MDD: A Unified Model-driven Design Framework
for Embedded Control Software

Zhuo Su, Dongyan Wang, Yixiao Yang™®, Zehong Yu, Wanli Chang, Wen Li, Aiguo Cui, Yu Jiang™ and Jiaguang
Sun

Abstract—Model-driven methods are widely used in embed-
ded control software development. Current design tools such
as Ptolemy-II and Simulink have strong modeling capability
but their simulation and code generation functionalities are
challenged by the increasing complexity of control requirements.
For simulation, emulating the triggering of the actor leads
to additional time overhead and speed degradation. For code
generation, generating redundant content degrades the code
quality. Besides, current tools do not have a unified interface,
which makes it difficult to cooperation.

In this paper, we propose a unified model-driven design frame-
work MDD to facilitate embedded control software development.
MDD can support the unification of models built by different
modeling tools for high-efficiency simulation and high-quality
code generation. And the MDD framework supports the expan-
sion of more modeling tools, and also supports the expansion
of more uses, such as unified testing and verification. First, it
offers a model intermediate representation (MIR) and several
corresponding parsers, which facilitate a unified representation
and cooperation for different design tools. Then, based on data
flow schedule analysis of the original MIR, intermediate code
representation will be generated for optimized code synthesis.
Finally, a variety of code translators will synthesize the inter-
mediate code representation into the code of actual use such as
code for simulation and code for deployment. For evaluation,
we enhance two widely used design tools in industry, Ptolemy-II
and Simulink, and apply them on the implementation of several
benchmark models and a real-world self-driving control software
of our industrial collaborator. Using MDD can help reduce their
simulation time by 98.9% and 92.6%, the generated code by
99.7% and 69.9% in the number of lines, and 94.3% and 34.3%
in code execution time, respectively.

Index Terms—Model-driven design, model simulation, code
generation.

I. INTRODUCTION

Model-driven design is widely used in embedded software
development, especially in safety-critical applications [1], [2].
Model-based simulation, verification, and code generation can
minimize system errors and ensure safety [3]. However, with
the rapid development of industrial Internet of Things technol-
ogy, embedded control software has become more complex,

Z. Su, Y. Yang, Z. Yu, Y. Jiang, and J. Sun are with the KLISS, BNRist,
School of Software, Tsinghua University, Beijing 100084, China (e-mail:
suzcpp @gmail.com).

D. Wang is with the Information Technology Center, Renmin University of
China, Beijing 100872, China (e-mail: wdy @ruc.edu.cn).

W. Chang is with the Department of Computer Science, University of York,
York, YO10 5DD United Kingdom (e-mail: wanli.chang@york.ac.uk).

W. Li is with the HUAWEI Technologies, Co. LTD., Hangzhou 310000,
China (e-mail: coco.liwen@huawei.com).

A. Cui is with the HUAWEI Technologies, Co. LTD., Shanghai 200120,
China (e-mail: ag.cui@huawei.com).

Yixiao Yang and Yu Jiang are the corresponding authors.

which brings higher requirements for design tools, especially
for the simulation and code generation efficiency [4].

Simulink [5] is currently one of the most widely used
model-driven design tools in embedded control software de-
velopment. It relies on the powerful data calculation and pro-
cessing capabilities of MATLAB to support rich modeling and
simulation functionalities. Ptolemy-II [6] is a heterogeneous
system design tool developed by the University of Berkeley,
which has got much attention in industry and academia [7],
[8], [9]. It has rich modeling semantics, supports hierarchical
and state machine modeling of embedded systems. Both of
them can also automatically generate C code. Because of
the powerful modeling capabilities, it is difficult for them
to generate efficient code for complex models. For example,
the C code generator of Ptolemy-II can only generate code
that completely simulates data transmission. In the meanwhile,
most of the codes generated by Ptolemy-II are used for data
reception and processing. Even for a small model, the C
code generator of Ptolemy-II will generate tens of thousands
of lines of code, which is difficult to be used in embedded
device directly. Figure 1 shows an accumulator model built
using Ptolemy-II. Even for such a small model, Ptolemy-II
will generate 11371 lines of code. In fact, the logic of the
accumulator is only to add the output of the previous time
and the input of this time.

PP G urpra e A

Composite ; f AddSubtract
Const Display yin T out :
B0] bt — |
1 : Delay |
1 1
L e e e e = = >|)

Fig. 1. An example of a simple Ptolemy-II model. It is an accumulator
model completed by a Delay actor. The composite actor named Composite is
a packaged accumulator.

Not only that, when we were developing our project, we
found that we had to simulate the model for a long period of
time in order to fully verify the correctness of the model.
In addition, we also found that simulation in code takes
much less time than simulation in modeling tools. In order to
reduce the time cost, simulating directly using code may be an
acceleration method. Moreover, we also found that it is much
easier to build a model equivalent to Simulink using Ptolemy-
II. This is because Ptolemy’s model expression ability is more
abundant. For example, when building branch logic, Ptolemy-
IT can be completed with fewer components. Therefore, we
hope to reduce the cost of model-driven development through
the collaborative development of multiple modeling tools.

More specifically, for an efficient model-driven design of
embedded control software, there are three challenges.
Challenge 1: How to leverage existing models of dif-
ferent tools and support the collaborative development
of multiple design tools . At present, the only standard
interface that can be used to dock multiple design tools is
Functional Mock-up Interface (FMI) [10]. It packages different
models into a specific code format named Functional Mock-
up Units (FMU) [11], [12] for co-simulation. However, FMU
only contains the code generated by the external tools, and
the code is difficult to be used in subsequent processes. Thus,
there is still no interface for model reuse or data sharing
between different design tools. Many researchers also try to
use model converters to convert models between different
design tools [13], [14], [15]. However, there are many unique
characteristics that are difficult to convert from one to another.
Coupling the semantics of different models into a unified high-
level semantics is also a way to combine multiple modeling
tools. Both ModHel’X [16] and Ptolemy-II are tools that
combine different model semantics to support heterogeneous
modeling and simulation. They all use Token to transfer
data among actors and model of computation (MoC). The
main difference between them is that ModHel’X actors are
executed by observation, while Ptolemy-II actors are executed
by trigger. However, their coupling method makes scheduling
analysis difficult, so that no code generator can realize the
code generation of such a complex heterogeneous system.
Challenge 2: How to accelerate the simulation speed of
complex models. Model simulation is to execute each actor
one by one according to the predefined semantics [17], [18],
[19]. It tends to be iterated many times to simulate the real-
time execution of the software. Two main factors affect the
efficiency of the simulation. On the one hand, in modern
tools, the types of ports are polymorphic, thus, the port type
needs to be determined during the execution process and the
determination of the port type causes extra time overhead
[20]. For example, AddSubtract actors can perform different
operations according to different input data types. On the
other hand, model scheduling is a dynamic process. Actor
scheduling for complex models is usually uncertain. Therefore,
dynamic scheduling will cause additional time overhead.
Challenge 3: How to generate high-efficient code for
those target devices with limited resources. Due to the
complexity of model semantics, those tools usually generate
highly redundant code with low execution efficiency [21], [22],
[23]. For example, in Ptolemy-II, the Branch-Actor will pass
data to different ports according to conditions, which will
affect the execution logic of subsequent actors. When the
branches are nested and crossed, the scheduling relationship
of the model is difficult to sort out. The traditional code
generation method will add the code of the branch condition to
the code of the actor when an actor is affected by the branch.
However, while the branch combination is complicated, it will
lead to an explosion in the number of execution conditions of
an actor. Similar problems happen in Simulink. How to reduce
branch explosion is the key to generate high-efficient code.
In this paper, we propose a unified model-driven design
framework MDD for the three challenges. The framework is

mainly divided into three layers. 1) The first is the model parse
layer, which is mainly used to interface with other design tools.
The model parser converts different types of models into the
MIR, and different tools need different parsers. 2) The second
is the schedule convert layer, which takes the MIR as input,
analyzes the control flow logic relationship of the entire model
based on the data flow analysis of the actors, and outputs
the intermediate code representation. 3) The third is the
code translate layer, which is responsible for optimized code
generation of different targets, such as accelerated simulation,
high-efficient execution, or comprehensive testing, etc.

For evaluation, we use MDD to enhance two widely used
design tools, Ptolemy-II and Simulink, and apply them to the
implementation of build-in benchmark models and real-world
self-driving control software of our industrial collaborator.
We conduct quantitative analysis from two aspects: speed of
simulation and quality of code generation. Using MDD can
help reduce their simulation time by 98.9% and 92.6%, the
generated code by 99.7% and 69.9% in the number of lines,
and 94.3% and 34.3% in code execution time, respectively. In
addition, we also demonstrate how to use MDD to conduct
collaborative development of different design tools.

II. RELATED WORK
A. Model-driven Design

Model-driven development has been widely used in the
design and implementation of embedded control software,
which mainly consists of three parts: model construction,
model simulation and code generation [24], [25], [26], [27].
There are many widely used design tools, such as Simulink,
SCADE, Tsmart and Polychrony [5], [28], [29], [30], [31].
For example, Lorenzo used Simulink to implement an electric
vehicle brake hybrid strategy system [32]. They used the FMI
provided by Simulink and Simcenter AMESIM to complete
the simulation of the brake model and the vehicle control
model. Bagheri established an adaptive rail-based control
system, with the hierarchical modeling capability of Ptolemy-
II [33]. In addition, Zhang has specially implemented a design
tool Tsmart that supports simulation and code generation in
order to realize the design of the multi-functional vehicle bus
controller chip [31]. Most of them use data flow and state
machine to express the control logic. The data flow model is
composed of actors, junctions and connections between actor
ports. Actors are used to receiving data, process data, and send
data. The junction can transmit a piece of data to multiple
targets at the same time, and also can indicate the merging of
data at the end of the data branch. The connection between
the ports is used to transfer data. The state machine model
is composed of different states and transitions between states.
The state machine model is often packaged as a composite
actor with ports and used in the data flow model.

