
JANUS: Detecting Rendering Bugs in Web Browsers
via Visual Delta Consistency
Chijin Zhou†, Quan Zhang†, Bingzhou Qian‡, and Yu Jiang†�

†BNRist, Tsinghua University, Beijing, China
‡National University of Defense Technology, Changsha, China

Abstract—Rendering lies at the heart of our modern web
experience. However, the correctness of browser rendering is not
always guaranteed, often leading to rendering bugs. Traditional
differential testing, while successful in various domains, falls
short when applied to rendering bug detection because an HTML
file is likely yield different rendered outcomes across different
browsers. This paper introduces Visual Delta Consistency, a test
oracle to detect rendering bugs in web browsers, aiming to make
rendered pages across browsers comparable. Our key insight is
that any modifications made to an HTML file should uniformly
influence rendering outcomes across browsers. Specifically, when
presented with two HTML files that differ only by minor
modifications, the reaction of all browsers should be consistent,
i.e., either all browsers render them identically or all render
them differently. Based on this insight, We implemented it as
a practical fuzzer named JANUS. It constructs pairs of slightly
modified HTML files and observes the change statuses of the
corresponding rendered pages across browsers for bug detection.
We evaluated it on three widely-used browsers, i.e., Chrome,
Safari, and Firefox. In total, JANUS detected 31 non-crash
rendering bugs, out of which 24 confirmed with 8 fixed.

I. INTRODUCTION

Rendering lies at the heart of our modern web experience,
responsible for translating code and media into visual web
pages. While important, the correctness of rendering in web
browsers is not always guaranteed. On the one hand, the
ongoing evolution of web standards introduces a dynamic
complexity to the task. Browser developers must constantly
adapt their rendering engines to keep up with these chang-
ing standards. On the other hand, the need for high-speed
rendering, which is crucial for an optimal user experience,
further compounds this complexity. These requirements call
for intricate implementations, which can give rise to rendering
bugs. These bugs are logic errors that cause incorrect or
unintended displays of web pages.

Unlike crashes, rendering bugs often do not present clear
symptoms, making their detection a challenging task. In other
testing research domains, differential testing has emerged as a
common approach for non-crash bug detection. The key idea
behind it is to compare the execution results from different
implementations of the same application when given the same
inputs. Due to its easy-to-implement and effective nature,
differential testing has been extensively applied to detect logic
bugs in various domains, such as compilers [43], [20], [19],
protocols [23], [4], database management systems [40], [41],
and machine learning systems [11], [44].

� Yu Jiang is the corresponding author.

Although effective in other domains, differential testing falls
short when applied to rendering bug detection in browsers.
The rationale is that the same HTML file is likely to yield
different rendered pages in different browsers [1], [5], [32],
[33], [35], which make the rendered pages across different
browsers incomparable. According to our experimental study
on testcases generated by a browser fuzzer Domato [9], 8,337
out of 10,000 testcases trigger different rendered pages in the
latest versions of Chrome and Firefox, while almost all the
cases are false positives after our manual verification. These
false positives stem from a range of factors. For example,
browsers vary in their support to web standards, meaning some
may not fully support or interpret certain features, leading to
disparate rendering outcomes. Even in cases where a feature
is universally supported, differences in default styles or the
rendered appearance of elements can contribute to inconsis-
tencies. As a result, all existing rendering bug fuzzer [32], [33]
avoid implementing cross-browser testing strategies to prevent
false positives, leaving a significant gap in the field.

This paper introduces Visual Delta Consistency, a test oracle
to detect rendering bugs in web browsers, aiming to make
rendered pages across browsers comparable. Our key insight is
that any modifications made to an HTML file should uniformly
influence rendering outcomes across browsers. Specifically,
when presented with two HTML files that differ only by
minor modifications, the reaction of all browsers should be
consistent, i.e., either all browsers render them identically
or all render them differently. Fig. 1 provides an illustra-
tive example of how this approach uncovers rendering bugs.
In this figure, html2 is the same as html1 except for a
“:root{float:right}” statement appended to the CSS
style part. However, the rendered pages of html1 and html2
differ in Safari, while they remain the same in Chrome. We
define this difference as a visual delta, which is the visual
difference between the rendered pages of an HTML file and
its modified version. An inconsistent visual delta indicates a
rendering bug in one of the two browsers. The bug shown in
Fig. 1 was confirmed and fixed by Chrome developers.

Implementing this test oracle as a practical and effective
fuzzer is challenging because it requires careful construction
of the visual delta in order to ensure the soundness of the
test oracle to avoid false positives. In the meanwhile, it must
be capable of exploring a wide range of rendering features to
facilitate effective bug detection. To address these challenges,
we first leverage web standards and browser compatibility

<html>
<head>
<style>

…
:root {float: right}

</style>
</head>
<body>
<p …>abc</p>
<progress></progress>
</body>
</html>

<html>
<head>
<style>

…
</style>
</head>
<body>
<p …>abc</p>
<progress></progress>
</body>
</html>

ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡

ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Rendered Page Rendered Page

Rendered Page Rendered Page

Fig. 1: A rendering bug in Chrome detected by JANUS. html2
is a slightly modified version of html1. Chrome renders the
two files identically, while Safari renders them differently.

to construct a universal set of rendering features that are
supported by all the browsers under test. This set enables us
to generate highly diverse HTML files where all rendering
features are compatible with the browsers under test. Subse-
quently, we adopt a rendering-tree-based approach to select
a node within the rendering tree and subtly alter its style
attributes, creating a slightly modified version of the original
HTML file. This pair of HTML files is then executed by
the browsers under test, and the resulting visual deltas are
analyzed to identify rendering bugs.

We implemented the above approach as a fuzzer named
JANUS, and evaluated it on the latest versions of three widely-
used browsers, i.e., Chrome, Safari, and Firefox. The results
show that JANUS can detect 31 non-crash rendering bugs in
these browsers, out of which 24 confirmed with 8 fixed by
the developers. Compared to the state-of-the-art rendering bug
fuzzer R2Z2 [32], JANUS detects 66.67% more rendering bugs
after a 24-hour fuzzing session. Additionally, JANUS maintains
a low false positive rate of 5.26% on average.

Overall, we make the following contributions:
• New Test Oracle. We proposed a new test oracle for

rendering bug detection in browsers. This is achieved by
constructing two HTML files with a minor modification and
observing the visual delta across browsers.

• Practical Fuzzer. We designed and implemented a practical
fuzzer named JANUS, which ensures the soundness of the
proposed test oracle while efficiently exploring the all
rendering features in browsers. We released the fuzzer at
https://github.com/ChijinZ/janus-browser-fuzzer.

• Real-World Bugs. We evaluated JANUS on the latest ver-
sions of three widely-used browsers. In total, it has detected
31 non-crash rendering bugs with 24 confirmed.

II. BACKGROUND AND MOTIVATION

Browser Rendering One of browsers’ fundamental tasks
is to render web pages. This process begins when a browser
retrieves the HTML, CSS, and JavaScript files for a given

web page. The browser first parses the HTML into a structure
known as the Document Object Model (DOM), which rep-
resents the hierarchical organization of the page’s elements.
Concurrently, it interprets the CSS into the CSS Object Model
(CSSOM), which details the styling rules for these elements.
These two structures are then combined into a render tree,
which includes only the elements that will be displayed on
the screen. The browser then proceeds to layout, where it
calculates the exact position and size of each element, taking
into account factors like screen size, viewport size, and font
size. Finally, the browser paints the elements onto the screen,
transforming the render tree into pixels.

