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Abstract—Fuzz testing has helped security researchers and
organizations discover a large number of vulnerabilities. Al-
though it is efficient and widely used in industry, hardly any
empirical studies and experience exist on the customization of
fuzzers to real industrial projects. In this paper, collaborating
with the engineers from Huawei, we present the practice of
adapting fuzz testing to a proprietary message middleware
named libmsg, which is responsible for the message transfer
of the entire distributed system department. We present the
main obstacles coming across in applying an efficient fuzzer
to libmsg, including system configuration inconsistency, system
build complexity, fuzzing driver absence. The solutions for those
typical obstacles are also provided. For example, for the most
difficult and expensive obstacle of writing fuzzing drivers, we
present a low-cost approach by converting existing sample code
snippets into fuzzing drivers. After overcoming those obstacles,
we can effectively identify software bugs, and report 9 previously
unknown vulnerabilities, including flaws that lead to denial of
service or system crash.

I. Introduction
Coverage-based greybox fuzzers use coverage information to

direct the generation of random inputs, then run the program
with the input and catch abnormal behavior. They have helped
identify a large number of software bugs and security vulner-
abilities. Attracted by the effectiveness, more and more open-
source organizations and software companies are adopting
fuzz testing to their projects [5, 1, 6]. For example, Google
started project OSS-Fuzz [10], which offers fuzz-as-a-service
for open-source organizations.

While fuzz testing is spreading in industrial practice, aca-
demic researchers are also improving fuzzers in various ways.
Most researchers focus on the efficiency of seed scheduler
and mutation- or generation-based algorithms. Complex com-
ponents such as symbolic executor [4] and static analyzer [12]
are also introduced, to further improve the traditional greybox
fuzzers, like American Fuzzy Lop [15] and libFuzzer [8].

For simplicity and availability, researchers usually pick
modular open-source projects and standard benchmarks to
evaluate their works. For example, Google’s fuzzer-test-suite
[11] is intended to evaluate the performance of libFuzzer,
where almost all tests in the suite are protocol-related or file-
parsing libraries with few dependencies. AFLFast [2] is evalu-
ated with GNU binutils, a set of single-threaded binary utilities
with only one dependency. Driller [13] is evaluated with Cyber
Grand Challenge’s binaries, where programs, libraries, even
the compiler and the runtime are specially crafted.
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Most academic tools show good performance in simplified
environment. However, in practical environment, when we
apply those tools to real industrial projects, they do not work
as well as what the benchmarks indicate. Too many causes
may fail a “smart” fuzzer, due to the increasing complexity
in system designs and execution environment dynamics. For
example, two testing engineers from Huawei spent two weeks
trying to run Driller on libmsg, a messaging middleware.
With the source code of both projects in hand, unfortunately,
they still failed to run the fuzz testing and learned painful
lessons: Driller didn’t support a set of POSIX APIs and had
rigid requirements on system and library configuration.

In this paper, we collaborate with the engineers from
Huawei to adapt the fuzzing techniques to libmsg and
identify several typical obstacles coming across through the
engineering practice. The main obstacles include system con-
figuration inconsistency, system build complexity, fuzzing
driver absence, fuzzing performance degradation, and bug-
hiding code segments. For each obstacle, our solution is also
provided and some supporting tool modules are developed.
For example, we develop a tool module to mitigate the system
build complexity. We also propose a method that mitigates the
absence of fuzzing drivers, i.e. converting existing unit tests
and sample code to fuzzing drivers. By providing solutions
to those obstacles, increased acceptance and application of
fuzzing tools in the industry can be achieved.

Finally, after overcoming those obstacles, we run the fuzz
testing tool SAFL [14] successfully and effectively identify
several software bugs. 9 previously unknown vulnerabilities
are reported, including flaws that lead to slow resource leak,
denial of service or immediate system crash. Except for those
detected vulnerabilities, we also share a set of interesting
observations regarding different stages of fuzz testing. For
example, developers may write code weakening fuzzer’s ability
to detect anomalies.