There are also many model-driven development works based
on UML. These works are usually devoted to abstraction and
description of system functions. For example, the DaVinci
tool set [34], which is most widely used in the industry in
the design of automotive embedded systems, uses graphical
UML diagrams for the architecture design of the entire vehicle

system, and also supports the generation of architecture-level
code for the vehicle control system. However, every functional
unit in the system is not implemented in code. For another
example, Enrici et al. tried to use UML to describe parallel
communication systems to develop distributed systems [35].
There are many similar UML-based model-driven develop-
ment work [36], [37], [38], but few works on modeling and
code generation for the specific behavior of the system.

B. Model Simulation

Most design tools such as Simulink and Ptolemy-II mainly
adopt the event triggering semantics for model simulation [6],
[5]. For the data flow model, the model must be topologically
sorted according to the data transfer relationship. When an
actor is executed, it will read the data of its input port, process
the data according to the function of the actor, and transfer the
result to the output port. The output port will pass the data to
its subsequent actors. When the actors of the same topological
sorting layer are all executed, the actors of the next topological
layer that can receive data are executed. The execution process
proceeds backward layer by layer until the data can no longer
be passed back. At this time, an iterative execution of the
model is completed. The simulation of the entire model may
be completed by multiple iterations.

For the state machine model, at first, the model is set to
the default initial state, and every time the state machine
is triggered, it is evaluated whether the conditions on the
transition from the current state to other states are satisfied.
The state jump is performed if it is satisfied. Of course, there
may be statements that need to be executed in the state itself
and the transition, such as assigning a value to a variable
or initializing a clock. When the state machine is used as a
composite actor in the data flow model, it will be regarded
as an ordinary actor to trigger the internal logic of the state
machine once. The reading and assignment of input and output
port data are completed by the execution statement on the state
and transition.

C. Code generation

Code generation is used to convert the model into code
that can be used for deployment. Since most of the time the
model will be a dynamic system, the execution order of the
actors in the model may be changeable. Therefore, before
generating code, it is necessary to perform schedule analysis
on the model. The difficulty of schedule analysis is mainly
reflected in the influence of the complex branch structure
on the execution logic of the model. In recent years, there
are only a few related academic works. Su tried to solve
the problem of branch explosion during code generation with
branched data flow model of Ptolemy-II [39]. First, it uses the
branch marking method for the Ptolemy-II model to mark the
branch information of the possible execution logic of each
actor. Second, by adopting the method of simplifying the
branch mark from back to front, the actors that need to be
merged outside the branch can be found. Third, a specific
code generation template is used for each actor to generate
code from front to back according to the result of the branch

mark. It can solve the code generation of models with simple
branching logic, but it cannot handle the models with complex
branches like branch crossing.

The C code generator of Ptolemy-II [22] first performs
topological sorting of the actors to determine the main ex-
ecution order and then generates codes according to the logic
of the simulation. Although the code generated in this way can
deal with various complex schedule logic. The code contains
complete data transfer and actor execution code, and even a
lot of basic library codes based on C language are generated
to support data transfer, such as queues and stacks. It leads
to a lot of redundant code and poor efficiency of execution,
which is difficult to deploy to hardware.

Simulink Coder is a relatively robust code generator, which
can support almost any model built by Simulink. However,
Simulink adopts a way of avoiding complex branch semantics
for modeling, which makes the work of code generation easier,
but it becomes very cumbersome to express branch logic in
Simulink. The branch logic can only be expressed in three
ways: using the If-Else subsystem, embedding code, and using
a state machine. Simulink Coder has a certain code optimiza-
tion function, which can support simple code optimization
such as local variable reuse and expression folding. However,
the code generated by Simulink Coder contains a lot of code
for environment, data and data type definition.

Furthermore, both Ptolemy-II's C code generator and
Simulink Coder support expand and pave the hierarchical
model as a single-layer model for code generation during
schedule analysis. The code generated in this way also loses
the original model hierarchical information, and it is difficult
to reuse and debug part of the code.

I1II. MDD FRAMEWORK DESIGN

We propose MDD, a unified model-driven design frame-
work for embedded control software, which aims to provide
collaboration capabilities for multiple design tools, and further
improve the efficiency of simulation and the quality of code
generation. MDD follows three steps: model parse, schedule
convert and code translate.

First of all, the model parse layer will convert different types
of models into a unified model intermediate representation. It
is able to parse various types of models, which built by existing
tools such as Simulink and Ptolemy-II, or other design tools
that conform to the basic data flow and state flow simulation
semantics introduced in Section II-B. Due to the differences
in the details of the model semantics and actor functions
supported by those tools, there must be a corresponding model
parser for each design tool. After that, the schedule convert
layer performs schedule analysis on the MIR, focusing on the
data flow logic of the actors. It will generate the intermediate
code representation to retain the actor information of the
original model, which can facilitate and provide an important
reference basis for further processing. Finally, the intermediate
code representation is synthesized into codes for different
purposes, such as simulation and execution. Different code
translators will add necessary function codes in the translation
process according to different requirements.

s N
‘\ Simulink %Ptolemy 1 ... Other
[tools

N\ J

v v !
Model parse layer
Simulink Ptolemy II Other
model parser model parser model parser
N/
Model IR

—

Schedule convert layer

Execution order Branch marking Code IR
analysis and simplification generation
Intermediate
Code
Code translate layer
Deployment Simulation code Test code
code translator translator translator

Code for Code for . Code for
Deployment Simulation Testing

Fig. 2. MDD framework consists of three layers: Model parse layer (Parse the
model built by different tools to MIR). Schedule convert layer (Convert the
MIR into intermediate code representation). Code translate layer (Translate
the intermediate code representation into code for purposes of actual use)

A. Model parse layer

In order to support the collaboration of multiple devel-
opment tools, the model analysis layer is designed as an
interface for various design tools. The model parser takes
the model file constructed by its corresponding design tool as
input and takes the unified model intermediate representation
(MIR) as output. Since the model semantics and actor
functions supported by different model-driven design tools
are not completely consistent, the MIR is designed into a
model description language with a stronger expressive ability
to be compatible with them. For example, Ptolemy-II’s state
machine semantics and Simulink’s state machine semantics
have certain differences. The state in the Ptolemy-II state
machine supports nested data flow composite actors, while
Simulink’s state machine model semantics supports three kinds
of special events: entering event, during event, and exiting
event. To be compatible with them, it is necessary to define a
new state machine semantics that not only supports the state-
embedded data flow composite actor but also supports the
three special events. Even if different design tools implement
support for the same type of actors, they may be different
in the details of the actor’s interface or properties. For ex-
ample, the Addsubtract actor in Simulink supports different
types of rounding operations on floating-point data, such as
floor and ceiling. But the Addsubtract actor in Ptolemy-II
does not support rounding of floating-point data. Therefore,
the Addsubtract actors in the MIR should be designed to

support rounding operations in different ways. For actors of the
same type with conflicting interfaces or attributes in different
design tools, design can be done according to different actors.
The model intermediate representation adapted to Simulink,
Ptolemy and Uppaal is defined as follows.

Definition 1 (model intermediate representation): The model
intermediate representation MIR is defined as a tuple
(G, A, J, R, P). Among them, G is the set of global variables
of the model, A is the set of top-level actors in the model,
J is the set of top-level data junctions in the model, R is
the set of connections between actors’ ports and junctions in
the model, and P represents the configuration parameters of
the model. In particular, the actor a; contained in A can be
a single computing actor e, a composite actor ¢, or a state
machine actor m.

Definition 2 (computing actor): The computing actor e is
defined as a tuple (PI, PO, Attr, IS, exe). Among them, PI
is the set of input ports of the actor, PO is the set of output
ports of the actor, Attr is the set of attributes of the actor,
IS is the set of internal states of the actor, and exe is the
execution logic of the actor. The function of exe is to obtain
the data of the input ports P1, assign the output ports PO and
update the internal state 1.5 according to the attribute Attr of
the actor and the internal state IS.

Definition 3 (composite actor): The composite actor c is
defined as a tuple (PI, PO, A, R). The representations of
A and R in ¢ and A and R in MIR are the same. The
representations of P/ and PO in ¢ and PI and PO in the
calculation actor e are consistent.

Definition 4 (state machine actor): The state machine actor
m is defined as a tuple (PI, PO, S,T,l,ly). The representa-
tions of PI and PO in m and PI and PO in the calculation
actor e are consistent. S represents the state set in the state
machine. T' represents the set of transitions in the state
machine. [represents the current state of the state machine.
represents the initial state of the state machine.

