IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

2563

Symbolic Analysis of Programmable
Logic Controllers

Hehua Zhang, Yu Jiang, William N.N. Hung, Xiaoyu Song, Ming Gu, and Jiaguang Sun

Abstract—Programmable Logic Controllers (PLC) are widely used in industry. The reliability of the PLC is vital to many critical
applications. This paper presents a novel approach to the symbolic analysis of PLC systems. The approach includes, (1) calculating the
uncertainty characterization of the PLC system, (2) abstracting the PLC system as a Hidden Markov Model, (3) solving the Hidden Markov
Model with domain knowledge, (4) combining the solved Hidden Markov Model and the uncertainty characterization to form a regular
Markov model, and (5) utilizing probabilistic model checking to analyze properties of the Markov model. This framework provides
automated analysis of both uncertainty calculations and performance measurements, without the need for expensive simulations. A case
study of an industrial, automated PLC system demonstrates the effectiveness of our work.

Index Terms—PLC, Hidden Markov model, probabilistic analysis

1 INTRODUCTION

PLCs are widely used in industry. A PLC system is composed
of a microprocessor, memory, input devices, output devices,
and an embedded PLC program. The embedded PLC pro-
gram is executed through periodic scanning. Signals are
received from input devices such as sensors or switches, and
sent to output devices such as actuators. In each cycle, the
inputs are sampled and read first. Then, the embedded PLC
program instructions are executed. Finally, the outputs are
updated and sent to actuators. Most of the PLC systems are
safety critical, especially those in application areas such as
nuclear power plants or spaceport device controls.

There have been many studies that have modeled and
verified PLC programs. PLC programs are usually modeled
as automata [1] or Petri nets [2]. Formal verifications are then
proposed for analysis. For example, [3], [4] translated the PLC
program into an SMV model, and checked the properties with
the model checker. Most prior works considered only static
PLC programs, and verified the functional numeric properties
by exploring the state space of the transferred model. How-
ever, they did not consider the effect of the operating envi-
ronment on the PLC program. The uncertainty errors [5]

® H. Zhang, M. Gu, and]. Sun are with the School of Software, Tsinghua
Information Science and Technology National Laboratory (TNLIST),
Tsinghua University, Beijing 100084, China.
E-mail: {zhanghehua, guming, sunjg)@mail.tsinghua.edu.cn.

® Y. Jiang is with the Department of Computer Science and Technology,
Tsinghua Information Science and Technology National Laboratory
(TNLIST), Tsinghua University, Beijing 100084, China.
E-mail: jiangyul0@mails.tsinghua.edu.cn.

® W.N.N. Hung is with Synopsys Inc., Mountain View, CA 94035.
E-mail: william_hung@alumni.utexas.net.

® X. Song is with the Electrical and Computer Engineering (ECE)
Department, Portland State University, Portland, OR 97207.
E-mail: song@ece.pdx.edu.

Manuscript received 16 June 2012; revised 24 Nov. 2012; accepted 05 June 2013.
Date of publication 13 June 2013; date of current version 12 Sep. 2014.
Recommended for acceptance by C. Metra.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2013.124

caused by noise, environment, or hardware were neglected,
thus it is difficult to carry out some performance measure-
ments with these methods.

Uncertainty error analysis and performance measure-
ments are important to safety critical systems. Traditionally,
the assessment of uncertainty errors was achieved by utilizing
combinatorial methods such as the Fault Tree method [6]
and Reliability Block Diagrams [7]. The Fault Tree method
involves specifying a top event to analyze, such as the failure of
the system, followed by identifying all associated events that
could lead to the top event. It can be solved with techniques
such as Binary Decision Diagrams [8]. Analysts also extend
the traditional Fault Tree method by associating a particular
Markov process to a leaf node [9]. Embedding the Markov
process into a leaf node makes it easy to model dynamic
systems. A Reliability Block Diagram is a graphical depiction
of the system components and connectors. Reliability Block
Diagrams can be used to determine the reliability of a system,
when the reliability of each component is given. Recently, a
more flexible framework called Bayesian Network, has been
applied to system reliability analysis [10], [11]. It is based on
the theory of graphical and probabilistic reasoning. These
methods present the distribution of system components and
events with high level abstraction.

Corresponding to the reliability assessment methods used
at the macro-system component level, there are also many
methods and tools developed for the nano-circuit level. The
recent works on the reliability assessment of logic circuits are
mostly based on Bayesian Network [12], Dynamic Bayesian
Network [13], Probabilistic Transfer Matrices [14], [15], and the
probabilistic model checker PRISM [16], [17]. In the Bayesian
Network based algorithm, the circuits are translated into a
Bayesian Network to capture the dependencies between each
gate, and to construct a conditional probability table for each
node. In this method, a long runtime problem will arise due to
thelarge, conditional probability tables. In Probability Transfer
Matrix based methods, probabilistic transfer matrices are con-
structed for each gate. Matrix multiplications and tensor

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2564

product operations are then adopted to combine the probabi-
listic transfer matrices, with the help of an Algebraic Decision
Diagram. The storage and manipulation of a large Algebraic
Decision Diagram also leads to significant runtime for circuits.
PRISM based approaches have been shown to be useful in
analyzing NAND multiplexing, fault-tolerant architectures,
with the understanding that the actual values of inputs and
outputs of each logic block are not important. However, it does
not generally address the circuit-specific failures due to the
dedicated observations. When applied to other problems, it
will lead to the well-known state space explosion problem.

A PLC system is a type of embedded system consisting of
some hardware components and an embedded control pro-
gram. The complex relationships between the hardware com-
ponents and the control program will need to be considered.
For example, different embedded control programs will give
rise to different times for memory reading and writing. This
will lead to different reliability values. In this paper, we
propose a more straightforward method to handle these
relationships. We translate the embedded control program
into alogic expression, and built an abstract syntax tree for the
logic expression. The probabilities of hardware uncertainty
errors are embedded into the probabilities of the operators
and the parameters in the expression. We process those
operators from the bottom, up. The final probability of the
root operator denotes the reliability of the system. Based on
the reliability of the PLC system, we can also carry out some
performance measurements. Generally speaking, the main
contributions of this paper include:

* A complete symbolic framework to address the reliability
assessment and the performance measurements of PLC
systems.

* A new approach to characterize the uncertainty errors of
PLC systems in a probabilistic way, which harmonizes
the complex relationships between hardware component
errors and the embedded control program.
Presentation of how to abstract a PLC system as a Hidden
Markov Model, and to extend the Baum-Welch method to
solve the Hidden Markov Model based on the domain
knowledge of its dedicated operating environment.

+ Combining the solved Hidden Markov Model and the
static reliability of the system to form a regular Markov
Model, and to do some reward based probabilistic model
checking. The performance measurements of the proba-
bilistic model checking are more accurate and closer to
real-world run-time situations.

Background concepts are introduced in Section 2, and a
symbolic framework for a formal analysis of PLC systems is
presented in Section 3, including an introduction of the main
procedures such as uncertainty calculation, Hidden Markov
Model construction, and reward based model checking. Ver-
ification of the framework with a case study is presented in
Section 4, and conclusions are presented in Section 5.

2 BACKGROUND

In this section, we introduce some basic concepts of the PLC
program, and the Hidden Markov Model. The International
Electrotechnical Committee [18] has defined four standard
programming languages for PLC: Ladder diagram, Function-
al block diagram, Instruction list and Structured text. This

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

A bt
— 1 "

mil ")
—1 =

by | T|/| L ‘(/53)__
B T
—f | TON 6 5
L

Fig. 1. A simple ladder program.

paper focuses on the ladder diagram, which is a popular
programming language in PLC applications.

2.1 Ladder Diagram

The Ladder diagram is a widely used graphical programming
language for PLC. The language itself can be seen as a set of
connections between contacts and coils. If a path can be traced
between the left side of the rung and the output, the rung is
true and the output coil storage bit is asserted to be true. If no
path can be traced through asserted contacts, the output coil
storage bit is asserted to be false. Fig. 1 shows a simple ladder
program with several common instructions. It is made up of
four ladder rungs.

