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Simulink is widely used for model-driven development (MDD) of cyber-physical systems. Typically, the

Simulink-based development starts with Stateflow modeling, followed by simulation, validation, and code

generation mapped to physical execution platforms. However, recent trends have raised the demands of rig-

orous verification on safety-critical applications to prevent intrinsic development faults and improve the sys-

tem dependability, which is unfortunately challenging. Even though the constructed Stateflow model and the

generated code pass the validation of Simulink Design Verifier and Simulink Polyspace, respectively, the sys-

tem may still fail due to some implicit defects contained in the design model (design defect) and the generated

code (implementation defects).

In this article, we bridge the Stateflow-based MDD and a well-defined rigorous verification to reduce devel-

opment faults. First, we develop a self-contained toolkit to translate a Stateflow model into timed automata,

where major advanced modeling features in Stateflow are supported. Taking advantage of the strong verifica-

tion capability of Uppaal, we can not only find bugs in Stateflow models that are missed by Simulink Design

Verifier but also check more important temporal properties. Next, we customize a runtime verifier for the

generated non-intrusive VHDL and C code of a Stateflow model for monitoring. The major strength of the

customization is the flexibility to collect and analyze runtime properties with a pure software monitor, which

offers more opportunities for engineers to achieve high reliability of the target system compared with the

traditional act that only relies on Simulink Polyspace. In this way, safety-critical properties are both verified

at the model level and at the consistent system implementation level with physical execution environment

in consideration. We apply our approach to the development of a typical cyber-physical system-train com-

munication controller based on the IEC standard 61375. Experiments show that more ambiguousness in the

standard are detected and confirmed and more development faults and those corresponding errors that would

lead to system failure have been removed. Furthermore, the verified implementation has been deployed on

real trains.

This article is a significant extension of Jiang et al. (2016c).
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1 INTRODUCTION

Cyber-physical systems (CPS) have been increasingly adopted (H. Song and Brecher 2016; Ahmed
et al. 2013; Mehmood et al. 2017; Jiang et al. 2013b), and Simulink is a widely used tool for model-
driven development (MDD) of CPS that provides delicated support for graphical Stateflow mod-
eling, interactive model-level simulation, some basic design validation, along with C, C++, and
VHDL code generation and verification (Caspi et al. 2003). In practice, Simulink has been success-
fully applied across various industry applications such as smart manufacturing control and signal
processing systems, where Simulink Design Verifier (MathWorks 2017a) and Simulink Polyspace
(MathWorks 2017b) are taking the responsibility of uncovering design defects and implementation
defects, respectively. The two defects are the main intrinsic development faults of MDD (Avižienis
et al. 2004; Avizienis et al. 2004).

However, for safety-critical applications such as medical devices and avionics, Simulink is still
insufficient to ensure dependability. Specifically, the verification capability of Simulink Design
Verifier is limited to basic properties. It detects defects in the model that result in the integer over-
flow, dead logic, array access violations, division by zero, and violation of requirement assertions
described by Simulink verification block. Handling complex temporal properties (e.g., something
has to hold at the next state) of those applications is currently infeasible because of the limited
descriptive ability of Simulink verification block. Moreover, although Simulink Polyspace offers
the flexibility to check correctness over the implementation code using abstract interpretation
techniques, we still lack the knowledge to analyze the interaction between the target software
and dynamic physical execution environment. Consequently, guaranteeing the dependability of
the whole system remains non-trivial, and implicit design defects and implementation defects
wold lead to system failure. Hence, supporting tools with more verification power such as Uppaal
(Behrmann et al. 2004) is expected here to check the properties of Stateflow model and more
rigorous formal techniques such as runtime verification (Chen and Roşu 2007) should be applied
to reduce development faults and ensure the dependability of the automatically implemented
CPS.

However, the major challenge for applying those formal verification techniques to support a
wider range of properties is that the execution semantics of Stateflow is too complex, which is
described in a 1,366-page user guide informally (MathWorks 2017c). Advanced modeling features
such as event stack, event interruption, complex state activating and deactivating mechanism,
boundary transition, and transitional action and so on, are non-straightforward to formalize for
verification. Although there are many existing works on translation-based verification of the State-
flow model, most of them are efficient and work well covering the most related modeling fea-
tures within their own domains (Chen et al. 2012). Few address the temporal part and consistency
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verification of properties on the generated code running in an unexpected dynamic physical en-
vironment, which is essential for safety-critical applications, such as anti-missile systems.1

In this article, we present an approach to address the verification challenge at both the model
and implementation levels of Stateflow-based MDD of CPS, thus achieving assured dependability.
In terms of model-level verification, we develop a tool STU to translate Stateflow model into timed
automata for formal analysis based on a model checking tool called Uppaal (Alur 1999). Timed
automata can be used to model and analyze the timing behavior of CPS, and the methods for
checking both the safety and liveness properties of timed automata have been well developed and
intensively studied in Uppaal. Most frequently used Stateflow modeling features (composite state,
boundary transition, junction, event, conditional action, transitional action, timer, and implicit event-
driven stack) are addressed in the translation tool with discussions and validations with engineers
from MathWorks.

