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Protocol reverse engineering infers the specification of proprietary or poorly documented protocols and serves
as the foundation for security analysis such as fuzz testing. While many existing techniques achieve this by
mining statistical features from network traces, they face increasing challenges due to incomplete field pattern
information available in the traces. While protocol development has accumulated rich prior knowledge about
protocol design, this knowledge remains largely untapped in protocol reverse engineering.

This paper introduces TransRE, a protocol reverse engineering tool that leverages prior syntax knowledge
from standardized protocols through deep transfer learning to better understand proprietary protocols.
TransRE first selects optimal source domains by analyzing inter-domain differences between the existing
knowledge base and the target protocol. It then employs a neural network to extract representation features
and applies domain adaptation techniques to optimize the syntax transfer model, enabling accurate inference
of protocol formats. Our evaluation on 12 widely used protocols shows that TransRE identifies fields with
a perfection score of 0.43, which is 1.48×-3.07× the performance achieved by five state-of-the-art methods.
Furthermore, to demonstrate practical applicability, we enhanced an existing protocol fuzzer with TransRE
for testing proprietary protocols in real-world network cameras and discovered four bugs.
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1 Introduction

Protocol reverse engineering analyzes proprietary or poorly documented protocols and serves as
the foundation for various security analyses, such as fuzzing [17, 23, 29, 30, 48], security reinforce-
ment [3, 37], and model checking [21, 33]. For example, protocol fuzzing requires constructing test
packets according to protocol specifications to detect bugs. However, in many critical scenarios
such as Industrial Control Systems (ICS), protocol specifications are often unavailable [37, 40].
Protocol reverse engineering involves inferring protocol formats through program analysis or

network trace analysis. Program-based methods [7, 12, 22, 32] use techniques like taint analysis
to monitor protocol program execution and track message processing, achieving high accuracy
empowered by rich runtime semantics. However, access to source code and binary firmware is
often restricted in proprietary scenarios such as ICS or IoT.
Alternatively, network trace-based approaches [4, 6, 8, 13, 27, 50] perform statistical analysis

on captured network traces using techniques like message clustering, sequence alignment, and
heuristic rules to identify fixed patterns. Though easier to deploy, these methods depend on message
completeness and suffer from low accuracy due to inflexible field patterns. First, they employ fixed
patterns derived from heuristic rules to identify fields, limiting their applicability to protocols
incompatible with predefined patterns. For example, TCP timestamps [18] do not conform to
standard formats like NTP or Unix timestamps, making them unrecognizable by BinaryInferno’s [8]
timestamp detector. Second, fixed patterns with thresholds are inaccurate for protocol-specific field
recognition. Existing techniques using uniform approaches to standardize all protocols can lead to
low accuracy. Learning-based approaches that rely on large datasets to learn inherent patterns of
proprietary protocols [19, 36] face difficulties in obtaining sufficient and high-quality labeled data
for training, which is often impractical and labor-intensive.

Protocol design and implementation typically follow functional application requirements and are
grounded in specifications and knowledge from existing protocols [1, 39]. This shared foundation
results in common patterns and similar structures across different protocols. For example, Length
fields in Modbus, AMQP, and IEC104 protocols all follow a linear relationship between message
length and field value [35]. Leveraging prior knowledge of these consistent patterns can significantly
improve protocol reverse engineering. However, existing approaches primarily rely on statistical
analysis to infer protocol formats using general field patterns observed from some protocols. The
substantial differences between protocols often hinder the application of these general patterns,
limiting analysis accuracy and effectiveness.

To address this problem, we introduce TransRE, a protocol reverse engineering tool that leverages
prior syntax knowledge from standardized protocols 1 to more accurately understand proprietary
protocols through deep transfer learning. TransRE first identifies optimal source domains by
analyzing inter-domain differences between the knowledge base and the protocol under analysis.
It then extracts syntax patterns from standardized protocols through deep transfer learning to
infer proprietary protocol syntax. To achieve this approach, we need to address two chal-

lenges: (i) How to measure protocol differences and similarity without specifications for effective
source domain selection. Achieving standardized difference evaluation among diverse protocols is
challenging because different protocols have varying message types and structures. (ii) How to
design a general transfer learning strategy for protocol format recovery. Ensuring accurate pattern
transmission across protocols is challenging because different protocols may have distinct field
characteristics.

1This work only focuses on message syntax, and does not support the inference of state transitions. We refer to protocols
with specifications as standardized protocols, which are typically public, and protocols without specifications as proprietary
protocols, which are often less-documented or custom-built.
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For the first challenge, we transfer the multi-message sequence transpose to the distance of
the metric distribution in the calculable space through the mapping transformation due to the
different feature spaces among protocols. We then establish a transfer-oriented metric to identify
the optimal mapping relationship for maximizing the mean difference. This difference estimation is
feasible under simple protocols with the same length and syntax. However, it fails when protocols
differ significantly, as messages across different protocols vary widely. Using fixed mapping rules
to construct protocol features may cause errors, resulting in significant bias when estimating the
distance of different protocol distributions. To achieve this goal, we utilize a two-phase approach.
Initially, we cluster protocol messages using heuristic rules and integrate the constructed feature
data. Building on this, we performmapping transformations on the processed message data, analyze
the differences in feature distribution between the target protocol and multiple standardized
protocols, and implement adaptive source domain selection for proprietary protocols based on
these inter-domain differences.
To tackle the second challenge, we leverage the powerful representational learning of deep

networks to facilitate the adaptation between standardized and proprietary protocols. Traditional
learning methods rely on labeled data with proportional partitioning for training and evalua-
tion, while proprietary protocols lack prior knowledge, making transfer adaptation challenging.
Therefore, we have designed a dual-stream transfer learning structure, including shared layers
and transfer layers, with the base functions being fully connected neural networks standardized
for their strong representational capabilities. To accelerate deep learning, in the shared portion,
bottleneck layers with batch normalization are added to reduce the dimensions of the deep fea-
tures of messages, facilitating the calculation of distances between standardized and proprietary
protocols. For inter-protocol knowledge transfer, the transfer layer employs a deep subdomain
transfer network method based on probabilities to flexibly carry out deep transfer of protocol
patterns. During back-propagation, the learning loss for the supervised part is calculated using
the syntactic labels of standardized protocols and the network’s predicted labels, and then the
transfer parameters are jointly optimized with the transfer loss calculated at the bottleneck layer.
Moreover, to optimize model performance and prevent over-fitting, we have also set the training
cut-off condition. Ultimately, this model learns message inference logic on standardized protocols
to infer the proprietary protocol format.

We implement and evaluate TransRE against five state-of-the-art protocol reverse engineering
tools on 12 widely used protocols. The experimental results demonstrate that TransRE identifies
fields with a perfection score of 0.43, significantly outperforming state-of-the-art methods such as
Netzob, Netplier, FieldHunter, BinaryInferno, and Nemesys, which achieve an average of 0.21, 0.29,
0.14, 0.21, and 0.22, respectively. Additionally, we conducted ablation experiments on both source
selection and syntax transfer modules, highlighting their effectiveness. Finally, to demonstrate the
practical application of TransRE, we adapted it to enhance existing fuzz testing for proprietary
protocols in four real-world network cameras, including two from Hikvision and two from Hon-
eywell. Equipped with TransRE, the fuzzer successfully identified four vulnerabilities. Our main
contributions are as follows:

• We propose the concept of protocol syntax transfer, first designing a source selection method
to analyze inter-domain differences in order to match the optimal prior syntax knowledge
domain for the protocol under test, and then using deep transfer learning to mine the syntax
patterns of standardized protocols and infer proprietary protocol syntax.
• We implement TransRE and evaluate it on 12 protocols. The results show that TransRE
outperforms state-of-the-art approaches.
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• We enhance the current fuzzing approach by applying TransRE to proprietary protocols of 4
real-world cameras, uncovering four vulnerabilities.