II. Background
A. Messaging Library libmsg

Originating from project M, libmsg has been operating
reliably for nearly 10 years. As the core messaging library,
and all microservices in Project M depend on it. Recently,
an evolved version of libmsg is rolling out in Huawei. The
major changes include the following two aspects:

• Component separation. libmsg is separated from
Project M to promote the use of libmsg to a wider
range of products and finally support message transfer
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of the entire distributed system department. To fulfill the
dependencies of libmsg, the separation requires major
changes to the build system.

• Protocol optimization. Originally, libmsg mainly uses
HTTP as the underlying protocol for cross-platform and
cross-language support. The rework adds binary protocol
msgio, which is faster but lack of platform-independence.
To reuse existing library code and expose the same in-
terface to clients while implementing one more protocol,
many components’ logic is changed accordingly.

Unexpectedly, the system is found unstable after the up-
grade. We work closely with the development team, aiming to
pinpoint bugs with fuzz testing techniques.

B. Fuzz Testing Tool SAFL
Fuzz testing is considered as one of the most efficient

approaches to find security vulnerabilities in software systems.
The core idea is to generate and feed the software systems
with random inputs, then capture abnormal behaviors such
as program crash. Coverage-based greybox fuzzing technique
improves blackbox fuzzing by adding feedback of coverage
information. Greybox fuzzers can use this information to focus
on new and interesting paths and discard explored ones.

The fuzzer used in this paper is SAFL, our most recently
developed fuzz testing toolkit. The algorithm behind is a
combination of FairFuzz [7] and AFLFast [2]. The idea of
FairFuzz is to overcome the unfair seed selection. Only a small
amount of seeds cover rare branches, and they are neglected
by the default strategy of AFL. FairFuzz fixes the problem by
taking branch rarity into account. The idea of AFLFast is to
overcome the slow seed mutation. A seed exercising rare path
has more potential, but the default behavior of AFL wastes
much computation power on frequent paths, resulting in slow
and fruitless mutation. AFLFast fixes the problem by assigning
more computation power to seeds exercising rare paths. SAFL
combines them together and is engineered to automatically
build hardened executable, run symbolic execution to produce
high-quality initial seeds, then run guided fuzz targeting rare
paths to improve efficiency.

III. Testing Targets and Procedures

The test plan of libmsg mostly focuses on the protocol
handlers by targeting the external networking interface. The
interface is chosen as the fuzz testing entrance because of the
following four aspects.

• Complexity: the event-driven programming paradigms
are closely coupled with low-level networking code. It’s
expensive to mock the layer and directly feed data to the
program.

• Completeness. Protocol handlers are the external interface
to the environment, thus all code paths of libmsg can
be reached from there. Coverage-based fuzzers can find
inputs to automatically exercise different paths.

• Convenience. Feeding the program by standard POSIX
interface is easy. There’s no need to analyze a variety of
interface and their conventions.

• Accuracy. Network is an untrusted system boundary.
Compared to trusted internal API calls, there are no data
transmission or calling conventions. The fact eliminates
false positives: any input that results in abnormal system
behavior must be vulnerabilities.

Fig. 1. Stages of test plan

After choosing the testing entrance, the fuzz testing pro-
cedure was thought to be easy. As figure 1 illustrates, the
first step is preparing the environment and setting up the
fuzzers such as SAFL. In the second step of fuzzing driver
development, fuzzing driver is written by a test engineer. In
the third step of software compilation, source code such as
libmsg is compiled into a hardened test program for fuzzing.
In the fourth step of test run stage, some handwritten inputs
are fed to the program to validate the fuzzing driver. The
verification is necessary, because a malfunctioning fuzzing
driver leads to false positives and false negatives. Symbolic
execution is employed to generate high-quality initial seeds
in the meantime. Finally, in the production run stage, the im-
proved fuzzer efficiently tests the target program, and produces
crash reports to the test engineer.

SAFL tries to automate all the stages as much as possible,
therefore test engineers are supposed to run the fuzz testing
fairly easily. However, things don’t go as planned. From envi-
ronment preparation to production run, virtually we stumbled
on every step. The following section lists the obstacles we
encountered and the corresponding solutions.