In order to support more design tools, the state s; is
designed to support richer semantics.The state s; is defined
as a tuple (C, M, en,du,ex). Among them, C represents
the set of composite actors embedded in the state, and M
represents the set of state machine actors embedded in the
state. Embedded composite actors and state machines are
generally used to enrich the expressive capabilities of state
machines, and their input and output ports are consistent with
the outer state machine actors. en is the logic executed when
entering this state from other states. du is the logic executed
when the state machine maintains the state without a state
transition after a trigger. ex is the logic executed when the
state is about to change to other states. Among them, en,
du and erx all allow assigning values to global variables,
performing other calculations, or calling other functions. Each
t; in the state machine transition set 71" is defined as a tuple
(g, lsre, Last, exe), where g represents the conditions under
which the transition occurs. I, represents the source state of
the transition, and l4s; represents the destination state of the
transition. exe represents the execution logic in the transition
process. For each ¢, its meaning is that when the current state
of the state machine is I, it is judged whether the transition

condition g is satisfied and if it is satisfied, exe is executed,
and the state machine’s current state is changed to lgs.

MIR supports the coupling of new semantics in two ways.
One way is to add attributes to the MIR element to be
compatible with the new semantics. Since most tools sup-
porting embedded system development use data flow or state
machine semantics, M IR can directly compatible with most
tool models by this way [6], [5], [28], [29], [40], [41], [31].
And the other way is to extend the current MIR semantics
by adding a new MIR element when the new semantics are
quite different from Simulink, Ptolemy, etc. Just like the state
machine semantics that is completely inconsistent with the
data flow semantics, we can treat the state machine as a
computing unit that calculates output data based on input data
and insert it into the data flow model in the form of an actor.
Other models with different semantics will be packaged as a
composite actor and integrated into the data flow model.

Based on the above definitions, MDD reads the elements
in the original model and store the corresponding elements
in the MIR according to predefined mapping rules. Since the
MIR we designed is semantically compatible with Simulink,
Ptolemy, Uppaal and other design tools, each element in the
source model can be uniquely mapped to the element in the
MIR. For example, the "Block™ in Simulink will be directly
mapped to the "Actor” in the MIR, and the “Property” in the
”Block” corresponds to the “Parameter” of the ”Actor” in the
MIR. For another example, the "Location” in the Uppaal state
machine model will be mapped to the ”State” in the MIR.
To reduce the coupling of the entire framework and improve
the scalability of MDD, MIR will be stored in a separate file
and then handed over to the schedule converter for schedule
analysis.

(<entity name="Composite" ===mw=x R R > féchpoﬁite N.

<property name="_type"
value="float">

1

1

1 "

1 Type="£32"/>
</port> | - L actor wam

|

|

L

. Other ports

<entity n. AddSubtract"-=---

I .
" 1 -= <Outport N
[of InPort"> 1 Typ
<property name="_type" 1 </Actor>
<Actor Name="
| .
| Type
<Inport Name="in"
Type="£32"/>
<Outport Name="out"
Type="£32"/>

|

1

1

|

|

|

|

|

1

1

|

|

| value="float">
1 </port>
1 <port name="
| C
1

1

|

|

|

|

1

1

1

|

|

|

|

value="float">
</port>

</entity>
. Other entitys

</Actor>
<Relation>
<Src Src="in"/>
<Dst DS:="AddSubtract.addl"/)l
</Relation> 1
<Relation>
<Src Src="Delay.out"/> |
<Dst Dst="AddSubtract.add2"/>|
</Relation> 1
<Relation> 1
<Src Src="AddSubtract.out"/> |
out"/> 1
|
|

1
|
|
|
|
1
1
|
|
|
|
|
1
1
|
|
|
|
|
1
1

<relation name="relation"----
class="IORelation"/

v

. Other relations

<link por

1
1
1
i e Ll
1
1
1

rel 1="relation"/> <Dst
. Other links <Dst Dst="Delay.in"/>
</Relation>

1
1
1

- o e e e e e o e el - -
v

1 .
i/entlty))

JCompesiter o

Fig. 3. An example of parsing from Ptolemy-II model to MIR. The XML file
on the left is the Ptolemy-II model and it corresponds to the composite actor
in Figure 1. The XML file on the right is the MIR. The gray arrow indicates
the mapping relationship between elements.

Figure 3 shows an example of parsing from Ptolemy-II
model to MIR. In order to facilitate the demonstration, we
omitted redundant elements in the Ptolemy-II model, such as
display coordinates and default parameter of “Entity”. In the
Ptolemy-II model, the connection among ports is expressed
by “Relation” and “Link”. When converting it to “Relation”
in MIR, connectivity analysis is needed to find all input and
output ports connected to this “Relation”.

B. Schedule convert layer

The schedule convert layer performs data flow based sched-
ule analysis of the MIR to obtain the intermediate code repre-
sentation, which facilitates the subsequent processes, such as
generating high-quality code deployed on embedded devices,
high-speed simulation, and automatic testing.

The main method used for schedule conversion is to mark
each actor with branch information, and then to simplify
branch marks of each actor as much as possible, so as to
obtain the possible branch path information of each actor.
The specific schedule conversion algorithm consists of three
parts. The first part is to analyze the schedule of MIR in
accordance with the execution sequence of the simulation
logic. The second part is to mark the branch information
for each actor and junction in the model and simplify the
branch information in the marking process. The third part is
to generate intermediate code representation based on control
flow according to the branch mark information of each actor
and junction in the model.

1) Execution order analysis:

We treat MIR as a directed acyclic graph and determine the
execution order of each actor and junction through topological
sorting of the graph. We can ignore the junctions which
transmit data to multiple targets, because these junctions can
not affect the data source of subsequent actors. It should be
noted here that for the data flow model with a loop, we have to
break the loop by splitting the register-type actors in the loop
into two parts, the storage and the fetch. For the data flow
model used for code generation, if there is a data loop, there
must be a delay, queue, data pool and other registered actors in
the loop. Otherwise, once the loop is executed, the model will
enter an endless loop. Figure 4 shows an example of breaking
the loop. The model on the left contains a Delay actor, which
saves the input data, and then outputs the saved data when it
is executed next time. The model on the right is equivalent to
the model on the left. The Delay actor is decomposed into two
parts, a data-writing actor and a data-reading actor. The delay
value is stored using an intermediate variable DelayValue.

+

@ DelayValue: 0
ReadVariable SetVariable
DelayValue | | DelayValue

Fig. 4. Break loop Example. The model on the left has a loop. The model
on the right is completely equivalent to the model on the left, and does not
have a loop.

For topological sorting, we need to find the actors that do
not have any input data in the model. These actors are used
as the first layer of sorting. Then eliminate the actors of the
first layer and all the data connections connected to them,
and continue to look for actors and junctions without any
input data. Take these newly found actors and junctions as the
second layer of sorting. The following layers can be deduced
by analogy. If there are no actors without any input data, but
there are still actors in the remaining part of the model that
have not been eliminated, it means that there is at least one
loop in the model. At this time, we need to split the register-
type actors in the remaining part of the model into two parts
as shown in Figure 4. Then continue topological sorting on
the remaining part of the model. We only layer the model,
and there is no need to calculate the execution order of the
actors in the layer because the execution of the actors in the
same layer will not affect each other.

2) Branch marking:

Before introducing the branch marking algorithm, several
concepts need to be clarified: the branch (Branch) repre-
sents a single branch of a branch actor or a junction. The
Branch is consists of the branch actor and the branch id
(the branch number of the branch actor). The unique repre-
sentation of Branch is recorded as Idactor, Id represents
the branch id, and Actor represents the branch actor. The
branch path (BranchPath) represents the different branch
execution situations brought about by multiple branch actors,
denoted as {Branchy, Branchs, Branchs,...}. The branch
path table also called the branch mark information of an actor
or a junction, represents the collection of all possible branch
paths and data sources on the branch path of an actor or a
junction, denoted as {BranchPath, : Srcy, BranchPaths :
Srca, BranchPaths : Srers,...}. Among them, Src can be
an actor or a junction.

{0,08,0F}:1
L
{0,08}:B
J
{0,08,0F}: ||
0,18,00}: {0,08,1F}: 3> {0}:M
{0,18}:K
G 4>K—,_' M N
{0,18,00}:G
{0,18}:B 0,18,10}: {0,18,10}:H
| | E H | |]
Layer1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Fig. 5. The result of branch marking. This example model is divided into
seven layers by topologically sorting. There are three branch actors B, D and
F. And the branch paths of these three actors are combined by junction K and
actor M.

The branch marking method is shown in the Algorithm 1,
which traverses the entire model layer by layer from front to
back and calculates branch information separately for each
actor and junction in each layer. Figure 5 is shown as an
example of the branch marking algorithm. The element
in Algorithm 1 represent an actor or a junction. Line 3 of
the Algorithm 1 obtains all the predecessor elements of the

current element. If the current element does not have any
predecessor elements, the branch of the current element is
directly marked as a branch path with empty data, as shown
in lines 4-6. If there is a predecessor element, a branch path
table is constructed. The branch path table is a map structure.
The key stores the branch path, and the value stores the data
source elements brought by the key branch path. Next, lines
8-17 traverse all predecessor elements of the current element
to obtain their branch path information. Among them, if the
predecessor element is not a branch actor, the branch path
information of the predecessor element is directly inherited,
and the predecessor element is used as the data source of the
current branch path of the current element, as shown in lines
15-17. If the predecessor element is a branch actor, the branch
information of the predecessor element shall be connected on
the basis of the branch path of the predecessor element as a
new branch path, as shown in lines 10-14. After all, the branch
paths of the current element are obtained, all the inherited
branch paths of this element are simplified and then assigned
to the branch information of the current element, as shown in
lines 18-19.