The symbol —||— is a normally open contact, representing a
primary input. When the value of V; is 1, the contact will stay
in the closed state and the current will flow through the
contact. The symbol —|/|— is a normally closed contact. When
the value of V3 is 0, the contact will stay in the closed state, and
the current will flow through the contact. The symbol —||— ||—
represents a serial connection of two contacts. In the third
rung, V3 and b; are connected in parallel. If either V5 or b; has
the value 1, the current will flow through the trace and the
output coil storage bit will be asserted to be true. The symbol
S/R is the set-reset instruction. When the results of the ladder
rung turns out to be true, S will refresh the corresponding coil
storage bit with 1 and R will refresh the bit with 0. Detailed
explanations and other instructions can be found in [18].

2.2 Hidden Markov Model

The simplest Markov model is the Markov chain. The Markov
chain is a random process with the property that the next state
depends only on the current state. It models the state of a
system with a random variable. The value of the variable
changes over time. A discrete time Markov model can be
defined as a tuple (S, m, A, La), where

+ S ={S)--- Sy} is a set of states. We use ¢: to denote the
state of the system at time ¢ (t € N™).

« w={m - -7wn} is the initial state distribution, where
m = P(q = S;) is the probability that the system state
at time unit 1 is S;.

* A = {a;;}(Vi,j € N) is the state transition probability ma-
trix for the system. a;; = P(q11 = S;|¢; = S;) denotes the
probability that the system transfers from the state S; to .S;.

* La is a set of propositions labeling states and transitions:
{S;,a;j} — La, where 1 <i,j < N.

ZHANG ET AL.: SYMBOLIC ANALYSIS OF PROGRAMMABLE LOGIC CONTROLLERS

Uncertainty
calculation

PLC HMM HMM Markov PRISM
system modeling solution model modeling
Domain Property
knowledge analysis

Fig. 2. Framework for the analysis of PLC systems.

In a regular Markov model, the state is directly visible to
the observer, and the state transition probabilities are the
only parameters. Each state corresponds to a physical event.
This model is too restrictive to be applied to many problems
of interest, including those cases where each state corre-
sponds to many physical events, and the observation is a
probabilistic function of the state. As a result, we utilize the
Hidden Markov Model. In a Hidden Markov Model, the state
is not directly visible, but the output observations which
depend on the state are visible. Each state has a probability
distribution over the possible output observations. There-
fore, the observation sequence generated by a Hidden Mar-
kov Model gives some information about the sequence of the
states.

Formally, a Hidden Markov Model (HMM) can be defined
asatuple M = (S,0,n, A, B, La). Theitems S, m, Aand La are
the same as previously defined. The other two components
are defined as:

* O ={0;---Oy} is a set of observations that the system
can generate. We use v; to denote the observation of the
system at time ¢ (t € N7).

* B={by} is the observation state probability
matrix. by, = P(vy = Ogl|ge = S;)(VS; € 5,0y, € O) is the
probability that the system generates observation Oy, in
state .5;.

Given an observation sequence (),, there are three basic
problems that must be solved for the Hidden Markov Model
in real-world applications:

* How to calculate probability P(Q,|M) efficiently when
the parameters of M are known.

* How to choose a state sequences that produce the obser-
vation sequence), when the parameters of M are known.

* How to adjust the model parameters A and 5 to maximize
the probability P(Q,|M).

In our framework, we need to focus on the third problem.
We attempt to optimize the model parameters so as to best
describe how a given observation sequence will turn out. It
allows us to optimally adapt model parameters to observed
training data, in order to create the best model for real
phenomena. The problem has been solved using an iterative
procedure such as the Baum-Welch method [19]-[21] and
equivalently the EM method [22]-[24], or by using gradient
techniques [25]. In this paper, we utilized the method
introduced by Baum-Welch. It appears that the physical
meaning of various parameter estimations can be easily
visualized with this procedure. If there is enough domain
knowledge based on simulations, we can solve the Hidden
Markov Model with an easier method presented in
Section 3.3.

2565

E: Ww‘ f(0)=pfps(0~>l)+pip7(1 —0)

A,
SN

AN
N X
(%

YI

Translate'ladder)

/\(/\(A(v(xl,yo)’yl')vx‘zlx;))ism/v\
X

1 ¥,

Fig. 3. An example of the uncertainty calculation.

3 SymBoOLIC FRAMEWORK

In this section, we present a symbolic framework for the
reliability calculation and performance measurements of PLC
systems. The framework mainly contains three main steps
defined as follows: (1) The uncertainty characterization of the
PLC system with static probabilistic calculations, which can
reflect the relationships between the reliability of the hard-
ware components and the embedded control program,
(2) Hidden Markov Model construction and solving, which
reflects the actual operational environment of the PLC system,
(3) Reward based probabilistic model checking, which
analyzes the performance properties of the system on the
combined Markov model. Detailed information about the
components of the framework is shown in Fig. 2. We modeled
a PLC system by HMM, and solved the HMM with different
types of domain knowledge. Then, we combined the solved
HMM with the effect of uncertain errors to get a regular
Markov model. Finally, we described the regular Markov
model in PRISM, described some properties based on domain
knowledge, and executed reward based property analysis to
obtain performance measurements.

3.1 Uncertainty Calculations for the PLC

A PLC program is executed with a periodic scanning mecha-
nism. Each cycle consists of reading the sampled inputs, exe-
cuting the PLC program instructions, and updating the outputs
to actuators, sequentially. The uncertainty characterization
calculation refers to evaluating the effects of errors caused by
input sampling and program execution. Sampling errors hap-
penwhen the actual inputis 1 (or 0), but the sensor samples 0 (or
1). Program execution errors happen when the output of each
ladderlogicis 1 (or 0), but the actual output of the logic turns out
tobe 0 (or 1). The program execution errors mainly occur at the
serial connection AN D logic (a A b) and the parallel connection
OR logic (a V b). The probabilities of the two execution errors
depend on the environment, the hardware, etc.

The uncertainty calculation is based on our previous work
presented in [26], and divided into three steps: (1) defining the
output of each ladder rung on the contacts and the special
instructions, such as timers and counters, as they are con-
nected by ladder logic (a A b, a V b), (2) building an abstract
syntax tree for the output expression, and (3) processing the
sampling errors and executing through the abstract syntax
tree from the bottom up, until the root node is reached. An
example is shown in Fig. 3. First, we applied the Translate
(Iadder) algorithm to translate the ladder program into an
expression. Then, we executed the AST(exp) algorithm to
build an abstract syntax tree for the expression, shown at the
bottom right of Fig. 3. Finally, we applied the formula f(0) at
the top right of the figure to process each node. The formula
f(o) will be explained in later paragraphs.

2566

Translate (ladder)

: A(Translate(ladderl),
Translate(ladder2))

: V(Translate(ladderl),
Translate(ladder2))

P

case Timer, Counter-:-

}

: special

Fig. 4. The logic expression generation algorithm.

The first step can be executed with the Translate(ladder)
algorithm shown in Fig. 4. The algorithm translates the PLC
ladder program into a logic expression. The contacts and
connection logic are translated into the operators and operands
in the expression. In the first case in Fig. 4, ladder2 denotes the
minimal ladder logic block that is serially connected to the rest
of the ladder logic block. In the second case, ladderl and
ladder2 denote the maximal ladder logic blocks that are in
parallel connections. We use the expression Exzp, which con-
sistsof A, vV, Iand T, to denote the translated result. The symbol
Arepresents the serial connection AN D logic in the ladder. The
symbol V represents the parallel connection OR logic in the
ladder. The symbol I denotes the normally open contact, while
I’ denotes the normally closed contact in the ladder and special
denotes the special instructions. The result of this step is an
expression of the ladder rung.