The whole process is complex in functionality and re-
quires intricate optimizations for user experience. Therefore,
rendering bugs are a common occurrence in browsers. They
can manifest in various forms, such as misaligned elements,
incorrect colors, or missing content. Fig. 2 shows an example
of a rendering bug in Chrome 55.0.2852.0 when rendering
a real-world web page of Apple. The background image of
the actual rendered page is incorrectly clipped because a
wrong implementation of screen space scaling. Such bugs
significantly affect user experience and puzzle web developers,
as they need to determine whether the rendering issue arises
from their code or the browser itself.

(a) Expected rendered page. (b) Actual rendered page.

Fig. 2: A rendering bug in Chrome (issue #40483836) when
rendering Apple’s MacOS introduction page. The background
image of the actual rendered page is incorrectly clipped.

Obstacle of Cross-Browser Testing. A common approach
to detecting such logic bugs in other testing research domains
is to perform differential testing [43], [19], [23], [11], which
compares the behavior of different implementations of the
same applications when given the same inputs. However,
this approach is not applicable to rendering bug detection.
Several research works [32], [33] have shown that cross-
browser differential testing produces high false-positive rate
and is not practical for rendering bug detection. The main
reason is that the same HTML file can be rendered differently
by different browsers. In other words, if we perform cross-
browser differential testing and find an inconsistent outcome
between browsers, it does not necessarily mean that there
is a rendering bug. Instead, it could be due to the inherent
differences in the browsers’ rendering engines.

We conduct a preliminary study to illustrate this obstacle.
We generate 10, 000 testcases using Domato [9], a fuzzer for
HTML file generation, and test them on Chrome and Firefox.
8, 337 of the testcases trigger different rendered pages in the
two browsers. However, After manual verification, we find that

<html>
<body>

<textarea style="content-visibility:
hidden">TEXT</textarea>

<img src="img.png"
style="-webkit-box-reflect: below;">

</body>
</html>

Rendered Page Rendered Page

(a) Support for some CSS styles varies cross browsers.

<html>
<body>

<progress max="100" value="70">
</progress>

</body>
</html>

Rendered Page Rendered Page

(b) Default style for some elements varies cross browsers.

<html>
<body>
<input type="search"
value="ABC" autofocus/>

</body>
</html>

Rendered Page Rendered Page

(c) Rendered appearance for some elements varies cross browsers.

Fig. 3: Illustrative examples of why conventional differential
testing fails in detecting rendering bugs: the same HTML file
can be rendered differently by different browsers.

99.78% of them are false positives. This shows that directly
applying cross-browser differential testing is infeasible.

From the false positives in the experiment, we observe that
the main reasons are threefold. First, browsers vary in their
adherence to web standards, meaning some may not fully sup-
port or interpret certain features, leading to disparate rendering
outcomes. As Fig. 3a shows, the two HTML elements are
rendered in a significantly different way in Chrome and Fire-
fox. The content-visibility is an experimental CSS
property and not fully supported by Firefox. Therefore, Firefox
did not hide the text in the textarea as Chrome did. On the
other hand, the -webkit-box-reflect is a special feature
which is only supported by WebKit-family browsers such
as Chrome and Safari. Therefore, Firefox did not reflect the
flower image as Chrome did. Second, each browser applies its
own default styles to HTML elements, which can significantly
alter their appearance. As Fig. 3b shows, the progress bar is
rendered as a thick blue bar in Chrome, while it is rendered
as a thin orange bar in Firefox. Third, each browser draws the
rendered appearance of elements in their own way, which can
lead to different visual presentations. As Fig. 3c shows, when
rendering a search-type input box, Chrome shows a cross icon
that can be clicked on to remove the search term. In contrast,
Firefox does not show this cross icon. In addition, when the
input box is focused, Chrome draws a blue border around the
input box, while Firefox draws an orange border.

Existing Approaches. The inherent inconsistencies across
different web browsers have led existing research to sidestep

cross-browser differential testing for rendering bug detection.
Instead, alternative strategies have been adopted. R2Z2 [32]
focuses on detecting rendering bugs by comparing the ren-
dered pages of different versions of the same browser. Meta-
mong [33], on the other hand, focuses on rendering-update
bugs in browsers. It compares the rendered pages from two
distinct rendering processes: traditional one-pass rendering
versus incrementally-updated rendering. These approaches,
despite their contributions to detecting a range of rendering
bugs, each carry limitations. R2Z2 may overlook bugs that
persist across all versions of a browser, while Metamong’s
scope excludes bugs that do not pertain to the rendering-update
process. Thus, there’s a need for an approach that complements
and extends their capabilities in rendering bug detection.

Goal of This Paper. This paper aims to enable cross-
browser differential testing for a more general rendering bug
detection, and thus complement existing works. TABLE I
summarizes the ability of JANUS compared to other related
fuzzers. The key contribution of JANUS is to propose a
broadly applicable test oracle called Visual Delta Consistency
to make rendered pages across different browsers comparable.
It is worth noting that the consistency is not limited to the
comparison of different browsers, but also can be applied to the
comparison of different versions of the same browser. There-
fore, JANUS can also detect rendering regressions, which is
focused by R2Z2. Metamong, on the other hand, is orthogonal
to R2Z2 and JANUS because it is specialized in testing the
rendering update process, which is not the focus of JANUS.

TABLE I: Features of fuzzers for rendering bug detection.

Fuzzer Focus CV RU CB

R2Z2 rendering regressions ✓ ✗ ✗
Metamong render-update bugs ✗ ✓ ✗

JANUS general rendering bugs ✓ ✗ ✓

CV: cross-version diff testing; RU: activate render-update
process; CB: cross-browser diff testing.

III. VISUAL DELTA CONSISTENCY

A. Basic Idea
We propose Visual Delta Consistency, a simple but broadly

applicable test oracle, to enable cross-browser differential
testing. Our key insight is that any modifications made to
an HTML file should uniformly influence rendering outcomes
across browsers, i.e., either all browsers render them iden-
tically or all render them differently. This consistency stands
only when all rendering features, including CSS styles, HTML
elements, and HTML attributes, used in the two HTML files
are supported by the browsers under test. Otherwise, the visual
delta may change on one browser but not change on another
due to unsupported features instead of browser rendering bugs,
which leads to false positives. We will give a formal definition
of visual delta consistency in what following.

Definition 1 (HTML Transformation). Given an HTML file
h1, an HTML transformation trans is a function that trans-
forms one rendering style (CSS style or HTML attribute)

property prop of an element el in the rendering tree of h1

from the value v1 to the value v2, and outputs a modified
HTML h2, denoted as h2 = transv1→v2

el,prop(h1).

Definition 2 (Visual Delta). Given two HTML files h1 and h2,
the visual delta ∆rh1,h2

b is the difference between the rendered
pages of h1 and h2 on browser b. ∆rh1,h2

b = 1 denotes
the rendered pages are visually different, while ∆rh1,h2

b = 0
denotes the rendered pages are visually the same.

Definition 3 (Visual Delta Consistency). Given an HTML
file h1 and its transformed version h2 = transv1→v2

el,prop(h1),
for arbitrary browsers b1 and b2, if (1) all rendering features
used in h1 and h2 are supported by b1 and b2, and (2)
transv1→v2

el,prop(∗) have the same rendering effect in b1 and b2,
then the equation ∆rh1,h2

b1
= ∆rh1,h2

b2
will always stand.

B. Soundness

Visual delta consistency can serve as a test oracle for
rendering bug detection, i.e., we can continuously generate
HTML files and their transformed versions, and then compare
the visual deltas across browsers. If the visual deltas are
inconsistent, we can conclude that there is a presence of
rendering bugs. However, the effectiveness of visual delta
consistency hinges on its soundness as a test oracle, this test
oracle is supposed to offer the right verdict for a given test
case [2]. If it is not sound, the detection will be ineffective
due to considerable false positives. Since browser rendering
bug detection is very special, even the same HTML file
can produce different rendered pages across browsers, the
soundness of visual delta consistency is not straightforward.
Therefore, we will give a proof to show that visual delta
consistency is sound for rendering bug detection.