Algorithm 1: Branch marking method

Input: mls: Model Layers, the topologically sorted data flow model

Output: bis: Branch mark information of all actors and junctions in
the model

1 for layer in mis do

2 for element in layer do

3 predecessors = getPredecessors(element)

4 if predecessors == & then

5 bis[element] = getEmptyDataBranchPath()

6 continue

7 bps = @ // bps: branch paths of element
for p in predecessors do
bpsO f Predecessor = bis[p]

10 if isBranchActor(p) then

11 for branchPath in bpsO f Predecessor do

12 for b in getBranches(p) do

13 newPath = connect(branchPath, b)
// Insert b at the end of branchPath

14 bps[new Path].addDataSrc(p)

15 else

16 for branchPath in bpsO f Predecessor do

17 | bpslbranchPath].addDataSrc(p)

18 bps = simplifyBranchPath(bps) // Call Algorithm 2

19 bis[element] = bps

20 return bis

3) Branch mark simplification:

Branch simplification is used to reduce the condition state-
ment of each element after branch marking. The Algorithm
2 describes in detail the branch simplification algorithm for
a single element, corresponding to the simplify BranchPath
function on line 18 in the Algorithm 1. The overall idea is
to traverse the combination of all branch paths of the current
element, find the branch paths that can be merged, and replace
them with the merged branch path.

In order to avoid the traversal of meaningless branch path
combinations, first, all branch paths need to be sorted from
short to long according to the length of the branch path,
as shown in the first line of the Algorithm 2. For example,

Algorithm 2: Branch information simplification for a
single element(actor/junction)

Input: bps: branch paths of the element
Output: sbps: simplified branch paths of the element

1 sbps = sortByPathLength(bps)
2 curPos = len(sbps) - 1
3 while curPos > 0 do
4 branchPath = sbps[cur Pos].key
5 dataSrcs = sbps[cur Pos].value
6 subbp = branchPath[0:-1]
/I get the sequence except the last Branch of branchPath

7 lastb = branchPath[-1] // get the last Branch of branchPath
8 findPos = curPos - 1
9 bpsSameSrc = @
10 bpsSameSrc.append(branchPath)
11 while findPos > 0 do
12 bpFind = sbps| findPos].key

/I the branch path at the current find position
13 dataSrcsFind = sbps| findPos].value

/I the data sources at the current find position
14 subpFind = branchPath[0:-1]
15 lastbFind = branchPath[-1]
16 if len(branchPath)= len(bpFind) and
17 dataSrcsFind == dataSrcs and
18 subbp == subpFind and
19 isSameBranchActor(lastb, lastbF'ind) then
20 | bpsSameSrc.append(bpFind)
21 findPos = findPos - 1
22 if len(bpsSameSrc) > 1 then
23 if canBranchPathsMerge(bpsSameSrc) then
24 sbps.insert(subbp, dataSrcs)
25 sbps.remove(bpsSameSrc)
26 curPos = curPos - len(bpsSameSrc) + 1
27 continue
28 curPos = curPos - 1

29 return sbps

{0,05,0r}, {0,15}, {0,05, 1} in Figure 5 will be sorted as
{0,15}, {0,05,0p}, {0,0p,1F}. Then we match from back
to front to find possible merged branch paths. The matching
conditions here are: 1) Have the same length of branch path.
2) Have the same data source. 3) Except for the last branch
in the branch path, the previous branches are the same, such
as {0,05,0r} and {0,0p,1F}. 4) The branch actors of the
last branch in the branch path are the same. The pseudo-
code of branch path matching is shown in lines 4-21. Lines
9, 10, and 20 are used to store all the branch paths that
are matched. Lines 22-27 try to merge the matched branch
paths. Merging means that the last branch of all matched
branch paths is complementary, such as Or of {0,05,0p}
and 1z of {0,05,1r} are complementary in the case of two
branches, and the same is true for multiple branches. If these
branch paths can be merged, the merged branch path will be
inserted into the set of current branch paths to continue to
participate in the matching. Because the set of branch paths
in some cases can be merged multiple times, for example,
{0,135}, {0,05,0r}, {0,0p,1F} finally can Merge into {0}.
Then continue to try new matches until all the branch path
combinations are traversed.

The following is an explanation of the entire branch marking
and simplification based on the model in Figure 5. First, mark
the first layer. Since our default model is in an empty branch
at the beginning, we mark the actor A as {{0}}, where {{0}}

represents the first branch and does not With data source. The
branch marking is carried out layer by layer, and then actor B
in the second layer is marked. Because the branch will affect
all subsequent actors, the branch mark must be passed to the
subsequent actors, so the actor B must also be marked {{0}},
but at this time B receives the output data from A, so it is
recorded under this branch to accept the data of A, which is
recorded as {{0} : A}. Next, mark the third layer. Since the
actor B has two branches, actor C is affected by the first branch
of actor B, and actor C is still under the control of the branch
where the original actor A is located, so the actor C should
be marked as {{0,05} : B}, which means that it is under the
control of the first {0} branch and is also under the control
of the first branch of B, and receives Data from actor B. In
the same way, actor D and E are marked as {{0,15} : B}.
The actor D in the third layer and the actor F in the 4th layer
will continue to nest branches. The actor G and H in the 4th
layer will be affected by the branch of the actor D, and their
branch paths will increase the branch of the actor D. Compared
with the branch mark of actor C, the actor I and J in the
5th layer will be added an extra branch by the actor F. For
example, the branch of actor I is marked as {{0,05,0F} :
F'}, and the branch of actor J is marked as {{0,0p,1p} :
F'}. The junction K in the 5th layer will be marked with two
branch paths, and the data sources of the two branch paths are
different, so they cannot be merged and simplified. The actor
L in the 6th layer directly inherits the branch path of actor
I. The branch mark of actor M in the 6th layer is somewhat
different from the previous actors and junction. The actor M
aggregates a total of four branch paths from the actor I, J, and
junction K. However, since the original {0,15,0p} : K and
{0,15,1p} : K of the actor M are complementary on the last
branch, they can be merged into {0,15} : K, so the branch
mark of the actor M can finally be simplified into three branch
paths. Finally, actor N gathers all branches. According to the
Algorithm 2, {0,05,0r} and {0,05, 1r} can be merged into
{0,0p}. {0,05} and {0,1p} can be merged into {0} again.
And the actor N only receives data from the actor M, so the
branch of the actor N is marked as {{0} : M}.

4) Intermediate code representation generation:

In the previous section, we have marked all the actors and
junctions in the model. These branch marks are the control
flow information of these actors and junctions. With this in-
formation, the most direct way to generate code is to generate
code layer by layer and actor by actor. If the actor is affected
by the branch, the conditional constraint is added before the
execution code of the actor. Obviously, it will generate a lot of
redundant conditional judgment statements. In order to reduce
redundant conditional judgment codes and generate codes with
clearer control logic, we construct a code generation table
(CGT) for the intermediate code representation.

A complete CGT contains the following elements, as shown
in Table I. The construction method of the CGT is described in
the Algorithm 3. First, we initialize an empty code generation
table CGT, as shown in lines 1-2. Then add CGT elements
to the code generation table layer by layer and actor by actor
according to the branch information of the actor. It is very
important here that each layer will use the CGT calculated by

TABLE I
DESCRIPTION OF ELEMENTS IN CGT
element attribute description
Actor Eze |Actor, Indicates that the Actor receives the data of
DataSrc DataSrc and executes the logic of the Actor
JuncData|Junction, Indicates that the Junction receives and
DataSrc stores the data of DataSrc
Branch |Set of branch|Indicates the entry condition of the branch
path
Inserter |Set of branch|Indicates the insertion position of the sub-
path sequent actor that matches this branch paths

Algorithm 3: Intermediate code representation gener-

ation method
Input: mls: Model Layers, the topologically sorted data flow model,
bis: Branch mark information of all actors in the model
Output: CGT': Code generation table
1 CGT =w
2 CGT.insertInserter(0, {{0}})
3 for layer in mls do

4 for ele in layer do
5 bpsInfo = bis[ele]

/I ele: actor or junction in each layer

/I bpsIn fo: branch mark information of an ele
6 bps = bpsInfo.keys // bps: branch paths of an ele
7 if not isBranchPathsConflict(bps) then
8 for bp in bps do
9 bpSub = bp

/I bpSub: subsequence of branch path

10 while not CGT.findInserter(bpSub) do
1 | bpSub = bpSub[0:-1]
12 CGT removelnserterContain(bpSub)
13 CGT .insertGapBranchAndInserter(bp, bpSub)
14 if isJunction(ele) then
15 ‘ CGT .insertJunction(bp, ele, bpsInfol[bps])
16 else
17 | CGT.insertActor(bp, ele, bpsInfolbps])
18 else
19 CGT removelnserterContain({0})
20 CGT .insertComBranchPathsAndInserter({0}, bps)
21 if isJunction(ele) then
2 | CGT insertJunction(bp, ele, bpsIn folbps])
23 else
24 | CGT.insertActor(bp, ele, bpsInfolbps])

5| CGT.update()

26 C'GT.removeEmptyBranch()
27 CGT. removeAlllnSerter()
28 return CGT

the previous layer when the algorithm is iteratively executed.
In other words, the process of finding the Inserter, inserting
the Inserter, and inserting the Branch of the actor will not
affect other actors and junctions of the current layer. After
each layer is calculated, the CGT.update() on line 19 of the
algorithm sorts out the various CGT elements inserted in this
layer, so that they can take effect in the calculation of the next
layer. Lines 5-24 deal with the processing code for each actor.
First, we obtain the branch path set of the actor or junction, as
shown in lines 5-6. Then determine how to modify the code
generation table according to the branch path of the actor or
junction. If there are no conflicts in all branch paths of the
actor or junction, that is, the conditions of these branch paths
will not be satisfied at the same time, these branch paths are

processed separately, as shown in lines 8-17.