2 Motivation

In this section, we first show the limitations of traditional network traffic-based methods. Then, we
show the basic ideas and challenges in our work.

2.1 Motivating Example

Traditional heuristic rule-based traffic analysis methods suffer from field pattern incompleteness
and inflexibility.

Fig. 1. Example of common pattern between protocols

Pattern Incompleteness. Traditional methods employ limited fixed patterns or heuristic rules to
identify protocol formats. Thesemethodsmay fail to cover all protocol field patterns or automatically
adapt to the evolution of protocols, especially when dealing with proprietary or dynamically
changing protocols. Over time, protocols are modified and extended in response to changing
requirements, with newly added fields potentially not adhering to preset rules, or the meanings
of existing fields changing. For instance, Netplier uses four heuristic rules to identify key fields,
while BinaryInferno has five built-in fixed pattern recognition typical fields. Unsupervised learning-
based approaches rely on large amounts of protocol data to learn the characteristics of proprietary
protocols themselves to obtain protocol type or protocol syntax information [19, 36]. However, this
approach struggles to handle noisy data or complex protocol changes and may inaccurately capture
field patterns. Existing protocols exhibit a wide range of field patterns, making the exploration of
predefined patterns between these fields complex and labor-intensive. For instance, Figure 1 shows
the syntax of Modbus Query messages [41], Hart_IP Pass Through Request Message [9], and IEC
60870_104 Message slices and syntax [34]. The f1 field in the Modbus message and the f5 in the
Hart_IP Message can be accurately identified with simple and obvious patterns. Still, the inherent
mode of Modbus protocol’s f3, f4, and f5 fields is cryptic and difficult to capture. Consequently,
heuristic rule-based methods cannot account for all field patterns.

Pattern Inflexibility. The fixed rules of traditional methods can be based on the length, position,
value range of protocol fields, and even the behavior characteristics of network traffic. For example,
the sequence of commands for the RTSP protocol (e.g., SETUP, PLAY, PAUSE) is important. The
server’s response to these commands depends heavily on the order in which they are received.
These methods work well for recognizing known protocols, but their accuracy and adaptability are
limited when faced with varying or unknown protocols. Because different protocols have different
field patterns, these tools usually rely on preset and fixed patterns to identify and analyze data
packets, which lack flexibility, resulting in limited benefits of field segmentation. For example,
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because the timestamps used by the TCP to enhance the performance and reliability of network
communications do not conform to standard time formats like NTP or Unix timestamps, they
cannot be recognized using the custom timestamp detector from BinaryInferno [8]. Moreover,
some heuristic-based methods employ threshold value to recognize fields, which can increase
identification errors when dealing with proprietary protocols, as these thresholds are not applicable
in all situations. Although all three protocols include the 𝑦 = 𝑘𝑥 + 𝑏 mode in Figure 1, there are
differences among the three modes. In Hart_IP and IEC 60870_104, ‘x’ represents the length of the
subsequent field containing the field itself, while Modbus represents the sequence length after the
field. FieldHunter uses a fixed threshold value to adjust for the linear correlation between the field
value and the actual message size, which cannot accurately identify its field.

2.2 Basic Idea of TransRE

The basic idea of TransRE comes from inter-protocol shared foundation and the principle of
transfer learning.
Shared Foundation. The design and implementation of new protocols usually follow the re-

quirements of functional applications and are based on the specifications and knowledge of existing
protocols. This shared basis leads to the emergence of common patterns or comparable structures
across various protocols. For example, the Length field in the Modbus protocol follows a linear
relationship between message length and field value; this pattern also appears in AMQP and IEC104
protocols [35]. Considering the similar functional requirements or industry standards, protocols in
the same application scenario usually exhibit more similar syntax patterns. For example, in ICS,
protocols from different vendors may all need to support functions such as device communication,
status monitoring, and command transmission. As a result, there may be protocols with similar
message formats for data exchange or device communication. There are rich common patterns
between industrial protocols, which can be transferred to the format inference task of unknown
protocols as prior knowledge. Figure 1 provides three potential common syntax patterns among
Modbus [41], Hart_IP protocol [9], and IEC 60870_104 [34] by different colors, involving incremen-
tal dynamic pattern ( 1○), static fields with a small value ( 2○), and y=kx+b pattern for identifying
length fields ( 3○). Besides, there are some more hidden features, e.g., the f6 field of the Modbus and
the f4 and f6 fields of the IEC 60870_104 change slightly.
Transferability. The core advantage of transfer learning lies in its ability to leverage a large

amount of labeled data or known structural information from the source task to overcome challenges
such as insufficient data or high complexity in the target task. In protocol format inference, the
source protocol may have clear field structures, data flow patterns, and communication rules. The
target protocol, even if it is a proprietary one without formal specifications, may still share similar
functional requirements or application scenarios with the source protocol. For instance, while
the specific field definitions of a proprietary protocol may not be publicly available, they could
align closely with other known protocols in terms of communication purposes, data transmission
methods, etc. Thus, transfer learning can exploit these commonalities. Since different protocols
employ different field patterns, the similarity in field patterns between protocols varies. For example,
in Figure 1, the Modbus protocol and the Hart_IP protocol exhibit three field patterns, whereas
the IEC104 does not include a fixed-step increment dynamic field pattern. From the perspective
of transfer learning, should the source and target protocols exhibit a greater degree of similarity
in field structure, the transfer learning model will yield more promising results in inferring the
proprietary protocol.
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2.3 Challenges

To leverage prior knowledge of protocols with specifications through deep transfer learning to
improve the inference of message formats for proprietary protocols, we must address two challenges.
C.1 Inter-protocol Correlation. The same type of messages of protocol can compute distri-

bution distances through mapping transformations, but evaluating inter-protocol correlation on
cross-protocol messages provides an additional challenge.

The relevance between the source and target domains is crucial for effective transfer learning. A
highly relevant source domain can significantly improve learning efficiency and model performance.
Conversely, dissimilar source and target domains may result in poor transfer or negative outcomes.
Achieving a standardized difference evaluation between different protocols, like length and weight,
is not feasible, because messages of different protocols have various types and field patterns. Face
numerous publicly available protocols, superficial choices are insufficient for determining effective
transfer. Therefore, in the absence of specific protocol specifications, accurately assessing the
differences between different protocols and selecting an appropriate source protocol for transfer
learning to target protocols is a highly complex and challenging task.

C.2 Protocol Diversity. Designing a generalized transfer learning strategy capable of facilitating
protocol format recovery across protocol diversity presents significant challenges.

In network security and data communication, it is very difficult to manually obtain syntax-labeled
data for proprietary protocols. These areas often deal with diverse and evolving protocols, which
may overturn existing protocol field pattern logic. Different protocols may have their unique data
patterns and structures, with significant variations in their structure and semantics. The continu-
ously evolving new protocols may introduce new field patterns that overturn existing protocol field
pattern logic. Transfer learning can improve the model’s performance in understanding proprietary
protocols by introducing prior syntax knowledge from standardized protocols. However, standard
deep learning architectures lack the flexibility to effectively handle such diverse data sources, mak-
ing knowledge adaptation and transfer difficult. Modifying and optimizing deep learning networks
to better handle standardized and proprietary protocols and capture key common features across
various protocols remains a significant challenge.

3 System Design

Overview. Figure 2 provides TransRE framework, including preprocessing, source selection, and
syntax transfer modules: after protocol preprocessing, combined with syntax labels generated by
Tshark [44] to build a knowledge base. The source selection module selects the optimal source
domain for the target protocol from the knowledge base using adaptive matching. Then, by com-
bining feature extraction and domain adaptation techniques, the syntax transfer module optimizes
the transfer model to infer the message format of proprietary and poorly documented protocols.