Proposition 1. (Soundness) Visual delta consistency always
stands for any two web browsers.

Proof. Suppose we have an HTML file h1, and its transformed
version h2 = transv1→v2

el,prop(h1). All rendering features used
in h1 and h2 are supported by the two browsers b1 and b2,
and transv1→v2

el,prop(∗) have the same rendering effect in b1 and
b2. We want to prove that ∆rh1,h2

b1
= ∆rh1,h2

b2
for any two

browsers b1 and b2. Consider the following two situations:
• trans.el is invisible in the rendered page of h1.

In this situation, the element trans.el may be set as invisible
in its rendering style, obscured by other elements, or outside
the viewport, preventing the element from being observed.
Because of all rendering features are supported by both
browsers, trans.el is invisible no matter rendered by which
browser. After applying the transformation, we have two
cases to consider: (1) If the changing of trans.prop from
v1 to v2 is not supposed to change the visibility of trans.el,
then the rendered pages of h1 and h2 will be obviously the
same on both b1 and b2, i.e., ∆rh1,h2

b1
= ∆rh1,h2

b2
= 0. (2) If

the changing is supposed to make trans.el visible, then the
rendered pages of h1 and h2 will be different on both b1 and
b2, i.e., ∆rh1,h2

b1
= ∆rh1,h2

b2
= 1, because the change have

<div style="…; z-index: 1;"></div>

<progress max="100" value="80"

style="…; transform: scale(5);">

</progress>

Rendered Page Rendered Page

<div style="…; z-index: 1;"></div>

<progress max="100" value="80"

style="…;">

</progress>

Rendered Page Rendered Pageℎ1

ℎ2

(a) Change an element from being invisible to visible.

<div style="…"></div>

<progress

max="100" value=“30">

</progress>

Rendered Page Rendered Page

Rendered Page Rendered Page

<div style="…"></div>

<progress

max="100" value="80">

</progress>

ℎ1

ℎ2

(b) Change an element’s appearance.

Fig. 4: Illustrative examples for visual delta consistency.

the same rendering effect in both browsers. This visibility
changing can be achieved by setting the visibility property,
position property, size property, or z-index property to a
proper value. Take Fig 4a as an example, the progress
element initially is hidden by the div element in the rendered
page of h1. After adjusting its scale, it becomes visible in
the rendered page of h2. Although the two browser render
the page differently in the progress’s color, they should react
in the same way for the change.

• trans.el is visible in the rendered page of h1.
In this situation, we can directly observe the element
trans.el in the rendered page no matter which browser
renders the page. After applying the transformation, we have
two cases to consider: (1) If the changing of trans.prop
from v1 to v2 is not supposed to have explicit visual effect,
then the rendered pages of h1 and h2 will be obviously the
same on both b1 and b2, i.e., ∆rh1,h2

b1
= ∆rh1,h2

b2
= 0. (2)

If the changing is supposed to have explicit visual effect,
then the rendered pages of h1 and h2 will be different on
both b1 and b2, i.e., ∆rh1,h2

b1
= ∆rh1,h2

b2
= 1, because the

change have the same rendering effect in both browsers.
This visual effect can be achieved by setting the visibility
property, color property, font-size property, or visual-related
attribute to a proper value. Take Fig. 4b as an example, the
value attribute of the progress element is changed from 80

Standard Analysis

Valid DOM Building

Web
Standards

CFG

Rendering Tree
Obtaining

Rendering Style
Modification

el

{prop: v1 ,...}

v2

Browser 1
Rendered Pages

B1(h1)

B1(h2)

change?
B2(h1)

B2(h2)

change?
check

HTML File h1

HTML File h2

HTML File h1

Browser 2
Rendered Pages

§IV-A Initial DOM Generation §IV-B HTML Transformation §IV-C Consistency Checking
Fig. 5: The overall design of JANUS. First, it analyzes web standards and browser compatibility to generate an initial HTML
file h1. Then, it constructs a modified HTML file h2 = transv1→v2

el,prop(h1) by modifying the value of a rendering style property
for a selected node within h1’s rendering tree. Finally, it executes h1 and h2 in multiple browsers. By checking the consistency
of the visual deltas across browsers, it can identify rendering bugs in these browsers.

to 30. Although the two browser render the page differently
in the progress’s color, they should react in the same way
for the change.

To sum up, both situations lead to the same conclusion that
∆rh1,h2

b1
= ∆rh1,h2

b2
for any two browsers b1 and b2. Therefore,

visual delta consistency always stands.

IV. DESIGN OF JANUS

JANUS is designed to apply visual delta consistency as a
test oracle for browser rendering bug detection. Based on the
soundness of visual delta consistency, we can deduce that if
two slightly modified HTML files, where all rendering features
are supported by the browsers under test, yield inconsistent
visual deltas across different browsers, it suggests that these
modifications do not have consistent rendering effects across
browsers, being an indicator of potential rendering bugs.

However, implementing JANUS as a practical and effective
fuzzer presents unique challenges. First, the soundness of
visual delta consistency may not be guaranteed if the con-
structed HTML files use rendering features unsupported by
the browsers under test, potentially resulting in false positives.
Second, a lack of diversity in the constructed HTML files,
while maintaining soundness, could limit the fuzzer’s ability
to explore a wide range of rendering features. This might lead
to missed opportunities in detecting certain rendering bugs.

Fig. 5 illustrates the overall design of JANUS, which consists
of three main modules: (1) Initial DOM Generation, which
generates initial HTML files that are compatible with the
browsers under test and able to cover a wide range of rendering
features; (2) HTML Transformation, which properly constructs
a modified HTML file of the initial HTML file while ensures
the soundness of visual delta consistency; and (3) Consistency
Checking, which observes the visual deltas across browsers
and identify rendering bugs. We will detail the design of each
module in the following subsections.

A. Initial DOM Generation

This module focuses on generating high-quality, initial
HTML files. It ensures that all rendering features used are
supported by the target browsers and that the files are diverse

<html>
<style>
.c1{font: "small monospace", ...}
...
</style>
<body onload="...">
<input type="search" class="c1" ...>…</input>
...
</body>
</html>

Select an
HTML Element

Append
CSS Styles

Append
Attributes

Both browsers support
HTMLInputElement

Both browsers support the font
style for HTMLInputElement

Both browsers support the search
type for HTMLInputElement

Rendering Features

- z-index:auto | <integer> | inherit
- font: [[<font-style> | <font-size | …>]? …]

- …
- content-visibility: visible | auto | hidden

Web
Standards

Compatibility
Info

Browsers
Under Test

Fig. 6: The workflow of initial DOM generation.

enough to test a broad spectrum of rendering features. The
process begins with an analysis of web standards and browser
compatibility, identifying a set of usable rendering features.
This analysis instructs the generation of HTML files, which
are then utilized in the subsequent phases. Fig. 6 shows the
workflow of this module.

Standard Analysis. The module first finds the intersection
of all rendering features supported by the two browsers under
test. We leverage Webref [34] to obtain the latest stable
W3C standards, which fully defines all rendering features that
browsers are supposed to implement. Rendering features not
defined in the Webref are regarded as either non-standard or
deprecated, and thus are excluded from our analysis. Although
Webref defines a universal set of standards, not all features
may receive consistent support across different browsers,
as illustrated in Fig 3a. Therefore, we leverage data from
MDN [21], a comprehensive web development documentation,
to identify the compatibility of rendering features across
browsers. These analyses pinpoint a set of rendering features
that are supported by the browsers under test, which will be
used in the subsequent HTML generation.

