
Understanding and Detecting SQL Function Bugs

Using Simple Boundary Arguments to Trigger Hundreds of DBMS Bugs

Jingzhou Fu
KLISS, BNRist, School of Software,

Tsinghua University, China

Jie Liang∗
KLISS, BNRist, School of Software,

Tsinghua University, China

Zhiyong Wu
KLISS, BNRist, School of Software,

Tsinghua University, China

Yanyang Zhao
KLISS, BNRist, School of Software,

Tsinghua University, China

Shanshan Li
National University of Defense

Technology, China

Yu Jiang∗
KLISS, BNRist, School of Software,

Tsinghua University, China

Abstract

Built-in SQL functions are crucial in Database Management
Systems (DBMSs), supporting various operations and com-
putations across multiple data types. They are essential for
querying, data transformation, and aggregation. Despite
their importance, the bugs in SQL functions have caused
widespread problems in the real world, from system failures
to arbitrary code execution. However, the understanding of
the bug characteristics is limited. More importantly, conven-
tional function testing methods struggle to generate seman-
tically correct SQL test cases, while DBMS testing efforts are
hard to measure built-in SQL functions.

This paper presents a comprehensive study of 318 built-in
SQL function bugs, shedding light on their characteristics
and root causes. Our investigation reveals that 87.4% of these
bugs were caused by improper handling of boundary val-
ues of arguments. The boundary values of arguments come
from three sources: literal values, type castings, and nested
functions. By studying the bugs from three sources, we sum-
marized 10 SQL patterns of bug-inducing queries. Moreover,
we designed Soft, a testing tool based on the patterns to test
seven widely used DBMSs, including PostgreSQL, MySQL,
and ClickHouse. Soft discovered and confirmed 132 previ-
ously unknown SQL function bugs. The DBMS vendors took
these bugs seriously and fixed 97 bugs in three days. For
example, the CTO of ClickHouse commented on one bug:
“We must fix it immediately or get rid of this function.”

∗Jie Liang and Yu Jiang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1196-1/25/03
https://doi.org/10.1145/3689031.3696064

CCS Concepts: • Software and its engineering→ Soft-

ware testing and debugging.

Keywords: DBMS, SQL Function, Vulnerability Detection
ACM Reference Format:

Jingzhou Fu, Jie Liang, Zhiyong Wu, Yanyang Zhao, Shanshan Li,
and Yu Jiang. 2025. Understanding and Detecting SQL Function
Bugs: Using Simple Boundary Arguments to Trigger Hundreds
of DBMS Bugs. In Twentieth European Conference on Computer
Systems (EuroSys ’25), March 30–April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3689031.3696064

1 Introduction

Built-in SQL functions [23, 44] are predefined functions
in SQL that perform specific operations. They are crucial
in Database Management Systems (DBMSs), serving as the
backbone for efficient data handling andmanipulation. These
functions cater to different types of data for computations
and operations, providing a robust toolkit for managing the
complexity of database interactions. For example, Listing 1
shows the toDecimalString function, a typical built-in SQL
function in ClickHouse. It converts numerical values into
string representations with a specified number of digits [31].

Built-in SQL functions are crucial and widely used for the
smooth operation and flexibility of DBMSs. Despite their sig-
nificance, the implementation of built-in SQL functions can
sometimes be flawed. In this paper, we regard built-in SQL
function bugs as those memory issues within the built-in SQL
functions that can lead to system crashes, incorrect oper-
ations, or unauthorized data manipulations when interacting
with a database. For example, the function toDecimalString
in Listing 1 has an implementation error that can lead to a
null pointer dereference [21] when crafted values are passed
as arguments of SQL function expressions.

Listing 1. The built-in SQL function toDecimalString con-
tains a null pointer dereference in ClickHouse found by our
tool, which can cause a denial of service.
-- Null pointer dereference in toDecimalString
SELECT toDecimalString('110':: Decimal256 (45), *);

https://doi.org/10.1145/3689031.3696064
https://doi.org/10.1145/3689031.3696064
https://doi.org/10.1145/3689031.3696064

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jingzhou Fu, Jie Liang, Zhiyong Wu, Yanyang Zhao, Shanshan Li, and Yu Jiang

Built-in SQL function bugs have the following particular
attributes that render them notably troublesome:
(1)Widespread influence. Built-in SQL functions are inte-

gral to database operations since the computation and ma-
nipulation of various data types heavily depend on specific
built-in SQL functions. For example, PostgreSQL supports
56 built-in SQL functions designed to perform operations
and calculations for string data types [23]. As a consequence,
a bug in a commonly used SQL function may be activated
repeatedly across numerous SQL statements. This situation
underscores their widespread influence, as each invocation
of these flawed functions can propagate errors or vulnerabili-
ties through multiple layers of a DBMS’s operations. Besides,
other parts of a database or application may also rely heavily
on specific built-in SQL functions. A bug in such a function
can cascade, causing interoperability issues and leading to
broader system failures.
(2) High severity. Built-in SQL function bugs pose signif-

icant and severe threats to DBMSs, potentially leading to
denials of service, unauthorized access to sensitive memory
areas, and even arbitrary code execution, which can compro-
mise the security and integrity of the entire DBMS. As an
illustrative example, since 2004, PostgreSQL has reported 121
Common Vulnerabilities and Exposures (CVEs) [25], with
31 of these vulnerabilities directly attributed to built-in SQL
functions. These 31 vulnerabilities have an average CVSS
2.0 score of 6.09, which is notably higher than the overall
average score of 5.54 for all 121 PostgreSQL CVEs. Moreover,
built-in SQL function bugs are easy to exploit. For instance,
some applications allow searches via user-entered regular
expressions, allowing attackers to submit crafted inputs to
trigger the potential vulnerabilities in the backend DBMS’s
regular expression functions.
(3) Complex and difficult to expose. The complexity and

difficulty in exposing bugs within built-in SQL functions
stem from their sophisticated designs, which incorporate
intricate logic to manage a diverse array of data types and
execute a multitude of operations. The intricate logic and the
nuanced handling of data types can obscure bugs, making
them difficult to identify and isolate. Such bugs might remain
dormant, only surfacing under specific conditions that are
not easily replicated or anticipated during standard testing
procedures. Furthermore, the challenge is compounded by
the difficulty in exposing these bugs, as they can often require
detailed and exhaustive testing scenarios that encompass a
wide range of use cases and data inputs.

Although built-in SQL function bugs are serious for DBMSs,
the understanding of their characteristics is limited. More
importantly, there is a lack of testing methods for these SQL
functions. Conventional testing approaches for program-
ming languages can test functions in libraries or programs.
However, they are not suitable for generating SQL function
test cases. For example, traditional unit test generations like
Randoop and EvoSuite [17, 46] will build specific unit test

cases for library functions. These works typically synthe-
size test cases containing rich sequences of function calls. In
contrast, SQL function expressions are in the form of nested
expression structures with specifically formatted function
arguments. They significantly differ from the sequence form
of test cases generated by these works. On the other hand,
existing DBMS testing works like SQLsmith [53] and Sqir-
rel [63] also struggle to test built-in SQL functions. They
mainly generate complex SQL syntax structures or sequences
of SQL operations to trigger more behaviors in DBMS com-
ponents. The generation of function expressions is not pri-
marily considered and designed in these works, resulting in
missing SQL function bugs of DBMSs.
To better understand and detect SQL function bugs, we

studied 318 built-in SQL function bugs from three widely
used DBMSs, including PostgreSQL, MySQL, and MariaDB.
We carefully analyzed the report and source code of each
bug to identify the characteristics of their occurrence stages,
function types, root causes, and triggering conditions. We
found that about 70.0% of the SQL function bugs occurred at
the execution stage. About 40.9% of the SQL function bugs
are located in string functions and aggregate functions. We
also found that 87.5% of bug-inducing statements contain no
more than two function expressions.

More importantly, we found that 87.4% of these SQL func-
tion bugs are caused by poor handling of boundary values
of function arguments, which could be seen as the main
root cause for the built-in SQL function bugs. The boundary
values of arguments originate from three sources: bound-
ary literal values, boundary results of type castings, and
boundary return values of nested functions. Furthermore, by
studying bugs from these three sources, we summarized 10
boundary-value-generation patterns of bug-inducing queries.
Based on these findings, we implemented Soft, a test-

ing tool that generates test cases containing built-in SQL
function expressions, with arguments produced based on
these patterns. To evaluate the performance of Soft, we
apply Soft to test the SQL functions in seven widely-used
DBMSs: PostgreSQL, MySQL, MariaDB, ClickHouse, Mon-
etDB, DuckDB, and Virtuoso. Compared to existing DBMS
testing tools, Soft triggers 984, 1567, and 181 more func-
tions of these DBMSs, and covers 433.93%, 98.70%, and 19.86%
more code branches of the SQL function components of
DBMSs in 24 hours than Sqirrel, SQLancer, and SQLsmith,
respectively. Moreover, Soft detected 132 previously un-
known bugs in these DBMSs, which have garnered the at-
tention of the DBMS developers. For example, ClickHouse’s
CTO quickly commented on the SQL function bug shown
in Listing 1 when we reported it [21]: “Wemust fix it im-

mediately or get rid of this function.” The CTO then
promptly submitted a pull request to remove the flawed
function. Within two days, ClickHouse developers fixed the
bug and resubmitted the SQL function’s code.

In summary, this paper has the following contributions:

Understanding and Detecting SQL Function Bugs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

1. We analyzed 318 SQL function bugs and summarized
the main root cause of SQL function bugs, namely the
poor handling of boundary values of arguments.

2. We summarized 10 boundary-value-generation pat-
terns to detect SQL function bugs. Based on that, we
proposed Soft to detect SQL function bugs in DBMSs
by constructing boundary arguments.

3. Soft discovered 132 previously unknown bugs in real-
world DBMSs. All of them were confirmed by devel-
opers, and 97 were fixed.

2 Background

DBMSs and SQL functions. A Database Management Sys-
tem (DBMS) is software that enables users to define, create,
maintain, and control access to databases [59]. Structured
Query Language (SQL) is the standard language for interact-
ing with DBMS [55]. It is used for creating, modifying, and
querying relational databases. SQL functions are constructs
available in SQL that perform specific operations or return
values. They carry out calculations, data modifications, for-
matting, and various other tasks directly within SQL queries.
SQL functions can be broadly categorized into two types:

(1) Built-in Functions [23, 44]: These are predefined func-
tions included within SQL. They are standardized across
different platforms, although there might be slight variations
in their implementations or the range of available functions.

