors in database
connectors effectively. CONI builds a state model and collects
rich information to generate test cases. It can effectively test
the deeper logic of database connectors and easily adapt to
many connectors.
Database Connector Testing. Existing work primarily fo-
cuses on testing applications that use database connectors [41,
42, 43]. JDBC checker [41] employed static analysis of
queries to detect potential bugs in SQL/JDBC applications.
JDAMA [42] generates and executes mutated SQL queries,
comparing results to assess the robustness of the SQL/JDBC
application against data variations. STAF [44] is a testing
framework for ODBC drivers, which requires the manual
creation of a test case template in XML format beforehand,
and then proceeds to generate different parameters for testing.
Tools like JDBC checker and JDAMA did not focus on
potential bugs within the database connection implementation.
Therefore, they are unable to detect errors within database
connectors. CONI addresses the lack of testing for database
connectors and can effectively detect potential bugs within
these connectors by generating effective test cases. Addition-
ally, compared to STAF, CONI does not require a manual
creation for test cases, saving human effort and achieving
effective automated test case generation.
Model-Based Testing. Model-based testing [45] is a technique
where test cases are derived from a model of the system
under test. This approach ensures comprehensive coverage
by systematically exploring different states and transitions
within the model [46] and has been applied in various fields,
such as web applications and embedded systems [47, 48, 49].
UPPAAL TRON [47] uses timed automata to model the
expected behavior of the system, enabling thorough and auto-
mated verification of real-time properties. Pinheiro et al. [48]
proposed a model-based testing approach that uses UML
protocol state machines to generate test cases for RESTful
web services. TorX [49] integrates automatic test generation,

10



test execution, and test analysis in an on-the-fly manner based
on the ioco-test theory. However, previous methods have been
ineffective in modeling database connectors. CONI uniquely
models connectors to generate semantically correct test cases
that trigger various state transitions, carefully managing in-
teractions between interface methods via state-aware test case
generation technique.
Differential Testing. Differential testing is an important ap-
proach in detecting logic bugs in software systems such as
DBMSs [50, 51, 52, 53]. The basic idea of differential testing
is to identify bugs or inconsistencies in software by comparing
the outputs of different implementations of the same func-
tionality. RAGS [50] pioneered the concept of validating SQL
outputs by comparing execution results across multiple DBMS
vendors. Apollo [51] takes a unique approach by comparing
the execution speed of identical SQL queries on different
versions of the same DBMS. This technique is particularly
useful for detecting performance bugs that might arise in newer
DBMS versions. Serving as a test oracle, CONI leverages
differential testing to scrutinize for logic errors in database
connectors. By employing semantically correct test cases, the
tool detects potential logic errors when the target and reference
connectors yield disparate results. This comparative analysis
enhances the tool’s capability to identify inconsistencies and
potential issues within the database connectors.

VIII. CONCLUSION

This paper proposes CONI, a framework designed to test
database connectors through state-aware test case genera-
tion. To our knowledge, it is the first framework designed
specifically for database connectors. CONI mainly focuses
on generating semantically correct test cases that can trigger
various connector state transitions. CONI utilizes the state
model to generate semantically correct interface call sequences
and collects rich information to generate suitable parameter
values. Our experiment results show that CONI detected many
previous unknown bugs in database connectors, indicating its
effectiveness in testing database connectors.

ACKNOWLEDGMENT

We appreciate the valuable comments provided by the re-
viewers. This research is partly sponsored by the National Key
Research and Development Project (No. 2022YFB3104000),
NSFC Program (No. 62302256, 92167101, 62021002), and
Chinese Postdoctoral Science Foundation (2023M731953).

REFERENCES

[1] “Database connection,” https://en.wikipedia.org/wiki/
Database connection, 2024, accessed: August 19, 2024.

[2] “Java database connectivity,” https://en.wikipedia.org/
wiki/Java Database Connectivity, accessed: August 19,
2024.