Valid DOM Building. This step aims to generate valid
HTML files based on the rendering features obtained from
the standard analysis. Since HTML is a highly structured

language, we conduct a model-based approach to generate
valid HTML files. First, we convert the rendering features
into a context-free grammar (CFG). For example, CSS style
z-index in the standard can be converted to the following
CFG production rules:
• <line> := <selector> {<css_rule>, <css_rule>, ...};
• <css_rule> := z-index: <css_property>;
• <css_property> := auto | <integer> | inherit.

Based on the production rules, JANUS is able to generate
CSS code such as "c1 { z-index: auto }" and "c1 {
z-index: 20 }". We leverage Domato [9], a DOM fuzzer,
to generate valid HTML files based on the converted CFG.
As illustrated in Fig. 6, the core components of the generated
HTML files include HTML elements, CSS styles, and HTML
attributes. For HTML elements such as <input></input>
in the figure, we need to check the compatibility of the used
elements and ensure both browsers support them. For CSS
styles such as font: "small monospace" in the figure,
we not only check the compatibility of both CSS properties
and the values of corresponding properties, but also ensure
they can be applied to the used elements according to the
standards. For HTML attributes such as type="search"
in the figure, similar to CSS styles, we need to check the
compatibility and applicability of the used attributes. Through
these meticulous checks, , this module can generate high-
quality initial HTML files where all features are supported
by the browsers under test.

B. HTML Transformation

This module is responsible for constructing an HTML file
that is slightly modified from the initial HTML file. First, it
dynamically runs the initial HTML file in the browsers under
test to obtain a rendering tree. Upon the rendering tree, it
selects a node and a rendering style property (CSS style or
HTML attribute) to modify. The whole modification process
is guided by the standard analysis to ensure the soundness of
the test oracle. In the end, it outputs a modified HTML file
that is used in the subsequent consistency checking module.
Fig. 7 shows the workflow of this module.

Rendering Tree Obtaining. The rendering tree of an initial
HTML file is obtained by running the file in one of the
browsers under test. After the page of the initial HTML file
is fully rendered, we inject a JavaScript code to inspect the
rendering tree and the computed styles of each node in the tree.
This process is achieved by leveraging Selenium [31], a tool
for web browser automation, to monitor the rendering comple-
tion and execute custom JavaScript code. The computed styles
contain all the rendering properties of each node, indicating
how the browser renders the node. For the properties that are
explicitly specified in the initial HTML file, the computed
styles will inherit the specified values. For the properties that
are not explicitly specified, the computed styles will inherit
the default values of the browser.

Rendering Style Modification. After obtaining the render-
ing tree, we first select a node, i.e., an element, from the
rendering tree as modified target. Next, based on its element

<html>
<style>
...
</style>
<script>
function trans() {
doc.getElementById("1").style[

"margin- left"] = "100px“ }
</script>
<body onload="trans()">
<input type="search" class=".." id="1">
</input>
...
</body>
</html>

node = randNode();
styles =getComputedStyle(node);

<html>
<style>
...
</style>
<script>
</script>
<body>
<input type="search" class=".." id="1">
</input>
...
</body>
</html>

text-wrap wrap
scroll-behavior auto

margin-left 0px
width 170px

… …

Node ID: 1
Node Type: HTMLInputElement

Rendering Tree

Computed Styles

browser renders

select a style property

check property compatibility

construct a value for the style

check value compatibility

Node ID: 1
Prop: margin-left
Org Value: 0px
New Value: 100px

1.
2.

3.

4.

Fig. 7: The workflow of HTML transformation. It first selects
a node from the rendering tree, and then modify the value
of a rendering style property. The value should be valid and
compatible with target browsers.

type and computed styles, we select a rendering style property
and modify its value. The modification process is guided
by the standard analysis to ensure both the property and
constructed value are supported by the browsers under test and
can be applied to the selected element type. For example, as
depicted in Figure 4, the HTMLInputElement is targeted
for modification, with its margin-left property chosen for
adjustment. The property’s value is altered from the default
0px to 100px. Following this, based on the modification
information, we construct a modified HTML file by injecting
corresponding JavaScript code, i.e., function trans, into the
initial HTML file.

It is worth noting that we leverage rendering trees for HTML
transformation instead of statically rewriting some fields in
the initial HTML file. The rationale is that the rendering tree
contains a wealth of additional properties that can be modified.
For example, Even when the initial HTML file does not specify
any styles, the browser’s default styling rules and the cascading
nature of CSS result in a rich set of computed styles within the
rendering tree. By tapping into this extensive set of properties,
we significantly expand the range of possible transformations.

C. Consistency Checking

This module is responsible for observing the visual deltas
across different browsers and identifying rendering bugs.
Specifically, given two browsers b1, b2 and an HTML file
h1 along with its modified version h2 = transv1→v2

el,prop(h1),
this module checks if ∆rh1,h2

b1
= ∆rh1,h2

b2
. The visual delta

∆rh1,h2

b requires a visual comparison of the rendered pages
of h1 and h2 in browser b. First, we leverage Selenium [31]
to render the HTML files in the browsers under test and take
screenshots of the rendered pages. During this process, we set
the window size to be the same for all browsers to ensure
the consistency of screenshots. Next, we adopt phash [27],
a perceptual hash algorithm, to compare the screenshots of

rendered pages. If the phash values of the screenshots are
different, it indicates that the rendered pages are visually
different. If we observe different visual deltas across different
browsers, it suggests that the modifications of h2 do not have
consistent rendering effects across browsers, being an indicator
of potential rendering bugs.

V. EVALUATION

In this section, we evaluate the effectiveness of JANUS by
conducting a series of experiments. Our evaluation addresses
the following research questions:

• RQ1: Can JANUS uncover unknown rendering bugs in
mainstream browsers? (Section V-A)

• RQ2: How well does JANUS perform compared to other
state-of-the-art fuzzers? (Section V-B)

• RQ3: Does JANUS introduce false positives during test-
ing? (Section V-C)

• RQ4: What is the overhead introduced by JANUS during
testing? (Section V-D)

Experiment Setup. We performed our evaluation on a
machine equipped with an i7-12700KF with 12 cores, running
Ubuntu 22.04 LTS. We utilized X virtual frame bffer (Xvfb) to
enable browsers to run in headless mode on separate virtual
display hardware. We selected Chrome, Firefox, and Safari
as our fuzzing targets because they are the ones of the most
representative browsers. Since Safari cannot be run on a Linux
system, we used WebKitGTK, a full-featured port of Safari’s
rendering engine, as an alternative. We used ImageHash [3] to
compute phash values of images. Once the phash values are
different, we consider the corresponding rendered pages to be
visually different. We set the timeout for each rendering test
execution to 5 seconds.

A. Bug finding

We intermittently ran JANUS for a month to test the lat-
est versions of the three mainstream browsers, i.e., Chrome
100.0.4896, Safari 15, and Firefox 100.0.2. We conducted
two separated instances of JANUS, one for Chrome-Safari
cross-browser testing and the other for Chrome-Firefox cross-
browser testing. It is worth noting that we only reported bugs
that violate visual delta consistency. Although a number of
crashes were found during testing, we did not report them
because crash bug detection is not the contribution of JANUS.
Therefore, all the bugs shown in the following statistics are
non-crash rendering bugs.

TABLE II: Statistics of rendering bugs reported by JANUS.

Browser Reported Confirmed Duplicated Fixed

Chrome 8 6 2 4
Safari 21 16 3 4

Firefox 2 2 0 0

Total 31 24 5 8

TABLE II presents the overall status of the bugs reported
by JANUS. We have filed a total of 31 bugs for the three

TABLE III: Numbers of rendering bugs reported by JANUS
in the three browsers, categorized by the affected component.