(2) User-Defined Functions (UDFs) [28, 43]: These are func-
tions created by users to perform operations that are not
covered by the built-in SQL functions. UDFs allow for the
customization of logic to meet specific data processing needs.
If not specified otherwise, the subsequent occurrences of “SQL
functions” in this paper refer to “built-in SQL functions”.
Unlike programming language functions, SQL functions

do not have complex function call dependencies and se-
quences. For example, Listing 2 shows the XML updating op-
erations in SQL functions compared to those in JavaScript li-
brary functions. JavaScript employs a function call sequence
with a series of classes, objects, and functions to operate
the XML object. In contrast, SQL functions do not have ar-
guments like pointers, references, or class objects in pro-
gramming languages. Instead, SQL functions rely on various
formats of argument values to represent the data and opera-
tions of SQL functions for flexibility and convenience.
SQL Function Processing Steps. The processing of a

SQL function expression in a DBMS typically involves three
steps. (1) Parsing arguments: the arguments of a function
expression are parsed by DBMSs as literals, column names,
or aliases. (2) Calculating and casting argument values: the
values of these arguments are calculated by DBMSs, and
these values are cast to the corresponding parameter types
of the function. (3) Executing the function: the corresponding
core implementation of the SQL function computes return
values with these given values of parameters. For example,

Listing 2. Comparison of the XML updating operation in
SQL function and JavaScript library function.
/* Updating XML with JavaScript Function */
xmlDoc = new DOMParser ().parseFromString("<a><c></c

>", "text/xml");
cTag = xmlDoc.getElementsByTagName('c')[0];
bTag = xmlDoc.createElement('b');
cTag.parentNode.replaceChild(bTag , cTag);
newXmlStr = new XMLSerializer ().serializeToString(

xmlDoc);

/* Updating XML with SQL Function in MySQL */
SELECT UpdateXML('<a><c></c><a>', '/a/c[1]', '<c></c>');

for the XML operation shown in Listing 2, the DBMS first
parses the arguments as string literals. Then, the strings
‘<a><c></c>’ and ‘<c></c>’ are converted
to the internal XML type of DBMS, while ‘/a/c[1]’ is con-
verted to the XPATH type. Finally, the DBMS performs oper-
ations on the internal XML and XPATH types to update the
structure of the XML value. These steps of processing SQL
function expressions are pre-implemented by developers
using programming languages.
SQL Function Bugs.When DBMS processes SQL func-

tion expressions, memory errors or semantic issues may
occur due to flawed implementations. In this paper, SQL func-
tion bugs refer to the flaws in implementations of processing
SQL functions that can cause memory errors, such as null
pointer dereferences and buffer overflows. These bugs can
be triggered by SQL statements with crafted SQL function
expressions, leading to system failure, memory disclosure,
and even arbitrary execution.
However, there is currently a lack of testing approaches

aimed at detecting SQL function bugs. Traditional library
function testing methods for programming languages are
also ineffective for SQL functions due to the different charac-
teristics of SQL functions. For instance, these testingmethods
mainly focus on establishing dependencies between func-
tions and constructing valid function call sequences, which
is unsuitable for SQL functions.
In comparison, SQL function testing is more similar to

domain testing since the behavior of SQL functions mostly
depends on the input arguments passed into them. Domain
testing aims to partition the input set into multiple domains
and select test cases on the boundaries of these domains
to detect domain errors. A domain error means that the
input enters an unexpected program path during execution.
Similarly, SQL functions accept a range of arguments in
specific formats. They handle correct input as intended while
returning error messages for incorrect or invalid input. In
some cases, if the passed arguments of an SQL function are
on a boundary condition, the DBMS may incorrectly handle
these edge cases, leading to unexpected execution paths and
potential bugs. For instance, if an SQL function incorrectly
treats an invalid XML string as a valid one, it could result in
subsequent illegal operations and cause the DBMS to crash.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jingzhou Fu, Jie Liang, Zhiyong Wu, Yanyang Zhao, Shanshan Li, and Yu Jiang

Therefore, inspired by generating boundary test data in
domain testing, the testing of SQL functions may also need
to focus on their boundary conditions and construct corre-
sponding SQL test cases. However, due to the diverse types
of input arguments of SQL functions, it is challenging to iden-
tify and partition their domains and boundary conditions
directly. To address this, we performed a study of existing
SQL function bugs to understand what inputs are more likely
to trigger these boundaries and bugs of SQL functions.

3 Methodology

We conducted the study of SQL function bugs on three pop-
ular DBMSs: PostgreSQL, MySQL, and MariaDB. We mainly
collected SQL function bugs from their bug trackers, includ-
ing PostgreSQL Bug Report Mailing List [24], MySQL Bug
System [12], and MariaDB’s JIRA [6]. We also found SQL
function bugs from the CVE list [25]. Table 3 presents the
number of collected bugs.

To collect SQL function bugs from these bug trackers, we
first searched the bugs whose descriptions contain the words
“crash” and “signal” to list possible vulnerabilities and found
14,111 bug reports from the bug trackers. The bugs tagged
as “duplicated” or “not a bug” are excluded by setting the fil-
ters of MySQL’s and MariaDB’s bug tracker. For PostgreSQL,
since its bug tracker does not provide the filter of bug tags,
we performed this exclusion in a later step. Then, we ana-
lyzed the detailed pages of each bug report to parse the SQL
statements present on these pages with SQL parsers. These
SQL statements are usually the Proof of Concept (PoC) for
reproducing the bugs, and 658 of them contain SQL function
expressions. Finally, we manually checked the bug report
and the PoC of each bug. If the crash happened after exe-
cuting a SELECT statement containing a function expression,
we classified it as an SQL function bug and identified the
root cause according to its crash backtrace and bug patch.
We also removed duplicated PostgreSQL bugs here based
on developers’ replies to these bug reports. In this way, we
collected 39, 10, and 269 SQL function bugs from the bug
trackers of PostgreSQL, MySQL, and MariaDB, respectively.

Threats to Validity. Similar to other characteristic stud-
ies, our results have the following limitations that should be
taken into account.
Invisibility of high-severity vulnerabilities. The details of

high-severity vulnerabilities, such as those causing data dis-
closures and remote code executions, are generally not dis-
closed by security teams. For example, high-severity security
bugs of MySQL and PostgreSQL are requested to be reported
directly to their security team via email, and their security
mailing list is not public. Consequently, our study misses
some of the most serious vulnerabilities, leading to a lack of
corresponding statistical information in our results. How-
ever, similar to the crash bugs studied in this paper, these
vulnerabilities are mainly caused by memory issues (e.g.,

Table 1. The numbers of collected built-in SQL function
bugs in selected DBMSs.

DBMSs PostgreSQL MySQL MariaDB Total

Studied Bugs 39 10 269 318

buffer overflow). Hence, our study on crash bugs can still
provide valuable insights for detecting such vulnerabilities.
Omission of non-crash Bugs. We utilized the keywords

“crash” and “signal” to search for bugs, implying that we did
not consider functionality bugs, such as incorrect compu-
tation results. This is because a thorough bug search will
generate numerous false positives. For instance, many bug
reports use “SELECT COUNT(*)” to indicate incorrect result
set sizes for SELECT queries, highlighting logic bugs. How-
ever, such bugs are typically caused by the wrong result sets
of queries, not the flaws in the COUNT function itself. They
should not be classified as SQL function bugs.
Representativeness of selected DBMSs. We selected Post-

greSQL, MySQL, and MariaDB as the targets of our study, all
of which are popular relational DBMSs using SQL as their
query languages. We did not include other types of DBMSs
in our study, such as graph or time-series DBMSs. This is
because they often utilize their own query syntax rather than
SQL grammar, which would heavily complicate the analysis.
However, our study results could still provide meaningful
guidance for these DBMSs due to the similarities in their
support for function features.

4 General Findings of SQL Function Bugs

In this section, we perform an in-depth analysis of 318 built-
in SQL function bugs.We analyzed these SQL bugs to identify
their common characteristics, focusing on three key aspects:

1. The stage of DBMS processing when the crash occurs;
2. The types of SQL functions that triggered the crash;
3. The prerequisite SQL statements that the bug-inducing

statement depends on.

4.1 Occurrence Stages

DBMSs usually process SQL queries in three stages: parsing,
optimization, and execution. First, the DBMS parser converts
the SQL statement sent by users into internal Abstract Syntax
Trees (ASTs). Next, the optimizer analyzes the ASTs and tries
to generate an optimized query plan. Finally, the executor
executes the query plan and returns the results to users,
ending the SQL statement process. SQL function bugs within
statements can occur during all three stages of processing
and potentially cause a crash. Analyzing the specific stage
where the bug occurs helps to pinpoint its root cause.

To identify the stage of DBMS processing when crashes
occur, we extracted the crash backtrace information from
bug reports. There are 230 bug reports containing identifi-
able backtrace information out of the 318 collected bugs. We

Understanding and Detecting SQL Function Bugs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

examined the symbol names within these backtraces to clas-
sify the stage where the DBMS crashes occurred. Regarding
the distribution of SQL function bug occurrence stages, we
present the following finding:

Finding 1. Among the studied bugs with identifiable back-
traces, about 70.0% (161/230) of them occurred at the execution
stage, about 19.6% (45/230) occurred at the optimization stage,
and about 10.4% (24/230) occurred at the parsing stage.

Crashes at the execution stage aremainly caused by crafted
arguments passing to the SQL functions. These arguments
are successfully parsed into the internal data types of DBMS,
but flaws in the computation for the SQL functions cause
the DBMS to crash when handling specific arguments. In
contrast, crashes at the parsing and optimization stages are
typically triggered by complex SQL nested structures within
or surrounding the function expressions.

4.2 Types of SQL Functions

DBMSs generally support various types of SQL functions for
operating on values of different data types, such as aggre-
gate functions and string functions. For example, the string
functions in most DBMSs provide operations on strings like
concatenation, replacement, and substring extraction. Dif-
ferent SQL functions offer distinct computations in DBMSs.
To better understand the types of computations leading

to SQL function bugs, we conducted a statistical analysis
of the functions encountered in PoCs. We parsed the SQL
statements within these PoCs and extracted the function
expressions contained in each statement. We then classified
these functions into different function types following the
official documentations of MySQL [44] and PostgreSQL [23],
with the results shown in Figure 1. “# of occurrences” for a
function type means the total number of occurrences of this
type’s functions, and “# of unique SQL functions” presents
how many different functions of this type have occurred
at least once. Notably, the total occurrence count exceeds
the number of SQL function bugs, as one PoC can contain
multiple function expressions.

Finding 2. Among the studied bugs, the SQL function expres-
sions have a total occurrence of 508 in the PoCs of these bugs.
The most common types of bug-inducing SQL functions are
string functions (117/508, about 23.0%) and aggregate functions
(91/508, about 17.9%). Over 40% of the bugs were caused by
these two types of SQL functions.

String functions are themost common functions in DBMSs.
DBMSs support abundant string functions for various string
operations, such as search, replacement, regular expressions,
and hashing. The larger number of string functions com-
pared to other functions potentially increases the likelihood
of encountering bugs. As shown in Figure 1, there are 57
distinct string functions causing SQL function bugs, which
is significantly more than other types of functions.

String Aggregate Math Condition System JSON Date Others
Function Types

0

20

40

60

80

100

120

Co
un

t

117

91

43 43 39 38
31

106

57

17 15
3

22 21 15

44

of Occurrences
of Unique Functions

Figure 1. The count of occurrences and the number of
unique SQL functions in the bug-inducing statements of
studied bugs for each SQL function type.