For each branch path, if the Inserter with the branch
path can be found directly in the code generation table, the
execution code of the actor or data storage code of junction
is directly inserted at the Inserter location. If not, the last
branch of the branch path is removed as subBranchPath bpSub
to find Inserter, if it still can’t find a branch after removing a
branch, remove the last branch as the new subBranchPath until
it finds an existing Inserter. This iteration is limited because
at least the Inserter with {{0}} will be found at the end. In
the iterative process, if an Inserter that satisfies the condi-
tions is found, remove all the Inserters in the branch where
the Inserter is located in the code generation table. Then
create a multi-layer branch structure at the Inserter position,
and add the corresponding Inserter to each branch structure.
For example, if the branch path searched for by iteration is
{0,05,0F}, and finally an Inserter with {{0}} is found, then
the Branches {0, OB}, {O, OB, OF}, {0, OB, IF}, {O, 13},
{0,15,0r}, {0,15,1r} and the corresponding Inserter are
inserted in sequence at the position of the Inserter. Then
the ActorExze of the current actor or JuncData of the
current junction will be inserted into the Inserter position
corresponding to {0,05,0r}. In view of the conflict in the
branch paths of the actors, we directly insert the branches of
all combinations of these branch paths and the corresponding
Inserters at the Inserter position with {{0}}, as shown
in lines 19-24. At the end of the algorithm, remove those
Branch elements whose branch content is empty, and remove
all Inserters, because they do not generate actual code.

This method is suitable for complex branch crossing sit-
uations. For example, the branch path set of an actor is
{{0,1x},{0,0y }} (where the branch 1 of the actor X and the
branch 0 of the Y actor may be executed at the same time). The
three Branches {{0, 1x }&&{0,0y }}, {{0,1x}}, {{0,0y}}
and the corresponding Inserter will be created. Actors with
branch path information of {{0,1x},{0,0y}} or {{0,1x}}
or {{0, 0y }} will be inserted into the corresponding position.

1| ActorExe: A() // Created in layer 1
»| ActorExe: B(A) // Created in layer 2
3| Branch ({{0, OB}}) // Created in layer 3
| ActorExe: C(B) // Created in layer 3
5 ActorExe: F(C) // Created in layer 4
6 Branch ({{0, 0B, OF}}) // Created in layer 5
7 ActorExe: I(F) // Created in layer 5
8 ActorExe: L(I) // Created in layer 6
9 ActorExe: M(1) // Created in layer 6
10 Branch ({{0, 0B, 1F}}) // Created in layer 5
B ActorExe: J(F) // Created in layer 5
12 ActorExe: M(J) // Created in layer 6
15| Branch ({{0, 1B}}) // Created in layer 3
14 ActorExe: D(B) // Created in layer 3
15 ActorExe: E(B) // Created in layer 3
16 Branch ({{0, 1B, 0D}}) // Created in layer 4
17 ActorExe: G(D) // Created in layer 4
18 JuncData:K = G.out // Created in layer 5
19 Branch ({{0, 1B, 1D}}) // Created in layer 4
20 ActorExe: H(D) // Created in layer 4
21 JuncData:K = H. out // Created in layer 5
2 ActorExe: M(K) // Created in layer 6
23| ActorExe: N(M) // Created in layer 7

Listing 1. CGT generated by MDD (Corresponding to the sample model
in Figure 5)

The proof of conversion method from data flow to control
flow can be obtained by induction. According to Algorithm 3,
the initial CGT is correct. Every time the process of inserting
Actor Exe and Branch into the CGT is correct (Algorithm 1
ensures that the possible branch path of each actor is correct,
and Algorithm 3 ensures that the trigger path of each actor
in the code is consistent with its branch path.). Therefore, the
conversion and code generation can be proved to be correct.
Based on the above algorithm and the calculated branch marks,
we can construct a complete C'GT for model in Figure 5, as
shown in Listing 1. Due to space and typesetting restrictions,
we can only give part of steps of constructing CGT'. Listing
1 shows the final generated CGT, and the comment indicates
when the CGT elements were created.

Then, the intermediate code representation that retains
model information will be generated and stored in XML
format, based on CGT, the accompanied templates and some
information in the original MIR. The intermediate code rep-
resentation contains not only the control flow information of
the model, but also the input and output ports of the actor,
the data relation of the ports, and the mapping information
of the intermediate code representation to the original model
actor. As an actor execution unit, ActorExe in CGT will
contain the path of its corresponding actor in the original
model, the input and output port information of the corre-
sponding actor, and the actor’s own execution logic code. The
execution logic code of ActorExe is very concise, and it
is generated from our carefully designed template for each
different Actor. For example, the execution logic code of
the AddSubtract actor in intermediate code representation
is similar to Out = Addl + Add2 — Subl. An example
of the intermediate code representation corresponding to the
accumulator model in Figure 1 is shown in Figure 6.

Note that the execution logic of each actor is added in the
process of generating intermediate code representation, be-
cause in the subsequent various code translators, the execution
logic of each actor will not change, so there is no need to
generate execution logic code for each actor in the subsequent
process. And the generation of actor execution logic code only
needs to be generated according to the actor’s code template.
The judgment conditions and the branch type (like If, Else or
Switch) of the actor need to be added to Branch. For each
composite actor in the model, it will be completely packaged
into a function. The function will contain the input and output
ports of the composite actor and the entire schedule logic
composed of actor execution units and branches. In addition,
other necessary model elements are also generated into the
intermediate code representation, such as data type definitions,
global variable definitions, function declarations and other
configuration parameters of the model.

C. Code translate layer

The code translate layer converts the intermediate code
representation into codes for various purposes of actual use,
such as C language codes for deployment on embedded
devices, and codes for efficient simulation. These codes for
different purposes are basically the same in execution logic but

with different facility functions. For example, the C language
code of embedded control system generally realizes the three
operations of reading port data, processing data and writing
port data. In the code used for simulation, the results of
model simulation will be given quickly according to the
model’s timing information according to the requirements of
model simulation. It also includes the monitoring of data
abnormalities and the collection of port data.

1) Code translation for embedded control device:

To obtain the code for device, the intermediate code repre-
sentation is traversed recursively from the outside to the inside
according to the XML node elements. Each XML element in
the intermediate code representation will be generated with
a specific code or an empty code. For the function in the
intermediate code representation, the function header must be
generated according to the input and output information. In
order to support the code generation of multiple output ports,
the output port will be generated pointer type function param-
eters. Then the corresponding C code is generated according
to the schedule logic of the function. For each of the branch
nodes, statements such as If or Switch in C language can be
generated according to the type and conditions of the branch.
In order to connect the execution logic of the actors, the data
source variables of each actor need to be assigned by their
precursors. And the data calculated by the previous actor will
be transferred according to the connection relation between
two actors. For the actor connected to the input port of the
composite actor, its data source variable is directly replaced by
the variable corresponding to the input port of the composite
actor. For actors that are connected back to the output port of
the composite actor, it is necessary to assign a value to the
pointer variable of the output port.

An intuitive example of the intermediate code representation
translated into C code is shown in Figure 6. The intermediate
code representation shown is generated by the broken loop
model in Figure 4. In the intermediate code representation, the
Calculate node is generated from the ActorExe in the CGT.
It should be noted that the “DelayValue” parameter in the
model corresponds to a global variable in the intermediate
code representation, so it is not reflected in the example.

2) Code translation for simulation:

Based on the intermediate code representation with clear
logic, the simulation efficiency can be improved by running the
code for simulation. According to the model simulation con-
figuration parameters in the intermediate code representation,
such as the start time and end time of the model simulation and
the execution cycle of the controller, the C code that can be
executed iteratively is generated. Specifically, the main logic
of the top-level model is packaged into a loop that simulates
the passage of time. For the actors in the model, there is no
need to process the time information separately. Because in
the embedded control system, the model is basically triggered
according to a fixed step, and the execution interval of the
actors is also fixed. So in fact, timing-related actors often use
data queues, data pools and other structures to process data
delays. Each function node in MIR will be translated into
a function in C code. And the child node ref of Calcualte
represents the traceability relationship between the code and