Browser
Affected Component

Content DOM Forms Layout Paint

Chrome 1 0 0 5 2
Safari 1 1 7 4 8

Firefox 1 0 0 1 0

Total 3 1 7 10 10

browsers, including 8 in Chrome, 21 in Safari, and 2 in
Firefox. Out of these reported rendering bugs, 24 bugs have
been confirmed with 8 already fixed by the developers. 5 bugs
were independently reported by other contributors, annotated
as ”Duplicated” in TABLE II. TABLE III categorizes the
reported rendering bugs by the affected component. In total,
3 bugs are related to the incorrect content rendering, 1 bug is
related to wrong DOM element rendering, 7 bugs are related
to form presentation, 10 bugs are related to layout, and 10
bugs are related to painting (namely CSS style drawing). These
results collectively demonstrate the effectiveness of JANUS in
detecting rendering bugs in browsers’ various components.

Through manual verification, we have confirmed that among
the bugs reported by JANUS, only four are recently-introduced
regression bugs. The remainder have existed since the initial
implementation of certain rendering features in browsers.
Therefore, R2Z2 [32], a fuzzer specifically designed to un-
cover regression bugs, is unable to detect these bugs. In
addition, we have also manually confirmed that none of the
reported bugs relates to the rendering-update process. There-
fore, Metamong [33], another fuzzer that focuses on detecting
rendering-update bugs, is also unable to detect these bugs.

Case Study 1. Fig. 8 presents a simplified rendering bug
detected by JANUS in the paint component in Chrome. The bug
is caused by the insufficient support for the outline-style
property in Chrome. The outline-style property is used
to set the style of the outline around an element. When the

<script>
function trans() {
document.getElementById("1")

.style["outline-style"] = "groove";
}
</script>
<body onload="trans()">
<span id="1" style="outline-width:
10px;">TEST
</body>

Rendered Page Rendered Page

Rendered Page Rendered Pageℎ1

ℎ2

<script>
</script>
<body>
<span id="1" style="outline-width:
10px;">TEST
</body>

Fig. 8: Case 1: a simplified rendering bug in Chrome due to
groove display error on some special elements.

value of outline-style is set to groove, the outline
should be displayed as a 3D grooved border. According to web
standards, the outline-style property and the groove
value can be applied to any element, including the
element. However, after setting the outline-style to
groove for a element, Chrome fails to render the
outline, which is inconsistent with the rendering in Safari.
According to developers’ feedback, the root cause is that
the box_border_painter in Chromium’s code did not
paint the color when drawing the groove border under certain
circumstance. Developers have confirmed and fixed this bug.
Based on the testcase reported by us, developers also added a
new integration test to the Chromium code base.

Case Study 2. Fig. 9 presents a simplified rendering bug
detected by JANUS in the layout component in Chrome.
According to web standards, when the value of float is
set to right for any element, its child elements should be
floated to the right side of its containing block. Therefore,
once the value is set to right for the root element, all the
child elements are supposed to be floated to the right side
of the viewport. However, Chrome fails to render the child
elements as expected, which is inconsistent with the rendering
in Safari. According to developers’ feedback, the root cause is
that the internal layout object of the root element in Chrome
is LayoutView, which is a legacy object and cannot be
applied to some style properties. Developers have confirmed
and fixed this bug by migrate the legacy object of the root
element to their new layout engine, i.e., LayoutNG [10]. Based
on the testcase reported by us, developers also added a new
integration test to the Chromium code base.

<script>
function trans() {

document.all[0].style["float"] = "right";
}
</script>
<body onload="trans()">
<p>TEST</p>
</body>

Rendered Page Rendered Page

Rendered Page Rendered Pageℎ1

ℎ2

<script>
</script>
<body>
<p>TEST</p>
</body>

Fig. 9: Case 2: a simplified rendering bug in Chrome due to
outdated implementation for the root element in HTML.

Case Study 3. Fig. 10 presents a simplified rendering
bug detected by JANUS in the content component in Safari.
The white-space property is used to specify how white
space inside an element is handled. When the value of
white-space is set to pre-line, the element should
collapse sequences of white space, but preserve line breaks.
According to web standards, the white-space property

<script>
function trans() {
document.getElementById("1")
.style["white-space"] = "pre-line"; }

</script>
<body onload=trans()>
<div id="1">

<p>TEST</p>

<hr color="red"></hr>
</div></body>

Rendered Page Rendered Page

Rendered Page Rendered Pageℎ1

ℎ2

<script>}
</script>
<body>
<div id="1">

<p>TEST</p>

<hr color="red"></hr>
</div></body>

Fig. 10: Case 3: a simplified rendering bug in Safari due to
incorrect white-space implementation for text containers.

and the pre-line value can be applied to any element,
including the <div> element. In the code in h1, within the
<div> element, there are several empty lines before the <p>
and between the <p> and <hr> elements. Before setting
the white-space property, the empty lines are collapsed,
and thus there is no empty line in the rendered pages in
both Chrome and Safari. After setting the white-space
property to pre-line, the empty lines should be preserved,
and thus there should be empty lines in the rendered pages
in both Chrome and Safari. However, Safari fails to render
the empty lines as expected, which is inconsistent with the
rendering in Chrome. According to developers’ feedback, the
root cause is an improper handling for the white-space
property when applying to an inline-empty container. There
is no text content directly in the <div> element since the
<hr> element is a horizontal rule and the <p> element is
a child of the <div> element. Therefore, the handling logic
mistakenly thinks that it does not need to further process the
white-space property, and thus does not draw any space in
the rendered page. Developers have confirmed and fixed this
bug. Based on the testcase reported by us, developers also
added a new integration test to the WebKit code base.

B. Comparative Study

To further investigate the effectiveness of our approach, we
evaluate JANUS compare to the most closely related fuzzer
R2Z2 [32]. R2Z2 utilizes a cross-version differential testing
approach, which involves comparing the rendered results be-
tween two different versions of a web browser to identify
rendering regression bugs.

R2Z2 is designed for Chrome and lack support for other
browsers, and thus we can only choose Chrome as the target
for this comparative study. The Chrome version we used is
100.0.4896. For JANUS, we used Firefox 100.0.2 as the ref-
erence browser for cross-browser testing. For R2Z2, we used
Chrome 99.0.4787 (the last stable release before the target
version) as the reference version for cross-version testing. This
reference selection strategy is in line with the evaluation of

R2Z2 paper [32]. We ran each fuzzer on the same machine
for 24 hours and repeated five times. We collected the bugs
reported by each fuzzer. Since the bugs are non-crash logic
bug, we manually analyzed the root cause of each bug for
de-duplication.

TABLE IV: Numbers of bugs reported by fuzzers in 24 hours.

JANUS R2Z2 Intersection

of Bugs 8 6 4

TABLE IV presents the numbers of reported bugs after de-
duplication. In total, JANUS reported 8 bugs, R2Z2 reported
6 bugs. Out of these bugs, 4 bugs were commonly reported
by both fuzzers. The bugs reported by R2Z2 are caused by
the recent commits of Chrome, and thus R2Z2 can detect
them by comparing two versions of Chrome. Conversely,
JANUS reported 4 bugs that failed to detect due to these bugs
being present since the initial development of certain rendering
features in Chrome. Therefore, comparing two close versions
of Chrome cannot reveal these bugs. These experimental
results demonstrate that JANUS’s effectiveness in uncovering
rendering bugs, including those that have long been embedded
in the browser’s code and overlooked by other fuzzers.