The aggregate functions are a special type of the SQL
functions, which involve more complex computations than
non-aggregate functions. Basic functions only need to com-
pute the return value from a few fixed types of parameters.
In contrast, aggregate functions operate on all elements of
one or more columns at the same time, requiring support for
various data types and values. Moreover, aggregate functions
are often utilized with keywords like GROUP BY, HAVING, and
DISTINCT, involving the grouping, filtering, and sorting op-
erations. This complexity makes aggregate functions more
likely to contain flaws.

Table 2. The count of occurrences of function expressions
within the bug-inducing statements in PoCs.

Occurrences of Function Expressions 1 2 3 4 ≥ 5

Number of Bug-inducing Statements 191 87 23 11 6

Beyond function types, we also analyzed the number of
SQL function expressions within each bug-inducing state-
ment. As displayed in Table 2, about 60.1% of bug-inducing
statements contain only one SQL function expression inside,
about 27.4% contain two SQL function expressions, and the
rest include more than two function expressions.

Finding 3. A majority (278/318, about 87.5%) of the studied
bugs contain no more than two function expressions in their
bug-inducing statements.

4.3 Prerequisite SQL Statements

The execution of real-world SQL queries often relies on pre-
existing data. The data are usually prepared by prerequisite
statements, such as table creation and data insertion. Missing
these statements can lead to semantic errors or empty result
sets. Similarly, Some bug-inducing statements may depend
on prerequisite statements to cause a crash. We examined
the SQL statements and their dependencies among the PoCs
of collected SQL function bugs.

Finding 4. About 47.5% (151/318) of the studied bugs rely on
both table creation and data insertion, about 41.5% (132/318)
can crash the DBMS without relying on any table, and about
11.0% (35/318) depend on specific tables without data inserted.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jingzhou Fu, Jie Liang, Zhiyong Wu, Yanyang Zhao, Shanshan Li, and Yu Jiang

For the bugs relying on both table creation and data in-
sertion, their PoCs utilize prerequisite CREATE TABLE and
INSERT statements to prepare specific data types and val-
ues. These data are then passed to function expressions in
the bug-inducing statements via the FROM clause, leading to
crashes. For the bugs that do not depend on any table, literal
expressions are used to construct the crafted data types and
values. By comparison, the PoCs depending on empty tables
usually contain complex CREATE TABLE statements. These
table-creation statements include complex column defini-
tions, such as particular column data types and constraints.

5 Root Causes of SQL Function Bugs

Wemanually reviewed each bug report and further analyzed
the root causes of these SQL function bugs. We found that
87.4% (278/318) of these SQL function bugs are caused by
improper handling of boundary values of arguments, which
could be seen as the main root cause for the built-in SQL
function bugs. Boundary values refer to the values at the
edges between the acceptable and unacceptable inputs. In
the context of SQL functions, the boundary values are those
at the edges of expected formats of SQL function arguments,
including structures, ranges, lengths, and nested depths. We
identified that these boundary values of SQL functions come
from three types of expressions: the boundary literal values,
the boundary results of type castings, and the boundary
return values from nested functions.

It is understandable that boundary values are more likely
to cause SQL function bugs. SQL functions accept a vari-
ety of formats for the function arguments, such as dates,
IP addresses, JSON, and XML. They allow users to write
SQL function expressions more conveniently, but require
the DBMSs to handle SQL function arguments more cau-
tiously. The implementation of SQL functions must carefully
check whether the arguments match the expected formats,
properly convert them into built-in types, and accurately
perform the operations. Therefore, the various formats of
arguments bring complex boundary conditions when han-
dling SQL function expressions, which leads to potential SQL
function bugs triggered by boundary values.

5.1 Boundary Literal Values

Boundary literal values refer to extreme and specific nu-
merical values used in testing scenarios to evaluate how a
system or function behaves at the boundaries of its input
ranges. These values are directly specified as constants or
literals within the test cases and are chosen to represent
the minimum, maximum, or critical edge cases of the input
data. Some SQL functions mishandle certain boundary values
from arguments. About 29.5% (94/318) of the studied bugs are
caused by the boundary literal values as arguments. These
bugs are caused by the flawed implementation of the SQL
functions. The relevant code of the implementation lacks

sufficient robustness when encountering boundary values,
resulting in the occurrence of bugs.

Listing 3. Bugs caused by boundary literal values.
-- PostgreSQL CVE -2016 -0773:
-- regex matching with char integer overflow
SELECT 'a' ~ '\x7fffffff ';

-- MDEV -23415:
-- formatting operation setting with 50 digits
-- Format: FORMAT(number , decimal_places , locale)
SELECT FORMAT('0', 50, 'de_DE ');

Bug Samples. Listing 3 shows two bugs caused by the
boundary literal values.
CVE-2016-0773: an integer overflow in PostgreSQL when

handling regex matching [27]. The character value in the
regex pattern (\x7fffffff) is converted to an int32 variable
b during processing. The overflow occurs at a C language
statement “for (c = a; c <= b; c++)” in the imple-
mentation of PostgreSQL when handling the regex matching
function. This overflow leads to infinite loops and finally
causes denials of service. The developers fixed the bug by
restricting the character value in regex expressions to always
be less than \x7ffffffe to avoid the overflow. On the up-
dated version of PostgreSQL, if the regex expression contains
\x7fffffff, it will throw an error to the client: “ERROR:
invalid regular expression: invalid escape sequence”.

MDEV-23415: a heap buffer overflow in MariaDB when pro-
cessing the FORMAT function [9]. The second argument “50”
represents the expected digits of the fractional part in the
formatted result. However, the MariaDB library function
“String::set_real()” for the formatting operation will auto-
matically return the value in scientific notation when the
number of digits exceeds 31. The returned string of scien-
tific notation (such as “1e-32”) is shorter than the expected
digits, resulting in a heap buffer overflow when writing the
formatting results into this string.

Root Causes. The improper handling of boundary literal
values in SQL function implementations can cause unex-
pected behaviors during processing. For example, values
that are too large or too small in numeric arguments can
cause overflows for integer variables or out-of-range indexes
for arrays when DBMS lacks corresponding checks. Devel-
opers usually fix these bugs by adding code to verify that
these argument values are within the valid range.
It also illustrates one huge difference between the SQL

functions in DBMS and the library functions in programming
languages. A library can opt not to handle such arguments
because illegal argument values are typically considered
misuse by developers rather than bugs of the library itself.
In contrast, DBMS must handle these arguments carefully
since they may originate from external users. Non-handling
or mishandling could leave the system vulnerable to attacks
from malicious actors.

Understanding and Detecting SQL Function Bugs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

5.2 Boundary Type Castings

Type casting involves converting a value from one data type
to another. Sometimes, function arguments are incorrectly
converted to the internal data types of DBMSs, leading to
SQL function bugs. When DBMS handles function expres-
sions, function arguments are first converted into internal
data types of the DBMS. For instance, a 60-digit decimal in
MariaDB function expressions, which is too large to repre-
sent by a double variable, will be converted into the internal
data type within the MariaDB decimal library [22]. However,
such type conversions are not always correctly implemented,
such as inadequately handling excessively large values or
NULL values. About 23.3% (74/318) of studied bugs are caused
by boundary arguments constructed by type casting.

Listing 4. Bugs caused by boundary type castings.
-- MDEV -8407: numerics with lots of digits
SELECT COLUMN_JSON(COLUMN_CREATE('x',
123456789012345678901234567890123456789012346789));

-- MDEV -11030: casting NULL to a number
SELECT * FROM (

SELECT IFNULL(CONVERT(NULL, UNSIGNED), NULL)) sq;

Bug Samples. Listing 4 displays two bugs caused by the
boundary result of type castings.
MDEV-8407: a heap buffer overflow in MariaDB when con-

verting a large number from MariaDB’s decimal type to the
string type [11]. In this sample, a 48-digit decimal number is
first converted toMariaDB’s decimal data type when process-
ing the COLUMN_CREATE function expression. Subsequently,
when handling the COLUMN_JSON function, the decimal value
will be converted to a string type by the “decimal2string” li-
brary function in MariaDB’s decimal library. However, the
library function contains an error when converting decimals
larger than 40 digits. It incorrectly calculates the length of
the resulting string, leading to insufficient space allocation
for the string and finally triggering a heap buffer overflow.

MDEV-11030: a heap buffer overflow when converting a null
value to the integer type in MariaDB [7]. When a value is con-
verted to MariaDB’s integer type, MariaDB stores the value
into an int64 variable and calculates the digits of the value.
However, when the original value is a NULL value, MariaDB
stores it as the integer 0 but incorrectly calculates the num-
ber of its digits as zero (‘0’ occupies one digit rather than
zero). The incorrect number of digits results in insufficient
space allocation in subsequent string contexts, leading to a
heap buffer overflow.

Root Causes. The implementation of DBMS’s type cast-
ing may contain flaws that are difficult to detect directly.
These flaws do not immediately cause the DBMS to crash
but result in broken internal data type instances, which are
hard to observe. However, the subsequent processing of SQL
functions depends on the arguments of these internal data
types. These broken internal instances can cause function

computation errors and even DBMS crashes. Such SQL func-
tion bugs caused by boundary type castings are actually the
bugs of the type systems of DBMSs rather than the imple-
mentations of SQL functions.

5.3 Boundary Results of Nested Functions

Apart from boundary literal values and type castings, an-
other major cause of SQL function bugs is the arguments
derived from the return values of nested functions. About
34.6% (110/318) of the studied bugs are caused by bound-
ary arguments originating from the return values of nested
function expressions. These nested functions can construct
boundary arguments with specific data types and values,
such as special binary streams or extremely long strings in
specific formats. Such boundary arguments may also trigger
errors in SQL function implementations.

Listing 5. Bugs from boundary values by nested expressions.
-- PostgreSQL CVE -2015 -5289:
-- a large string constructed by nested structures
SELECT REPEAT('[', 1000) ::json;

-- MDEV -14596: interval operation on the row type
-- Format: INTERVAL(N, N1, N2, N3, ...)
SELECT INTERVAL(ROW(1,1),ROW (1 ,2));

Bug Samples. Listing 5 presents two SQL function bugs
caused by boundary results of nested functions.
CVE-2015-5289: a stack overflow in PostgreSQL when con-

verting a long string to the JSON format [26]. The bug is
triggered by using the repeat function to repeat the charac-
ter ‘[’ 1000 times. in JSON, “[...]” represents an array,
and such JSON array expressions are recursively processed
in PostgreSQL. Each ‘[’ character represents the beginning
of a new JSON array, which makes PostgreSQL recursively
call the “parse_array” library function during parsing. When
there are too many ‘[’ characters, it keeps calling the library
function recursively and overflows the stack in the final due
to excessive recursion depth. PostgreSQL fixed this bug by
adding recursion depth checks in JSON functions.
MDEV-14596: a segmentation violation in MariaDB trig-

gered by illegal comparison operations on row types [8]. The
INTERVAL function in MariaDB takes multiple arguments.
It compares the 1st argument (N) with each subsequent ar-
gument (N1, N2, N3, ...), and returns the index of the first
argument larger than N. Therefore, INTERVAL relies on com-
parison operations, so its arguments must be comparable
objects. In the MDEV-14596 case, two values with the ROW
type, ROW(1,1) and ROW(1,2), are passed as arguments to
the INTERVAL function. However, ROW types do not support
comparison operations, and MariaDB did not validate this
within the INTERVAL function. This leads to a segmentation
violation when attempting comparisons on ROW types.