Converting and Labeling. In this phase, network traffic of both standardized and proprietary
messages is collected to train, validate, and test the model. First, we pre-process the incoming
network traffic to extract the target protocol packets and group them by protocol type. We then
use Tshark [44] to traverse the various layers of the target packets and use a depth-first search to
extract information from the target layer by deduplicating and sorting to obtain the field values and
positions of the original packet bytes. At the same time, we extract the protocol messages and then
convert the field values to decimal integers ranging from 0 to 255. Sequence labels are generated
on the basis of field positions and syntax, with the last byte of a message field marked positive and
all other bytes marked negative. A standardized protocol requires calling the entire process, while
for proprietary protocols only the conversion from sequences to numeric values is performed.
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Fig. 2. TransRE Overview. The tool uses the source selection module to identify the optimal source protocol

with message syntax for the proprietary protocol. It then uses a Neural Network to extract common syntax

features. These features are processed by domain adaptation techniques to train and optimize the syntax

transfer model, enabling inference of the proprietary protocol format.

Source Selection. To enhance the accuracy of transfer learning, this method extracts the high-
dimensional features of protocol messages through the fully connected neural network according to
the distribution of unknown protocol messages and various known protocols. It maps the protocol
features into Hilbert space through transformation. Based on the assumptions of transfer learning,
the smaller the difference between the source and target domain, the more knowledge can be
transferred between them. Therefore, this study selects the protocol message set with the smallest
domain difference from the unknown protocol as the training set.
Syntax Transfer. This module primarily implements the inference of proprietary protocol

syntax using prior knowledge from known protocols. It has designed a deep transfer model for
domain adaptation and transfer tasks between standardized and proprietary protocols, incorporating
components such as a base network model, bottleneck layer, and transfer loss to effectively learn
representations with good generalizability from the source domain to the target domain. The model
trains on source and target domain data, striving to minimize a combination of transfer loss and
model parameter optimization loss, adapting to various protocol data. The model is also regularly
evaluated based on training conditions and employs early stopping to prevent overfitting, ultimately
yielding a transfer model with known protocol knowledge to infer proprietary protocol format.

3.1 Source Selection

For protocol P𝑝𝑡𝑦 without prior knowledge, this module first determines similarity degree in data
distribution between P𝑝𝑡𝑦 and standardized protocol P𝑠𝑡𝑑 ∈ {P𝑠𝑡𝑑 }, and selects the most similar
standardized protocol data packet P∗

𝑠𝑡𝑑
to improve the accuracy of protocol reverse task for P𝑝𝑡𝑦 .

Algorithm 1 provides an overview of the source selection module. This module first sets an
empty list: {𝐶} (Line 2) to store the covariance results of multiple source domains. The covariance
distance𝐶 between two data domains is obtained by the CovCalculate procedure (Lines 8-20) and
when the source domain selection module calls CovCalculate, the covariance distance between
the target domain and the candidate source domain is written into {𝐶}.

To obtain matrix information of protocol messages in the data domain, by examining the publicly
available Industrial Control Systems (ICS) protocol dataset1, we found that 12 protocols consist
entirely of homogeneous clusters, and other protocols all contain more than 75% of homogeneous
clusters. Consequently, the CovCalculate algorithm first computes the message length data asso-
ciated with both standardized and proprietary protocols, and then performs a clustering analysis
based on this information. Given the label information generated by the protocol within the cluster,
a transpose calculation is performed in conjunction with feature concatenation between clusters,
thereby generating matrix information and decomposing it into feature vectors. The proprietary
protocol is directly transposed to generate matrix information and decompose it into feature vectors.
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Algorithm 1: Select Source
Input :Standardized protocol sets {P𝑠𝑡𝑑 }

Input :Proprietary protocol P𝑝𝑡𝑦
Output :Optimal source S∗

1 Algorithm

2 {𝐶 }← {}

3 for P𝑠𝑡𝑑 in {P𝑠𝑡𝑑 } do

4 𝐶 = CovCalculate(P𝑠𝑡𝑑 , P𝑝𝑡𝑦)
5 {𝐶 }← append({𝐶 },𝐶)

6 S∗ ← argmin
𝑆

{𝐶𝑆 | 𝐶𝑆 ∈ {𝐶 } }

7 return S∗

8 Procedure CovCalculate(P𝐴 , P𝐵),
9 L𝐴 ← length of P𝐴

10 L𝐵 ← length of P𝐵
11 𝐶 ← {}

12 for 𝑙1 ← 1 to 100 do
13 𝑛← min(L𝐴 , L𝐵 )
14 for 𝑙2 ← 1 to 𝑛 do

15 𝐷𝑠 , 𝑐𝑠 ← next (P𝐴)
16 𝐷𝑡 , _← next(P𝐵)
17 zero_grad(𝑜𝑝𝑡)

18 𝑀𝑐𝑜𝑣 ← L𝑐𝑜𝑣(𝐷𝑠 , 𝐷𝑡 , 𝑐𝑠)
19 𝐶 ← append(𝐶 ,𝑀𝑐𝑜𝑣)

20 return𝐶

Finally, CovCalculate generates source domain data 𝐷𝑠 with label 𝑐𝑠 and target domain data 𝐷𝑡 to
calculate their covariance𝑀𝑐𝑜𝑣 .
To achieve the domain difference calculation between standardized and proprietary protocol

message data, calculate the covariance matrix using the obtained 𝐷𝑠 and 𝐷𝑡 combined with the
identity matrix as shown in the formula 1, where 𝐷 is the matrix after feature transformation in
the data domain; 𝑛 is the size of the data domain; 𝐸 is the identity matrix.

𝐶 =
1

𝑛 − 1
(𝐷𝑇𝐷 − 1

𝑛
(𝐸𝑇𝐷 )𝑇 (𝐸𝑇𝐷 ) ) (1)

L𝑐𝑜𝑣 =
| |𝐶𝑠 − 𝐶𝑡 | |

4𝑑2 (2)

Then, the covariance matrices𝐶𝑠 and𝐶𝑡 of the source and target protocols, respectively, are used
in the formula 2 to compute the data domain differences. Here, 𝑑 represents the number of packets
selected for protocol feature construction. The goal is to generate the optimal difference calculation
result 𝑀𝑐𝑜𝑣 by gradient optimization. To reduce the generated error, perform 100 covariance
computations in a loop and construct a covariance list {𝐶} to select the source protocols.
In the select source module, by calling the CovCalculate, it is feasible to calculate the inter-

domain difference 𝐶 between several standardized candidate protocols and the target protocol and
construct a covariance list {𝐶}. Traverse the position of each element and find the optimal element
for the current position in each inter-domain difference list. If a list has the smallest value at that
position, increase the count of that list. Finally, find the column with the highest counts of the
smallest values and use that as a good source domain for the target protocol selection.
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3.2 Syntax Transfer

Algorithm 2: Syntax Transfer
Input :Standardized protocol message P𝑠𝑡𝑑
Input :Proprietary protocol message P𝑝𝑡𝑦
Input :Label of source protocol 𝑐𝑠
Output :Proprietary protocol syntax S𝑝𝑡𝑦