In the second step, we construct an abstract tree for the
output expression in the first step. We use the syntax-directed
translation method to parse the expression. The syntax of the
output expression is:

Exp — N(Exp, Exp)| vV (Ezp, Exp)|T|I|special.

The main structure of the recursive-descent parsing algo-
rithm for the expression is shown in Fig. 5. The algorithm
makes use of the data structure:

Struct node{char value; node * le ft; node * right; }

The sampling of input devices and logic execution of the
PLC microprocessor are mapped to nodes of the tree in a
structured manner. The result of this step is an abstract syntax
tree, which is also a binary tree. The leaf nodes are contacts and
special instructions, while the other nodes are logic connections.

The third step processes the sampling errors and the logic
execution errors individually, from the bottom node up to the
root of the abstract syntax tree. For each node in the tree, there
are two kinds of error sources, (1) those inherited from their
child’s nodes, and (2) those caused by logic execution of the
PLC microprocessor. We should combine the two error
sources to find the error which will be propagated to its
parent node. The propagation error P, (Lj_.;) means that the
output of the ladder logic L should be 0, but the actual output
is 1, and P,(Ly_,y) means that the output of the ladder logic L
should be 1, but the actual output is 0 ((L € {A, V})).

First, we assume that there are no ladder logic execution
errors for the PLC microprocessor. In this case, we need to
consider the first kind of error source.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

AST (Exp)

: node. value =A ;
node. left=AST(Exp1);
node. right=AST(Expt2)

: node.value=V;
node. left=AST(Exp1);
node. right=AST(Exp2)

case |

: node. value=1;
node. left=NULL;
node. right=NULL

case I’ * node.value=1;
node. left=NULL;

node. right=NULL

case special * node. value = special;
node. left=NULL;
} node. right=NULL

Fig. 5. Abstract syntax tree construction algorithm.

Take a ladder logic node V (I, J) from the tree as an exam-
ple.Ithas two child nodes, I and J. As aresult, the child node I
will propagate the error probability P, (Iy—;) and P.(1,_¢) to
the node V. The other child node J will also propagate the
error probability P.(Jy_.) and P.(J;_) to the node V. We
need to combine these four error probabilities to get P(Vo_1)
and P(V_) due to their child nodes’ errors. According to the
semantics of the ladder logic v, when the results of the child
nodes I and J are 0 (denoted by Fy), the result of the node V is
0 (denoted by P(0)). We find that P(0)=PFy and
P(1) = P11 + Py + Py If I propagates an error P, ([y_;) and
the result of node 7 changes from 0 to 1, the node Vv will inherit
this error and the result of thenode v will change to 1 (denoted
by P OH])), which s a contribution to P(V,_.1). Other cases and
probab1hst1c logic are similar. Hence, the error transmission
mode of thelogic (I, J) can be described in the lemma below.
It shows how the ladder logic V inherits errors from its child
nodes. The case for the ladder logic A is similar.

Lemma 1. The transmission error that the current node V (I, J)
inherits from its child nodes is:

0,0
P(Vo_1) = P<<o;)1)
— pLy (0,1) (1,0)
P(\/lﬂo) - P(1—>0 + Plﬁ[)) P(1—>0)

Proof. According to the semantics of the ladder logic (I, J),
the two kinds of transmission probabilities and the value of
the probabilities can be defined as follows.

hy Py P.(I—) - a(JHo) (I,J) = (1,1),
Py = { Pu(l = Po(Io-)) - P-(Jio) (1, J) = (0,1),
PioP-(Ii—o) - (1 = P-(Jo—1)) (L,J) =(1,0)
pua {P()U(Pe([()—»l) + P.(Jo—1)—
0=1) P-(Io—1) - P-(Jo—1)) (I,J)=(0,0).

The sums of these values are the two kinds of
transmission probabilities from the child nodes. O

ZHANG ET AL.: SYMBOLIC ANALYSIS OF PROGRAMMABLE LOGIC CONTROLLERS

We now need to combine the first kind of error source
(transmission error denoted by P(L;_,) and P(Lj_,)) with
the second kind of error source (the ladder logic execution
error of the PLC microprocessor, denoted by ¢) to get the final
propagation error (denoted by P.(1 — 0) and P.(0 — 1)).

Theorem 1. The final propagation error that the current node L
transmits to its parent node is

(=)(P(Lor)/PO)+
RO=1= {eu ~ P(Lo-)/P(O) L (V,n),
[(I =e)(P(Li-0)/P(1))+
PE(“O)‘{< CP(Li_o)/P() Le (VA

Proof. The first formula shows how a ladder logic L
propagates P.(Ly—1) to its parent node. There are two
possible outcomes, (1) the PLC microprocessor execution
of this ladder logic node is not in error and the ladder logic
node inherits P(L_,;) from its child nodes, and (2) the PLC
microprocessor execution of this ladder logic node is in
error and the ladder logic node does not inherit P(Ly 1)
from its child nodes. The sum of the two cases is the result.
The proof for the second formula is similar. m]

We can then apply theorem 1 to process each node in
the abstract tree, until the root node is reached. The leaf nodes
are contacts and special instructions. The error probability of
the contacts can be set as the reliability of the corresponding
sensors, while the error probability of the special instructions
canbe set according to the work in [26] as a combination of the
basic execution of the microprocessor. Then, the uncertainty
characterization of this ladder rung can be defined as:

flo) = P)P.(0 — 1) + B, P.(1 — 0).

The first factor denotes the probability that the output of
this ladder rung should be 0 (denoted by PY), but the root node
of the abstract syntax tree propagates a P.(0 — 1) error. The
second factor is similar.

Since each ladder diagram could have several ladder
rungs, the uncertainty characterization of the whole PLC
system is defined as

i=

3

f=1-110-=1710),)

—_

=

This expression denotes that there is at least one ladder
rung in error, and f(o), represents the uncertainty characteri-
zation of the n ladder rung. This overall uncertainty charac-
terization represents the probability that the PLC system will
reach an abnormal state from any normal state.

3.2 The Construction of the Hidden Markov Model
Unlike existing methods which only consider static PLC
programs, we have constructed an HMM to reflect the oper-
ating environment of a PLC system. Our model manifests the
dynamic characteristics of all the possible execution paths of a
PLC system. HMM depicts how a PLC system transfers from
one state to another with a hidden probability. As mentioned
in Section 2, HMM can be defined asa tuple (S, O, 7, A, B, La).
We need to abstract S, O and La from the PLC system.

2567

The element S is the set of all normal states of the PLC
system. Each normal state of a PLC system is composed of all
the actuators’ states. Since actuators are actuated by theladder
program, each normal state of the PLC system can be identi-
fied by the primary outputs (coils) of the ladder rungs. When
the number of states is small, we can list all the states easily.
When the number of states is large, we utilize two analysis
methods to construct the S of HMM. The first method is from
the system state to the hidden state. We refer to the design
document, designer, implementer and deployer of the system
to get a system state diagram, and then map the state from the
system state diagram to the state in HMM. The second method
is more complicated. First, we determine the initial state of the
embedded ladder program. Then, we apply a static analysis
method to the ladder program and controlled PLC system to
find all the possible transformations. With this conversion
process, we can discover the valid states.

The element O contains the observations corresponding to
the state set S. It can be abstracted from the basic functional
requirements and the events corresponding to the physical
outputs of the system. Each observation is linked to the
corresponding states by a probabilistic function.

The element La is a set of atomic propositions { La} label-
ing states and transitions. Since the PLC system works in a
periodic scanning manner and there may be timer instructions
in the embedded ladder diagram, we extend the label with the
time attribute. The recursive descent syntax of the label can be
defined as:

La — KDE; K — K 0|K 1|0|1; D — N*.