Root Causes. These SQL function bugs are still caused by
the boundary values or data types of the arguments. The im-
plementations of the SQL functions do not correctly handle

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jingzhou Fu, Jie Liang, Zhiyong Wu, Yanyang Zhao, Shanshan Li, and Yu Jiang

these crafted arguments. However, these boundary argu-
ments are not from literal values or type castings, but from
the return values of the nested functions. Moreover, these
arguments are difficult to represent by literal values or type
castings due to their extreme lengths or special data types.
Their lengths may even exceed the maximum length allowed
for SQL statements by the DBMS.

5.4 Other Root Causes

Apart from the boundary arguments of SQL function ex-
pressions, we found other root causes of SQL function bugs,
including DBMS configurations, specific table definitions,
and complex syntax structures. However, these root causes
are less frequent in the studied SQL function bugs. They
are harder to trigger since they depend on the unique and
complex features of different DBMSs, such as the incorrect
settings in their configuration files.
Database System Configurations. Specific configurations

within the database systems may also cause errors. For in-
stance, the incorrect or incompatible settings of buffer sizes,
improper time zones, and character sets may cause some SQL
functions of DBMSs to work improperly, leading to potential
errors and failures. In our study, we found that 8 bugs are
related to the configurations.

Specific Table Definitions.The specific definitions and struc-
tures of tables, such as storage engines, indexes, and column
constraints, can alter the handling of SELECT statements
by DBMSs. For example, the indexes on tables can affect
the processing of WHERE clauses; if the implementation of
indexes contains flaws, it may cause errors when DBMSs
process certain function expressions in these clauses with
indexing enabled. In our study, we observed that 24 bugs are
associated with specific table definitions.

Complex Syntax Structures. Errors can arise from the com-
plexity of SQL syntax structures used in queries and proce-
dures. Complex SQL queries may introduce opportunities for
errors, such as crashes during parsing function expressions
with complex clauses and nested subqueries contained. We
found that there are 8 bugs associated with complex syntax
structures in our studied bugs.

6 Boundary Value Generation Patterns

Our study shows that the main root causes of SQL func-
tion bugs are the flawed handling of boundary values of
arguments, including boundary literal values, boundary type
castings, and boundary return values of nested functions.
However, Existing testing frameworks cannot effectively
construct the boundary values of SQL function arguments
and detect SQL function bugs.
Conventional function testing approaches for program-

ming languages generate literal values for arguments, but
they are not suitable for generating SQL function test cases
with boundary values. For example, traditional test methods

like EvoSuite [17, 46] mainly focus on the generation of func-
tion call sequences for function testing. They only generate
random values for the arguments of function calls, which
need a hard time producing values that satisfy the boundary
value of SQL function arguments.

Existing DBMS testing tools also struggle to generate test
cases that include built-in SQL functions. Even when they do,
it remains challenging to produce arguments with boundary
values in these expressions. First, most of them generate lit-
eral values randomly, without considering the boundary val-
ues of SQL function expressions. Second, they focus on con-
structing syntactically and semantically correct statements
but often ignore invalid type castings. Third, most of them
generate complex SQL structures with various keywords and
clauses, while neglecting nested function expressions.

To identify SQL function bugs caused by boundary values,
we summarized 10 boundary-value-generation patterns of
bug-inducing SQL queries based on the studied bugs, which
can guide the detection of SQL function bugs.

Patterns of Boundary Literal Values. We found about
10.0% (32/318) of bugs result from extreme integer values or
decimal values, 6.6% (21/318) arise from empty strings or the
NULL value, and 12.9% (41/318) are caused by crafted string
literals in certain formats (e.g. JSON and DATE).

Pattern 1.1. 𝑏𝑜𝑢𝑛𝑑 → ±0.999...99, ±999...99, ‘’, NULL, ∗
Pattern 1.2. 𝑓 (𝑐) → 𝑓 (𝑏𝑜𝑢𝑛𝑑)
Pattern 1.3. 𝑓 (𝑐) → 𝑓 (𝑐[:i] + 99...999 + 𝑐[i+1:])
Pattern 1.4. 𝑓 (𝑐) → 𝑓 (𝑐[:i] + 𝑐[i]...𝑐[i] + 𝑐[i+1:])

Consequently, we established rules for generating bound-
ary literal values. In SQL, there are several common types of
literals: integers, decimals, strings, NULL, and the asterisk ‘*’
(e.g., “SELECT * FROM t”). We construct the boundary values
of these literal types by Pattern 1.1. Particularly for integer
and decimal values, we enumerate values with different digit
lengths. It should be noted that merely attempting extremely
large values (e.g., 99...999 with 100 digits) is insufficient, as
they might be rejected during the parsing stage due to ex-
cessive length. Moreover, different databases have varying
maximum allowable decimal digits. Hence, enumerating val-
ues with different digit lengths is a more suitable approach
to generating boundary literal values.
Once these common boundary literal values are gener-

ated, we can apply Pattern 1.2 to utilize them as function
arguments in SQL function expressions, thereby generat-
ing corresponding SQL statements. For instance, assuming a
DBMS supports a function named ‘f’ that requires a single
argument, we utilize these boundary values as arguments to
generate a series of new SQL statements following Pattern
1.2, such as SELECT f(NULL), SELECT f(*), SELECT f(‘’),
and SELECT f(-0.99999).

Understanding and Detecting SQL Function Bugs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Table 3. Literal examples generated by Patterns 1.3 and 1.4.

Data Type Original Value Generated Value by Pattern 1.3 & 1.4

json ‘{"a":10}’ ‘{"a":1999}’, ‘{"a":10}}}’
ip ‘{0.0.0.0}’ ‘999.0.0.0’, ‘0...0.0.0’
hex ‘0x7f’ ‘0x999f’, ‘0x7fff’
regex ‘(.){10}’ ‘(.){1999}’, ‘(((.){10}’

Furthermore, certain functions may require arguments
with specific formats of strings. The potential boundary val-
ues for such arguments can be roughly constructed by ap-
pending repeated characters via Patterns 1.3 and 1.4. For
example, a function expression like JSON(‘{"key": 0}’)
can be utilized by this pattern to produce expressions like
JSON(‘{"key": 999990}’) and JSON(‘{{{{{"key": 0}’).
The two patterns help to construct boundary values that sat-
isfy certain argument formats.

Patterns of BoundaryTypeCastings. In the bugs caused
by boundary type castings that we studied, crashes usually
occur when processing SQL function expressions with these
faulty instances. Some of the bug-inducing SQL statements
can adhere to Pattern 2.1, which represents SQL function ex-
pressions with explicit type casting. SQL function arguments
are first converted to other data types via the CAST opera-
tion, triggering various DBMS behaviors related to different
internal data types. If there are errors in the type casting
implementation, they may cause bugs when the DBMS pro-
cesses SQL functions with these cast arguments.

Pattern 2.1. 𝑓 (𝑐) → 𝑓 (CAST(𝑐 AS 𝑡𝑦𝑝𝑒))
Pattern 2.2. 𝑓 (𝑐) → 𝑓 (SELECT 𝑐 UNION SELECT 𝑡𝑦𝑝𝑒 ())
Pattern 2.3. 𝑓 (𝑐), 𝑓2 (𝑐2) → 𝑓 (𝑐2)
In contrast, Patterns 2.2 and 2.3 help detect errors of im-

plicit type casting. Pattern 2.2 constructs the implicit type
casting via the UNION operation. In SQL, the results of the
same column require the same data type. Hence, perform-
ing a UNION operation between two SELECT statements can
implicitly convert one type into another. Pattern 2.3 directly
passes the arguments of one function expression to another
function to create implicit type casting. This is because argu-
ments for different functions may follow different formats
and data types. Passing the arguments of other functions
can make the formats and data types mismatch, resulting in
implicit type casting. Pattern 1.2 for boundary literal values
may also lead to implicit type casting since it can generate
argument values of multiple different data types.
Patterns of Nested Functions. The structure of nested

functions can be described using Pattern 3.1, Pattern 3.2, and
Pattern 3.3. Pattern 3.1 is used to construct arguments of
extreme lengths by repeating a prefix of the original argu-
ment via the REPEAT function. The repetition count is from
the boundary literal values from Pattern 1.1. This pattern
can also create deep recursive structures for arguments of
specific data types, such as ARRAY, JSON, and XML.

Pattern 3.1. 𝑓 (𝑐) → 𝑓 (REPEAT(𝑐[:i], 𝑏𝑜𝑢𝑛𝑑))
Pattern 3.2. 𝑓 (𝑐), 𝑓2 (𝑐2) → 𝑓 (𝑓2 (𝑐))
Pattern 3.3. 𝑓 (𝑐), 𝑓2 (𝑐2) → 𝑓 (𝑓2 (𝑐2))

Patterns 3.2 and 3.3 employ other existing function expres-
sions as function arguments. Pattern 3.2 retains the original
arguments of the function but wraps it with another func-
tion. In contrast, Pattern 3.3 directly replaces the argument
with the return value of another function expression. Both
patterns have the potential to construct boundary argument
values or data types through nested functions.

7 Pattern-Based Bug Detection

Guided by the boundary-value-generation patterns of SQL
function bugs, we designed Soft that generates SQL state-
ments based on these boundary argument patterns. We uti-
lized Soft to test sevenwidely usedDBMSs, and it discovered
a total of 132 previously unknown SQL function bugs. All of
these bugs were confirmed by DBMS developers, and 97 of
them have been fixed.

7.1 Implementation

Soft is implemented in Python. It detects SQL function bugs
in the following three steps:

Function Expression Collection. Soft initially acquires
initial function expressions by scanning the documentation
and regression test suite of the DBMS. First, Soft extracts all
SQL function names from the documentation of the DBMS.
Then, Soft collects the SQL function expressions from the
SQL queries in the test suite of DBMS according to these
function names. Specifically, since SQL function expressions
typically follow the format func(...), we scan all pairs of
parentheses in SQL queries, and if the previous token of the
pair is a function name, this function name and the pair of
parentheses form a SQL function expression.