1 Algorithm

2 𝐷𝑠 , 𝐷𝑡 ← processing(P𝑠𝑡𝑑 , P𝑝𝑡𝑦)
3 TransNet← (𝑁𝑏𝑎𝑠𝑒 , 𝑁𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 , 𝑁𝑐𝑙𝑠 )
4 𝑀 ← TransNet(𝐷𝑠 , 𝐷𝑡 , 𝑐𝑠)
5 Procedure𝑀.trian()
6 F ←𝑀 .𝑁𝑏𝑎𝑠𝑒(𝐷𝑠 , 𝐷𝑡 , 𝑐𝑠)
7 F̂𝑠 , 𝑐 ←𝑀 .𝑁𝑐𝑙𝑠(F)
8 L ← criterion(F̂𝑠 , 𝑐𝑠)
9 logitst ← softmax(𝑐 , dim=1)

10 𝑤𝑠𝑠 , 𝑤𝑡𝑡 , 𝑤𝑠𝑡 ← weights(𝑐𝑠 , logitst)
11 kernels← gaussian_kernel(𝐷𝑠 , 𝐷𝑡)

12 𝑠𝑠 , 𝑡𝑡 , 𝑠𝑡 ← kernels[:i,:i], kernels[i:,i:], kernels[:i, i:]

13 L𝑡𝑟𝑎𝑛𝑠 ← {𝑠𝑠 , 𝑡𝑡 , 𝑠𝑡 }×{𝑤𝑠𝑠 , 𝑤𝑡𝑡 , 𝑤𝑠𝑡 }
14 L𝑡𝑜𝑡 ← L + 𝜆 * L𝑡𝑟𝑎𝑛𝑠

15 Procedure𝑀.eval()
16 F𝑢𝑛𝑘 ←𝑀 .𝑁𝑏𝑎𝑠𝑒(𝐷𝑡)

17 _, 𝑐 ←𝑀 .𝑁𝑐𝑙𝑠(F𝑢𝑛𝑘)
18 S𝑝𝑡𝑦 ← processing(𝐷𝑡 , 𝑐)

19 return S𝑝𝑡𝑦

The source selectionmodule selects optimal data sources from publicly accessible source protocols
for the target proprietary protocol, providing prior syntactic knowledge for TransRE to understand
proprietary protocols. For the proprietary protocol, the TransRE clusters the messages of the
proprietary protocol, then conducts homogeneity tests within each cluster. If a cluster contains
heterogeneous messages, the system will remove and re-cluster the messages. This process iterates
until each cluster contains only homogeneous messages. After converting the bytes of the messages
in the cluster to decimal integers, the base network of TransRE performs syntax feature extraction.
Subsequently, the subdomain adaptation algorithm trains and optimizes the transfer learning model,
utilizing the prior syntactic knowledge of standardized protocols to infer the message format of the
proprietary protocol.

Fig. 3. TransNet’s network structure and workflow, including two parts, the base network 𝑁𝑏𝑎𝑠𝑒 and the core

network involving local minimization of L + 𝜆L𝑡𝑟𝑎𝑛𝑠
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The syntax transfer algorithm 2 is a deep transfer learning model TransNet. Figure 3 provides the
network structure and workflow for TransRE model. TransNet consists of two parts (Line 3), the
base network 𝑁𝑏𝑎𝑠𝑒 and the core network involving bottleneck layer 𝑁𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 and classification
layer 𝑁𝑐𝑙𝑠 to minimize inter-domain variability: the activations 𝑓 (𝐷), the ground-truth label 𝐶𝑠 ,
and the predicted label 𝐶 .

Base net 𝑁𝑏𝑎𝑠𝑒 is a fully connected neural network. It extracts features from input message data
and transforms them into higher dimensional syntax representations. 𝑁𝑏𝑎𝑠𝑒 network architecture
consists of linear layers and ReLU activation functions that convert the input vector into hidden
features. A ReLU activation function follows this layer to introduce non-linearity. Finally, it outputs
a higher dimensional representation for the protocol syntax, which helps TransNet to learn the
predefine field patterns in the protocol with the message format.

The architecture of the transfer learning model includes a bottleneck layer 𝑁𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 designed
to reduce the feature dimensionality. This helps to avoid overfitting and improves the ability of
the model to transfer across domains. The 𝑁𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 consists of a linear transformation, a batch
normalization (to stabilize learning), a ReLU activation function (to introduce nonlinearity), and a
dropout layer (for regularization, configured to drop 50% of activations to prevent co-adaptation).
TransNet’s 𝑁𝑐𝑙𝑠 classification layer is designed to map the extracted bottleneck features to the

required number of output classes. This classifier includes two sequential linear transformation and
ReLU activation blocks, with a dropout layer in between to enhance the generalization capability
of the transfer model.

The characteristic of TransNet is its ability to handle domain adaptive of different protocol types.
The loss of TransNet is divided into two parts: one part is the loss generated from training the
model with standardized protocol, and the other part is the loss that evaluates the distribution
difference between the feature representations of the standardized and proprietary protocols. The
objective of TransNet is to optimize two complementary objective functions (Line 14): (1) minimize
the training error L of the model, and (2) minimize the distribution difference L𝑡𝑟𝑎𝑛𝑠 between the
standardized protocol and the proprietary protocol. The final optimization objective is:

min
𝑀
L + 𝜆L𝑡𝑟𝑎𝑛𝑠 (3)

where 𝜆 is a positive regularization parameter that takes the value 0.01. The model learning error
L (Line 8) of TransNet trained on the standardized protocol data is as follows:

L =
1
𝑚

𝑚∑︁
𝑖=1

𝐽 (Θ(𝐷𝑠 , 𝑐𝑠 ) ) (4)

whereJ (·) is the cross-entropy loss function,Θ(·) is the conditional probability that the TransNet
assigns𝐷𝑠 to 𝑐𝑠 , and𝑚 represents the size of dataset. Regarding the distribution divergence (Line 13),
we adopted local maximum mean discrepancy (LMMD) [42], as shown in formula 5, which could
compare different distributions based on the distance between standardized and proprietary protocol
datasets in an RKHS.

L𝑡𝑟𝑎𝑛𝑠 =
1
𝐶

∑︁
∥
∑︁

𝜔𝑠𝑐𝛷 (𝐷𝑠 ) −
∑︁

𝜔𝑡𝑐𝛷 (𝐷𝑡 ) ∥2H (5)

where 𝜔 · and𝛷 (·) are the adaptive weight of syntax labels and the feature mapping function,
respectively. During training, the network processes source and target data through the same
pipeline, using cross-entropy to compute the loss between labels and predicted structures. Features
of the target data are then used by the network to derive logical values for the target protocol.
Weight parameters are obtained by combining packet data and syntax labels from standardized
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protocols, followed by the calculation of transfer loss using a Gaussian kernel. This determines
the final learning loss of the transfer model. To optimize the transfer model, TransNet also uses a
stochastic gradient descent (SGD) optimizer, setting different learning rates for different network
layers to effectively balance feature extraction and domain adaptation during training.

When faced with proprietary or poorly documented protocols, TransNet’s base network extracts
high-dimensional features of the target protocol and further infers the syntax format of proprietary
protocols using a model trained on prior syntax formats of standardized protocols.
Compared to traditional neural networks, the key difference is that TransNet adds a measure

of the difference in data distribution between standardized protocol and proprietary protocol
data domains after the fully connected layer. This measure of difference is included in the loss
calculation during network training. In other words, when TransNet is trained with standardized
protocol messages and their syntax-tagged vectors, TransNet also requires that the data distribution
difference between the standardized protocol and the target protocol be minimized in the hidden
representation of the base network.

3.3 Implementation

We implement a prototype of TransRE using Python 3 based on TensorFlow. It consists of two
modules: the source selection module and the syntax transfer module. The source selection module
implements the inter-domain difference analysis and the source domain selection algorithm. This
module does not limit the number of candidate protocols, allowing manual assignment of candidate
protocols based on expert analysis of proprietary protocols. It also supports manual inspection
of protocol analysis results based on selections made by the source selection module. Based on
the selected source domain, the syntax transfer module learns the protocol syntax knowledge and
infers proprietary protocol syntax through domain difference analysis. Specifically, the knowledge
transfer module is built on top of LMMD to provide inter-protocol difference analysis.