The label is composed of three components. The first
component K is the primary input sequence of the PLC ladder
program. The sequence determines the outgoing transitions of
each state. The second component D is the time attribute
related to the timer instructions in the ladder program. It
denotes that the corresponding state S; transfers to the state S;
with a time delay D. The value of D is a positive integer N*.
E is the set of observations that the primary input triggers in
the dedicated state Sj.

3.3 Solving the Hidden Markov Model

We have obtained the necessary knowledge about the ob-
servations, states, and transitions of a PLC system. We now
need to solve the unknown parameters of the HMM, espe-
cially the state transition probability matrix A. We provide
two methods to solve the HMM based on three kinds of
domain knowledge. If the domain knowledge comes from
a domain expert and runtime monitoring, the problem can be
addressed by the extended the Baum-Welch algorithm. If the
domain knowledge is from the simulation, we can adopt a
more direct method to find the transition probability matrix.

3.3.1 Extended Baum-Welch Method

The extended Baum-Welch algorithm is based on two kinds of
domain knowledge. The first one relies on domain experts.
For a particular PLC application, the domain expert is in-
quired to provide a set of observation sequences. The obser-
vation sequences represent the actual operating environment
of the PLC system. The second kind of domain knowledge is

2568

from runtime monitoring. After the PLC system is deployed
and in use, we can observe the execution of the system, time
after time, to attain the observation sequences.

With these two kinds of domain knowledge, we can get the
observation sequence O(O; --- 0,0, - -- Or) from the time
unit 1 to time unit 7. Then, we need to adjust the HMM
parameters to maximize the probabilities of the observation
sequence. The Baum-Welch algorithm applies a dynamic
programming technique to estimate the parameters. It is an
iterative procedure, which starts from a possibly random
model M (A, B,). It then applies the observation sequence
for the iterative update, and improves the parameters of
M to get the local maxima of the likelihood function. It
makes use of a forward-backward procedure based on two
variables:

(i) =
Bi(i) =

P(OIOQ : "Oth =
P(Ot+10t+2 ce OT|% =

Si| M),
SivM)v

where (i) is the probability that the partial observation
sequence O;0; - - - Oy, and the system model are in the state
S; at time unit ¢. [,(7) is the probability that the partial
observation sequence from the time unit ¢+ 1 to the end,
given the state S; at time unit ¢. The induction relation of the
two variables are:

af+1

[Z af a?]]b Of+1)

= Z aijbj (Ot+l)ﬂt+l (J)’
j=1

where b;(Oy;1) denotes the probability that the system is in
state j, and the observation is O, ;. Then, we define some
variables on the forward and backward variables to compute
the parameter a;;.
24() = Plai = S0, M)
_ (@6

_ |
o))

~:(7) is the probability that the system is in state S; at time ¢,
given the observation sequence O.

&i(i,9) = Pl = Siy qr1 = S'|0 M)
at()aU (Ot+1)ﬂt+1()

O‘t()au (Ot+1)ﬁt+1()

Mz

2

1=

.ﬂ
<.
I

—

&(i, j) is the probability that the system is in state .S; at time ¢
and in state S; at time ¢ + 1, respectively, given the observa-
tion sequence O. The events leading to the appearance of
& (i, j) are illustrated in Fig. 6.

Therefore, the expected number of all the transitions start-
ing from S; can be defined as Y/,' 7;(i). Similarly, the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

Fig. 6. The events leading to the appearance of &(i, j).

expected number of the transitions from S; to S; can be
defined as 3"/ &(4, j). The expected number of occurrences
of observation O in the state S; can be defined as
ZtT:LUt:Ok 7(4). For a single observation sequence, the itera-
tive calculation formulas for the state transitions and the
observation probabilities can be defined as:

T-1 r
> &(,9) ERINIC
af‘] - t;il ’ bf‘J = ;)
> (i) > (i)

where the numerator of @;; denotes the expected number of
transitions from the state S; to S;, and the denominator
denotes the expected number of transitions from the state
S;. The numerator of b;; denotes the expected number of times
observing the symbol O; in the state S;, and the denominator
of it denotes the expected number of times when the system is
in the state S;.

We now consider the multiple observation sequences
0s(0',0%---,07), where OF(O}--- OfOF ;- -- Ok) is the ky,
observation sequence, and W, is the frequency of sequence O*.
The parameters of model M need to be adjusted to maximize
P(Os|M). We extend the method presented in [27] with a
weight W, for each OF. We define P, = P(O*|M) and
P(Os|M) = [];_; P:Wi. Theiterative calculation formulas for
the state transitions and the observation probabilities can be
changed to:

S 1 T-1 i
AZ AR ; & (1,)
@ij = 11 t;fl)
> PA-%/Vk 'Yf (4)
k=1 t=1
s T
> Pﬁi > ’Yf ()
b — k=1 t=1,0,=0
] ,
DRI S0
P, 2= e\t
k=1 t=1

where the numerator and denominator of the extended for-
mulas have the same meaning as the original ones.

We cannow choose an initial model M (A, B, 7) and take M
to compute the right side of the iterative calculation formulas.
Once we get the new model M(A, B, n), we can use M to
replace M. This procedure is repeated until the stop condition
is met. For example, the probabilities of the observation
sequence satisfies |P(Os|M) — P(Os|M)| < 6, where 0 is the
user-defined precision limit.

ZHANG ET AL.: SYMBOLIC ANALYSIS OF PROGRAMMABLE LOGIC CONTROLLERS

3.3.2 Simulation-Based Method

The second method is based on the domain knowledge from
simulations of a PLC system. We take simulation techniques
to get the state sequences and the frequencies of each state
transition. Then we can calculate the state transition matrix
directly. For example, we identify a state S; with two outgoing
transitions to .S; and S;.. We monitor the simulations for 100
system cycles. There are 100 transitions, and the frequencies of
the transitions a;; and a;;, are 80 and 20, respectively. As a
result, the transition probabilities for the two transition are 0.8
and 0.2, respectively. This method decreases the inaccuracy of
the HMM with more precise domain knowledge.

With the two methods, a solved HMM is built and denotes
the real operating environment in a particular application. we
can get the solved state transition matrix A, where a;; is the
probability that the system transfers from the state S; to the
state .S;.

3.4 The Construction of the Combined Regular
Markov Model

The uncertainty characterization of a PLC system itself de-
notes the inner reliability of the system, which evaluates the
effects due to the errors from the sampling of input devices
and the errors from the program execution of the PLC micro-
processor. The solved HMM shows the operating environ-
ment of the PLC system in a particular application, with the
use of the normal states and transitions. We construct a new
Markov model to combine these two properties.

The first step is to add the abnormal state caused by the
uncertainty into the solved HMM. Since the PLC system
would go into an abnormal state from any normal states, we
build an abnormal state U for all the normal state S,,. When a
normal state transmits to an abnormal state, it can be recov-
ered to the initial state by the system itself, or by human
intervention. We also need to add the related transitions to the
solved HMM. Afterwards, we can get all the states and
transitions of the new Markov model M’

The second step is to initiate the transition matrix of the
new model M’. We need to assign values to different transi-
tions. The probability of a normal state transmitting to an
abnormal state depends on the uncertainty characterization.
The recovering transitions depend on the design of the PLC
system. After these states and transitions are added to matrix
A, the original value of a;; needs to be adjusted with a
coefficient. The new transition matrix A’ is defined as:

apo(1 =) an (1= f) apn(1 = f) f

ap(l = f) an(l—f) ain(1 = f) f

an()(l' - f) an?(l. - f) ann(i - f) f
Tuo 0 0 1 — Tuo

where the last row and the last column are for the abnormal
state U, and the remaining rows and columns are for the
normal states S,,. The probability of the normal states chang-
ing to the abnormal stateis f, which is the value of uncertainty
characterization. We know that the error probability is the
same for all the normal states, since the uncertainty charac-
terization f is the inner quality of the PLC system. The
recovering transition probability from the abnormal state U

2569

to the initial state Sy is ryo. The system remains in the
abnormal state with a probability of 1 — ry in the case of
uncertainty that can not be recovered. The transition proba-
bility among the normal states is a;;(1 — f). The result of a;;
multiplied by the coefficient 1 — f is the new transition prob-
ability combined with the uncertainty characterization.