We were unable to directly compare JANUS with another
related fuzzer, Metamong [33], due to missing some bug-triage
components in its codebase. Theoretically speaking, JANUS
and Metamong operate on totally different premises. Meta-
mong is specifically engineered to identify rendering-update
bugs by contrasting the outputs of two distinct rendering
processes: traditional one-pass rendering versus incrementally-
updated rendering. However, all testcases generated by JANUS
do not involve the rendering-update process, and thus JANUS
cannot detect the bugs reported by Metamong. Conversely,
Metamong cannot detect the bugs reported by JANUS because
they are not rendering-update bugs. To sum up, JANUS and
Metamong offer complementary strengths, each focusing on
distinct types of rendering bugs, mutually enhancing bug
detection capabilities.

C. False Positives

Although visual delta consistency can serve as a sound
test oracle for rendering bug detection, our implementation
may still introduce false positives. Therefore, we conducted
an experiment to investigate if JANUS report false positives
during the testing. For comparison, we applied the same
experiment to a naive cross-browser testing method, referred
to as NAIVEDT. This approach runs the same HTML file in
two different browsers and compares if the rendered pages
are the same. We ran both fuzzers on Chrome 100.0.4896 and
Firefox 100.0.2 for 10, 000 testcase executions.

To determine if a report is a false positive, we first
minimized the test case automatically and then conducted a
manual root-cause analysis. For bugs reported by JANUS, the
minimized test cases were forwarded to developers to confirm
their status. For bugs reported by NAIVEDT, if the minimized

test case only involved a single element without additional
CSS styling, it was deemed a false positive because this
report stems from differences in browsers’ default rendering
or styling. For other cases, we manually identified the root
cause and, if uncertain, sought developer verification.

TABLE V presents the numbers of reported false positives
in the 10, 000 testcase executions. We can see that NAIVEDT
reports an unacceptable false positive rate. As we detailed in
Fig. 3, the main reasons are threefold: (1) the support for
CSS styles varies cross browsers; (2) default style for some
elements varies cross browsers; (3) rendered appearance of
some elements varies cross browsers.

TABLE V: False positives reported by JANUS and its version
that directly applies cross-browser differential testing.

Approach #Testcase #Report #FP FPR

NAIVEDT 10,000 8,337 8,319 99.78%
JANUS 10,000 19 1 5.26%

JANUS reports 1 false positives in 19 reports, resulting in
a false positive rate of 5.26%, which is much better than the
naive cross-browser testing. The primary cause of the false
positive is behaviors that are undefined in web standards; thus,
while rendering effects vary across browsers, these differences
are due to distinct understanding of web standards rather
than rendering bugs. Fig. 11 presents the false positive. We
can see that there is a significant inconsistent change in
the first <progress> element in the rendered pages of
Chrome. However, after we reported this issue to the Chrome
developers, they checked the source code of Chrome and
Safari and confirmed that both browsers do not violate the
web standards. They handle the transformation in a different
way: after applying border-top-right-radius to a
<progress> element, Chrome will render the element in
a “primitive” mode rather than the original “native” mode.
Since web standards do not prescribe a specific rendering
mode under such circumstances, the developers concluded that

<script>
function trans() {
document.getElementById("1")
.style.borderTopRightRadius = "0";
}
</script>
<body onload=trans()>
<progress id="1"
value="30" max="100"></progress>

<progress id="2"
value="30" max="100"></progress>

</body>

Rendered Page Rendered Page

Rendered Page Rendered Pageℎ1

ℎ2

<script>
</script>
<body onload=trans()>
<progress id="1"

value="30" max="100"></progress>
<progress id="2"

value="30" max="100"></progress>
</body>

Fig. 11: A false positive reported by JANUS. It is caused by a
behavior that is undefined in web standards.

this did not constitute a bug, thereby classifying it as a false
positive. However, this rarely happens in practice, and thus
JANUS is still a practical fuzzer for rendering bug detection.

D. Overhead Breakdown

Fuzzing throughput is a critical metric for evaluating the
effectiveness of a fuzzer [38], [39], [49], [15], [22]. Therefore,
we conducted an experiment to measure the average time taken
for each step during testing. We use JANUS to test Chrome
100.0.4896 and Firefox 100.0.2 for 10, 000 testcase execu-
tions, and collected the time taken for each step. TABLE VI
presents the overall result. On average, browser execution
is the most time-consuming step, accounting for 87.03% of
the total time. This part of overhead is not introduced by
JANUS, but is the inherent time taken for the browser to render
the HTML file. The time spent in initial DOM generation
and HTML transformation are much less than the time in
browser execution, accounting for 0.09% and 0.87% of the
total time, respectively. Consistency checking needs to take
screenshots of rendered pages and compute phash values,
making a 12.01% overhead. Overall, we can conclude that
JANUS’s overhead only takes a small portion of the total time,
and thus is acceptable for practical use.

TABLE VI: Average time taken for each step during testing.

Initial DOM
Generation

HTML
Transformation

Browser
Execution

Consistency
Checking

Time (ms) 1.35 12.88 1286.45 177.45
Percentage 0.09% 0.87% 87.03% 12.01%

VI. DISCUSSION

Limitations. While JANUS marks a significant advancement
in detecting rendering bugs in web browsers, it does possess
inherent limitations. Its design as a cross-browser fuzzer means
it cannot identify rendering bugs that manifest uniformly
across all browsers. Furthermore, JANUS is not equipped to
detect bugs lacking visual manifestations, such as functionality
issues. Such non-visual bugs necessitate alternative testing
strategies, like metamorphic testing. JANUS’s focus is specif-
ically on rendering bugs that both affect visual output and
exhibit inconsistencies across different browsers.

In addition, JANUS cannot avoid false negatives, which is
a typical limitation of differential oracles. If a transformation
is applied and both browsers change their rendered pages, but
one does so incorrectly, it cannot identify such bugs. Given
that JANUS can detect rendering bugs that cannot be found by
other tools, we regard it as a complementary tool to existing
rendering bug detection techniques, rather than a replacement.

Identification of Buggy Browsers. Similar to other differ-
ential testing techniques, when a visual delta inconsistency is
detected, JANUS cannot determine which browser is buggy.
It can only identify that a rendering bug exists in one of the
browsers. To pinpoint the buggy browser, we now manually
refer to the relevant documentation and other browsers to
understand the expected behavior, and determine the buggy

browser. In the future, inspired by recent research [14], [18],
[37], we plan to use large language models to automatically
identify the buggy browser after detecting a visual delta
inconsistency.

Feedback Mechanisms. JANUS did not adopt a feedback-
driven fuzzing primarily for reasons of usability. Recent soft-
ware practice has shown that coverage feedback can signifi-
cantly improve the effectiveness of a fuzzer. However, some
research [42], [51] indicates that coverage-guided browser
fuzzing is not as effective as expected. The main reason is
that a browser has multiple processes and each spawns many
background threads that concurrently deal with input-unrelated
tasks, e.g. resource requests from the network [51]. As a result,
coverage differs in browsers even when the same invocation
is executed. We believe that incorporating other feedback
mechanisms is a promising direction for JANUS improvement.
We leave it as future work.

Future Work. JANUS enables several opportunities for
future work. First, a large language model could be used to
reduce the number of false positives. For example, an LLM can
read the descriptions in web standards to determine whether
a given transformation is an undefined behavior. Second,
JANUS’s the current methodology of randomly selecting CSS
style values or HTML attributes for modification could be
refined by incorporating program analysis techniques to guide
selections, thereby uncovering more nuanced rendering bugs.
Third, the concept of visual delta consistency holds promise
for application beyond web browsers, such as in GUI testing,
where it could be used to identify discrepancies in GUI
rendering across different platforms.