4 Evaluation

We implement and evaluate TransRE to answer the following four research questions.
• RQ1 How does TransRE’s performance compare to state-of-the-art tools?
• RQ2 Is TransRE’s source selection module effective?
• RQ3 How does TransRE’s transfer approach compare to other transfer techniques?
• RQ4 How effective is TransRE in real-world application?

4.1 Experiment Setup

Subjects. Table 1 shows the 12 publicly available protocols2 selected for evaluation. We selected
them by referring to prior research [27, 50] and considering various characteristics. These protocols
cover a variety of applications, including industrial automation and control protocols, power and
utility industry protocols, proprietary protocols, IoT message delivery protocols, and publish/sub-
scribe protocols. The diversity of these protocols demonstrates the versatility of our approach.
BACnet [46] and Lon [20] are primarily used in building automation, industrial control, and

transportation systems, with the latter being a proprietary protocol developed by Echelon Corpora-
tion; DNP3 [16, 31] and IEC 104 [34] are used for remote monitoring, control, and data acquisition
in power systems; S7comm [51] is a proprietary protocol from Siemens used for communication
in S7 series PLCs (Programmable Logic Controllers), typically utilizing serial communication or
Ethernet. HART_IP [5] is a variant of the HART protocol widely used in industrial automation

2The repository contains Pcap files related to Operational Technology (OT) and Information Technology (IT) protocols used
in ICS. This dataset can be found at the following link: https://github.com/ICSDefense/ICS-Pcaps.
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for data transmission between devices and sensors over IP networks. AMQP and MQTT [35] are
open-source protocols: AMQP is used for message queuing middleware, primarily in financial and
communication industries, while MQTT-QoS1 & MQTT-QoS2 are lightweight messaging protocols
widely used for communication between IoT devices [43, 45, 56]. RTPS [2] is a real-time data
distribution protocol based on the publish/subscribe model, mainly applied in distributed real-
time systems such as autonomous driving and aerospace. The network communication protocol
COTP [47] is used to establish reliable transmission connections, especially in German industrial
control systems.

Table 1. Results of TransRE against five compared methods (bold indicates the best)

Protocol TransRE BinaryInferno Netzob FieldHunter Nemesys Netplier

Corr.F Corr.B Perf Corr.F Corr.B Perf Corr.F Corr.B Perf Corr.F Corr.B Perf Corr.F Corr.B Perf Corr.F Corr.B Perf

Amqp 0.89 0.61 0.16 0.33 0.15 0.13 0.40 0.15 0.13 0.67 0.15 0.00 0.75 0.64 0.49 0.96 0.85 0.38
Bacnet 1.00 0.99 0.75 1.00 0.36 0.25 0.84 0.09 0.04 1.00 0.16 0.05 0.87 0.47 0.06 0.96 0.63 0.40
COTP 0.97 0.48 0.22 1.00 0.37 0.16 0.96 0.00 0.00 1.00 0.37 0.16 0.74 0.45 0.24 0.98 0.08 0.00
DNP3 0.84 0.61 0.23 0.52 0.37 0.23 0.97 0.61 0.42 0.61 0.23 0.00 0.48 0.33 0.19 0.99 0.94 0.37

HART_IP 1.00 1.00 0.66 0.69 0.31 0.09 0.85 0.51 0.21 1.00 0.38 0.28 0.85 0.54 0.24 0.92 0.77 0.41
IEC 104 1.00 1.00 0.67 0.90 0.58 0.48 1.00 0.67 0.34 1.00 0.32 0.26 0.71 0.46 0.24 0.99 0.74 0.38
Lon 1.00 1.00 0.65 0.67 0.35 0.30 0.87 0.41 0.17 1.00 0.06 0.06 0.98 0.50 0.13 0.94 0.65 0.50

Modbus 1.00 1.00 0.36 1.00 0.50 0.00 0.83 0.50 0.00 0.88 0.33 0.21 0.51 0.38 0.28 0.90 0.33 0.07
MQTT-QoS1 0.99 0.94 0.36 0.88 0.70 0.50 0.98 0.72 0.61 1.00 0.35 0.25 0.86 0.43 0.23 0.88 0.76 0.34
MQTT-QoS2 0.99 0.96 0.35 0.58 0.43 0.29 0.62 0.44 0.31 0.58 0.42 0.29 0.95 0.48 0.29 0.74 0.43 0.25

RTPS 0.94 0.62 0.13 1.00 0.00 0.00 1.00 0.01 0.00 1.00 0.00 0.00 0.67 0.44 0.08 1.00 0.94 0.11
S7comm 1.00 1.00 0.64 1.00 0.10 0.05 0.91 0.53 0.24 1.00 0.10 0.18 0.79 0.53 0.22 0.93 0.63 0.32

Average 0.97 0.85 0.43 0.80 0.35 0.21 0.85 0.39 0.21 0.89 0.24 0.14 0.76 0.47 0.22 0.93 0.65 0.29

Compared Tools. To verify our TransRE, we select five advanced protocol syntax inference
tools as the control baseline, including Netzob [6], Netplier [50], FieldHunter [4], BinaryInferno [8]
and Nemesys [24]. These publicly available methods are all network trace based reverse engineering
tools, but the implementation principles are diverse. Netzob and Netplier represent the alignment-
based approach, with different message clustering algorithms. The former employs a message
similarity-based clustering, while the latter uses keyword-based clustering. Nemesys adopts a
heuristic approach that identifies field boundaries based on the bit-level congruence of consecutive
byte pairs. FieldHunter, a public re-implementation tool, identifies fields by leveraging statistical
characteristics specific to general fields, such as host ID. BinaryInferno ensembles various detectors
suitable for different field types and applies heuristics to identify field boundaries. We use the
publicly available versions of these tools for comparison.

To evaluate the efficiency of the transfer module, we modularized two popular transfer learning
methods: the Kernel Mean Matching method (KMM) [11, 15], the Correlation Alignment method
(CORAL) [10] and SynRE [55]. The former improves learning performance by adjusting the distri-
bution differences between the source and target domain samples, while the latter aims to achieve
domain adaptation by minimizing the differences between the covariance matrices of the source
and target domains.

Metrics.We evaluate the accuracy of the syntax inference result of the TransRE by whether each
byte produces the correct syntax recognition result, involving three indicators: field correctness,
boundary correctness, and Perfection. These evaluation metrics are employed in recent similar
work [8, 27, 50]. We utilize Tshark [44] to obtain the syntax ground truth of the target protocol.
Then, we compare each inferred field’s boundaries and values with true fields.