<Function N
<Ref Act

="Accumulator_Update" Type="FunctionExec">
Composite' h="Composite"/>

<Input Type="£32" Tin">
<Ref Actor="Composite" Path="Composite.in"/>
</Input>
<Qutput Type="£32" Na ce="AddSubtract.out">
<Ref Actor="Composite" Pa '"Composite.out"/>
</output>
<Schedule>
<LocalvVariable Name="ReadVariable out" Type="£32">
<Ref Actor="Expression" Path="Composite.ReadVariable.out"/>
</LocalVariable>
<LocalVariable Name="AddSubtract_ out" Type="£32">

tor="AddSubtract"
</LocalVariable>

<Calculate Name="ReadVariab
or="Expression" P

h="Composite_ AddSubtract.out"/>

"~
h="Composite.ReadVariable"/>
32" />

<Calculate N
<Ref Act
<Input N
<Input N
<output
<Expression

</Calculate>

<Calculate Name="SetVariable">

="Composite.in"/>
"ReadVariable.out"/>

ion="out=addl+add2"/>

"Composite.SetVariable"/>
urce="AddSubtract.out"/>

ion
</Calculate>

</Schedule>

\</Function>

- e e e e e e e
- e e e e = e e Em o Em e o e e e e e =

(/7 Béﬁ;%;‘;&;&;};hfag o

Ivgid Accumulator_ Update(f float* out) {

/* Local variable of te.ReadVariable.out" */
float Readvariable_out;
/* Local variable of "Compo e .AddSubtract.out"™ */

float AddSubtract_out
/* Calculate code of "Composite.ReadVariable" */
ReadVariable_ out DelayValue;

/* Calculate code of "Composite.AddSubtract" */
AddSubtract_out in + ReadVariable_ out;
/* Calculate code of "Composite.SetVariable" */

DelayValue = AddSubtract_out;
/* Output variable assign of "Composite.out"*/
*out = AddSubtract_out;

Fig. 6. The intermediate code representation of the example model in Figure 3
and the corresponding translated C code. The intermediate code representation
is shown above, and the C code translated from it is shown below.

the model. For an example of the translation function, please
refer to Figure 6.

For the requirement of automatic error detection for model
simulation, we add data anomaly detection code to the port
data of the actor. That is, when the translation actor executes
the unit, insert a piece of code after its output port assignment.
This code includes data overflow detection, division by zero
detection, array out of bounds, data type conversion errors,
etc. Of course, these can only provide basic error detection
functions. To manually observe and find errors through the
waveform diagram of the port output value, we need to output
the data of the observation port specified in the model. Since
the model simulation is separated from the design tool user
interface under the MDD framework, the port data during
simulation can be output in a variety of ways such as text
and graphics. In addition, if the design tool is independently
developed, then the code for data communication with the
design tool can be added to the simulation code so that the
simulation results can be more conveniently observed on the
design tool user interface.

3) Code translation for others:

Except for the simulation and deployment, there are many
other actions that can be optimized, such as testing or interac-

tion. For example, traditional automated model-based testing
has the same inefficiency problem as the simulation at the
model level. Using a code translator to automatically gener-
ate the corresponding code for testing can greatly improve
the efficiency of model testing. Since the intermediate code
representation contains the mapping information of the model
actors, once a model error is found, it is easy to locate the error
actor. The essence of model automation testing is to generate
as many test cases as input to repeatedly execute the model,
and in this way to trigger potential errors in the model, such
as crashes caused by overflow or wild pointers.

In practice, the industry usually uses actor or code coverage
information to guide the generation of test cases. If we want
to collect branch coverage information of the model, the
feedback code triggered by the branch will be inserted near
the branch code when translating the branch node of the
intermediate code representation. If we want to collect the
coverage information of the model actors, we can add the
feedback code triggered by the actor to the actor execution
logic code when translating each actor execution unit of the
intermediate code representation.

Furthermore, code translation can be used for simulation
docking with other design tools. We only need to translate the
intermediate code representation into an FMU that conforms
to the FMI standard. FMU is supported by many design tools,
and the realization of this function only needs to be performed
on the basis of code translation for deployment to embedded
control devices. We just need to expose the standard input and
output ports and pack them in a specific zip file organization.

D. Implementation

The MDD is implemented in C++ language, with 41151
lines of code. It contains three parts, model parser, schedule
converter and code translator. The model parser currently con-
tains two parts, the Simulink model parser and the Ptolemy-II
model parser. As the model of the Simulink and Ptolemy-II
project is saved in XML format, we used the TinyXML library
to parse the model file. The schedule converter takes one or
more MIR files in XML format as input and takes intermediate
code representation files also in XML format as output. We
have implemented three code translators for different purposes,
which are used for deployment to devices, simulation, and
automated testing. We uploaded the tool set for public use of
embedded software design in the website. !

IV. EVALUATIONS

For evaluation, we conducted experiments on benchmark
models and real projects to demonstrate the effectiveness of
MDD in simulation acceleration, code generation optimiza-
tion and development collaboration. We used the benchmark
model provided in Ptolemy-II and the equally built Simulink
model for quantitative comparison, especially for the speed of
simulation, and the size and execution time of the generated
code. The benchmark of our experiment contains various types

'The MDD tools can be downloaded at: https://github.com/CodeGen456/
MDDTools.

of models, including mathematic models, complex branch
model, models for different application scenarios and so on.
For example, HeteroMK is state machine model. PiSquare
and Math are mathematic models but for different operations.
Mergeing, Nesting and Crossing are branch models for differ-
ent function curves. To demonstrate the collaborative capabil-
ities of MDD, we conducted experiments on HUAWET’s real
industrial project of self-driving control software.

The use of MDD requires very little preparation. Since
MDD is a back-end simulation and code generation frame-
work, it needs to use the GUI of other tools as the front-
end. For any model supported by MIR, we need to use the
GUI of other tools to build the model. Then take the model
file as input and pass it to each layer of MDD through
the command line. For example, in our experiment, we use
Ptolemy’s model file as input. Ptolemy-II Model Parser is first
called to generate MIR, then Schedule Converter is used to
convert MIR into intermediate code representation, and finally,
Code Translator is used to generate code. The Model Parser,
Schedule Converter and Code Translator are all used console
commands to interact with files as input and output.

A. Can MDD accelerate model simulation?

We used the six benchmark models provided in Ptolemy-
I and the manually constructed four models with complex
branch structures to compare the simulation efficiency. The
corresponding Simulink models with equal semantics are built
manually. For all models, we used a frequency of 1000 Hz and
a total simulation time of 1000 seconds for simulation.

Since MDD is a decoupled design tool framework, the
simulation module is independent of the user interface of the
design tool. Writing the simulation results, such as the output
of the Display actor, to files is only a way to interact with
the user interface. Of course, Socket or shared memory can
also be used. These methods will not affect the accuracy of
the simulation. However, Simulink and Ptolemy-II do not write
the simulation results to the file during the simulation process,
so for a fair comparison, we commented out the line of code
written to the file in the simulation code generated by MDD.
The result is shown in column 3 of Table II.

The results of the third column demonstrate that the simu-
lation based on the generated code has better performance.
Compared with Simulink, the simulation time is shortened
by 92.6%. Compared with Ptolemy-II, the simulation time
is shortened by 98.9%. Furthermore, using MDD to simulate
a more complex model with branch structure is even more
efficient and can shorten the simulation time of traditional
methods by 96.7%. The reason for the acceleration is that
Simulink implements the simulation of the model by executing
the actors one by one, and each iteration of the model includes
the operation of the actor scheduling queue. For the model
with branch structure, Simulink must dynamically adjust the

2The reason for the runtime error of the code generated by Ptolemy-II for
the Complex model is that the code that handles the data transfer at the branch
junction does not send the token to the data queue of the input port of the
subsequent actor. As a result, an error message of "No more Tokens in the
DE Receiver : DEReceiver_Get ($ModelName()__DEReceiver.c)” is printed
and the calculation of subsequent actors cannot be performed

TABLE I
COMPARISON OF SIMULINK, PTOLEMY-II AND MDD.
Model Design Simulation | Code Code Run
Tool Time (s) |Lines Time (s)
Simulink 0.964 77 4.651
ClockRamp | Ptolemy-II 13.27 11063 78.05
MDD 0.296 17 3.416
Simulink 0.691 67 9.481
HelloWorld | Ptolemy-II 12.91 11000 173.5
MDD 0.152 15 5.448
Simulink 1.328 151 5.221
HeteroMK Ptolemy-1I 89.56 12423 196.2
MDD 0.296 48 3.351
Simulink 1.106 80 5.813
Math Ptolemy-1I 30.62 11797 189.6
MDD 0.312 25 4.756
Simulink 0.998 104 60.42
PiSquare Ptolemy-II 27.09 11520 168.9
MDD 0.677 22 46.68
Simulink 1.045 80 17.47
ScaleCFlat Ptolemy-1I 15.52 9873 328.5
MDD 0.294 19 13.60
Simulink 4.765 84 3.566
Mergeing Ptolemy-1I 17.87 11556 59.46
MDD 0.616 25 2.812
Simulink 4.622 99 3.156
Nesting Ptolemy-1I 24.09 12175 64.35
MDD 0.218 35 2.777
Simulink 18.61 93 41.68
Crossing Ptolemy-1I 23.35 11864 331.6
MDD 0.140 27 16.42
Simulink 10.51 136 1.652
Complex Ptolemy-1I 44.07 12897 Error >
MDD 0.299 59 1.389
Simulink 4.46 97 15.31
Average Ptolemy-1I 29.84 11616 176.7
MDD 0.330 29 10.06

actor scheduling queue according to the branch judgment
conditions, which results in even worse performance in the
simulation. The simulation logic of Ptolemy-II is the same
as Simulink. But unlike Simulink, Ptolemy-II will not analyze
and fix the type on the port before simulation. In this way,
before each actor is executed, it is necessary to judge or even
convert the data type passed to the corresponding ports. In
addition, Ptolemy-II’s implementation of the emulator in Java
also led to a slower simulation speed. On the one hand, the
simulation process of MDD avoids dynamic schedule analysis
and type judgment, because they have been implemented in
the schedule conversion stage. On the other hand, since the
generated simulation code is based on the C language, and the
optimization function of the compiler is used for compilation
and optimization, a more efficient simulation program can be
obtained by directly executing the machine code.