IV. Typical Obstacles and Solutions
Obstacle 1: Configuration Inconsistency in Environment

Preparation Stage. Huawei heavily customizes their operating
system in both production and development environment.
SAFL are built to run any recent Linux distributions. But in
this case, glibc of the operating system in Huawei is too old
to run. Similar situations also exist in many other companies
such as CRRC Corp. Ltd.

Solution: Rebuild the System from Source. Initially, we
try to rebuild the whole project. However, GCC provided by
the operating system fail to build LLVM, which is a requisite
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for instrumentation framework. Finally, fresh GCC and CMake
are built from source, and the problem is resolved.

During the rebuilt process, a powerful machine is helpful.
Fuzzing is a computing-intensive job, so is the build procedure
of SAFL’s supporting tool modules. For example, it takes
half an hour just to build LLVM. With adequate software and
hardware environment, the following steps are finished more
efficiently.

Obstacle 2: Absence of Training in Driver Develop-
ment Stage. libmsg is a messaging library, which means
it can only run together with a fuzzing driver. For many
test engineers, fuzzing is still a new technique. Although
they have domain-specific knowledge, training is needed to
develop fuzzing driver. Developing fuzzing driver from scratch
is expensive. For example, to test libmsg, on the one hand, a
sample application should be developed, which initializes the
library and registers callbacks to exercise interfaces. On the
other hand, a simple request sender should be developed to
transport the data generated from the fuzzer to the library.

Solution: Transform Fuzzing Driver from Unit Tests and
Sample Code. We find that existing unit tests and sample code
snippets are helpful. Not much effort is required converting
unit tests focusing on external interfaces to fuzzing drivers.
Exploiting sample program takes even less effort. As figure 2
shows, in this case we first copy the example program, then
add networking code. Net addition counts less than 10 LoC.

// Sample code kept as-is
class MyProcess ... {}

// main function is renamed,
int old_main(int argc, char **argv) { ... }

// ... then splitted into LLVMFuzzerInitialize
// and LLVMFuzzerDeinitialize
void LLVMFuzzerInitialize() { /* setup code */ }
void LLVMFuzzerDeinitialize() { /* cleanup code */ }

// New function: feed data into the library
void LLVMFuzzerTestOneInput(uint8_t *buf, size_t size) {

int fd = socket(AF_INET, SOCK_STREAM, 0);
connect(fd, &gSvrAddr, sizeof(gSvrAddr));
send(fd, buf, size, 0);
close(fd);

}

Fig. 2. Convert sample program to fuzzing driver

Obstacle 3: Build System Complexity in Software Com-
pilation Stage. Different from most open-source projects used
in fuzzing benchmarks and tutorials, libmsg has a complex
build procedure. Due to historical burden, the build scripts are
a mix of bash, autoconf and CMake. It’s tedious to manually
modify different scripts to build hardened executable. This
situation is quite common in real industry projects, and reduces
the usability and acceptance of fuzzing techniques in practice.

Solution: Develop Automatic Toolchain to Support Com-
plex Compilation and Build. We solve the problem by provid-
ing an automated toolchain. The toolchain recognizes different
build systems and injects instrumentation-related compiler
options following the standard customization interface exposed
by the build system. The user-friendly utility hides internal
complexities, reducing the knowledge required to operate
these tools. It isn’t limited to the fuzz engine SAFL, other

fuzzers like AFL and AFLFast can also benefit from hardened
executable using our toolchain. Table I shows that the usage
is pretty close to normal toolchain invocation. Only a prefix
is inserted at the beginning of each normal build command.

TABLE I
SAFL and normal build procedure

SAFL Normal build

Prepare safl-prepare
Configure safl-configure ./configure ./configure
Build lib safl-build make -j make -j
Build driver safl-build g++ target.cc -c g++ target.cc -c
Link safl-link target.o lib.a g++ -o app target.o lib.a

There are two special threats in libmsg that would fail
the toolchain, which needs to be patched ahead. The first
is the unmaintained build script. libmsg uses a complex
shell script to fetch and configure the depended software,
compile the dependencies, run unit tests then build deployable
packages. The 600-line shell script is lack of maintenance,
which even reports errors on successful build. We separate
the core component out, which enables manual build to use
SAFL.