The constructed Markov model combines the inherent
reliability property with the operating environment of the
PLC system. It closely mimics the actual executions of the
PLC system in real life applications. Based on the combined
Markov model, we can now analyze several runtime proper-
ties of the PLC system by model-checking.

3.5 Domain Property Analysis with PRISM

After building the combined Markov model, we can perform
probabilistic model checking using PRISM [28]. First, the
Markov model needs to be specified with PRISM modeling
language. Second, we need to add some rewards to the model,
to specify additional quantitative measurements. Finally, we
specify the properties to be analyzed on the PLC system.

A PRISM model comprises a set of modules that represent
different aspects of a PLC system. The behavior of a PRISM
model is specified by guarded commands. Synchronization
among different modules can be implemented by augmenting
guarded commands with the same action label. We now
describe the combined Markov model (S’ 7/, A’ Lda’) in
PRISM. The module is derived from the transition matrix
A'. We declare a variable H, whose value ranges in [0,n + 1].
We then build a label command for each row of the matrix
A" based on the variable [L;,|H =i — (a},: H =0) +
(ay :H =1)+...(a},: H=n)+(f: H=n+1). Subse-
quently, we focus on extending the model with rewards. The
structure of a reward is:

rewards ‘‘reward_name” component endrewards.

There are two types of rewards: (1) the component for the
state reward is guard : reward, and (2) the component for the
transition reward is [Label|guard : reward. Label is the com-
mand label in each module, guard is a predicate over state
variables, and reward is a real-value expression. When states
and transitions satisfy the guard, reward assigns quantitative
measurements to them.

In a PLC system, the main performance measurements we
are concerned with are the timing and reliability properties.
Therefore, we define two representative rewards. The firstis a
transition reward component regarding the time property. It
can be derived from element D of the transition label La. We
add a component {[L;]true : D} to each transition into the
reward. The reward reflects the elapsed time of each transi-
tion. The other reward is a state reward component regarding
the reliability property. We associate the number 1 to all the
normal states with a component {r : 1}. This reward can be
used to determine the long-run availability of a PLC system.
We can also define other kinds of rewards, such as the power
consumption of each transition or state.

After the probabilistic model and rewards are described in
PRISM, we can analyze some properties. The properties are
specified in PRISM property specification language. We take
the P, §, and R operators to specify quantitative time instant
properties, and the long-run properties formula ®. For

2570

example, we use the following three properties to describe the
execution state of a PLC system in the long-run (where U
denotes the abnormal state).
+ S_»[!U], shows the probability that the PLC system is not
in failure in the long-run.
« P_;[GINU], represents the probability that the PLC sys-
tem has no errors during ¢ time units.
* P_;[FI"1117], denotes the probability that the PLC system
is not in failure at time instant ¢.
We can also specify the properties formula ® regarding
time as follows.
* Rew_y[C=Y], yields the cumulative time that the PLC
system is in the normal states during ¢ time units.
* Repr—2[FU], yields the cumulative time passing in the
PLC system before the first failure.

4 CASE STUDIES

In this section, we present our our application of the proposed
framework to an actual industrial PLC system, which was
originally published in [29]. The system is shown in Fig. 7. The
input devices of this PLC system are the sensors. The actuators
are the three pistons, (A4, B, C') which are operated by solenoid
valves (V1, V2, V3). Each piston has two corresponding, nor-
mally open, contacts. Three push buttons are provided to start
the system (switch SWW), to stop the system normally (switch
SW>) and to stop the system immediately in an emergency
(switch SW3). In the manufacturing facility, such piston
systems are used to load or unload parts from a machine
table, and extend or retract a cutting tool spindle.

There are many PLC ladder programs that can be used
to control this system. Referring to the example in Fig. 1,
this ladder program is similar to the third ladder diagram
in [29]. In order to facilitate our analysis and make the
system easier to understand, we deleted the counter instruc-
tion that was in the original ladder diagram. There are four
ladder rungs, which includes 8 primary input contacts
(SWl, SW37 ap, aq, b07 bl, Co, Cl). SW1 and SWg are changed by
human operations, while the others are automatically chan-
ged by the movements of the pistons. We can construct an
automata model for the operating principle of the PLC sys-
tem. The state is denoted by the outputs of the ladder. The
details of the system control theory are shown in Fig. 8. The
number of ladder outputs is 4, and the number of all possible
states is 2*. Based on the description of the system above, we
used the methods mentioned in 3.2 to discover six valid states
and one abnormal state. Then, the S and O components and
the transitions between the states of the HMM are derived.
The system has six normal states (Sy, 51, 52, S5, S, S5), and an
abnormal state corresponding to many types of failures
caused by the uncertainty characterization. The six normal
states are the states of the HMM. In Fig. 8, each normal state
has some corresponding observations linked by dotted lines.
In this system, there are four states that have only one
corresponding observation each, and state S5 has three cor-
responding observations. The transitions are labeled with the
primary input sequences. The time for each transition is one
time unit, except that the transition between the state S5 and
Sy is six time units. We present below the detailed control
theory of the system model.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

SW, SW, SW;

ﬁT

PLC ﬁ
ET T

Fig. 7. The industrial automated system.

Initially, the system is in a blank state, .S;. In this state, the
pistons remain on the left side. As a result, the values of
(ag, a1, by, b1, co,c1) are (1,0,1,0,1,0). In the first execution
cycle of the PLC system, when the worker presses the start
switch (SW)), and the system is activated. The values of
(V1, Vo, V5, T) are then (1,0,0,0). Piston A will move to the
right side (A™). The values of (ay, a1, by, b1, ¢o, ¢1) change to
(0,1,1,0,1,0). In the second execution cycle, the values of
(W1, V2, V3, T) are (1,1,0,0). Piston B will move to the right
side (B*t). The values of (ag,ai,bo,bi,cp,c1) change to
(0,1,0,1,1,0). In the third execution cycle, the values of
(V1,Va,V5,T) are (0,1,1,0). Piston A will move back to the
left side and piston C' will move to the right side, simulta-
neously (A~ C™). The values of (ag, a1, by, b1, ¢o, ¢1) change to
(1,0,1,0,0,1). If we press SWs, pistons B and A will move to
the left side (A~ B™). In the fourth execution cycle, since the
values of (¢, ag) are (1, 1), the timer instruction is activated. In
the next five time units, the value for the output (V1, V5, V5, T)
will not change. Therefore, the system will keep static for five
time units. At the sixth time unit, the values of (Vi, V5, V5, T)
are (0,0,0, 1). Pistons B and C will then move to the left side
(B_ C_) The values of (ao, ai, b(]7 bl, Cp, Cl) Change to
(1,0,1,0,1,0).

We can build an HMM for the PLC system using the
operating principles presented in Fig. 8. The states of the
HMM are the normal states in the automata. The transition
label La, between two hidden states, is also derived from the
automata, where element K is the eight primary inputs on the
automata label and element D is the time for each state
transition of the original automata. The set of observations
is composed of the content inside the rectangle in Fig. 8.
Hence, we can produce matrix A for the HMM as:

So S1 S Sz Sp Ss

So @y Gor G2 Go3 ot Qos

Si aw an aix a3z auy ais
A=1S5y ax ax axp axp ay ax
S3 azx a3 Gz Gz a3y a5

Sy G an G a3 Qg Q4

Ss asy as1 asy asz Gss Qs

There is a real-life application, where the operating envi-
ronment of this PLC system is representative of a movement
sequence O: [A*, BT, C"A~, B-C"]. In this case, we need to
solve matrix A and B using the Baum-Welch algorithm, or by
using simulations to achieve the maximum P(O|M).