With a wider range of Stateflow modeling features captured in STU, and the strong verifica-
tion capability of Uppaal, more comprehensive validations are feasible. Potential errors that may
not be detected in simulation or the Simulink Design Verifier would be found via Uppaal veri-
fication. If errors are detected, then the Stateflow model needs to be analyzed and revised with
the help of mapping dictionary for translation. As a result, more design defects would be pre-
vented and removed, and the code generated from the verified model will be more reliable and
can be analyzed through Simulink Polyspace. Furthermore, because Simulink Polyspace checks
the implementation code using abstract interpretation techniques that provide little support for
temporal properties, we customize the runtime verification to monitor properties on code integra-
tion and system deployment running in a dynamic physical execution environment, which poses
many safety hazards for system failure. Within this part, we are able to not only translate some
safety-critical properties verified by Uppaal to the property descriptions of runtime monitor for
consistency checking but also add some system-level properties such as platform-dependent delay
that could not be described based on the abstract Stateflow model. Hence, more implementation
defects wold be prevented and removed. The overall procedure about the proposed extended ap-
proach is presented in Figure 1.

The main lessons learned through this work include the following: (1) Even though the Stateflow
model and the generated code pass the validation of the Simulink Design Verifier and Simulink
Polyspace, respectively, the system may still fail due to some implicit defects contained in the
model and generated code, and more comprehensive verification is needed to ensure the depend-
ability; (2) verification is relatively new to MDD engineers, and we need easy to use and low-
complexity solutions to convince and facilitate developers to trust and use verification results;
and (3) new and improved techniques for explaining the verification results are needed to make
verification results more actionable.

The rest of article is organized as follows. Some background about Stateflow, timed automata,
and runtime verification are introduced in Section 2. Related works about the verification of State-
flow and runtime verification are discussed in Section 3. Section 4 presents the design and imple-
mentation of the proposed approach, including Stateflow to Uppaal timed automata translation,
customization of runtime verification, and interfaces among them. Evaluation results on artificial
examples and real train controller system design are presented in Section 5, and we conclude in
Section 6 with more discussions about the proposed approach.

1The Patriot anti-missile system failure during the Gulf War was caused by the incongruence between the timer module

and the new application environment [http://fas.org/spp/starwars/gao/im92026.htm].
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Fig. 1. Integrate STU and runtime verification into Stateflow-based MDD.

Fig. 2. A Stateflow example for counter task that covers most advanced modeling features.

2 PRELIMINARIES

In this section, we present background information on the elements and semantics of Stateflow
and timed automata and a brief introduction to runtime verification.

2.1 Simulink Stafeflow

The model in Figure 2 is an example of a Stateflow diagram that covers most advanced modeling
features. The outmost composite state Container is parallelly decomposed into three sub-composite
states, A, B, and C. States A and C are further serially decomposed into two automatic states,
respectively, where the initial automatic state such as A1 is attached with an arrow. State B is
further serially decomposed into two automatic states (B1 and B3), a sub-composite state (Count),
and a junction denoted by a small cycle. There is a cross-boundary transition from the junction into
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the initial automatic state of the sub-composite state (Count). Statements attached on state such as
Container and Count are entry, during, and exit actions. Statements attached on transitions includes
guard, common action, and conditional action. The model realizes a counter task that, for every 2s,
state A dispatches a “switch on” event, and for every “switch on” event, state B will increase the
variable x by 1. The statement x = x + 1 is a conditional action, so it will be executed immediately
when the event “switch on” is dispatched. However, the statement y = y + 1 is a transitional action
that can only be executed when a valid path between two states is detected. So at the end of
execution, the value of y is only increased for one time to 1, and the value of x is 3. At the same
time, the Boolean variable result is set to be true, because the activation of state B2 will trigger
the activation of parent state Count first. During the activation of state Count, the entry action
result = true is executed.