[3] “Open database connectivity,” https://en.wikipedia.org/
wiki/Open Database Connectivity, accessed: August 19,
2024.

[4] “pgjdbc,” https://github.com/pgjdbc/pgjdbc, accessed:
August 19, 2024.

[5] “mariadb-connector-j,” https://github.com/mariadb-
corporation/mariadb-connector-j, 2024, accessed:
August 19, 2024.

[6] “Binary bool values are not decoded correctly · Is-
sue #2639 · pgjdbc/pgjdbc,” https://github.com/pgjdbc/
pgjdbc/issues/2639, 2022, accessed: August 19, 2024.

[7] “[conj-1071] error during bulk execution might result in
connection wrong state - jira,” https://jira.mariadb.org/
browse/CONJ-1071, 2023, accessed: August 19, 2024.

[8] “[conj-1091] can’t make a connection when the Read
Replica DB is in a hang state when SocketTimeout=0
set - Jira,” https://jira.mariadb.org/browse/CONJ-1091,
2023, accessed: August 19, 2024.

[9] “MySQL Bugs: #109013: useServerPrepStmts and use-
LocalTransactionState could cause rollback failure,”
https://bugs.mysql.com/bug.php?id=109013, 2022, ac-
cessed: August 19, 2024.

[10] Z.-M. Jiang, J.-J. Bai, and Z. Su, “DynSQL: Stateful
Fuzzing for Database Management Systems with Com-
plex and Valid SQL Query Generation,” in 32nd USENIX
Security Symposium, 2023, pp. 4949–4965.

[11] M. Rigger and Z. Su, “Testing Database Engines via
Pivoted Query Synthesis,” in 14th USENIX Symposium
on Operating Systems Design and Implementation OSDI
20), 2020, pp. 667–682.

[12] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu,
“Squirrel: Testing Database Management Systems with
Language Validity and Coverage Feedback,” in The ACM
Conference on Computer and Communications Security
(CCS), 2020, 2020.

[13] J. Fu, J. Liang, Z. Wu, M. Wang, and Y. Jiang, “Grif-
fin: Grammar-Free DBMS Fuzzing,” in 37th IEEE/ACM
International Conference on Automated Software Engi-
neering, 2022, pp. 1–12.

[14] J. Liang, Z. Wu, J. Fu, Y. Bai, Q. Zhang, and
Y. Jiang, “WingFuzz: Implementing Continuous Fuzzing
for DBMSs,” in 2024 USENIX Annual Technical Confer-
ence, 2024, pp. 479–492.

[15] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball,
“Feedback-Directed Random Test Generation,” in 29th
International Conference on Software Engineering (ICSE
2007), Minneapolis, MN, USA, May 20-26, 2007. IEEE
Computer Society, 2007, pp. 75–84. [Online]. Available:
https://doi.org/10.1109/ICSE.2007.37

[16] Y. Lin, J. Sun, G. Fraser, Z. Xiu, T. Liu, and J. S.
Dong, “Recovering Fitness Gradients for Interprocedural
Boolean Flags in Search-based Testing,” in Proceedings
of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 440–451.

[17] Z. Huang and Y. Wang, “JDriver: Automatic Driver Class
Generation for AFL-Based Java Fuzzing Tools,” 2018.

[18] “Differential testing,” https://en.wikipedia.org/wiki/
Differential testing, 2024, accessed: August 19, 2024.

[19] “mysql-connector-j,” https://github.com/mysql/mysql-
connector-j, 2024, accessed: August 19, 2024.