Then, we need to combine the solved HMM with the
uncertainty state caused by the uncertainty characterization.
We assume that the sensor error for each primary input

ZHANG ET AL.: SYMBOLIC ANALYSIS OF PROGRAMMABLE LOGIC CONTROLLERS

2571

"
S

\
Uncer 1\

”
4
I

\

{A-},{B-A-},{B-C-}

SWi1=1, SW3=0
a0=1,b0=1,c0=1

SWi1=1, SW3=0
a0=0,b0=1,c0=1

al=1,b1=0,c1=0

al=0,b1=0,c1=0

tainty ,'
’l

N,

\~~_—

» SW3=1

SWI=INSW3=1

SW1=1, SW3=0
20=0,b0=0,c0=1

al=1,b1=1,c1=0

1
4 SW1=1, SW3=0
T
1

a0=1,b0=1,c0=1 E
{A+} {B+}| er-ob1=0,c1=0 |{A-C+} {B1C-}
Fig. 8. The details of the system control theory.
TABLE 1
Property Results Get by the Symbolic Framework
property env | U=0.01 | U=0.03 | U=0.05 | U=0.07 | U=0.09 | U=0.1 | U=0.15 | U=0.2 | U=0.25

time 1 198 98 38 32 27 21 18 8 6

time 2 233 73 43 30 23 21 13 9 7
availability 1 0.990 0.971 0.952 0.934 0.917 0.908 0.868 0.830 0.795
availability 2 0.989 0.968 0.947 0.928 0.909 0.900 0.857 0.818 0.783
power 1 1462 1391 1325 1261 1200 1171 1032 908 797
power 2 1234 1181 1130 1081 1034 1011 903 804 714

contactis 0.05, and the ladder logic execution error of the PLC
microprocessor is 0.3 [30]. Applying the method presented in
Section 3.1, the uncertainty characterization of this PLC sys-
tem is 9.8 percent, meaning that the system has a 0.098
probability of going into an abnormal state from any normal
state. Assuming that the system will recover to the initial state
from the abnormal state with a 0.9 probability, the combined
matrix A’ is presented as follow:

So Si Sa Ss Sy Sy U
So 0 0.902 0 0 0 0 0.098
S0 0 0.902 0 0 0 0.098
Sy, 0 0 0 0.902 0 0 0.098
S; 0 0 0 0 0.902 0 0.098
Sy 0 0.902 0 0 0 0 0.098
S; 0 0 0 0 0 0 1
U 09 0 0 0 0 0 01

Let us see an example of multiple observation sequences,
whose operating environment is representative of three kinds
of observation sequences. The observation sequences o', 0?,
and O° are [A*,A7],[A*,BT,B~A7] and [A*, BT, A~C*,
B~C"], respectively. We assume that during 1000 observa-
tions, O' appears 200 times, O? appears 200 times, and O?
appears 600 times. We then apply the extended Baum-Welch
algorithm for the multiple observation sequences, and the
combined matrix A’ is obtained as follows:

0 0.902 0 0 0 0 0.098
0 0 0.722 0 0 0.180 0.098
0 0 0 0.677 0 0.225 0.098
0 0 0 0 0.902 0 0.098
0 0.902 0 0 0 0 0.098
0.902 0 0 0 0 0 0.098
0.9 0 0 0 0 0 0.1

We can also take the system state diagram of the fourth
ladder in [29] to construct a more complex HMM that contains
17 normal states and 26 transitions. When we apply the four
observation sequences [AT, Bf, B-A"], [AT, BT, A~C",
B~C7], [At, B, A~C*, 6s, B-C™], [3[Af, B", A~C*, 6s,
B~C7],10s, A*, B~ A] to solve the HMM, we can obtain a
more complicated matrix, which is too big to present here.

As described in Section 3.5, we now describe these models
in PRISM, and extend these models with rewards to analyze
the system. The time property is derived from the time
element D of the transition label La. In addition, we assign
a reward power to each state. The reward denotes the power
consumption for valid piston movements in each state. Then,
we can initiate some performance properties based on the
rewards time and power.

* S_y[H < 6]: the long term availability of the system.

* Rpimeny—2[F'H = 6]: the first time of a system failure.

* Rppowery—2[C=1]: the valid power consumption of pis-

ton movements during 1000 time units.

In the following paragraphs, we will demonstrate how the
operating environment affects the performance measure-
ments of a PLC system. Three operating environment exam-
ples were described above, which are denoted by three sets of
observation sequences. We compare the three properties in
the first two operating environments with PRISM. The results
are shown in Table 1. All the results are generated by PRISM
within 0.1 second. We can see from Table 1 that the long term
availability for the second example (env = 2) is always better
than for the first example (env = 1). The first failure time for
the second example comes faster than for the first example.
The total number of valid piston movements for the first
operating environment is greater than for the second operat-
ing environment. More results are shown in Figs. 9-11.

This case study demonstrates that the performance prop-
erties of the system are different in different operating

2572

1 T T T T T
: —— ladder2-Env1

0.9 -

long-run availability
o
@
[}

o
0

0 0.05 0.1 0.15 0.2 0.25 0.3

error probability

Fig. 9. Long-term availability. The horizontal axis is for logic execution
error probabilities of the PLC microprocessor. The vertical axis is for the
long-term availability of the system in two operating environments.

250 T T T T T
: : : —+— ladder2-Env1
—©— ladder2-Env2

200

150 F b B é E :.vv”vv.”vi

first failure time

100 -

{1] SRR

0.15 0.2

error probability

0 0.05 0.1 0.25 0.3

Fig. 10. Time. The horizontal axis is for logic execution error probabilities
of the PLC microprocessor. The vertical axis is for the first failure time of
the system in two operating environments.

environments, even for the same PLC systems controlled by
the same ladder program. We also performed additional
experiments and complexity analysis to demonstrate the
scalability of our proposed method, particularly for uncer-
tainty calculations and the HMM constructions and solutions.

There are four ladder programs presented in [29]. Different
ladder programs lead to different arrangements of primary
inputs and logic executions of the PLC microprocessor. At the
same time, we also constructed several large, random PLC
ladder programs to test the uncertainty calculation methods.
The examples of Random1, 2 and 3 consist of 200 400, and 600
normally open/closed contacts, respectively. We set the sen-
sor sampling error probability to 0.05 and changed the logic
execution error probability of the PLC microprocessor (g).
Applying the method presented in Section 3.1, we obtained
the uncertainty characterization of the PLC system controlled
by the four ladder programs, shown in Table 2, and the three
constructed random programs shown in Table 4. We have

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

1500 T T T T T
: : —— ladder2-Env1

1400

—©— Jadder2-Env2[]

13001

12001 -~

1100

1000

900

effective movement

8001

700F -

600

500

0 0.05 0.1 0.15 0.2 0.25 0.3
error probability

Fig. 11. Total movements. The horizontal axis is for logic execution error
probabilities of the PLC microprocessor. The vertical axis is for the valid
number of piston movements in two operating environments during 1000
time units.

also devised simulations to verify the accuracy of the pro-
posed methods. A simulator was implemented for a Monte
Carlo framework of uncertainty analysis based on fault injec-
tion. The simulations were run on a 3.06 GHz windows based
system, with 2 GB of memory. The values acquired by the
random simulations are presented in Tables 2 and 4. The
uncertainty characterization obtained by the original compo-
nent-based Bayesian Network, and the Fault Tree method are
presented in Table 3. The results are the same for each failure
probability of the processor. The main focus is on the distri-
bution of the system components and the signal dependencies
amongst them, while the complex relationships caused by the
execution logic of the program are ignored. The values are not
similar to the simulation results. We used one million random
patterns for the simulations.

These additional experiments demonstrate that (1) the
uncertainty characterizations of the PLC system are different
when controlled by different embedded ladder programs,
even with the same sensor error probability and the same
logic execution error probability of the microprocessor, (2) the
results acquired by our method are nearer to the run time
station, and the difference between the results of the simula-
tions and our method is within 0.5 percent.