Pattern-BasedGeneration.Based on the boundary-value-
generation patterns, Soft first generates a series of boundary
literal values using Pattern 1.1, which are relied on by Pat-
terns 1.2 and 3.1. Then, for Patterns 1.2, 1.3, 1.4, 2.1, 2.2, and
3.1, Soft enumerates the arguments of these function expres-
sions, generates new arguments by applying the patterns,
and replaces the original arguments to create new expres-
sions. For Patterns 2.3, 3.2, and 3.3, Soft performs double
enumeration on two function expressions 𝑓 (𝑐) and 𝑓2 (𝑐2),
and generates new arguments and expressions based on the
patterns. According to Finding 3, most function bugs can be
triggered with no more than two nested functions. Therefore,
when the number of functions in an expression is greater
than two, Soft no longer generates new expressions for it.
SQL Function Bug Detection. After new function ex-

pressions are generated, Soft substitutes them for the origi-
nal function expressions within the SQL statements. It then
executes these statements in DBMSs via their Python clients.
If the DBMS crashes during the execution, it indicates that

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jingzhou Fu, Jie Liang, Zhiyong Wu, Yanyang Zhao, Shanshan Li, and Yu Jiang

Table 4. Soft discovered 132 new vulnerabilities within two weeks (PostgreSQL: 1, MySQL: 16, MariaDB: 24, ClickHouse: 6,
MonetDB: 19, DuckDB: 21, Virtuoso: 45). [NPD: Null Pointer Dereference, SEGV: Segmentation Violation, UAF: Use-after-Free,
BOF: Buffer Overflow [Heap(H), Global(G)], AF: Assertion Failure, SO: Stack Overflow, DBZ: Divide-by-Zero]

DBMS Function Type Bug Type Boundary-Value-Generation Patterns Status

PostgreSQL aggregate (1) HBOF(1) P2.3(1) 1 Confirmed, 1 Fixed
MySQL aggregate (6) NPD(4), SEGV(1), GBOF(1) P1.3(1), P3.3(4), P2.1(1) 6 Confirmed
MySQL date (1) SEGV(1) P3.3(1) 1 Confirmed
MySQL spatial (1) UAF(1) P3.3(1) 1 Confirmed
MySQL string (2) HBOF(2) P3.2(1), P3.3(1) 2 Confirmed
MySQL system (5) NPD(4), HBOF(1) P3.2(1), P3.3(4) 5 Confirmed, 1 Fixed
MySQL xml (1) UAF(1) P3.2(1) 1 Confirmed
MariaDB aggregate (4) NPD(1), SEGV(2), SO(1) P1.2(3), P2.2(1) 4 Confirmed
MariaDB condition (1) NPD(1) P2.2(1) 1 Confirmed
MariaDB date (3) NPD(2), GBOF(1) P1.2(1), P2.3(1), P3.3(1) 3 Confirmed
MariaDB json (6) NPD(2), SEGV(1), AF(1), GBOF(2) P1.4(2), P2.3(1), P3.1(2), P3.3(1) 6 Confirmed
MariaDB sequence (1) NPD(1) P3.3(1) 1 Confirmed
MariaDB spatial (5) NPD(3), SEGV(1), SO(1) P3.2(1), P3.3(4) 5 Confirmed, 3 Fixed
MariaDB string (4) NPD(2), HBOF(1), SO(1) P1.2(2), P3.1(1), P3.3(1) 4 Confirmed, 1 Fixed
ClickHouse aggregate (1) NPD(1) P1.2(1) 1 Confirmed & Fixed
ClickHouse array (1) NPD(1) P2.3(1) 1 Confirmed & Fixed
ClickHouse date (1) NPD(1) P1.2(1) 1 Confirmed & Fixed
ClickHouse string (3) NPD(1), SEGV(2) P1.2(1), P2.3(1), P3.1(1) 3 Confirmed & Fixed
MonetDB aggregate (7) NPD(6), SEGV(1) P1.2(1), P2.1(1), P2.2(2), P2.3(2), P3.3(1) 7 Confirmed & Fixed
MonetDB condition (3) NPD(2), SEGV(1) P2.2(1), P3.2(1), P3.3(1) 3 Confirmed & Fixed
MonetDB math (1) NPD(1) P2.2(1) 1 Confirmed & Fixed
MonetDB string (6) NPD(5), HBOF(1) P1.2(1), P1.3(1), P1.4(1), P2.3(3) 6 Confirmed & Fixed
MonetDB system (2) SEGV(1), DBZ(1) P1.2(1), P2.3(1) 2 Confirmed & Fixed
DuckDB array (9) AF(5), HBOF(3), SO(1) P1.2(7), P1.4(1), P2.2(1) 9 Confirmed & Fixed
DuckDB date (1) SO(1) P3.1(1) 1 Confirmed & Fixed
DuckDB map (3) AF(1), HBOF(2) P1.2(2), P2.1(1) 3 Confirmed & Fixed
DuckDB json (1) AF(1) P1.2(1) 1 Confirmed & Fixed
DuckDB math (2) AF(1), HBOF(1) P1.2(1), P2.1(1) 2 Confirmed & Fixed
DuckDB string (4) AF(2), SEGV(2) P1.2(1), P1.3(1), P3.1(1), P3.3(1) 4 Confirmed & Fixed
DuckDB system (1) AF(1) P2.1(1) 1 Confirmed & Fixed
Virtuoso aggregate (5) NPD(4), SEGV(1) P1.2(1), P3.2(1), P3.3(3) 5 Confirmed & Fixed
Virtuoso casting (2) AF(2) P1.2(2) 2 Confirmed & Fixed
Virtuoso condition (3) NPD(2), SEGV(1) P3.3(3) 3 Confirmed & Fixed
Virtuoso math (5) NPD(3), SEGV(1), DBZ(1) P1.2(2), P2.1(1), P2.2(1), P2.3(1) 5 Confirmed & Fixed
Virtuoso spatial (2) NPD(1), SEGV(1) P1.2(1), P2.1(1) 2 Confirmed & Fixed
Virtuoso string (10) NPD(2), SEGV(6), SO(1), UAF(1) P1.2(5), P2.3(1), P3.1(3), P3.2(1) 10 Confirmed & Fixed
Virtuoso xml (3) NPD(3) P1.2(3) 3 Confirmed & Fixed
Virtuoso system (15) NPD(8), SEGV(6), HBOF(1) P1.2(11), P3.1(3), P3.3(1) 15 Confirmed & Fixed

Total – 132 Bugs P1.x(56), P2.x(28), P3.x(48) 132 Confirmed, 97 Fixed

an SQL function bug is encountered, and Soft logs the cor-
responding SQL statements for bug reporting.

7.2 Testing Setup

The experiments were conducted on a machine running
64-bit Ubuntu 20.04 with an AMD EPYC 7742 Processor
@ 2.25 GHz, 128 cores, and 504 GiB of main memory. We
use Soft to test the latest version of 7 open-source DBMSs,
namely PostgreSQL v16.1 [48], MySQL v8.3.0 [45], MariaDB
v11.3.2 [5], ClickHouse v23.6.2.18 [30], MonetDB v11.47.11
[40], DuckDB v0.10.1 [16], and Virtuoso v7.2.12 [42], which
are widely used in industry. All DBMSs were tested using
docker containers that were downloaded directly from their
websites, each with 5 CPU cores and 50 GiB of RAM.

7.3 Detected DBMS Vulnerabilities

Soft successfully detected 132 vulnerabilities in two weeks.
We also used the latest versions of Sqirrel [63], SQL-
smith [53], and SQLancer in PQSmode [51] with their default
configurations to test these DBMSs, but they did not find
any SQL function bugs. Table 4 shows Soft discovered 1, 16,
24, 6, 19, 21, and 45 bugs in PostgreSQL, MySQL, MariaDB,

ClickHouse, MonetDB, DuckDB, and Virtuoso, respectively.
It shows that the SQL function bugs found by Soft cover vari-
ous types with different boundary-value-generation patterns.
Specifically, Soft detected 56, 28, and 48 SQL function

bugs in patterns of literal values, type castings, and

nested functions, respectively. In particular, the bugs
also cover different kinds of memory errors, including 61
null pointer dereferences, 29 segmentation violations, 12
heap buffer overflows, 4 global buffer overflows, 3 use-after-
free, 7 stack overflows, 2 divide-by-zero, which can lead to

“Wemust fix it immediately or get rid of this function.”
— CTO of ClickHouse

“These issues are security relevant and in some cases, we hide
such issues from public access until the issue is closed.”

—MariaDB Security Team

“Thank you for reporting a security related bug in PostgreSQL.
However, since posts from this form are immediately public,
we ask that you instead email your report to the security team.”

—Moderator of pgsql-bugs Mailing List

Figure 2. Feedback from DBMS developers.

Understanding and Detecting SQL Function Bugs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

serious vulnerabilities in DBMSs. Soft also detected 14 asser-
tion failures, which means the 10 patterns could help Soft to
explore the unexpected states of the SQL functions. However,
Soft triggered 7 false positives due to generating arguments
exceeding memory limits like “REPEAT(‘a’, 9999999999)”,
which made the DBMS terminate the SQL queries forcibly.

We also observed the few discovered bugs in PostgreSQL
and fixes in MySQL. For PostgreSQL, it is because Post-
greSQL’s strict type system and rigorous argument checks
reduce the number of boundary value-related bugs, though
this means that PostgreSQL users need to write more expres-
sions for explicit casting and formatting. For MySQL, the
reason for few fixes is that the vendor only labels a bug as
fixed until a new version of MySQL is released, which often
takes several months after the bug report.

Feedback from DBMS Developers. Moreover, we have
actively reported all 132 SQL function bugs to the corre-
sponding DBMS vendors and received their confirmation
feedback. At the time of the paper writing, 132 SQL function
bugs have been confirmed, and 97 SQL function bugs have
been fixed. More importantly, the detected bugs have gar-
nered the attention of the DBMS developers, as illustrated in
Figure 2. For example, the CTO of ClickHouse noticed our
bug report and asked the developers to fix it immediately
[21]. When we were reporting bugs to MariaDB’s JIRA, the
developers quickly hid these bugs [10] due to security rea-
sons as shown in Figure 2. Our PostgreSQL bug was asked
to report to PostgreSQL Security Team directly since it is a
security-related bug [25].

7.4 Bugs of Each Pattern

To demonstrate the effectiveness of ten boundary patterns
in detecting SQL function bugs, we analyze the bugs and
present the following case studies.

Bugs Related to Boundary Literal Values. In our ex-
periments, we found about 56 SQL function bugs related to
the patterns of boundary literal values. The bugs of these
patterns are usually fixed by adding additional checking code
for the argument values in the SQL function implementation.
To ensure system stability, we recommend that developers
meticulously handle each argument, thoroughly examining
their potential impact on the system’s functionality.

Listing 6. A global buffer overflow in MySQL.
-- Case 1. global buffer overflow in MySQL
SELECT AVG (1.2999999999999999999999999999999999999
999999999999999999999999999999999999);

Case 1: A global buffer overflow in MySQL. Listing 6 shows
a test case that triggers a global buffer overflow in MySQL.
It is discovered by using patterns of boundary literal val-
ues. In this case, the bug is triggered by the AVG function
when processing an excessively long literal value. The literal
value 1.2999...999 exceeds the expected precision and causes

a global buffer overflow in MySQL. This overflow occurs be-
cause MySQL cannot handle such an extended floating-point
value, leading to memory corruption.