The second is antipatterns in CMake. SAFL injects compila-
tion flags to harden the executable. The procedure is automated
using the standard compiler flag customization support from
various build tools. But the nonstandard use of CMake cripples
our tool. If there are advanced configurations not covered
by CMake, developers may use the standard interface to
add compiler options. However, libmsg takes the worst
approach that directly overwrites the low-level variable passed
to compilers. We replaced the problematic CMake commands
to fix this problem.

Obstacle 4: Shallow Bugs in Test Run Stage. When
fuzzing driver is built, a test run should be performed. In
this case, a few correct and random inputs are made by hand
casually, then passed to the program. This step verifies that
the fuzzing driver fills data into libmsg as expected, and the
API conventions are followed. Unfortunately, even the most
simple inputs can crash libmsg.

Solution: Shallow Bugs Repair with Developers. Vulner-
abilities residing in shallow paths must be fixed before the
deployment of a fuzzer. If bugs on frequent paths crash the
program, deep paths can’t be exercised. We collaborate with
the developer to fix the shallow bugs to prevent immediate
crashing, and bug hunting on deep paths can be continued.

Obstacle 5: Bug-Hiding Code in Production Run Stage.
We closely monitor the fuzzer running on production server.
To our surprise, we can still find a tricky condition that mis-
guides the fuzzer. libmsg uses GLOG, the Google logging
module, for logging and aborting on assertion failure. The
default behavior is dumping the call stack then exit with status
code 1. However, as figure 3 shows, we find a commit that
disables the error reporting and directly exit with status code 0.
As a messaging library, libmsg is expected to handle errors
and run continuously until explicitly told to exit. It’s a denial
of service attack if the external input can cause the program
to exit.
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// Call to print stacktrace is omitted
// Exit with status code 0 instead
void FailureFunction() {

exit(0);
}

// Called on system initialization
void ProtocolP::init() {

// ...

// Replaces default behavior on fatal situation
google::InstallFailureFunction(FailureFunction);

// ...
}

Fig. 3. Code snippet disabling error reporting

Solution: Patch the Program and the Fuzzer to Detect
Hiding Bugs. To enable capturing this type of problem, we
first work on the program side, removing the commit that
disables the error reporting mechanism. We further work on
the fuzzer side, because American Fuzzy Lop — of which
SAFL is built on top — only detects critical signals by default.
We patched run_target in afl-fuzz to enable detection
of nonzero exit code. AFL based fuzzers can also use this
patch to capture abnormal exit on server-side programs.

V. Results
After overcoming the obstacles, we successfully run our

fuzzer on the production server. We evaluate the effectiveness
of fuzz testing and traditional unit tests on the very same
hardened messaging library libmsg. One executable is built
for the fuzzing test, and another is built with the built-in unit
tests.

Table II shows that SAFL successfully detects 11 vulnerabil-
ities, including 9 previously unknown ones, while traditional
unit tests only capture 3 vulnerabilities. Generally speaking,
without considering the cost and risk to overcome the obsta-
cles, fuzz testing is more effective than traditional unit tests.

TABLE II
Number of vulnerabilities discovered by SAFL and unit test

Type SAFL UT

Incorrect exit procedure 2 0
File descriptor leak 1 0
Reachable assertion 1 0
Unaligned memory access 2 2
Uncontrolled memory allocation 4 0
Use after free 1 0
Memory leak 0 1

Total 11 3

One memory leak vulnerability is the only case where
fuzzing failed to capture. Unit tests are handwritten, which
have the advantage of systematic coverage of interfaces and
APIs. On the contrary, our fuzzing driver relies on the sample
code. Due to the simplicity of the sample code designed for
educational use, some part of the program is bound to be
unreachable. We believe that a better fuzzing driver would
help solve this problem.

Two Unaligned memory access vulnerabilities are captured
by both techniques. Figure 4 shows the code snippet of a

vulnerable utility function responsible for reading an integer
from network. The protocol parser calls it every time a new
connection is established, therefore the buggy code is executed
on almost all inputs. It’s unsurprising that vulnerabilities
residing on frequent paths are easy to capture with both
techniques.