B. Can MDD generate more efficient code?

We also used the ten models above to compare the code
generation efficiency with Simulink Coder and Ptolemy-1I C
Code Generator. We know that Simulink can generate code
for different hardware platforms. In our experiment, the Intel
processor under the Windows system is used as the target
device. Since the core logic of the generated code does not

have hardware-related instructions, the target platform will not
affect the comparison experiment. As for the size of code,
since Simulink generates many redundant type definitions and
data definitions, we only selected the main file generated by
Simulink for line number statistics. In terms of code runtime,
we used the same compilation and runtime environment (Win-
dow10 x64, Intel x64 processor, Cygwin64 Terminal, GCC
compiler) to compile and run these generated codes. In the
experiments to compare code efficiency, the standard output
instructions are retained in the code, this is why the code
running time is longer than the simulation time.

The comparison results are shown in the 4th and 5Sth
columns of Table II. The results demonstrate that the code
generator based on MDD can generate shorter and more
efficient code. In terms of lines of code, MDD can save 69.9%
compared to Simulink, and compared to Ptolemy-II, it can save
99.7%. In terms of code execution time, MDD can save the
execution time of 34.3% compared to Simulink, and it can
save the execution time of 94.3% compared to Ptolemy-II.

The main reason is that MDD generates more concise code
for schedule logic. Simulink generates much redundant code,
especially for the model with branch structure. Since Ptolemy-
IT generated code that completely simulates the execution of
the model, it needs a large number of custom c code library to
support the discrete event system, such as PriorityQueue for
storing port data and HashMap for data search. And Ptolemy-
IT generated a .h file and a .c file for each actor. Each actor
contains three parts of code: reading data from the input port,
calculating according to the port data, and outputting data to
the output port. This is why the code generated by Ptolemy-II
basically reaches tens of thousands of lines. The massive code
also consumes a lot of time to execute. *

C. Real project study

With the help of developers in HUAWEI, we demonstrate
how MDD supports collaborative development of different
design tools, during the self-driving control software imple-
mentation. The model is the data feedback functional unit
of the brake caliper sensors in the vehicle braking system,
consists of both the Simulink sub-model and Ptolemy-II sub-
model. Since the sensor data feedback functional unit in the
model requires complex branch logic, the model logic imple-
mented with Simulink is not intuitive, and we use Ptolemy-II
to construct the functional unit.

The model is shown in Figure 7. For the sensor data
feedback functional unit, we only built an empty composite
actor in Simulink, as shown in the red box in the lower right
corner of the Figure 7. The sensor data feedback function unit
is implemented as a complete composite actor by Ptolemy-II.
Both composite actors have the same settings, such as port
names, port data types, and the composite actor name.

After that, we used the Simulink model parser and the
Ptolemy-II model parser to analyze the two parts of the model
respectively, so that we got the unified model intermediate
representation files. Then we used the schedule converter to

3The sample codes generated by Ptolemy-II can be seen at: https://github.
com/CodeGen456/MDDTools/tree/main/CodeGenerated By PtII.

take the intermediate representation files of these two sub-
models as input for overall schedule analysis. The definition
of the brake caliper sensors data feedback functional unit exists
in the MIR of the two models. This is equivalent to declaring
the functional unit in Simulink and defining the functional
unit in Ptolemy-II. And an intermediate code representation is
generated. Next, we used code translators to generate code for
simulation and C code for deployment on the device. Finally,
we compiled and ran these codes, and obtained the results of
simulation efficiency and code running efficiency of the model
built for this collaborative approach.

TABLE III
COMPARISON ON REAL INDUSTRIAL PROJECT.
Design Actor |Composite |Simulation |Code [Code Run
Tool count |actor count |Time (s) Lines |Time (s)
Simulink |53 12 16.33 214 41.05
Ptolemy-II |25 0 157.2 17734 |Error *
MDD 25 0 0.749 124 18.72

For comparison, we also built equivalent models of the same
execution logic on Simulink and Ptolemy-II with more manual
efforts. The comparison result is shown in Table III. It can be
seen that the simulation and code generation effects achieved
by using the MDD framework are better than Simulink and
Ptolemy-II. The number of actors used in the two functional
units built with Simulink and Ptolemy-II is also counted.
Because the representation of Ptolemy-II and Simulink can
be inherited by MDD, the actor count of MDD is the same
as Ptolemy-II. When modeling the same function, we found
that using Simulink to build complex models is indeed more
cumbersome than Ptolemy-II. This further proves that code
generation that supports complex branch models can save
modeling workload, and also demonstrates the importance of
collaborative development of different design tools.

V. LESSON LEARNED

In the practice of MDD implementation and model-driven
design collaboration with HUAWEI, we have learned some
experiences.

Design tools collaboration can improve the efficiency of
model-driven development and need more in-depth sup-
port. During the development of self-driving control software,
there are lots of scenarios, that, when you want to implement a
certain function unit in the Simulink model, but the Simulink
model expression is inconvenient and you need to use other
design tools. Sometimes, you also need to implement the
function by a domain expert familiar with other design tools.
Design tools collaboration with some unified interface is the
best choice. Just as the FMI standard is proposed to solve
the problem that different simulation modules constructed by
multiple design tools can call each other during the simulation
process. But it is also limited to the simulation of the design.
Therefore, a design framework that can further integrate func-
tions such as simulation and code generation will break the
current limitations of design tools collaboration.

4The reason for the runtime error of the code generated by Ptolemy-II for
the industrial model is the same as the error in the Complex model.

CCaliln

¥

— >
G
i
worsa) N
G | consy
g JTL
T

BCaliln
»
»-

MultiplyDivide2

adPhaseV

Boolear
b

Scaled AddSubrracd Scaled
of +

o

PhaseChg

1 M

;

ACaliln
»

BooleanSwitch | AddSubtract!

T
Constt
N
0¥

-»-
adPhasel

IuOfiset f

Fig. 7. The vehicle braking system model of HUAWEI's self-driving control software. The red box in the lower right corner shows the declaration of the sensor
data feedback functional unit constructed by Simulink. The green box shows the specific implementation of the functional unit constructed by Ptolemy-II.

The intermediate code representation that contains the
model mapping information plays an important role in
bridging the gap between the model operation and code
operation. Firstly, based on the intermediate code represen-
tation, code for deployment to the target devices can be
generated easily. Because the main logic of the intermediate
code representation is expressed in a control flow manner, it is
enough to directly translate the intermediate code representa-
tion grammatically. Secondly, the intermediate code represen-
tation can also generate code for efficient simulation. Because
some actors generate code in multiple code locations due to
different branch paths, the model mapping information in the
intermediate code representation can indicate that these codes
come from the same actor. If the data of certain ports need to
be observed during simulation, the model mapping information
plays a role in traceability. In addition to the purpose of code
generation and simulation for target devices, automated testing
of models is required in many industrial scenarios. Based on
the intermediate code representation generation, the code that
supports test case generation and coverage analysis can also
greatly improve the efficiency of testing compared to directly
testing at the model level. Once the automatic test results find
a model error, the model mapping information can directly
locate the error to the actor in the model.

Limitations brought by packaging each composite actor
as a function for code generation. In the experiment, we
found that Simulink expands all the composite actors in the
entire model for code generation, which causes the code
generated by Simulink to have only one model logic function.
Not only that, the code optimization function of Simulink
Coder can fold multiple expressions into one expression to
save the use of variables on the stack. Therefore, Simulink’s
code optimizer can optimize the code of the entire model.
However, MDD packages each composite actor into a function
for code generation, which limits the scope and ability of code
optimization. Therefore, in future work, providing users with
an option to expand composite actor may be a way to solve
this limitation. Another limitation is also caused by MDD
packaging each composite component into a function. We
know that function call jumps consume more CPU time than

executing code sequentially. When MDD generates code for a
model with a lot of composite actors, especially when the logic
of each composite actor is very simple, a lot of short functions
and a lot of function call codes will be generated. This
will cause more additional time overhead of code execution.
Similarly, we can provide users with an option to expand
composite actors, or we also can add inline modifiers to short
functions to avoid the function call process.

VI. CONCLUSION

This paper proposed a unified design framework MDD
to optimize the development efficiency of embedded control
software, including support for design tools collaboration,
more efficient simulation, and higher quality code generation.
First, the model parse layer supporting different modeling
tools is designed to transform different models into a unified
model intermediate representation (MIR). It is extensible, so
any model with different semantics can be integrated into
MIR through actor packaging. Second, the schedule convert
layer converts the MIR that may contain different semantics
into a unified intermediate code representation. Especially for
the data flow semantic model with complex branching logic,
it converts the data flow logic into more concise control
flow logic of code as much as possible. More concise code
can be generated by the conversion algorithm, which means
fewer lines of code and higher execution efficiency. Third,
the code translate layer supports code generation for multiple
purposes, including code for deployment to the device, code
for simulation, code for testing, and so on. Since the MDD
simulation process is based on the generated code, it avoids
time-consuming processes such as actor triggering and type
inference during the simulation process, so the simulation
efficiency of MDD is higher than existing tools. Experiments
demonstrate that MDD can not only support the collaborative
development of Simulink and Ptolemy-II but also can improve
their simulation efficiency and reduce the number of lines of
generated code, and reduce the execution time of the code.
In the future, we will focus on further code optimization with
semantic analysis.