Field correctness, named 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠_𝐹 , considers an inferred field as a correct one if the inferred
field is part of a single true field or combines several consecutive true fields. The 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠_𝐹 is
computed to measure the inferred formats, defined as follows:

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠_𝐹 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐹𝑖𝑒𝑙𝑑 𝑁𝑢𝑚𝑏𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑓 𝑒𝑟𝑟𝑒𝑑 𝐹𝑖𝑒𝑙𝑑 𝑁𝑢𝑚𝑏𝑒𝑟
(6)
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Boundary correctness, named 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠_𝐵, considers an inferred field boundary as a correct
one if the inferred field boundary is a true field or true sub-field boundary. The 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠_𝐵 is
computed to measure the inferred protocol syntax, defined as follows:

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠_𝐵 =
𝐼𝑛𝑓 𝑒𝑟𝑟𝑒𝑑 𝑇𝑟𝑢𝑒 𝐹𝑖𝑒𝑙𝑑 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑁𝑢𝑚𝑏𝑒𝑟

𝑇𝑟𝑢𝑒 𝐹𝑖𝑒𝑙𝑑 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑁𝑢𝑚𝑏𝑒𝑟
(7)

Perfection is used to evaluate whether the inferred field matches the basic truth value exactly.
Specifically, the field is 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 if it perfectly matches a true field. Therefore, perfection is the ratio
of perfectly inferred field number to the total number of true fields. Their calculation is as follows:

𝑃𝑒𝑟 𝑓 𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑃𝑒𝑟 𝑓 𝑒𝑐𝑡𝑙𝑦 𝐼𝑛𝑓 𝑒𝑟𝑟𝑒𝑑 𝐹𝑖𝑒𝑙𝑑 𝑁𝑢𝑚𝑏𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝐹𝑖𝑒𝑙𝑑 𝑁𝑢𝑚𝑏𝑒𝑟
(8)

4.2 Effectiveness of TransRE

This section shows the syntax inference results of our TransRE against five control methods
across different type protocols. We positioned the target method from three metrics 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠_𝐹 ,
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠_𝐵, and perfection.
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Fig. 4. Plot of average correctness_F, correctness_B, and perfection on 12 protocols for each tool. Results

closer to ground truth (i.e., Ideal) are better.

Figure 4 plots the average performance for each tool on various protocols. TransRE substantially
outperforms the other tools on field boundary division and perfect field extraction and achieves
the upper bound on correctness_F, correctness_B, and perfection metrics across all protocols. On
average, TransRE achieves a correctness_F of 0.97, a correctness_B of 0.85, and a perfection of
0.43 across the 12 protocol data, compared to (0.85, 0.39, 0.21) for Netzob, (0.93, 0.65, 0.29) for
Netplier, (0.89, 0.24, 0.14) for FieldHunter, (0.80, 0.35, 0.21) for BinaryInferno, and (0.76, 0.47, 0.22)
for Nemesys. Concerning the correctness_B, TransRE achieved 2.18×, 1.31×, 3.54×, 2.43×, and
1.81× relative to Netzob, Netplier, FieldHunter, BinaryInferno, and Nemesys, respectively. Notably,
on the most important metric perfection, TransRE achieves 2.05×, 1.48×, 3.07×, 2.05×, and 1.95×
of that achieved by Netzob, Netplier, FieldHunter, BinaryInferno, and Nemesys, respectively.

Table 1 presents the evaluation results of TransRE against five comparison tools across 12 pro-
tocols on correctness_F, correctness_B, and perfection metrics. TransRE demonstrates outstanding
performance across multiple protocols. For correctness_F, TransRE correctly infers the message
field for all seven protocols, where the inferred field is part of a single true field or combines several
consecutive true fields, whereas BinaryInferno and Netplier achieve this for only four and one
protocol, respectively. Although FieldHunter achieved a score of 1.00 on correctness_F, combining
boundary inference and perfection metrics shows that most of its correct results are combinations
of consecutive true fields. In contrast, TransRE excels not only in correctness_F but also performs
very well in boundary inference and perfection. For instance, with the IEC_104 protocol, TransRE
matched FieldHunter correctness_F score but achieved a perfection score of 0.67 in inferring perfect
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fields, compared to FieldHunter (0.26), outperforming it by 2.85×. Similar performance was noted
with BacNET, HART_IP, and S7Comm protocols.

Regarding correctness_B, TransRE achieves an inference of field boundaries accuracy of over
94% for eight protocols, with a better correctness_B score of 1.00 for five protocols (i.e., HART_IP,
IEC_104, Lon, Modbus, and S7comm). In comparison, only Netplier, a high-performance comparison
tool, achieves 94% field boundary inference correctness for DNP3 and RTPS, with no other four tools
reaching this level of performance. This indicates that our method for identifying field boundaries is
highly accurate and outperforms five comparison tools, which is crucial for protocol understanding,
error detection, and security analysis.
TransRE exhibits excellent performance across all protocols in perfection, achieving the best

perfection score in field inference for eight protocols. Compared to the Netzob and Nemesys that
demonstrated outstanding performance in two protocols, TransRE improved this metric mean by
105% and 207%, respectively. Considering that the Netplier (i.e., 0.29) with the highest perfection
among the comparison tools, TransRE achieved better field inference results than Netplier in
10 projects. For example, S7comm, TransRE’s perfection score is 0.64, which is double that of
Netplier’s 0.32. Similar phenomena are observed in other protocols as well. This demonstrates
that TransRE has a significant advantage in extracting perfect fields from proprietary protocols,
enabling it to more effectively identify and extract key field information.

The comprehensive analysis shows that TransRE performs excellently in most protocols, espe-
cially Bacnet, HART_IP, and IEC_104 protocols. Unlike tools that use heuristic rules to extract fixed
patterns, TransRE leverages neural networks to deeply explore the field patterns of standardized
protocol syntax, allowing it to learn embedded fixed models from the standardized protocols. This
enhances its ability to understand the syntax of proprietary protocols and improves generalization
for understanding them.

4.3 Accuracy of Source Selection

To evaluate the source selection module’s accuracy, we ranked all 11 candidate source domains
by their syntax inference performance (i.e., perfection) for each target protocol, then determined
where TransRE’s selected source domain ranked among these candidates, as shown in Table 2.
Experimental results show that the source selection module can select relatively appropriate source
domains in most cases. The source selection module selected the best source domains (ranked
1/11) for six target protocols, namely Bacnet, HART_IP, IEC_104, Lon, Modbus, and S7comm, and
selected the suboptimal source domains for the other six target protocols. This indicates that the
source selection module has high accuracy in selecting source domains.

Table 2. Ranking of TransRE’s selected source domains among all candidates

Protocol Amqp Bacnet COTP DNP3 HART_IP IEC 104 Lon Modbus MQTT-QoS1 MQTT-QoS2 RTPS S7comm

Ranking 2/11 1/11 2/11 2/11 1/11 1/11 1/11 1/11 2/11 2/11 2/11 1/11

For the COTP protocol, which is a transport protocol, although it has a long message length, the
data payload occupies most of it and contains relatively little field information. For example, a COTP
protocol message has a length of 98 bytes, while the payload length is 95 bytes, leaving only 3 valid
fields with three bytes. The syntax transfer module combines the entire message information to
extract syntax knowledge elements from the message. Still, target protocol data payload interferes
with knowledge migration, resulting in TransRE being unable to effectively learn and transfer the
syntax knowledge of the source protocol during the transfer learning process. Similar message
structures exist in the MQTT protocol and the content body messages of the AMQP protocol.
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The characteristics of proprietary protocols have a significant impact on the source selection.
The unsupervised source selection module evaluates the similarity between source protocols and
the target protocol by analyzing and comparing the features of different source protocols. Factors
present in proprietary protocols, such as the payload in COTP protocol messages, may affect the
evaluation of source protocols, leading to inaccurate judgments about the similarity between the
selected source protocol and the target protocol. The source selection module chooses the optimal
and suboptimal source protocols for the target protocol, and this impact on the source selection
module is negligible.

4.4 Validity of Syntax Transfer

To validate the transfer capability of TransRE, we implemented both KMM, CORAL, and SynRE
transfer modules embedded into the Syntax Transfer module to evaluate our transfer efficiency.
Table 3 shows the experimental results of KMM, CORAL, and SynRE transfer methods across 12
protocol data, along with the gap ratio of TransRE’s transfer capability compared to the two
transfer modules.

Table 3. Results of two transfer-learning techniques and TransRE’s improvements

Protocol KMM CORAL SynRE

Corr.F Corr.B Perf. Corr.F Corr.B Perf. Corr.F Corr.B Perf.