Listing 7. A segmentation violation in Virtuoso.
-- Case 2. segmentation violation in Virtuoso
SELECT CONTAINS(x , x , *);

Case 2: Segmentation violation in Virtuoso. Listing 7 presents
a test case that triggers a segmentation violation in Virtuoso.
It is found by using patterns of boundary literal values. In
this instance, the CONTAINS function in Virtuoso is called
with three arguments: ‘x, x, *’. The improper handling
of these arguments, particularly the asterisk ‘*’, leads to a
segmentation violation in Virtuoso. It is because Virtuoso
does not check for asterisk arguments in this SQL function’s
implementation, which causes illegal memory access in the
subsequent processing of the SQL function.

Bugs Related to Boundary Type Castings. In our ex-
periments, we found about 28 SQL function bugs related
to the patterns of boundary type castings. The bugs within
these patterns stem from both deficiencies in the type system
and insufficient checks. To enhance the system reliability,
we suggest that developers pay more attention to the design
of the type system, for instance, considering whether certain
member variables of internal data types are allowed to be
null pointer values. Additionally, we recommend developers
implement more thorough checks during both explicit and
implicit type conversions.

Listing 8. A heap buffer overflow in PostgreSQL.
-- Case 3. heap buffer overflow in PostgreSQL
SELECT JSONB_OBJECT_AGG(DISTINCT 'a', 'abc');

Case 3: A heap buffer overflow in PostgreSQL (CVE-2023-
5868) [25]. Listing 8 shows a test case that triggers a heap
buffer overflow in PostgreSQL. It is discovered by using
patterns of boundary type castings. In this case, the bug is
triggered by the JSONB_OBJECT_AGG function in PostgreSQL
when passing literal string values as arguments. The function
attempts to aggregate JSON objects with the keys ‘a’ and
‘abc’, leading to a heap buffer overflow. This overflow hap-
pens because PostgreSQL incorrectly identifies the unknown-
type arguments within aggregate functions as strings. Conse-
quently, PostgreSQL improperly interprets the argument as
being terminated with a ‘\0’ character, resulting in memory
disclosure when reading the unknown-type value as a string.

Listing 9. A stack overflow in DuckDB.
-- Case 4. stack overflow in DuckDB
SELECT REPEAT('[{"a":', 100000) UNION (SELECT []);

Case 4: A stack overflow in DuckDB. Listing 9 presents a
test case that triggers a stack overflow in DuckDB. It is found

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jingzhou Fu, Jie Liang, Zhiyong Wu, Yanyang Zhao, Shanshan Li, and Yu Jiang

by using patterns of boundary type castings. This instance
involves the REPEAT function in DuckDB, where the function
is instructed to repeat the string ’[{"a":’ 100,000 times.
This extensive repetition, combined with a UNION operation
involving an empty array, causes a stack overflow. The stack
overflow occurs due to excessive recursive calls and deep
stack usage beyond the system’s capacity to handle, leading
to a crash in DuckDB. This reveals a critical flaw in the
function’s handling of large or deeply nested input, exposing
vulnerabilities in the system’s robustness and stability.

Bugs Related to Boundary Results of Nested Func-

tions. In our experiments, we found about 48 SQL function
bugs related to the patterns of boundary results of nested
functions. These bugs are fixed by additionally checking the
data types and values returned from other SQL functions.
We recommend that developers ensure that the handling of
arguments in each SQL function adequately addresses the
possible return values of other functions, especially those
with extreme lengths or special internal data types.

Listing 10. A global buffer overflow in MariaDB.
-- Case 5. global buffer overflow in MariaDB
SELECT JSON_LENGTH(REPEAT('[1,', 100), '$[2][1] ');

Case 5: A global buffer overflow in MariaDB. Listing 10
presents a test case that triggers a global buffer overflow
in MariaDB. It is discovered by using patterns of boundary
results of nested functions. In this case, the bug is triggered
by the JSON_LENGTH function in MariaDB. The function is
called with a JSON path ‘$[2][1]’ on a string generated by
repeating ‘[1,’ 100 times. This extensive repetition leads
to an excessively large JSON string, causing a global buffer
overflow. The overflow occurs because the system fails to
properly allocate and manage memory for the input with
such large nested array expressions, resulting in memory
corruption and potential system crashes.

Listing 11. A segmentation violation in MariaDB.
-- Case 6. Segmentation violation in MariaDB
SELECT ST_ASTEXT(

BOUNDARY(INET6_ATON('255.255.255.255 ')));

Case 6: Segmentation violation inMariaDB. Listing 11 shows
a test case that triggers a segmentation violation in Mari-
aDB. It is found by using patterns of boundary results of
nested functions. This instance involves a segmentation
violation in MariaDB triggered by a combination of the
ST_ASTEXT, BOUNDARY, and INET6_ATON functions. The func-
tion INET6_ATON converts the IP address ‘255.255.255.255’
to its binary form, which is then passed to the BOUNDARY func-
tion and subsequently to ST_ASTEXT. This sequence of opera-
tions causes a segmentation violation, likely due to improper
handling or invalid memory access during the type casting
and boundary calculation processes, leading to a crash in

MariaDB. This reveals vulnerabilities in the system’s han-
dling of complex function chains and type castings.

7.5 Comparison with Other Testing Works

To demonstrate the effectiveness of our methods, we com-
pared Soft against three state-of-the-art DBMS testing tools,
namely Sqirrel, SQLancer, and SQLsmith, which arewidely
used in the industry. Among the DBMSs we tested, Sqirrel
supports PostgreSQL, MySQL, and MariaDB; SQLsmith sup-
ports PostgreSQL and MonetDB; while SQLancer supports
PostgreSQL, MySQL, MariaDB, and ClickHouse.

We evaluated these DBMS testing tools based on the num-
ber of covered SQL functions and code branches of built-in
SQL function components in 24 hours. We also countered
the unique SQL function bugs discovered by these tools in
24 hours. For a fair comparison, when we finished DBMS
testing, we collected the queries generated by each DBMS
tool and reran all the queries to uniform the branch coverage.

Table 5. Number of triggered built-in SQL functions by
generated SQL statements in 24 hours.

DBMS Sqirrel SQLancer SQLsmith Soft
PostgreSQL 29 123 417 456
MySQL 23 35 – 323
MariaDB 22 20 – 279
ClickHouse – 24 – 711
MonetDB – – 29 171
Total 74 202 446 2,956
Increment* 984 1,567 181 –
* Increments are calculated only for commonly supported DBMSs.

Covered Functions and Related Code Branches. Tables 5
and 6 show the number of SQL functions and code branches
of these SQL function modules covered by those DBMS test-
ing tools over 24-hour testing. The results indicate that Soft
outperformed other DBMS testing tools. Specifically, Soft
covered 984, 1567, and 181 more SQL functions, as well as
433.93%, 98.70%, and 19.86% more branches in built-in SQL
function components than Sqirrel, SQLancer, and SQL-
smith, respectively. The main reason for the improvement
of Soft is the boundary-value-generation patterns utilized.
These generation patterns enable Soft to construct bound-
ary argument values and function expressions for a wide
range of SQL functions. These boundary arguments help
trigger the deep logic when DBMS processes function ex-
pressions, leading to higher branch coverage. In contrast,
other tools lack a universal method for generating function
expressions and their boundary arguments. For example,
SQLancer requires writing function models in Java code to
support the generation of a new function, and it only sup-
ports generating random values for SQL function arguments.
The complexity of adaptation and the lack of boundary ar-
gument generation limit its ability on SQL function testing.

Understanding and Detecting SQL Function Bugs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Table 6. Number of covered code branches of DBMSs’ built-
in SQL function modules in 24 hours.

DBMS Sqirrel SQLancer SQLsmith Soft
PostgreSQL 2,106 6,106 11,768 13,334
MySQL 1,105 1,927 – 6,914
MariaDB 1,758 1,732 – 6,283
ClickHouse – 26,655 – 45,836
MonetDB – – 551 1,431
Total 4,969 36,420 12,319 73,798
Increment* 21,562 35,947 2,446 –
* Increments are calculated only for commonly supported DBMSs.

Triggered SQL Function Bugs. Sqirrel, SQLancer, and
SQLsmith did not find any SQL function bugs in 24 hours. In
contrast, Soft triggered 22 unique SQL function bugs within
24 hours, including 1, 5, 6, 3, and 7 bugs in PostgreSQL,
MySQL, MariaDB, ClickHouse, and MonetDB, respectively.
Unlike Sqirrel, SQLancer, and SQLsmith, our tool Soft
specifically targets boundary values of SQL function argu-
ments. By focusing on boundary literal values, type castings,
and nested function return values, Soft is able to identify
and test edge cases that are often the root cause of bugs.
Besides, Soft utilizes a pattern-based generation technique
derived from our study of 318 SQL function bugs. These
patterns provide a structured methodology for creating test
cases that are more likely to uncover hidden bugs.

8 Discussion

UDF Bugs. This paper only exploits vulnerabilities in the
built-in SQL functions. However, user-defined functions of
DBMS can also be problematic to a large extent. In contrast
to built-in SQL functions, the user-defined functions are
typically written with PL/SQL statements, so the DBMS’s
handling of user-defined functions focuses on parsing and
executing these statements. Therefore, the testing of DBMS
user-defined functions can be summarized in the testing of
the database’s PL/SQL system. We will focus on this part in
the future to analyze and test the user-defined functions of
DBMSs as well.
Correctness Bugs in SQL Functions. In this paper, we

mainly focus on memory safety problems in built-in SQL
functions. However, it is still possible for a SQL function to
have correctness problems (or logic problems), where func-
tions return incorrect results. To address these issues, we
can extend the existing testing frameworks to construct test
guidelines that include function expressions with equiva-
lent semantics and perform differential testing. Equivalent
semantic function expressions can be constructed by replac-
ing intermediate clauses in existing nested structures, e.g.,
intermediate result replacement, where clause splitting (e.g.,
TLP [50]) and transformation (e.g., NoREC [49]).

Reality of Found Bugs. In this paper, we found that the
core cause of the built-in function problem is the poor han-
dling of boundary values, so we test the built-in function by

generating literals, type conversions, and nested structures
to get different boundary values. In the real world, software
systems often need to process a wide variety of input data,
including those under various boundary conditions. These
boundary conditions might be triggered due to user input,
interactions with external systems, or internal data process-
ing errors. Moreover, once these bugs occur, they can lead
to application crashes and serious security risks. Among the
132 bugs we reported, all were confirmed by developers, and
97 were fixed within three days.

Extending Existing DBMS Testing Works with Soft.