// data isn't guaranteed to be aligned!
void *data = consume_bytes(4);
uint32_t size = *reinterpret_cast<uint32_t *>(data);

Fig. 4. Utility function containing undefined behavior

The other vulnerabilities are only discovered by fuzzing.
For example, the file descriptor leak is not detected by unit
tests, because unit tests usually feed the program with a small
number of predefined inputs. The number of inputs is too small
to use up all the file descriptors, and the symptom never shows
up. The vulnerability of reachable assertion demonstrates
another weakness of unit tests. The root cause behind is a
design fault that routes connection of the new protocol to
old protocol handlers. Many components are involved in the
complex implementation. On the one hand, unit tests don’t
care about system-level design decisions, but the interaction
between various components is error-prone. On the other hand,
once design faults occur, it’s difficult to defeat cognitive inertia
and write test cases for the corner case.

VI. Discussion
Valuable lessons are learned during the practice. Observa-

tions on fuzzing preparation include:
1) Most industrial environments are different and may

not satisfy the prerequisites for fuzzers. Unlike static
analyzers working on source code, fuzzing is a dynamic
approach, therefore it’s inevitable to run fuzzers in the
environment where programs are designed to run. The
operating system, compiler, and hardware may vastly
differ from everyday development environment. We find
that advanced techniques used in “smart” fuzzers usually
have limitations in industrial environments. For example,
the popular symbolic executor KLEE [3] doesn’t support
multithreading and inline assembly, which greatly limits
its industrial use. Intel PIN [9], a popular dynamic
instrumentation toolkit, also have restrictions on CPU
feature and kernel version. For practical use, there’s lots
of work ahead.

2) Support for complex build systems is lack and
highly needed. Large projects are usually accompanied
with complex build systems. Instrumented builds require
modification in compiler flags. Although most build
systems provide standard interfaces to do so, they are
unreliable due to antipatterns in build scripts. More
low-level approaches may be taken, such as compiler
customization.

Observations on writing fuzzing drivers include:
1) Training is needed to write qualified fuzzing drivers.

To adapt fuzz testing to existing projects, one major hin-
drance is the absence of fuzzing drivers. Test engineers
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or software developers usually have enough domain-
specific knowledge, but training on fuzzing is required
to convert their knowledge to working fuzzing driver.

2) Sample code and unit tests help write fuzzing drivers.
Sample code in tutorials covers the core concepts and
workflow, and unit tests provide a detailed view of each
component. Converting sample code to fuzzing driver
is a cost-effective approach to start, while unit tests
help to cover more advanced APIs and interfaces not
mentioned in sample code. Combine them together, and
high-quality fuzzing drivers can be written with a lower
cost.

Observations on running fuzzers include:
1) Code may intentionally hide bugs. Dirty hacks are

ubiquitous in industrial projects. Low-level interventions
such as signal handler and callback on fatal logs may
help to solve problems at the moment, but the long
lasting side effect prevents fuzzers to detect anomalies.
These workarounds are hard to locate in source code,
but must be found and bypassed.

2) Resource usage should be monitored. Crash is a direct
evidence for the presence of bugs. However, resource
utilization anomaly may indicate bugs as well. For
instance, after investigating the exceedingly high number
of execution timeouts, we found the uncontrolled mem-
ory allocation vulnerability. The kernel overcommits
memory when the allocation is too large, which leads to
slowdown on access. It’s probable that resource usage is
another effective metric to guide coverage-based greybox
fuzzers.

VII. Conclusion
In this paper, we present an empirical study on adapting

fuzzers to real industry projects, which differ greatly from
standard projects commonly used by researchers to evaluate
the efficiency of fuzzers. The program itself and the environ-
ment that the program runs in contain many pitfalls hardly
mentioned in any existing studies.

During the phases of environment preparation, driver de-
velopment, software compilation, test run and production run,
we list the typical obstacles and discuss the solutions in detail.
After overcoming those obstacles, we run the fuzzer efficiently
and report 9 previously-unknown bugs. By analyzing the
results, we compare unit testing and fuzz testing, and confirm
that fuzzing can be low-cost yet achieve better results than
unit tests. The observations and solutions can also be applied
to the fuzzing practice of other real industrial projects.
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