Amqp 0.90 -1.47% 0.29 111.11% 0.10 66.67% 0.63 39.67% 0.23 171.43% 0.02 900.00% 0.70 26.06% 0.34 81.00% 0.15 9.04%
Bacnet 0.94 6.52% 0.77 28.94% 0.51 46.58% 0.93 7.14% 0.64 53.63% 0.39 92.07% 0.95 5.41% 0.34 192.12% 0.21 259.26%
COTP 1.00 -2.62% 0.68 -28.57% 0.13 75.00% 0.98 -1.05% 0.52 -6.25% 0.00 - 0.95 2.23% 0.34 12.90% 0.21 4.41%
DNP3 0.21 290.10% 0.08 683.13% 0.00 - 0.14 485.16% 0.08 683.13% 0.00 - 0.91 -8.40% 0.51 19.46% 0.18 22.28%

HART_IP 1.00 0.00% 0.30 233.33% 0.09 625.53% 0.83 20.00% 0.40 150.00% 0.18 262.77% 0.88 13.83% 0.60 66.48% 0.32 103.40%
IEC 104 0.62 62.50% 0.58 71.43% 0.38 73.33% 0.57 75.00% 0.25 300.00% 0.15 333.33% 0.95 5.09% 0.46 116.86% 0.12 436.38%
Lon 0.93 7.69% 0.29 246.15% 0.05 1074.73% 1.00 0.00% 0.00 - 0.00 - 0.99 0.727% 0.31 217.62% 0.15 345.02%

Modbus 1.00 0.00% 0.15 550.00% 0.00 - 1.00 0.00% 0.08 1200.00% 0.00 - 0.90 10.55% 0.44 125.83% 0.16 121.59%
MQTT-QoS1 0.99 0.44% 0.87 7.88% 0.45 -19.77% 0.45 122.54% 0.21 345.00% 0.03 1280.00% 0.72 38.27% 0.43 118.27% 0.25 45.34%
MQTT-QoS2 0.95 4.86% 0.62 54.48% 0.42 -18.07% 0.55 81.34% 0.20 378.14% 0.02 1743.48% 0.81 23.27% 0.47 105.39% 0.29 19.38%

RTPS 0.78 20.00% 0.32 94.55% 0.14 -8.00% 0.79 18.89% 0.36 72.58% 0.13 0.00% 0.76 23.29% 0.16 298.52% 0.00 -
S7comm 1.00 0.00% 0.39 156.25% 0.14 350.00% 1.00 0.00% 0.46 115.79% 0.19 237.50% 1.00 0.07% 0.58 72.56.43% 0.32 103.18%

Average 0.86 12.67% ↑ 0.44 91.17% ↑ 0.20 112.01% ↑ 0.74 30.84% ↑ 0.29 198.12% ↑ 0.09 363.20% ↑ 0.88 10.37%↑ 0.41 105.16%↑ 0.20 119.24%↑

Although the KMM has better transfer capability than the CORAL and is comparable to SynRE
for most protocols, it is not as effective as our transfer method. Especially in the correctness_B and
perfection metrics, the improvement of TransField is particularly significant. On average, the KMM
outperforms the CORAL method in Correctness_F, Correctness_B, and Perfection, with average
values of 0.86, 0.44, and 0.20, respectively, while the CORAL’s values are 0.74, 0.29, and 0.09; the
SynRE’s values are 0.88, 0.41, and 0.20. TransRE were higher than KMM by (12.67%, 91.17%, and
112.01%), higher than CORAL by (30.84%, 198.12%, and 363.20%), higher than SynRE by (10.37%,
105.16%, and 119.24%) on correctness_F, correctness_B, and perfection.

For perfection, TransRE outperformed KMM in format inference for eight protocols, with a
range of (46.58%-1074.73%). For the DNP3 and Modbus protocols, the KMM and CORAL did not
infer perfect fields (i.e.,0.00), but TransRE achieved encouraging inference results (i.e.,0.23 and
0.36). For the MQTT1 and MQTT2 protocols, the KMM outperforms TransRE and CORAL in
inferring perfect fields, with values of 0.45 and 0.42, respectively. TransRE (0.36 and 0.35) falls
short of the KMM by 19.77% and 18.07%. The KMM uses kernel methods to weight samples to
adjust and balance the distribution between the two domains, while TransRE directly measures
and optimizes the similarity of sample distributions by calculating the mean differences of samples
from the source and target domains in the feature space. For MQTT, some of its messages (i.e.,
publish messages) contain long payloads, which interfere with TransRE’s optimization of data
distribution similarity.
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4.5 Real-World Fuzzing Application

The protocol specification derived through protocol reverse engineering can be applied to security
tasks, such as protocol fuzzing [28, 52] and model checking [21, 33]. In this section, we demon-
strate how this model can enhance the fuzzing of proprietary protocols to uncover additional
vulnerabilities, highlighting the real-world effectiveness of TransRE.

To further validate the effectiveness of TransRE in real-world application scenarios, we apply it
to proprietary protocols that are widely used in commercial electronic devices. Due to the difficulty
of obtaining official specifications and ground truth for proprietary protocols, we designed a fuzzing
experiment specifically tailored for proprietary protocols, enabling us to assess the effectiveness of
both TransRE and other available tools.
Considering the practical application in real-world cases, we selected both network cameras

manufactured by Hikvision (DS-2SC3Q140MY-TE) and Honeywell (HVCD-4300I) as experimen-
tal subjects. These devices are widely used across industries such as security, IoT, autonomous
driving, and intelligent transportation, making them ideal candidates to evaluate the effectiveness
and generalizability of TransRE. As core devices for real-time data collection, network cameras
predominantly rely on modified versions of multiple protocol prototypes (e.g., RTSP, RTP, RTCP,
ONVIF, etc.) for video streaming, remote control, and device integration. This results in complex
communication processes that are highly susceptible to security and privacy vulnerabilities. To
thoroughly assess these aspects, we designed a three-step fuzzing evaluation process:
(1) Experimental environment construction. We configured both the Honeywell and Hikvision

network cameras by setting their IP addresses, usernames, passwords, and other relevant parameters
via the manufacturers’ configuration tools. These cameras were then integrated into a network
monitoring system, with all default settings retained. We verified that the devices successfully
connected to the network and were capable of transmitting video streams.
(2) Protocol reverse engineering. In the configured environment, we first activated the cameras

using the respective IPC tools from Honeywell and Hikvision. Next, we connected to the cameras’
IP addresses via VLC to generate network traffic. Using Tshark, we captured the raw, protocol-
agnostic packet payloads from the designated IP addresses during these operations. To ensure
real-world applicability, we did not collect any additional network packets. We then applied
Nemesys, BinaryInferno, Netzob, FieldHunter and TransRE to reverse engineer the payloads and
infer packet formats 3.

Fig. 5. Examples of data model transformation from message and its inferred format.

(3) Application of the inferred formats. To evaluate each method’s effectiveness, we first converted
each inferred packet format into a data model and then applied a uniform startup configuration to
ensure compatibility with Peach Fuzzer [17]. Figure 5 provides an example of the conversion from
3Since Netplier categorizes traffic based on interaction information before inferring protocol formats, and the captured
traffic from the cameras did not meet its requirements, it could not evaluate this real-world case.
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messages and their inferred formats to data models. We used Peach Fuzzer to run fuzz tests on
the IP cameras, monitoring for crashes, anomalous behavior, or vulnerabilities. For fairness, each
experiment was repeated ten times, with each campaign lasting 24 hours.