More specifically, the Stateflow model is an extended hierarchical state machine that contains
sequential decision logic and synchronization events to represent system behaviors. There are
mainly six frequently used modeling elements: State, Transition, Junction, event, Action, and Timer.
State: This represents the operating mode of the system. The occurrence of an event will trigger
the execution of the Stateflow model by making states active or inactive depending on conditions
during simulation. The state can be defined hierarchically and may contain two types of decom-
position that are connected in parallel or serially. The serial decomposing state must have at least
one default transition with only one sub-state activated, while the parallel decomposing state does
not have any default transition with all sub-states activated at one time. That is, within a compos-
ite state (or a chart), no two exclusive serial sub-states can be active at the same time, while any
number of parallel sub-states can be simultaneously activated.
Transition: It is the edge between two states or junctions, representing the mode change from
the source state to the destination state. Each transition is attached with four characterizations:

[event] [condition] [conditional action] / [common action],

where event specifies an explicit or implicit signal that triggers the execution of transition, con-
dition is a Boolean expression that allows the transition to be taken with value that is true, the
conditional action is the operation that is immediately executed when the condition is met, and
the common action is the operation that will be executed when the condition is met and there is a
non-interrupted valid path between the source state and the target state. Each transition also has
an implicit priority of execution, determined by the information such as the hierarchy level of the
destination state, the position of the transition source, and so on.
Event: There are two types of events used to trigger execution of a Stateflow diagram. An explicit
event is defined by users, and it can be an input from Simulink, an output to Simulink, or local
within a diagram. An implicit event is a built-in event that broadcasts automatically during di-
agram execution. Three commonly used implicit events are system tick, enter(state_name), and
exit(state_name): Tick indicates the moment when a Stateflow diagram awakens, and the other
two occur when the specified state of state_name is entered or exited, respectively. Event broad-
casting is a common communication technique in Stateflow. When an event is globally broadcast,
the evaluation of the event starts from a Stateflow diagram that is the root of all its components
and follows the hierarchy of states in a top-down manner. An event can also be directly broadcast
from one state to another to synchronize parallel states, and the evaluation of the event is within
the destination state.
Action: This contains two kinds of operation attached on transition (conditional action and com-
mon action) and three kinds of operations attached on state (entry action, during action, and exit
action). Entry action is executed when the state is activated, During action is executed when the
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Fig. 3. Manually constructed timed automata for counter.

state is already active and stays in, and Exit action is executed when the state changes from active
to inactive.
Junction: This contains two types, connective junction and history junction, where the former en-
ables the representation of different possible transition paths for a single transition, and the later
represents historical decision points based on historical data relative to state activity.
Timer: It is used to specify time related behaviors of system, which is characterized as:

[TmOp (Num,Event )],

where TmOp contains three types of time-related operation before, after, and at, Num is the number
used to quantify the length of time period, and Event consists of three system reserved keywords,
sec, msec, and usec, which represent second, millisecond, and microseconds, respectively.

2.2 Uppaal Timed Automata

The model in Figure 3 is an example of a network of timed automata that covers most advanced
modelling features. The model consists of three parallel automata A, B and C. A channel switch_on
is declared for synchronisation among different automata, and a clock variable t is declared in
timed automaton A for time modelling. Every two time units, the action switch_on! is synchronized
with the action switch_on?, and the variable x will increase by 1 in automaton B. If the value of x and
y is smaller than 3, then automaton B will return to state B1 immediately for next synchronization
from automaton A. After six time units, the transition from state B4 to B2 in automaton B would
be triggered, and the value of variable result should be set to be true, which would immediately
trigger the transition fromC1 toC2 contained in automaton C. Note that the state with the double
cycle is the initial state.

Formally, a timed automaton is a finite-state machine extended with clock variables. It uses a
dense-time model where clock variables evaluate to real numbers, and all clocks progress syn-
chronously. It can be defined as a tuple consisting of six elements: (L, l0,C,A, I ,E), where L is a set
of locations, l0 is the initial location, C is a set of clocks, A is a set of actions, B (C ) is a set of con-
junctions over simple conditions of the form x � c or x − y � c (x ,y ∈ C , and �∈ {<, ≤,=, ≥, >}),
I is a set of invariants on the location, and E ⊆ L ×A × B (C ) × 2C × L denotes a set of transition
edges. The edge connects two locations with an action, a guard, and a set of clocks, formalized as

(l ,−−−−→д,a, r l ′) when (l ,a,д, r , l ′) ∈ E. The transition represented by an edge can be triggered when
the clock value satisfies the guard labeled on the edge. The clocks may reset when a transition is
taken.