[1]

[5

=

[6

=

[7

[8

=

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

D. Ameller, X. Franch, C. Gémez, S. Martinez-Fernandez, J. Aratjo,
S. Biffl, J. Cabot, V. Cortellessa, D. Méndez, A. Moreira et al., “Deal-
ing with non-functional requirements in model-driven development: A
survey,” IEEE Transactions on Software Engineering, 2019.

S. Staroletov, N. Shilov, V. Zyubin, T. Liakh, A. Rozov, I. Konyukhov,
I. Shilov, T. Baar, and H. Schulte, “Model-driven methods to design of
reliable multiagent cyber-physical systems,” in Proc. of the Conference
on Modeling and Analysis of Complex Systems and Processes (MACSPro
2019), 2019.

P. Bocciarelli, A. D’ Ambrogio, A. Falcone, A. Garro, and A. Giglio, “A
model-driven approach to enable the simulation of complex systems on
distributed architectures,” Simulation, vol. 95, no. 12, pp. 1185-1211,
2019.

C. M. Sosa-Reyna, E. Tello-Leal, and D. Lara-Alabazares, “Methodol-
ogy for the model-driven development of service oriented iot applica-
tions,” Journal of Systems Architecture, vol. 90, pp. 15-22, 2018.
Simulink and Matlab, Simulink Documentation. [Online]. Available:
https://www.mathworks.com/help/simulink/index.html

J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,” in
Readings in Hardware/Software Co-Design, ser. Systems on Silicon,
G. De Micheli, R. Ernst, and W. Wolf, Eds. San Francisco: Morgan
Kaufmann, 2002, pp. 527-543.

P. Baldwin, S. Kohli, and E. A. Lee, “Modeling of sensor nets in ptolemy
ii,” in Proceedings of the 3rd international symposium on Information
processing in sensor networks. ACM, 2004, pp. 359-368.

J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity-the ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127-144, 2003.
H. Liu, X. Liu, and E. A. Lee, “Modeling distributed hybrid systems
in ptolemy ii,” in Proceedings of the 2001 American Control Confer-
ence.(Cat. No. 01CH37148), vol. 6. 1EEE, 2001, pp. 4984-4985.

J. Bastian, C. Clau}, S. Wolf, and P. Schneider, “Master for co-
simulation using fmi,” in Proceedings of the 8th International Modelica
Conference; March 20th-22nd, no. 63. Linkodping University Electronic
Press, 2011, pp. 115-120.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clau}, H. Elmqyvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold et al., “The func-
tional mockup interface for tool independent exchange of simulation
models,” in Proceedings of the 8th International Modelica Conference.
Linkoping University Press, 2011, pp. 105-114.

C. Gomes, B. Meyers, J. Denil, C. Thule, K. Lausdahl, H. Vangheluwe,
and P. De Meulenaere, “Semantic adaptation for fmi co-simulation with
hierarchical simulators,” Simulation, vol. 95, no. 3, pp. 241-269, 2019.
P. Filipovikj, N. Mahmud, R. Marinescu, C. Seceleanu, O. Ljungkrantz,
and H. Lonn, “Simulink to uppaal statistical model checker: Analyzing
automotive industrial systems,” in International Symposium on Formal
Methods. Springer, 2016, pp. 748-756.

Y. Yang, Y. Jiang, M. Gu, and J. Sun, “Verifying simulink stateflow
model: timed automata approach,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, 2016, pp.
852-857.

Z. Lu, R. Wang, and Y. Guan, “Formal verification of discrete event
model,” in Proceedings of the 4th ACM SIGSOFT International Work-
shop on Testing, Analysis, and Verification of Cyber-Physical Systems
and Internet of Things, 2020, pp. 3-4.

F. Boulanger and C. Hardebolle, “Simulation of multi-formalism models
with modhel’x,” in International Conference on Software Testing, 2008.
D. A. Adams, “A computation model with data flow sequencing.”
Stanford University, 1969.

C. Ptolemaeus, System design, modeling, and simulation: using Ptolemy
II. Ptolemy. org Berkeley, 2014, vol. 1.

H. Klee and R. Allen, Simulation of dynamic systems with MATLAB and
Simulink. Crc Press, 2016.

E. A. Lee and Y. Xiong, “A behavioral type system and its application in
ptolemy ii,” Formal Aspects of Computing, vol. 16, no. 3, pp. 210-237,
2004.

H. Hanselmann, U. Kiffmeier, L. Koster, M. Meyer, and A. Rukgauer,
“Production quality code generation from simulink block diagrams,” in
Proceedings of the 1999 IEEE International Symposium on Computer
Aided Control System Design. 1EEE, 1999, pp. 213-218.

G. Zhou, M.-K. Leung, and E. A. Lee, “A code generation framework
for actor-oriented models with partial evaluation,” in International
Conference on Embedded Software and Systems. Springer, 2007, pp.
193-206.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

T. Miyazaki and E. A. Lee, “Code generation by using integer-controlled
dataflow graph,” in 1997 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1. IEEE, 1997, pp. 703-706.

T. Z. Asici, B. Karaduman, R. Eslampanah, M. Challenger, J. Denil,
and H. Vangheluwe, “Applying model driven engineering techniques to
the development of contiki-based iot systems,” in Proceedings of the Ist
International Workshop on Software Engineering Research & Practices
for the Internet of Things. 1EEE Press, 2019, pp. 25-32.

K. Jahed and J. Dingel, “Enabling model-driven software development
tools for the internet of things,” in Proceedings of the 11th International
Workshop on Modelling in Software Engineerings. 1EEE Press, 2019,
pp. 93-99.

F. Pasic, “Model-driven development of condition monitoring software,”
in Proceedings of the 21st ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Pro-
ceedings. ACM, 2018, pp. 162-167.

Y. Jiang, H. Song, Y. Yang, H. Liu, M. Gu, Y. Guan, J. Sun, and
L. Sha, “Dependable model-driven development of cps: From stateflow
simulation to verified implementation,” ACM Transactions on Cyber-
Physical Systems, vol. 3, no. 1, p. 12, 2018.

G. Berry, “Scade: Synchronous design and validation of embedded
control software,” in Next Generation Design and Verification Method-
ologies for Distributed Embedded Control Systems. Springer, 2007, pp.
19-33.

P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for system
design,” Journal of Circuits, Systems, and Computers, vol. 12, no. 03,
pp. 261-303, 2003.

F. Balarin, P. Giusto, A. Jurecska, M. Chiodo, C. Passerone, E. Sen-
tovich, H. Hsieh, L. Lavagno, B. Tabbara, A. Sangiovanni-Vincentelli
et al., Hardware-software co-design of embedded systems: the POLIS
approach. Springer Science & Business Media, 1997.

H. Zhang, Y. Jiang, H. Liu, M. Gu, and J. Sun, “Tsmart-bipex: An
integrated graphical design toolkit for software systems.” in D&P@
MoDELS, 2016, pp. 32-39.

L. Berzi, T. Favilli, M. Pierini, L. Pugi, G. B. Weif}, N. Tobia, and
M. Ponchant, “Brake blending strategy on electric vehicle co-simulation
between matlab simulink® and simcenter amesim™,” in 2019 IEEE
Sth International forum on Research and Technology for Society and
Industry (RTSI). 1EEE, 2019, pp. 308-313.

M. Bagheri, M. Sirjani, E. Khamespanah, N. Khakpour, I. Akkaya,
A. Movaghar, and E. A. Lee, “Coordinated actor model of self-adaptive
track-based traffic control systems,” Journal of Systems and Software,
vol. 143, pp. 116-139, 2018.

V. I. GmbH, DaVinci Developer. [Online]. Available: https://www.
vector.com/us/en-us/products/solutions/autosar-classic/

A. Enrici, L. Apvrille, and R. Pacalet, “A uml model-driven approach
to efficiently allocate complex communication schemes,” Springer In-
ternational Publishing, 2014.

T. Schattkowsky, J. H. Hausmann, and G. Engels, “Using UML activities
for system-on-chip design and synthesis,” in Model Driven Engineering
Languages and Systems, 9th International Conference, MoDELS 2006,
Genova, Italy, October 1-6, 2006, Proceedings, ser. Lecture Notes in
Computer Science, vol. 4199. Springer, 2006, pp. 737-752.

G. Vanwormhoudt, M. Allon, O. Caron, and B. Carré, “Template based
model engineering in uml,” in Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, ser. MODELS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 47-56.

R. Ahmadi, E. Posse, and J. Dingel, “Slicing uml-based models of
real-time embedded systems,” in Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, ser. MODELS *18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 346-356.

Z. Su, D. Wang, Y. Yang, Y. Jiang, W. Chang, L. Fang, W. Li, and
J. Sun, “Code synthesis for dataflow based embedded software design,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pp. 1-1, 2021.

H. Zhang, Y. Jiang, H. Liu, H. Zhang, M. Gu, and J. Sun, “Model
driven design of heterogeneous synchronous embedded systems,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2016, pp. 774-779.

Y. Jiang, H. Song, H. Kong, R. Wang, and L. Sha, “Safety-assured
model-driven design of the multifunction vehicle bus controller,” /IEEE
Transactions on Intelligent Transportation Systems, 2017.