VII. RELATED WORK

Browser Fuzzing. As one of the most complicated ap-
plications, browsers naturally become an attractive target to
security researchers and attackers. Finding browser vulnera-
bilities by fuzzing browser’s sub-components such as third-
party libraries [8] and JavaScript engines [26], [12] gained
significant traction in academic research as well as in indus-
try. In the meanwhile, defense mechanisms also have been
proposed to protect browsers from attackers’ vulnerabilities
exploitation [48], [46], [47], [45]. Despite these efforts, the
rendering engine in browsers has received relatively little
attention. Whole browser fuzzers [9], [42], [51], [50], which
aim to generate high-quality HTML files, represent the closest
related work. For example, FreeDom [42] designs several
generation and mutation strategies for maintaining context
information during input generation; Minerva [51] tries to
explore deeper paths by generating API-dependent invocations
with mod-ref relations between APIs. Different from them,
JANUS’s key contribution is to propose new test oracle for
rendering bug detection.

Rendering Bug Detection. The pursuit of detecting ren-
dering bugs in web browsers has seen limited exploration.
R2Z2 [32] focuses on detecting rendering bugs by comparing
the rendered pages of different versions of the same browser.

Metamong [33], on the other hand, focuses on rendering-
update bugs in browsers. It compares the rendered pages of
two different rendering processes: one for one-pass rendering
and the other for incrementally-updated rendering. JANUS, in
contrast, introduces a novel approach by establishing visual
delta consistency as a test oracle. This allows for the detection
of rendering inconsistencies across different browsers, thereby
filling a significant gap in the field.

Logic Bug Detection in Other Fields. The detection of
logic bugs necessitates domain-specific test oracles. In various
domains, researchers have developed innovative methods to
tackle these bugs [36], [7], [16], [17], [13], [6]. Unlike
crashes or memory corruptions, logic bugs are more difficult
to detect and diagnose, and need domain-specific test oracles.
For example, in web development, efforts [24], [25] have
been made to formalize layout guidance of web development
into a formal language for correctness verification; and in
database management systems, tools like SQLancer [30], [29],
[28] validate query results using predefined equivalence rules.
Different from them, JANUS only focuses on rendering bug
detection in web browsers. It uses browser-specific knowledge
to construct a test oracle, i.e., visual delta consistency.

VIII. CONCLUSION

This paper introduces visual delta consistency as a test
oracle for detecting rendering bugs in web browsers. This
is achieved by constructing two HTML files with a minor
modification and observing the visual delta across browsers.
We implemented this approach as a fuzzer named JANUS,
which ensures the soundness of the proposed test oracle
while efficiently exploring all rendering features in browsers.
JANUS has detected 31 bugs in widely-used browsers, with 24
confirmed by developers. Our future work is to further improve
detection efficiency and reduce false positives.

IX. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful feed-
back. This research is sponsored in part by the National Key
Research and Development Project (No.2022YFB3104000)
and NSFC Program (No.92167101,62021002).

REFERENCES

[1] Ibrahim Althomali, Gregory M. Kapfhammer, and Phil McMinn. Au-
tomatic visual verification of layout failures in responsively designed
web pages. In 12th IEEE Conference on Software Testing, Validation
and Verification, ICST 2019, Xi’an, China, April 22-27, 2019, pages
183–193. IEEE, 2019.

[2] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin
Yoo. The oracle problem in software testing: A survey. IEEE Trans.
Software Eng., 41(5):507–525, 2015.

[3] Johannes Buchner. A python perceptual image hashing module. https:
//github.com/JohannesBuchner/imagehash, 2023. (visited on September
1, 2023).

[4] Yuting Chen and Zhendong Su. Guided differential testing of certificate
validation in SSL/TLS implementations. In Elisabetta Di Nitto, Mark
Harman, and Patrick Heymans, editors, Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015, pages 793–804. ACM,
2015.

[5] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. WEB-
DIFF: automated identification of cross-browser issues in web applica-
tions. In Radu Marinescu, Michele Lanza, and Andrian Marcus, editors,
26th IEEE International Conference on Software Maintenance (ICSM
2010), September 12-18, 2010, Timisoara, Romania, pages 1–10. IEEE
Computer Society, 2010.

[6] Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang.
Fuzzing deep-learning libraries via automated relational API inference.
In Abhik Roychoudhury, Cristian Cadar, and Miryung Kim, editors,
Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022, pages
44–56. ACM, 2022.

[7] Wensheng Dou, Ziyu Cui, Qianwang Dai, Jiansen Song, Dong Wang,
Yu Gao, Wei Wang, Jun Wei, Lei Chen, Hanmo Wang, Hua Zhong, and
Tao Huang. Detecting isolation bugs via transaction oracle construction.
In 45th IEEE/ACM International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages 1123–1135.
IEEE, 2023.

[8] Google. Ossfuzz. https://github.com/google/oss-fuzz, 2016. (visited on
September 1, 2023).

[9] Google. Domato: A dom fuzzer. https://github.com/googleprojectzero
/domato, 2017. (visited on September 1, 2023).

[10] Google. Layoutng. https://www.chromium.org/blink/layoutng/, 2023.
(visited on September 1, 2023).

[11] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun.
Dlfuzz: differential fuzzing testing of deep learning systems. In Gary T.
Leavens, Alessandro Garcia, and Corina S. Pasareanu, editors, Proceed-
ings of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-
09, 2018, pages 739–743. ACM, 2018.

[12] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. Codealchemist:
Semantics-aware code generation to find vulnerabilities in javascript
engines. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27,
2019. The Internet Society, 2019.

[13] Pinjia He, Clara Meister, and Zhendong Su. Structure-invariant testing
for machine translation. In Gregg Rothermel and Doo-Hwan Bae, edi-
tors, ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, pages 961–973. ACM,
2020.

[14] Yu Jiang, Jie Liang, Fuchen Ma, Yuanliang Chen, Chijin Zhou, Yuheng
Shen, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Shanshan Li, and
Quan Zhang. When fuzzing meets llms: Challenges and opportunities.
In Marcelo d’Amorim, editor, Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering,
FSE 2024, Porto de Galinhas, Brazil, July 15-19, 2024, pages 492–496.
ACM, 2024.

[15] Shaohua Li and Zhendong Su. Accelerating fuzzing through prefix-
guided execution. Proc. ACM Program. Lang., 7(OOPSLA1):1–27,
2023.

[16] Shaohua Li and Zhendong Su. Finding unstable code via compiler-driven
differential testing. In Tor M. Aamodt, Natalie D. Enright Jerger, and
Michael M. Swift, editors, Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS 2023, Vancouver, BC, Canada,
March 25-29, 2023, pages 238–251. ACM, 2023.

[17] Shaohua Li and Zhendong Su. Ubfuzz: Finding bugs in sanitizer
implementations. In Rajiv Gupta, Nael B. Abu-Ghazaleh, Madan
Musuvathi, and Dan Tsafrir, editors, Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, ASPLOS 2024, La Jolla,
CA, USA, 27 April 2024- 1 May 2024, pages 435–449. ACM, 2024.

[18] Tsz On Li, Wenxi Zong, Yibo Wang, Haoye Tian, Ying Wang, Shing-Chi
Cheung, and Jeff Kramer. Nuances are the key: Unlocking chatgpt to find
failure-inducing tests with differential prompting. In 38th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2023, Luxembourg, September 11-15, 2023, pages 14–26. IEEE, 2023.

[19] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit
Panda, and Lingming Zhang. Nnsmith: Generating diverse and valid test
cases for deep learning compilers. In Tor M. Aamodt, Natalie D. Enright
Jerger, and Michael M. Swift, editors, Proceedings of the 28th ACM
International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 2, ASPLOS 2023, Vancouver,
BC, Canada, March 25-29, 2023, pages 530–543. ACM, 2023.