While Soft focuses on detecting SQL function bugs, its
boundary-value-generation patterns can also help discover
other DBMS bugs. For example, DBMS have some data-
sensitive operations, such as indexing, sorting, and filtering,
which are performed by the CREATE INDEX, ORDER BY, and
WHERE clauses, respectively. We can test these DBMS opera-
tions more thoroughly with Soft by generating boundary
values for various data types. Furthermore, we can integrate
Soft into existing grammar-basedDBMS testing frameworks
to enhance their bug detection ability. For instance, grammar-
based works can first construct syntactically correct struc-
tures of different SQL statements, and then Soft fills in the
custom values of each clause of these SQL statements. In this
way, Soft can help existing works to trigger more boundary
behaviors in scenarios other than SQL functions.

9 Related Work

DBMS Testing. The efforts in DBMS testing can be broadly
categorized into three main areas: testing for crash bugs,
identifying correctness (or logic) bugs, and evaluating per-
formance issues. Crash bug testing [18–20, 33, 36, 53, 57, 63]
focuses on identifying conditions under which the DBMS
might unexpectedly stop working or crash. These works
typically concentrate on generating valid SQL statements
and then monitoring whether the DBMS under test crashes.
For example, SQLsmith [53] is a generation-based fuzzer to
generate SQL queries for testing. Sqirrel [63] proposes
an IR-based mutation method to generate queries with syn-
tactical and semantical correctness. Lego [33] uses type-
affinity analysis to generate queries with more SQL type
sequences to explore the SQL state space. Griffin [19] pro-
poses a grammar-free fuzzing method for query generation.
DBMS correctness testing [15, 49–51, 54] aims to verify

that the DBMS accurately executes queries. The state-of-the-
art works focus on constructing effective logic testing oracles.
The mainstream approach involves adopting metamorphic
testing and differential testing. For example, PQS [51] de-
tects whether the pivot row exists in the preset query results.
NoREC [49] detects inconsistencies between query results be-
fore and after optimization. Mozi [37] utilizes equivalent con-
figuration transformation to test whether the result matches.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jingzhou Fu, Jie Liang, Zhiyong Wu, Yanyang Zhao, Shanshan Li, and Yu Jiang

DBMS performance testing [32, 39, 60] assesses the perfor-
mance under differentworkloads and conditions.Apollo [32]
utilizes performance regression testing to find errors in the
evolution of code during development. Amoeba [39] gen-
erates semantically equivalent queries and compares their
response times to identify performance issues.
Soft aims to find crash bugs in built-in SQL functions.

Unlike traditional DBMS testing works, Soft specifically
focuses on built-in SQL function bugs, which are mainly
caused by poor handling of boundary values. Consequently,
it aims to generate queries with nested SQL functions or type
conversions to trigger bugs. In addition, it generates only one
SQL statement with functions per case, and its complexity is
reflected in the SQL functions. Traditional testing work in a
test case generally has multiple statements, and complexity
is reflected in the SQL clauses.

Testing of Function Libraries. Traditional tests for func-
tion libraries include unit tests and fuzzing. Unit testing [17,
46, 52] involves writing and executing tests for individual
functions or routines within the library to verify that each
performs as expected in isolation. Tools like Evosuite and
Randoop [17, 46] can generate unit tests for Java libraries
with rich function sequences and provide assertions for cor-
rectness. These methods allow developers to check the cor-
rectness of each function, including edge cases and error-
handling paths. Fuzzing [2, 35, 38, 47, 56, 62] involves au-
tomatically generating a wide range of inputs to test the
function library’s robustness and error-handling capabilities.
libFuzzer [38] provides a standardized fuzzing interface,
LLVMFuzzerTestOneInput, which is used to call the func-
tion and construct a fuzzing driver for testing the function.
AFL [62] is one of the most popular fuzzers and can use the
interface to test functions. Many fuzzers improve test cover-
age through various techniques by combining it with static
analysis, taint analysis [2, 34], or symbolic execution [47, 61].

Unlike them, Soft is concerned with testing built-in SQL
functions. It specializes in generating test cases that satisfy
the SQL syntax requirements and boosts the complexity of
built-in SQL functions as much as possible to trigger bound-
ary values for testing. Nevertheless, Soft’s idea of triggering
boundary arguments can also be applied to traditional ap-
proaches to testing functions.
Domain Testing. Domain testing is a software testing

technique that generates a set of test cases to detect potential
errors on boundary conditions. It partitions input space into
multiple path domains and computes the boundaries of these
domains. It then detects the incorrect path domain (i.e., do-
main errors, such as incorrect branch predicate expressions)
by generating test inputs on the boundaries. White et al. [58]
first proposed domain testing and designed a test data selec-
tion strategy, and Clarke et al. [4] further introduced two
alternative domain testing strategies to improve on the er-
ror bound. Nevertheless, these domain testing strategies are

white-box testing methods depending on the analysis of con-
trol flows and execution paths of programs. It is difficult to
apply these techniques to large systems like DBMSs.

In contrast, Soft tests SQL functions by constructing the
boundary conditions studied from existing SQL function
bugs. We found that the bug-inducing boundary conditions
mainly come from the boundary literals, boundary type cast-
ings, and boundary results from nested functions. We sum-
marized them into ten patterns to trigger the boundary con-
ditions of SQL functions and detect bugs.
Robustness Testing. Robustness testing is essential in

ensuring the security and reliability of a system. It usually
involves introducing unexpected events to the system, such
as fault injections or invalid inputs [1, 3, 13, 14, 29, 41]. An-
droFIT [14] designed a vast set of faults of different compo-
nents in Android OS and implemented these faults in auto-
mated fault injection tools to detect their reliability issues.
Postmonkey [1] sends invalid, delaying, and random mes-
sages to inject faults in distributed embedded systems with
low computation power. ASTAA [29] tests autonomy sys-
tems by generating invalid values into the system message
fields to construct the test cases in XML formats. Since differ-
ent systems or components can have unique architectures,
the design of robustness testing approaches for a specific
system relies on certain characteristics of the system itself.
Soft can be considered as robustness testing targeted at

the SQL function components of DBMSs. We studied some
characteristics of SQL function bugs and summarized 10
boundary-value-generation patterns of these bugs. Guided
by these bug-inducing patterns, we designed the frameworks
of Soft to discover SQL function bugs, which can help de-
velopers improve the robustness of DBMSs.

10 Conclusion

In this paper, we have presented an in-depth analysis of
318 built-in SQL function bugs across three DBMSs. Our
investigation reveals that a significant majority (87.4%) of
these bugs are attributed to improper handling of bound-
ary values in function arguments. These boundary values
originate from boundary literal values, type castings, and
nested function return values. To address these issues, we
developed Soft, a tool that leverages the patterns identified
in our study to generate SQL test cases that effectively target
these boundary conditions. By employing Soft across seven
widely used DBMSs, we discovered 132 previously unknown
bugs, all of which have been confirmed.

Acknowledgments

We thank the shepherd and reviewers for their valuable com-
ments. This research is partly sponsored by the National Key
Research and Development Project (No. 2022YFB3104000),
NSFC Program (No. 62302256, 92167101, 62021002), and Chi-
nese Postdoctoral Science Foundation (2023M731953).

Understanding and Detecting SQL Function Bugs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

References

[1] Khaled Alnawasreh, Patrizio Pelliccione, Zhenxiao Hao, Mårten Rånge,
and Antonia Bertolino. 2017. Online robustness testing of distributed
embedded systems: An industrial approach. In 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering
in Practice Track (ICSE-SEIP). IEEE, 133–142.

[2] Peng Chen andHao Chen. 2018. Angora: Efficient fuzzing by principled
search. In IEEE Symposium on Security and Privacy (S&P).

[3] Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Ming Gu, Qing Liao,
and Yu Jiang. 2024. Chronos: Finding Timeout Bugs in Practical Dis-
tributed Systems by Deep-Priority Fuzzing with Transient Delay. In
IEEE Symposium on Security and Privacy (S&P). IEEE, 1939–1955.

[4] Lori A. Clarke, Johnette Hassell, and Debra J. Richardson. 1982. A close
look at domain testing. IEEE Transactions on Software Engineering 4
(1982), 380–390.

[5] MariaDB Corporation. 2024. MariaDB. https://mariadb.org/. Accessed:
September 23, 2024.

[6] MariaDB Corporation. 2024. MariaDB’s JIRA. https://jira.mariadb.org.
Accessed: September 23, 2024.

[7] MariaDB Corporation. 2024. MDEV-11030. https://jira.mariadb.org/
browse/MDEV-11030. Accessed: September 23, 2024.

[8] MariaDB Corporation. 2024. MDEV-14596. https://jira.mariadb.org/
browse/MDEV-14596. Accessed: September 23, 2024.

[9] MariaDB Corporation. 2024. MDEV-23415. https://jira.mariadb.org/
browse/MDEV-23415. Accessed: September 23, 2024.

[10] MariaDB Corporation. 2024. MDEV-32315. https://jira.mariadb.org/
browse/MDEV-32315. Accessed: September 23, 2024.

[11] MariaDB Corporation. 2024. MDEV-8407. https://jira.mariadb.org/
browse/MDEV-8407. Accessed: September 23, 2024.

[12] Oracle Corporation. 2024. MySQL Bug System. https://
bugs.mysql.com/. Accessed: September 23, 2024.

[13] Domenico Cotroneo, Domenico Di Leo, Francesco Fucci, and Roberto
Natella. 2013. Sabrine: State-based robustness testing of operating
systems. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 125–135.

[14] Domenico Cotroneo, Antonio Ken Iannillo, Roberto Natella, and Ste-
fano Rosiello. 2019. Dependability assessment of the Android OS
through fault injection. IEEE Transactions on Reliability 70, 1 (2019),
346–361.

[15] Wenqian Deng, Jie Liang, Zhiyong Wu, Jigzhou Fu, Mingzhe Wang,
and Yu Jiang. 2025. CONI: Detecting Database Connector Bugs via
State-Aware Test Case Generation. In Proceedings of the IEEE/ACM
47th International Conference on Software Engineering. 1–12.

[16] DuckDB 2024. DuckDB Website. https://duckdb.org/. Accessed:
September 23, 2024.

[17] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite
generation for object-oriented software. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. 416–419.

[18] Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang. 2024. Sedar: Ob-
taining High-Quality Seeds for DBMS Fuzzing via Cross-DBMS SQL
Transfer. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering. 1–12.

[19] Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang.
2022. Griffin: Grammar-free DBMS fuzzing. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering.
1–12.

[20] Ying Fu, Zhiyong Wu, Yuanliang Zhang, Jie Liang, Jingzhou Fu, Yu
Jiang, Shanshan Li, and Xiangke Liao. 2025. THANOS: DBMS Bug
Detection via Storage Engine Rotation Based Differential Testing. In
Proceedings of the IEEE/ACM 47th International Conference on Software
Engineering. 1–12.

[21] GitHub. 2024. A Bug of DecimalString Function. https://github.com/
ClickHouse/ClickHouse/issues/52407. Accessed: September 23, 2024.

[22] GitHub. 2024. Decimal in MariaDB. https://mariadb.com/kb/en/
decimal/. Accessed: September 23, 2024.