[20] “aws-mysql-jdbc,” https://github.com/awslabs/aws-

11

https://en.wikipedia.org/wiki/Database_connection
https://en.wikipedia.org/wiki/Database_connection
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://github.com/pgjdbc/pgjdbc
https://github.com/mariadb-corporation/mariadb-connector-j
https://github.com/mariadb-corporation/mariadb-connector-j
https://github.com/pgjdbc/pgjdbc/issues/2639
https://github.com/pgjdbc/pgjdbc/issues/2639
https://jira.mariadb.org/browse/CONJ-1071
https://jira.mariadb.org/browse/CONJ-1071
https://jira.mariadb.org/browse/CONJ-1091
https://bugs.mysql.com/bug.php?id=109013
https://doi.org/10.1109/ICSE.2007.37
https://en.wikipedia.org/wiki/Differential_testing
https://en.wikipedia.org/wiki/Differential_testing
https://github.com/mysql/mysql-connector-j
https://github.com/mysql/mysql-connector-j
https://github.com/awslabs/aws-mysql-jdbc


mysql-jdbc, 2024, accessed: August 19, 2024.
[21] “pgjdbc-ng,” https://github.com/impossibl/pgjdbc-ng, ac-

cessed: August 19, 2024.
[22] “TIOBE Index,” https://www.tiobe.com/tiobe-index/, ac-

cessed: August 19, 2024.
[23] “Maven JDBC,” https://mvnrepository.com/open-source/

jdbc-drivers, accessed: August 19, 2024.
[24] “SQL1992,” http://www.contrib.andrew.cmu.edu/

∼shadow/sql/sql1992.txt, accessed: August 19, 2024.
[25] “Mysql,” https://www.mysql.com/, accessed: August 19,

2024.
[26] “Mariadb,” https://mariadb.org/, accessed: August 19,

2024.
[27] “Postgresql,” https://www.postgresql.org/, accessed: Au-

gust 19, 2024.
[28] “Aws,” https://aws.amazon.com/, accessed: August 19,

2024.
[29] “JaCoCO,” https://www.jacoco.org/jacoco/, accessed:

August 19, 2024.
[30] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu,

and B. Myers, “Using an LLM to Help With Code
Understanding,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, 2024,
pp. 1–13.

[31] S. Bhosale, M. T. Patil, and M. P. Patil, “Sqlite: Light
database system,” Int. J. Comput. Sci. Mob. Comput,
vol. 44, no. 4, pp. 882–885, 2015.

[32] “Clickhouse,” https://clickhouse.com/docs/en/interfaces/
jdbc, accessed: August 19, 2024.

[33] “Oceanbase,” https://en.oceanbase.com/docs/common-
oceanbase-connector-j-en-10000000001092963,
accessed: August 19, 2024.

[34] B. P. Miller, L. Fredriksen, and B. So, “An Empirical
Study of the Reliability of UNIX Utilities,” Commun.
ACM, vol. 33, no. 12, Dec. 1990.

[35] J. Liang, Y. Chen, Z. Wu, J. Fu, M. Wang, Y. Jiang,
X. Huang, T. Chen, J. Wang, and J. Li, “Sequence-
oriented DBMS Fuzzing,” in Proceedings of IEEE Inter-
national Conference on Data Engineering (ICDE), 2023.

[36] Z. Wu, J. Liang, M. Wang, C. Zhou, and Y. Jiang, “Uni-
corn: Detect Runtime Errors in Time-series Databases
with Hybrid Input Synthesis,” in ISSTA ’22: 31st ACM
SIGSOFT International Symposium on Software Testing
and Analysis, Virtual Event, South Korea, July 18 - 22,
2022. ACM, 2022, pp. 251–262.

[37] J. Fu, J. Liang, Z. Wu, and Y. Jiang, “Sedar: Obtaining
High-Quality Seeds for DBMS Fuzzing via Cross-DBMS
SQL Transfer,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, 2024,
pp. 1–12.

[38] E. Albert, I. Cabanas, A. Flores-Montoya, M. Gomez-
Zamalloa, and S. Gutierrez, “jPET: An Automatic Test-
Case Generator for Java,” 2011.

[39] Z. Chen and Y. Wang, “JFD: Automatic Java Fuzz Driver
Generation,” 2021.