[20] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing
for C and C++ compilers with yarpgen. Proc. ACM Program. Lang.,
4(OOPSLA):196:1–196:25, 2020.

[21] Mozilla. Mdn web docs. https://developer.mozilla.org/, 2005. (visited
on September 1, 2023).

[22] Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing fuzzing
overhead through coverage-guided tracing. In 2019 IEEE Symposium
on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23,
2019, pages 787–802. IEEE, 2019.

[23] Pengbo Nie, Chengcheng Wan, Jiayu Zhu, Ziyi Lin, Yuting Chen,
and Zhendong Su. Coverage-directed differential testing of X.509
certificate validation in SSL/TLS implementations. ACM Trans. Softw.
Eng. Methodol., 32(1):3:1–3:32, 2023.

[24] Pavel Panchekha, Michael D. Ernst, Zachary Tatlock, and Shoaib Kamil.
Modular verification of web page layout. Proc. ACM Program. Lang.,
3(OOPSLA):151:1–151:26, 2019.

[25] Pavel Panchekha, Adam T. Geller, Michael D. Ernst, Zachary Tatlock,
and Shoaib Kamil. Verifying that web pages have accessible layout.
In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018, pages 1–14. ACM, 2018.

[26] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. Fuzzing
javascript engines with aspect-preserving mutation. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020, pages 1629–1642. IEEE, 2020.

[27] phash team. The open source perceptual hash library. https://www.phas
h.org/, 2023. (visited on September 1, 2023).

[28] Manuel Rigger and Zhendong Su. Detecting optimization bugs in
database engines via non-optimizing reference engine construction. In
Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann, editors,
ESEC/FSE ’20: 28th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020, pages 1140–1152. ACM,
2020.

[29] Manuel Rigger and Zhendong Su. Finding bugs in database systems
via query partitioning. Proc. ACM Program. Lang., 4(OOPSLA):211:1–
211:30, 2020.

[30] Manuel Rigger and Zhendong Su. Testing database engines via pivoted
query synthesis. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 667–682. USENIX As-
sociation, November 2020.

[31] selenium team. Selenium automates browsers. that’s it! https://www.se
lenium.dev/, 2023. (visited on September 1, 2023).

[32] Suhwan Song, Jaewon Hur, Sunwoo Kim, Philip Rogers, and Byoungy-
oung Lee. R2Z2: detecting rendering regressions in web browsers
through differential fuzz testing. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022, pages 1818–1829. ACM, 2022.

[33] Suhwan Song and Byoungyoung Lee. Metamong: Detecting render-
update bugs in web browsers through fuzzing. In Satish Chandra,
Kelly Blincoe, and Paolo Tonella, editors, Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2023, San Francisco,
CA, USA, December 3-9, 2023, pages 1075–1087. ACM, 2023.

[34] W3C. Webref - machine-readable references of terms defined in web
browser specifications. https://github.com/w3c/webref, 2023. (visited
on September 1, 2023).

[35] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. Au-
tomated layout failure detection for responsive web pages without an
explicit oracle. In Tevfik Bultan and Koushik Sen, editors, Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pages 192–
202. ACM, 2017.

[36] Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham,
and Lin Tan. EAGLE: creating equivalent graphs to test deep learning
libraries. In 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages
798–810. ACM, 2022.

[37] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang,
and Qing Wang. Software testing with large language models: Survey,
landscape, and vision. IEEE Trans. Software Eng., 50(4):911–936, 2024.

[38] Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Chengnian
Sun, and Jiaguang Sun. RIFF: reduced instruction footprint for coverage-
guided fuzzing. In Irina Calciu and Geoff Kuenning, editors, Proceed-
ings of the 2021 USENIX Annual Technical Conference, USENIX ATC
2021, July 14-16, 2021, pages 147–159. USENIX Association, 2021.

[39] Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and
Yu Jiang. Odin: on-demand instrumentation with on-the-fly recompi-
lation. In Ranjit Jhala and Isil Dillig, editors, PLDI ’22: 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, San Diego, CA, USA, June 13 - 17, 2022, pages
1010–1024. ACM, 2022.

[40] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng
Zhang, and Yu Jiang. Industry practice of coverage-guided enterprise-
level DBMS fuzzing. In 43rd IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP)
2021, Madrid, Spain, May 25-28, 2021, pages 328–337. IEEE, 2021.

[41] Zhiyong Wu, Jie Liang, Mingzhe Wang, Chijin Zhou, and Yu Jiang.
Unicorn: detect runtime errors in time-series databases with hybrid input
synthesis. In Sukyoung Ryu and Yannis Smaragdakis, editors, ISSTA
’22: 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, Virtual Event, South Korea, July 18 - 22, 2022, pages
251–262. ACM, 2022.

[42] Wen Xu, Soyeon Park, and Taesoo Kim. FREEDOM: engineering a
state-of-the-art DOM fuzzer. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020, pages 971–986. ACM, 2020.

[43] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in C compilers. In Mary W. Hall and David A.
Padua, editors, Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, pages 283–294. ACM, 2011.

[44] Daniel Hao Xian Yuen, Andrew Yong Chen Pang, Zhou Yang,
Chun Yong Chong, Mei Kuan Lim, and David Lo. ASDF: A differential
testing framework for automatic speech recognition systems. In IEEE
Conference on Software Testing, Verification and Validation, ICST 2023,
Dublin, Ireland, April 16-20, 2023, pages 461–463. IEEE, 2023.

[45] Quan Zhang, Yiwen Xu, Zijing Yin, Chijin Zhou, and Yu Jiang.
Automatic policy synthesis and enforcement for protecting untrusted
deserialization. In Network and Distributed System Security (NDSS)
Symposium (NDSS 2024), 2024.

[46] Quan Zhang, Binqi Zeng, Chijin Zhou, Gwihwan Go, Heyuan Shi,
and Yu Jiang. Human-imperceptible retrieval poisoning attacks in llm-
powered applications. In Marcelo d’Amorim, editor, Companion Pro-
ceedings of the 32nd ACM International Conference on the Foundations
of Software Engineering, FSE 2024, Porto de Galinhas, Brazil, July 15-
19, 2024, pages 502–506. ACM, 2024.

[47] Quan Zhang, Chijin Zhou, Yiwen Xu, Zijing Yin, Mingzhe Wang, Zhuo
Su, Chengnian Sun, Yu Jiang, and Jia-Guang Sun. Building dynamic
system call sandbox with partial order analysis. Proc. ACM Program.
Lang., 7(OOPSLA2):1253–1280, 2023.

[48] Chijin Zhou, Lihua Guo, Yiwei Hou, Zhenya Ma, Quan Zhang, Mingzhe
Wang, Zhe Liu, and Yu Jiang. Limits of I/O based ransomware detection:
An imitation based attack. In 44th IEEE Symposium on Security and
Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023, pages
2584–2601. IEEE, 2023.

[49] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. Ze-
ror: Speed up fuzzing with coverage-sensitive tracing and scheduling.
In 35th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020,
pages 858–870. IEEE, 2020.

[50] Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang,
Qing Liao, Zhiyong Wu, Shanshan Li, and Bin Gu. Towards better
semantics exploration for browser fuzzing. Proc. ACM Program. Lang.,
7(OOPSLA2):604–631, 2023.

[51] Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe
Liu, Mathias Payer, and Yu Jiang. Minerva: browser API fuzzing with
dynamic mod-ref analysis. In Abhik Roychoudhury, Cristian Cadar, and
Miryung Kim, editors, Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, Singapore, Singapore, Novem-
ber 14-18, 2022, pages 1135–1147. ACM, 2022.