[23] The PostgreSQL Global Development Group. 2024. Chapter 9.
Functions and Operators. https://www.postgresql.org/docs/current/
functions.html. Accessed: September 23, 2024.

[24] The PostgreSQL Global Development Group. 2024. PostgreSQL Bug
Report Mailing List. https://www.postgresql.org/list/pgsql-bugs/. Ac-
cessed: September 23, 2024.

[25] The PostgreSQL Global Development Group. 2024. PostgreSQL Se-
curity Information. https://www.postgresql.org/support/security/.
Accessed: September 23, 2024.

[26] The PostgreSQL Global Development Group. 2024. Unchecked JSON
Input Can Crash the Server. https://www.postgresql.org/support/
security/CVE-2015-5289/. Accessed: September 23, 2024.

[27] The PostgreSQL Global Development Group. 2024. Unchecked Regex
Can Crash the Server. https://www.postgresql.org/support/security/
CVE-2016-0773/. Accessed: September 23, 2024.

[28] The PostgreSQL Global Development Group. 2024. User-Defined Func-
tions. https://www.postgresql.org/docs/current/xfunc.html. Accessed:
September 23, 2024.

[29] Casidhe Hutchison, Milda Zizyte, Patrick E Lanigan, David Gutten-
dorf, Michael Wagner, Claire Le Goues, and Philip Koopman. 2018.
Robustness testing of autonomy software. In Proceedings of the 40th
International Conference on Software Engineering: Software Engineering
in Practice. 276–285.

[30] ClickHouse Inc. 2024. ClickHouse Website. https://clickhouse.com/.
Accessed: September 23, 2024.

[31] ClickHouse Inc. 2024. Type Conversion Functions. https:
//clickhouse.com/docs/en/sql-reference/functions/type-conversion-
functions. Accessed: September 23, 2024.

[32] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang.
2020. APOLLO: Automatic Detection and Diagnosis of Performance Re-
gressions in Database Systems. In Proceedings of the 46th International
Conference on Very Large Data Bases (VLDB). Tokyo, Japan.

[33] Jie Liang, Yaoguang Chen, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang,
Yu Jiang, Xiangdong Huang, Ting Chen, Jiashui Wang, and Jiajia Li.
2023. Sequence-oriented DBMS fuzzing. In Proceedings of IEEE Inter-
national Conference on Data Engineering (ICDE).

[34] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang,
Jianzhong Liu, Zhe Liu, and Jiaguang Sun. 2022. Pata: Fuzzing with
path aware taint analysis. In 2022 IEEE Symposium on Security and
Privacy (S&P). IEEE, 1–17.

[35] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Jianzhong Liu,
and Yu Jiang. 2024. Dodrio: Parallelizing Taint Analysis Based Fuzzing
via Redundancy-Free Scheduling. In Companion Proceedings of the
32nd ACM International Conference on the Foundations of Software
Engineering. 244–254.

[36] Jie Liang, Zhiyong Wu, Jingzhou Fu, Yiyuan Bai, Qiang Zhang, and
Yu Jiang. 2024. WingFuzz: Implementing Continuous Fuzzing for
DBMSs. In 2024 USENIX Annual Technical Conference (USENIX ATC
24). 479–492.

[37] Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Chengnian Sun,
and Yu Jiang. 2024. Mozi: Discovering DBMS Bugs via Configuration-
Based Equivalent Transformation. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering.

[38] LibFuzzer 2024. LibFuzzer. https://www.llvm.org/docs/LibFuzzer.html.
Accessed: September 23, 2024.

[39] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso. 2022. Automatic
detection of performance bugs in database systems using equivalent
queries. In Proceedings of the 44th International Conference on Software
Engineering. 225–236.

[40] MonetDB 2024. The Database System to speed up your Analytical
Jobs. https://www.monetdb.org/. Accessed: September 23, 2024.

[41] Roberto Natella, Stefan Winter, Domenico Cotroneo, and Neeraj Suri.
2018. Analyzing the effects of bugs on software interfaces. IEEE

https://mariadb.org/
https://jira.mariadb.org
https://jira.mariadb.org/browse/MDEV-11030
https://jira.mariadb.org/browse/MDEV-11030
https://jira.mariadb.org/browse/MDEV-14596
https://jira.mariadb.org/browse/MDEV-14596
https://jira.mariadb.org/browse/MDEV-23415
https://jira.mariadb.org/browse/MDEV-23415
https://jira.mariadb.org/browse/MDEV-32315
https://jira.mariadb.org/browse/MDEV-32315
https://jira.mariadb.org/browse/MDEV-8407
https://jira.mariadb.org/browse/MDEV-8407
https://bugs.mysql.com/
https://bugs.mysql.com/
https://duckdb.org/
https://github.com/ClickHouse/ClickHouse/issues/52407
https://github.com/ClickHouse/ClickHouse/issues/52407
https://mariadb.com/kb/en/decimal/
https://mariadb.com/kb/en/decimal/
https://www.postgresql.org/docs/current/functions.html
https://www.postgresql.org/docs/current/functions.html
https://www.postgresql.org/list/pgsql-bugs/
https://www.postgresql.org/support/security/
https://www.postgresql.org/support/security/CVE-2015-5289/
https://www.postgresql.org/support/security/CVE-2015-5289/
https://www.postgresql.org/support/security/CVE-2016-0773/
https://www.postgresql.org/support/security/CVE-2016-0773/
https://www.postgresql.org/docs/current/xfunc.html
https://clickhouse.com/
https://clickhouse.com/docs/en/sql-reference/functions/type-conversion-functions
https://clickhouse.com/docs/en/sql-reference/functions/type-conversion-functions
https://clickhouse.com/docs/en/sql-reference/functions/type-conversion-functions
https://www.llvm.org/docs/LibFuzzer.html
https://www.monetdb.org/

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jingzhou Fu, Jie Liang, Zhiyong Wu, Yanyang Zhao, Shanshan Li, and Yu Jiang

Transactions on Software Engineering 46, 3 (2018), 280–301.
[42] Openlink. 2024. Virtuoso Open-Source Edition. https://

vos.openlinksw.com/owiki/wiki/VOS. Accessed: September 23, 2024.
[43] Oracle. 2024. Chapter 6 Adding Functions to MySQL.

https://dev.mysql.com/doc/extending-mysql/8.3/en/adding-
functions.html. Accessed: September 23, 2024.

[44] Oracle. 2024. Functions and Operators. https://dev.mysql.com/doc/
refman/8.0/en/functions.html. Accessed: September 23, 2024.

[45] Oracle 2024. MySQL. https://www.mysql.com/. Accessed: September
23, 2024.

[46] Carlos Pacheco andMichael D Ernst. 2007. Randoop: feedback-directed
random testing for Java. In Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications
companion. 815–816.

[47] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution
with SymCC: Don’t interpret, compile!. In USENIX Security Sympo-
sium.

[48] PostgreSQL 2024. PostgreSQL. https://www.postgresql.org/. Accessed:
September 23, 2024.

[49] Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs
in database engines via non-optimizing reference engine construction.
In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. 1140–1152.

[50] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database sys-
tems via query partitioning. Proceedings of the ACM on Programming
Languages 4, OOPSLA (2020), 1–30.

[51] Manuel Rigger and Zhendong Su. 2020. Testing database engines via
pivoted query synthesis. In 14th USENIX Symposium on Operating
Systems Design and Implementation OSDI 20). 667–682.

[52] Per Runeson. 2006. A survey of unit testing practices. IEEE software
23, 4 (2006), 22–29.

[53] Andreas Seltenreich, Bo Tang, and Sjoerd Mullender. 2018. SQLsmith:
a random SQL query generator. https://github.com/anse1/sqlsmith

[54] Donald R. Slutz. 1998. Massive Stochastic Testing of SQL. In VLDB’98,
Proceedings of 24rd International Conference on Very Large Data Bases,
New York, USA. Morgan Kaufmann, 618–622.

[55] Rick F Van Der Lans. 1989. The SQL standard: a complete guide reference.
Prentice Hall International (UK) Ltd.

[56] Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Jingzhou Fu,
Zhuo Su, Qing Liao, Bin Gu, Bodong Wu, and Yu Jiang. 2024. Data
Coverage for Guided Fuzzing. In 33rd USENIX Security Symposium
(USENIX Security 24). 2511–2526.

[57] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou,
Huafeng Zhang, and Yu Jiang. 2021. Industry Practice of Coverage-
Guided Enterprise-Level DBMS Fuzzing. In 43rd IEEE/ACM Interna-
tional Conference on Software Engineering: Software Engineering in
Practice, ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021. IEEE, 328–
337. https://doi.org/10.1109/ICSE-SEIP52600.2021.00042

[58] Lee JWhite and Edward I Cohen. 1980. A domain strategy for computer
program testing. IEEE transactions on software engineering 3 (1980),
247–257.

[59] Wikipedia 2024. databases. https://en.wikipedia.org/wiki/Database.
Accessed: September 23, 2024.

[60] ZhiyongWu, Jie Liang, Jingzhou Fu, MingzheWang, and Yu Jiang. 2025.
PUPPY: Finding Performance Degradation Bugs in DBMSs via Limited-
Optimization Plan Construction. In Proceedings of the IEEE/ACM 47th
International Conference on Software Engineering. 1–12.

[61] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018.
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid
Fuzzing. In USENIX Security Symposium.

[62] Michał Zalewski. 2017. american fuzzy lop. http:
//lcamtuf.coredump.cx/afl/. Accessed: September 23, 2024.

[63] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee,
and Dinghao Wu. 2020. Squirrel: Testing Database Management Sys-
tems with Language Validity and Coverage Feedback. In The ACM
Conference on Computer and Communications Security (CCS), 2020.

https://vos.openlinksw.com/owiki/wiki/VOS
https://vos.openlinksw.com/owiki/wiki/VOS
https://dev.mysql.com/doc/extending-mysql/8.3/en/adding-functions.html
https://dev.mysql.com/doc/extending-mysql/8.3/en/adding-functions.html
https://dev.mysql.com/doc/refman/8.0/en/functions.html
https://dev.mysql.com/doc/refman/8.0/en/functions.html
https://www.mysql.com/
https://www.postgresql.org/
https://github.com/anse1/sqlsmith
https://doi.org/10.1109/ICSE-SEIP52600.2021.00042
https://en.wikipedia.org/wiki/Database
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 General Findings of SQL Function Bugs
	4.1 Occurrence Stages
	4.2 Types of SQL Functions
	4.3 Prerequisite SQL Statements

	5 Root Causes of SQL Function Bugs
	5.1 Boundary Literal Values
	5.2 Boundary Type Castings
	5.3 Boundary Results of Nested Functions
	5.4 Other Root Causes

	6 Boundary Value Generation Patterns
	7 Pattern-Based Bug Detection
	7.1 Implementation
	7.2 Testing Setup
	7.3 Detected DBMS Vulnerabilities
	7.4 Bugs of Each Pattern
	7.5 Comparison with Other Testing Works

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