Table 4. Vulnerabilities discovered by Peach when enhanced with different protocol reverse engineering tools

# Device TransRE Nemesys BinaryInferno Netzob FieldHunter

1 Honeywell HVCD-4300 ✓ ✗ ✗ ✓ ✗
2 Hikvision DS-2SC3Q140MY-TE ✓ ✗ ✗ ✓ ✗
3 Honeywell HVCD-4300 ✓ ✗ ✗ ✗ ✗
4 Hikvision DS-2SC3Q140MY-TE ✓ ✗ ✗ ✗ ✗

Following the described procedure, TransRE uncovered four vulnerabilities—two in Hikvision
devices and two in Honeywell devices—while Netzob identified only two, and no vulnerabilities
were discovered by any other tools, as shown in Table 4. After communicating with the vendors, it
was confirmed that these vulnerabilities had also been found by other researchers and have since
been addressed. The details of each vulnerability are as follows:
Vulnerabilities 1 and 2 (Sequence Field Overflow). TransRE discovered a sequence field that,
when fuzzed beyond 1024, triggered a vulnerability. Exploiting this issue caused the network camera
to freeze briefly before forcibly disconnecting, resulting in a denial-of-service (DoS) condition.
Because no authentication is required and the flaw can be exploited remotely, it presents a height-
ened security risk. Both the Honeywell HVCD-4300I and Hikvision DS-2SC3Q140MY-TE devices
were affected, and developers confirmed they were already aware of the issue. Identifying this
vulnerability required isolating the specific sequence field; attempts to replicate it using the packet
formats inferred by Nemesys, BinaryInferno, and FieldHunter did not succeed within 24 hours or
over 10 trials.
Vulnerabilities 3 and 4 (Variable-Length Field Overflow). TransRE also identified a variable-
length payload field. When Peach Fuzzer mutated this field to an abnormal length (4096), it caused
the host machine to freeze and crash, preventing VLC from connecting to the video source. This, too,
was confirmed as a DoS vulnerability, and its severity was amplified by the lack of authentication
requirements and the possibility of remote exploitation. Both the Honeywell HVCD-4300I and
Hikvision DS-2SC3Q140MY-TE devices were affected, and developers again acknowledged that it
was a known issue. Reproducing these vulnerabilities required accurately pinpointing the variable-
length field and mutating its size field; once more, other methods all failed to expose these flaws.
By confirming these vulnerabilities with the vendors, TransRE demonstrated its ability to

accurately infer proprietary protocol formats, thereby making a valuable contribution to fuzzing
initiatives focused on real-world proprietary protocols.

5 Discussion

Effectiveness by Payload. The core of TransField is a deep transfer learning network, which, like
all learning techniques, is sensitive to noisy data. Some protocols may lack relevant documentation
or specifications, leading to ambiguities in their specific structure, field types, and data formats. If a
protocol contains a payload (i.e., the actual data content of the protocol), it may reduce the accuracy
of TransRE’s source domain selection module. This is because different payload structures and
types can affect the features used by TransRE, thereby impacting the effectiveness of knowledge
transfer, as seen in the case of the COTP protocol. One potential solution is to filter and process
interference in the data payload by identifying message headers and data payload separators.
Encrypted/Compressed/Obfuscated Traffic Handling. Encrypted/compressed/obfuscated

traffic is a common limitation formost network trace-based reverse engineering approaches [4, 6, 50].
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Addressing these challenges requires handling issues orthogonal to protocol syntax recovery:
cryptographic aspects for decryption, algorithm identification for decompression, and encoding
scheme reversal for de-obfuscation. A possible solution is to use man-in-the-middle proxies (e.g.,
Charles [49]) to capture cleartext traffic.

6 Related Work

Heuristic Rule-Based Reverse Engineering [14, 25] infers protocol formats by employing fixed
field patterns, where field patterns are derived from grouping, structuring, or summarizing based
on message types, such as byte frequency, information entropy, linear/non-linear relationships, etc.
For example, Netzob [6] applies pairwise alignment to derive field length, order, and inter-field
relations. Netplier [50] integrates a probability-based keyword recognizer with clustering to identify
static and dynamic fields. BinaryInferno [8] employs heuristic-based atomic detectors (e.g., float,
timestamp, length) organized via a directed acyclic graph. SPRA [53] adopts a parallel workflow
for keyword extraction and clustering. MDIplier [26] addresses the field information loss caused by
global clustering by leveraging the hierarchical structure of protocol messages, performing iterative
inference with message delimiter identification for layer separation. REInPro [38] determines the
industrial protocol structure by controlling fields, and then infers the key semantics of the industrial
protocol by distinguishing the fields characteristics. Different heuristic methods integrate different
field patterns, which can recognize some typical fields, such as type or length fields, but their ability
is limited in the face of new patterns.

Static Analysis-Based Reverse Engineering [24, 40] analyses standard protocol field to extract
typical fields or relationship thresholds. Discoverer [13] tokenizes messages by simple semantics
(textual or binary), clusters them, and applies statistical analysis (e.g., byte frequency, entropy) to
infer field relations; Nemesys [24] detects field boundaries from value change distributions and
proposes the Format Match Score, though limited in handling diverse protocols; and FieldHunter [4]
leverages common field semantics (e.g., length, host ID) to identify fields via statistical correlations
with byte values. These tools usually rely on preset and fixed field patterns to identify and analyze
data packets, which lack flexibility, resulting in limited benefits of field segmentation.

Learning-Based Reverse Engineering employs deep learning to infer protocol types or proto-
col formats [19, 36]. SynRe [55] exploits accumulated syntax knowledge to infer new/extension
protocol format. PREIUD [36] employs a BiLSTM-AM-CRF model that integrates unsupervised
learning with deep neural networks to efficiently reverse most industrial control protocols. CN-
NPRE [19] applies CNNs to classify messages for protocol reverse engineering; DL-ProS2 [54]
utilizes LLMs to extract protocol specifications and simulate the traffic of different formats.
Dynamic Inference-Based Reverse Engineering employs dynamic interaction with the

protocol server to infer protocol specifications. DynPRE [27] infers protocol message formats
through dynamic server interaction, leveraging session identifier detection and adaptive message
rewriting to craft exploratory requests for semantic extraction from server responses.
Main Difference: Unlike these approaches, our TransRE does not limited to the data size of

the target protocol. It leverages deep transfer learning to extract prior knowledge of standardized
protocols to break through the incompleteness and inflexibility of inherent heuristic rules for
traditional protocol reverse engineering approaches. TransRE extracts field patterns and deep
understanding of protocol syntax from standardized protocols and adapts them to the characteristics
of the target protocol message structure, thereby improving the accuracy of proprietary protocol
format inference. In addition, TransRE enhances its generalization ability on proprietary protocols
by assessing the relevance between proprietary protocols and standardized protocols to match the
optimal source domain, allowing it to more flexibly adapt to new field patterns within the protocols.
TransRE therefore can dynamically adapt to different protocol characteristics, demonstrating
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greater adaptability when facing diverse protocol field patterns. It can also leverage existing
knowledge for reasoning, thereby overcoming the limitations imposed by fixed field patterns.

7 Conclusion

This paper presents TransRE, a protocol reverse engineering tool that introduces the prior syntax
knowledge of standardized protocols to achieve more accurate analysis for understanding pro-
prietary protocols. Rather than relying on fixed rules to recognize protocol formats, TransRE
integrates an automated method that intelligently extracts field patterns based on the characteristics
of proprietary protocols by incorporating prior syntax knowledge from standardized protocols,
thereby improving the accuracy of understanding proprietary protocols. Our experiments show
that TransRE substantially outperforms five state-of-the-art protocol reverse engineering tools
in protocol syntax inference across 12 widely used protocols. Furthermore, to demonstrate the
practical usage of TransRE, we adapted it to enhance existing fuzzing for proprietary protocols of
network cameras and successfully detected four vulnerabilities.
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