With the case study and the additional experiments, the
main procedures of our framework have been demonstrated
including the uncertainty calculations, the HMM constructions
and solutions, and the reward based model checking. During
the uncertainty calculation procedure, the two points of im-
portance are the ladder translation and the construction of an
abstract syntax tree, both with the complexity O(N), where N
is the number of the primary input contact. Subsequently, the
error probability was processed from the bottom up through
the abstract syntax tree according to theorem 1. As presented
in the experiments above, a large size problem may be pro-
cessed with little loss of accuracy. During the HMM construc-
tions and solutions procedures, we constructed an HMM for
the PLC system. As described in section 3.2, this would not
take a lot of effort when the system state diagram is already
known. The complexity of the Baum-Welch algorithm, when

ZHANG ET AL.: SYMBOLIC ANALYSIS OF PROGRAMMABLE LOGIC CONTROLLERS

2573

TABLE 2
Uncertainty Characterization of the Four Exited Ladder Programs by Simulation and Calculation

method ladder | e =0.01 | € =0.05

e=0.1

e=015|e=02 | =025 | €=0.3

simulation | ladderl 0.69% 17.02%

13.82%

12.66% 10.29% 8.75% 5.54%

simulation | ladder2 0.74% 17.82%

14.05%

13.35% 11.91% 10.63% 6.67%

simulation | ladder3 1.12% 28.22%

25.51%

24.71% 22.14% 21.27% 9.89%

simulation | ladder4 1.21% 30.37%

26.68%

25.98% 24.78% 22.95% 11.16%

calculation | ladderl 0.67% 16.87%

13.67%

12.54% 10.23% 8.69% 5.51%

calculation | ladder2 0.70% 17.63%

13.89%

13.21% 11.82% 10.57% 6.62%

calculation | ladder3 1.08% 28.04%

25.36%

24.57% 22.03% 21.18% 9.80%

calculation | ladder4 1.15% 30.13%

26.51%

25.82% 24.65% 22.83% 10.94%

TABLE 3
Uncertainty Characterization of the Four Exited Ladder Programs by Bayesian Networkand Fault Tree

method ladder e=0.01 | e=0.05

e=0.1|e=015 | =02 | €=0.25 | €=0.3

BN ladder 1, 2, 3, 4 0.46% 2.10%

9.24% 12.96% 13.32% 15.75% 16.14%

[FT [ladder1,2,3,4 | 046% | 2.10%

[924% |

12.96% [13.32%

15.75% [16.14% |

TABLE 4
Uncertainty Characterization of the Three Constructed Ladder Programs by Calculation and Simulation

method ladder contacts | € = 0.01

e =0.05

e=01|e=015|e=02 | =025 | =03

calculation | Randoml 200 1.16%

31.21%

29.15% 20.02% 15.31% 10.45% 5.51%

calculation | Random2 400 8.21%

33.12%

24.71% 16.17% 13.64% 8.31% 7.36%

calculation | Random3 600 16.51%

38.41%

30.24% 24.57% 14.18% 10.65% 8.11%

simulation | Random1 200 1.14%

32.02%

29.66% 20.30% 15.42% 10.59% 5.58%

simulation | Random?2 400 8.11%

33.91%

25.13% 16.41% 13.89% 8.47% 7.41%

simulation | Random3 600 16.71%

39.14%

30.81% 24.98% 14.40% 10.82% 8.17%

transitions are labeled, is determined to be O(4%- B-0),
where A is the number of states, B is the number of events,
and O is the length of the training observation sequences [31].
Afterwards, we can solve the HMM using the extended
Baum-Welch method, and perform some performance mea-
surements using rewards based model checking with PRISM.
Since the model has been reduced in the HMM construction
process, PRISM will not suffer from the state space explosion
problem. The overall time complexity for model checking a
property formula ¢ against an HMM is linear in |®| and
polynomial in |A| [32]. The size of |®| equals the number of
logical connectives and temporal operators in the formulas
plus the sum of the sizes of the temporal operators. Based on
the the case study, additional experiments, and complexity
analysis, we can draw the conclusion that our framework can
be applied to the analysis of complicated PLC systems.

5 CONCLUSION

This paper presents a symbolic framework for the formal
analysis of PLC systems. The framework allows us to obtain
the reliability calculations and the performance measurements
of PLC systems by automated analysis. The reliability calcula-
tion is carried out through the use of a novel probabilistic
method. An abstract syntax tree is constructed to capture the
execution logic of the embedded control program, and the
uncertainty hardware errors are embedded into the corre-
sponding nodes of the tree. To the best of our knowledge, it
is the first time that we have modeled both the execution logic of
the embedded control program and the hardware components.

The performance measurements are implemented by reward
based model checking. We abstracted the PLC system as a
Hidden Markov Model, and extended the Baum-Welch meth-
od to obtain a solution based on the domain knowledge of a
dedicated operating environment. Then, we combined the
solved Hidden Markov Model and the reliability characteriza-
tion, and defined some properties and rewards. Finally, the
performance measurements can be obtained with the help of
some probabilistic model checking tools like PRISM. Our future
efforts will focus on the automatic techniques that transform an
PLC system into an HMM, and facilitate more accurate calcu-
lation of the uncertainty characterization of PLC systems.

ACKNOWLEDGMENTS

This research was supported in part by NSFC Programs
(61202010, 91218302) and 973 Program (2010CB328003) of
China.

REFERENCES

[1] G. Canet, S. Coulffin, J.-J. Lesage, A. Petit, and P. Schnoebelen,
“Towards the Automatic Verification of PLC Programs Written
in Instruction List,” Proc. IEEE Conf. Systems, Man, and Cybernetics,
pp. 2449-2454, Oct. 2000.

[2] H.-M.Hanisch,]. Thieme, A. Luder, and O. Wienhold, “Modeling of
PLC Behaviour by Means of Timed net Condition Event Systems,”
IEEE Int'l Symp. Emerging Technologies and Factory Automation
(EFTA), pp. 361-369, 1997.

[3] K. Loeis, M. Younis, and G. Frey, “Application of Symbolic and
Bounded Model Checking to the Verification of Logic Control
Systems,” Proc. 10th IEEE Conf. Emerging Technologies and Factory
Automation, vol. 1, pp. 4-16, Sept. 2005.

2574

[4]

[5]

[6]

[71
8]

191

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

O. Pavlovic, R. Pinger, and M. Kollmann, “Automated Formal
Verification of PLC Programs Written in IL,” Proc. Conf. Automated
Deduction (CADE), pp. 152-163, 2007.

T.L. Johnson, “Improving Automation Software Dependability: A
Role for Formal Methods?” Control Eng. Practice, vol. 15, no. 11,
pp. 1403-1415, 2007.

W. Lee, D. Grosh, and F. Tillman, “Fault Tree Analysis, Methods,
and Applications—A Review.” IEEE Trans. Reliability,
vol. R-34, no. 3, pp. 194-203, Aug. 1985.

M. Shooman, Reliability of Computer Systems and Networks. Wiley
Online Library, 2002.

X. Zang, H. Sun, and K. Trivedi, “A BDD-Based Algorithm for
Reliability Evaluation of Phased Mission Systems,” IEEE Trans.
Reliability, vol. 48, no. 1, pp. 50-60, 1999.

M. Bouissou and J. Bon, “A New Formalism that Combines
Advantages of Fault-Trees and Markov Models: Boolean Logic
Driven Markov Processes,” Reliability Eng. & System Safety, vol.
82, no. 2, pp. 149-163, 2003.

D. Wooff, M. Goldstein, and F. Coolen, “Bayesian Graphical Models
for Software Testing,” IEEE Trans. Software Eng., vol. 28, no. 5,
pp- 510-525, May 2002.