[40] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, and X. Li,

“UML Activity Diagram-based Automatic Test Case
Generation for Java Programs,” The Computer Journal,
vol. 52, no. 5, pp. 545–556, 2009.

[41] C. Gould, Z. Su, and P. Devanbu, “JDBC Checker: A
Static Analysis Tool for SQL/JDBC Applications,” in
Proceedings. 26th International Conference on Software
Engineering. IEEE, 2004, pp. 697–698.

[42] C. Zhou and P. Frankl, “Mutation Testing for Java
Database Applications,” pp. 396–405, 2009.

[43] Y. Shin, L. A. Williams, and T. Xie, “SQLUnitgen:
Test case generation for SQL injection detection,” North
Carolina State University. Dept. of Computer Science,
Tech. Rep., 2006.

[44] D. Ye, “Automated Testing Framework for ODBC
Driver,” Journal of Software Engineering and Applica-
tions, vol. 04, no. 12, p. 688, Dec. 2011.

[45] S. R. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz, “Model-based
Testing in Practice,” in Proceedings of the 21st inter-
national conference on Software engineering, 1999, pp.
285–294.

[46] M. Utting, A. Pretschner, and B. Legeard, “A Taxonomy
of Model-based Testing Approaches,” Software testing,
verification and reliability, vol. 22, no. 5, pp. 297–312,
2012.

[47] “Uppaal,” https://uppaal.org/, accessed: August 19, 2024.
[48] P. V. P. Pinheiro, A. T. Endo, and A. Simao, “Model-

based Testing of RESTful Web Services Using UML
Protocol State Machines,” in Brazilian workshop on
systematic and automated software testing. Citeseer,
2013, pp. 1–10.

[49] G. Tretmans and H. Brinksma, “Torx: Automated Model-
based Testing,” in First European Conference on Model-
Driven Software Engineering, 2003, pp. 31–43.

[50] D. R. Slutz, “Massive Stochastic Testing of SQL,”
vol. 98, pp. 618–622, 1998.

[51] J. Jung, H. Hu, J. Arulraj, T. Kim, and W. Kang,
“APOLLO: Automatic Detection and Diagnosis of Per-
formance Regressions in Database Systems (to appear),”
in Proceedings of the 46th International Conference on
Very Large Data Bases (VLDB), Tokyo, Japan, Aug.
2020.

[52] Z. Cui, W. Dou, Q. Dai, J. Song, W. Wang, J. Wei, and
D. Ye, “Differentially Testing Database Transactions for
Fun and Profit,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engi-
neering, 2022, pp. 1–12.

[53] J. Liang, Z. Wu, J. Fu, M. Wang, C. Sun, and Y. Jiang,
“Mozi: Discovering DBMS Bugs via Configuration-
Based Equivalent Transformation,” in Proceedings of the
IEEE/ACM 46th International Conference on Software
Engineering, 2024, pp. 1–12.

12

https://github.com/awslabs/aws-mysql-jdbc
https://github.com/impossibl/pgjdbc-ng
https://www.tiobe.com/tiobe-index/
https://mvnrepository.com/open-source/jdbc-drivers
https://mvnrepository.com/open-source/jdbc-drivers
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://www.mysql.com/
https://mariadb.org/
https://www.postgresql.org/
https://aws.amazon.com/
https://www.jacoco.org/jacoco/
https://clickhouse.com/docs/en/interfaces/jdbc
https://clickhouse.com/docs/en/interfaces/jdbc
https://en.oceanbase.com/docs/common-oceanbase-connector-j-en-10000000001092963
https://en.oceanbase.com/docs/common-oceanbase-connector-j-en-10000000001092963
https://uppaal.org/

	Introduction
	Background
	State-Aware Test Case Generation
	State Model Establishment
	Interface Call Sequence Generation
	Parameter Value Generation

	Implementation
	Evaluation
	Evaluation Setup
	Database Connector Bugs
	Comparison with Existing Techniques
	Effectiveness of Test Case Generation

	Discussion
	Related Work
	Conclusion