C. Bai, Q. Hu, M. Xie, and S. Ng, “Software Failure Prediction Based
on a Markov Bayesian Network Model,” . Systems and Software,
vol. 74, no. 3, pp. 275-282, 2005.

S. Bhanja and N. Ranganathan, “Switching Activity Estimation
of VLSI Circuits using Bayesian Networks,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, vol. 11, no. 4, pp. 558-567,
Aug. 2003.

S.Bhanja, K. Lingasubramanian, and N. Ranganathan, “A Stimulus-
Free Graphical Probabilistic Switching Model for Sequential
Circuits using Dynamic Bayesian Networks,” ACM Trans. Design
Automation of Electronic Systems (TODAES), vol. 11, no. 3,
pp- 773-796, 2006.

S. Krishnaswamy, G. Viamontes, I. Markov, and J. Hayes, “Proba-
bilistic Transfer Matrices in Symbolic Reliability Analysis of Logic
Circuits,” ACM Trans. Design Automation of Electronic Systems
(TODAES), vol. 13, no 1, pp 1-35, 2008.

C.-C. Yu and J.P. Hayes, “Scalable and Accurate Estimation of
Probabilistic Behavior in Sequential Circuits,” Proc. 28th VLSI Test
Symp., pp. 165-170, 2010.

G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla, “Evaluating
the reliability of nand multiplexing with prism,” IEEE Trans. Com-
puter-Aided Design of Integrated Circuits and Systems, vol. 24, no. 10,
pp- 1629-1637, Oct. 2005.

D. Bhaduri and S. Shukla, “Nanoprism: A Tool for Evaluating
Granularity vs. Reliability Trade-Offs in Nano Architectures,” Proc.
14th ACM Great Lakes Symp. VLSI, pp. 109-112, 2004.

IEC 61131-3 Standard (PLC Programming Languages), 2nd ed., Int’l
Electrotechnical Commission (IEC), 2003.

L. Rabiner and B. Juang, “An Introduction to Hidden Markov
Models,” IEEE Acoustics, Speech, and Signal Processing Magazine,
vol. 3, no. 1, pp. 4-16, Jan. 1986.

A. Poritz, “Hidden Markov Models: A Guided Tour,” Proc. IEEE Int’l
Conf. Acoustics, Speech, and Signal Processing (ICASSP’88), pp. 7-13.
X. Song, “Algebraic Characteristics of Reversible Gates,” Theory of
Computing Systems (Math. Systems Theory), vol. 39, no. 2, pp. 311-319,
2006.

A. Dempster et al., “Maximum Likelihood from Incomplete
Data via the EM Algorithm,” |. Royal Statistical Soc., Series B
(Methodological), vol. 39, no. 1, pp. 1-38, 1977.

J. Bilmes, “A Gentle Tutorial of the EM Algorithm and Its
Application to Parameter Estimation for Gaussian Mixture and
Hidden Markov Models,” Int’l Computer Science Inst., vol. 4,
p- 126, 1998.

X. Song and Y. Wang, “On the Crossing Distribution Problem,”
ACM Trans. Design Automation of Electronic Systems (TODAES), vol.
4, no. 1, pp. 39-51, 1999.

S. Levinson, L. Rabiner, and M. Sondhi, “ An Introduction to the
Application of the Theory of Probabilistic Functions of a Markov
Process to Automatic Speech Recognition,” The Bell System Technical
J., vol. 62, no. 4, pp. 1035-1074, 1983.

H.Zhang, Y.Jiang, W. Hung, G. Yang, M. Gu, and J. Sun, “New Strate-
gies for Reliability Analysis of Programmable Logic Controllers,”
Math. and Computer Modelling, vol. 55, no. 7-8, pp. 1916-1931, 2011.
L. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. IEEE, vol. 77, no. 2,
pp- 257-286, Feb. 1989.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014

[28] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM:
A Tool for Automatic Verification of Probabilistic Systems,”
Proc. 12th Int’l Conf. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’06), H. Hermanns and J. Palsberg, eds.,
pp. 441-444, 2006.

[29] K. Venkatesh, M. Zhou, and RJ. Caudill, “Comparing Ladder
Logic Diagrams and Petri Nets for Sequence Controller Design
through a Discrete Manufacturing System,” IEEE Trans. Industrial
Electronics, vol. 41, no. 6, pp. 611-619, Dec. 1994.

[30] G. Dunning, Introduction to Programmable Logic Controllers. Delmar
Thomson Learning, 2002.

[31] L. Baum, “An Equality and Associated Maximization Technique
in Statistical Estimation for Probabilistic Functions of Markov Pro-
cesses,” Inequalities, vol. 3, pp. 1-8, 1972.

[32] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic Model
Checking,” Proc. 7th Int’l Conf. Formal Methods for Performance Eval-
uation, pp. 220-270, Oct. 2007.

Hehua Zhang received the BS and MS degrees in
computer science from Jilin University, Chang-
chun, China in 2001 and 2004, respectively. She
received the PhD degree in computer science
from Tsinghua University, Beijing, China in
2010. She is currently a lecturer in the School of
Software at Tsinghua University. Her current
research interests include domain specific model-
ing, formal verification, and their applications in
embedded systems.

Yu Jiang received the BS degree in software
engineering from Beijing University of Post and
Telecommunication, Beijing, China in 2010. He is
currently pursuing the PhD degree in computer
science from Tsinghua University, Beijing, China.
His current research interests include domain
specific modeling, formal verification, and their
applications in embedded systems.

William N.N. Hung received the BS and MS
degrees in electrical and computer engineering
from the University of Texas at Austin in 1994 and
1997, respectively. He received the PhD degree in
electrical and computer engineering from Portland
State University, Oregon in 2002. From 1997 to
2004, he worked as a senior engineer at Intel
Hillsboro, Oregon. From 2004 to 2007, he worked
as a senior staff engineer/director at Synplicity,
Sunnyvale, California. Since November 2007, he
has been working as a senior staff R&D engineer/
senior R&D manager at Synopsys, Mountain View, California. His research
interests include constraint solving, logic synthesis, physical design, formal
methods, combinatorial optimization, nanotechnology, and quantum com-
puting. He has published over 60 papers and has 5 patents.

Xiaoyu Song received the PhD degree from the
University of Pisa, Italy in 1991. From 1992 to
1999, he was on the faculty at the University of
Montreal, Canada. In 1998, he worked as a senior
technical staff on Cadence, San Jose. In 1999,
he joined the faculty at Portland State University,
Oregon. He is currently a professor with the
Department of Electrical and Computer Engineer-
ing, Portland State University. His current research
interests include formal methods, design auto-
mation, embedded system design, and emerging
technologies. During 2000-2005, he was named an the Intel Faculty
Fellow. He served as an associate editor of the IEEE Transactions on
Circuits and Systems and the IEEE Transactions on VLS| Systems.

ZHANG ET AL.: SYMBOLIC ANALYSIS OF PROGRAMMABLE LOGIC CONTROLLERS 2575

applications.

Ming Gu received the BS degree in computer
science from the National University of Defence
Technology, Changsha, China in 1984, and the
MS degree in computer science from the Chinese
Academy of Science at Shengyang in 1986.
Since 1993, she has been working as a lecturer/
associate professor/researcher at Tsinghua
University, Beijing, China. She is also serving as
the vice dean of the School of Software, Tsinghua
University. Her research interests include formal
methods, middleware technology, and distributed

Jiaguang Sun received the BS degree in auto-
mation science from Tsinghua University, Beijing,
China in 1970. He is currently a professor at
Tsinghua University. He is dedicated to teaching
and R&D activities in computer graphics, comput-
er-aided design, formal verification of software,
and system architecture. He is currently the direc-
tor of the School of Information Science and
Technology and the School of Software, Tsinghua
University. He is also the director of the National
Laboratory for Information Science and Technol-
ogy. He has been a member of the Chinese Academy of Engineering
since 1999.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