A system can be modeled as a network of timed automata in parallel with synchronous actions
defined on channel ch. The input action ch? represents receiving an event from the channel ch,
while the output action ch! stands for sending an event on the channel ch. Automata in the net-
work execute concurrently. They can communicate via shared variables, as well as via events over
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those synchronous channels. In the general case, an edge from location l1 to location l2 can be de-

scribed in a form (l1
−−−−→
д,ϕ, r l ′), if there is no synchronization over channels (ϕ denotes an “empty”

action), or (l1
−−−−−−→
д, ch∗, r l ′). Here, ch∗ denotes a synchronization label over channel ch with ∗ ∈ {!, ?},

g represents a guard for the edge and r denotes the reset operations performed when the transition
occurs.

Then, the state of the system is defined by the locations of all automata, and the values of
clocks and discrete variables. Every automaton may fire a transition separately or synchronize
with another automaton with the channel action ch! and ch? as below:

• (l ,u) → (l[l ′i /li ],u
′),

i f (li
−−−−→д,a, r l ′i ),u ∈ д,u, = [r 	→ 0]u,u, ∈ I (l[l ′i /li ]).

• (l ,u) → (l[l ′i /li , l
′
j/lj ],u

′),

if ∃i� j, (li
−−−−−−→
д, ch?, r l ′i ), (lj

−−−−−−→
д, ch!, r l ′j ),u ∈дi ∧ дj ,u

, = [ri ∪ r j 	→ 0]u,u, ∈ I (l[l ′i /li ], l[l ′i /li ]),

where l denotes a vector of current locations of the automata network, u is as usual a clock as-
signment recording the current values of the clocks in the system, and l[l ′i /li ] denotes the vector

l with li being substituted with l ′i . The model checker Uppaal jointly developed by Uppsala Uni-
versity and Aalborg University is based on the theory of timed automata, and the query language
used to specify properties to be checked is a subset of timed computation tree logic (TCTL). It
has been applied successfully ranging from communication protocols to real-time cyber-physical
applications.

2.3 Runtime Verification

Runtime verification can be used for many purposes, such as debugging or safety policy monitor-
ing, verification, behavior modification, and so on. It aims to be a lightweight verification technique
complementing other verification techniques such as model checking and theorem proving by an-
alyzing only one or a few execution traces and by working directly with the actual system, thus
scaling up relatively well and giving more confidence in the results of the analysis. Following the
descriptions in Leucker and Schallhart (2009), it can be defined as

Runtime verification is the discipline of computer science that deals with the study, develop-
ment, and application of those verification techniques that allow checking whether a run of a
system under scrutiny satisfies or violates a given correctness property.

Technically speaking, in runtime verification, a correctness property is typically automatically
translated into a monitor. Such a monitor is then used to check the current execution of a system
or a finite set of recorded execution with respect to the property. Moreover, through its reflective
capabilities, it can be made an integral part of the target system, monitoring and guiding its execu-
tion. Researchers usually use Aspect-oriented Programming as a technique for defining program
instrumentation in a modular way for the specified monitor.

We use past time linear temporal logic (ptLTL) to specify the property that provides temporal
operators that refer to past states of an execution trace relative to a current point of reference
(Laroussinie et al. 2002). The syntax and semantics are as below.
ptLTL syntax: Let AP = {p1,p2 · · ·pi · · ·pn } be a set of atomic propositions, then ptLTL formulae
is as follows:

ϕ,ψ ::= pi | ¬ϕ |Xϕ |X−1ϕ | ϕ ∧ψ | ϕSψ | ϕUψ ,
whereU , S,X ,X−1 stands for the “until,” “since,” “next,” and “previous” temporal operators, respec-
tively. Based on these basic operators and some standard abstractions, temporal operators such as
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“eventually,” “always,” “always in the past,” and “eventually in the past” can be defined and denoted
as F , F−1,G, and G−1, respectively. From definition, we can see that ptLTL extends classical logic
LTL with the past modalities, which is good for complex temporal properties presented in clinical
guideline.
ptLTL semantics: Let ω be an infinite sequence ω = ω1ω2 · · · , with a mapping η : ∀i,ωi → 2AP

labeling atomic propositions that hold in each position ωi . With the structure path (ω,η), a non-
negative integer i, and ptLTL formulae ϕ andψ , the relation that “ϕ holds at position ωi ” denoted
as ω, i |= ϕ can be inductively defined as below:

ω, i |= p iff p ∈ η(ωi )
ω, i |= ¬ϕ iff ω, i � ϕ
ω, i |= Xϕ iff ω, i + 1 |= ϕ
ω, i |= X−1ϕ iff ω, i − 1 |= ϕ
ω, i |= ϕ ∧ψ iff ω, i |= ϕ and ω, i |= ψ
ω, i |= ψSϕ iff ∃m ∈ [0, i],ω,m |= ϕ,

and ∀n ∈ [j + 1, i]ω,n |= ψ
ω, i |= ψUϕ iff ∃m ∈ [i,∞),ω,m |= ϕ,

and ∀n ∈ [i,m)ω,n |= ψ ,

where twoptLTL formulaeϕ andψ are said to be equivalent, when condition “ω, i |= ϕ iff ω, i |= ψ ”
is satisfied for all structure path ω and i .

3 RELATED WORK

In the past decades, a variety of computation models and the corresponding toolkits has been
proposed to facilitate the design of cyber-physical system, among which the two most widely
used are the SCADE suite based on safety state machine (Berry 2007) and the Simulink toolkit
based on Stateflow (Caspi et al. 2003). Both of them have been successfully applied in a variety of
applications.

The underlying computation model safety state machine of SCADE is formally defined and pro-
vides a mathematical basis for the complete formal analysis of systems. Hence, the SCADE suit,
including graphical modelling, test automation, SAT-based verifier, and certified code generator,
provides a systemic solution for developing extremely safety critical systems such as avionics. Ac-
companied with the certified code generator, the SAT-based SCADE Design Verifier (DV) plays a
very important role in ensuring the correctness of the model to formally express and assess safety
requirements and find bugs early in the development process. Properties to verify are defined with
the SCADE observer itself. The Boolean outputs are the proof objectives for DV that then auto-
matically produces counter-examples. However, while the SCADE verifier performs very well for
certain verification tasks, it can fail badly for others due to complexity problems and the descrip-
tive limitation of the observer. There are many efforts trying to enhance the verification ability
of SCADE (Qian et al. 2015; Basold et al. 2014). Besides, while mainly focusing on embedded soft-
ware, the certificated code generator currently has few support for the synthesis of hardware with
20,0000 US dollars for a single licence.

Similarly to a SCADE suite, Simulink also supports system design with Stateflow modelling,
simulation, validation, and code generation. Because Stateflow has no formal semantics for rigours
formal verification, plenty of attempts have touched the topic to assist the Simulink Design Ver-
ifier in acquiring correctness of Stateflow model, which can be classified into two categories,
simulation-based techniques, and verification-based techniques. The simulation-based technique
is adopted widely, while the main challenge is to solve the coverage of simulation patterns. Many
researchers have developed test generation tools for Simulink designs, including Reactis (Sims and
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DuVarney 2007), T-VEC (Blackburn and Busser 1996), Beacon Tester (Tester 2017), and AutoMOT-
gen (Gadkari et al. 2008), and so on. These tools use combinations of randomization and constraint
solving techniques to generate test cases to guarantee that coverage goals over model elements
are satisfied. Recently, the symbolic analysis has also been successfully applied to improving the
simulation coverage of the Simulink Stateflow model (Alur et al. 2008).

For verification-based techniques, the main challenge is that Simulink Stateflow lacks a formal
and rigorous definition of its semantics. Many researchers have defined several types of formal
semantics for Stateflow and developed many specialized tools for translating subsets of model to
pushdown automata (Bouajjani et al. 1997), Lustre (Halbwachs et al. 2002), SMV (Mcmillan 1993),
PAT (Sun et al. 2009), hoare logic, and SAL (Wernli et al. 2007), which can be verified through the
corresponding supporting tools. Most of them perform well within their own domain while ab-
stracting some domain unrelated modeling features. For example, in SMV-based translation, they
focus and provide a well-defined framework to ensure the function correctness, while the hierar-
chical states and events are out of their considerations. In the PAT-based (Chen et al. 2012) veri-
fication technique, they covered most of the advanced features of Stateflow, with limited support
of the event interrupt dispatch mechanism and time operation support. There is also some nice
work translating Uppaal timed automata to Simulink Stateflow for simulation and code generation
(Pajic et al. 2012, 2014). Since the semantics of timed automata is simpler than that of Stateflow,
the translation procedure is different from our setting, because we need to deal with the priority,
event stack, transitional action, and so on, of Stateflow during our reverse transformation. Also,
based on their tool, we can build an interface to connect to our transformation to form a closed
loop.

Compared to previous works, we try to cover most Stateflow advanced modeling features, in-
cluding the timing mechanism, that have never been addressed before and make use of the strong
verification tool Uppaal to diagnose more properties. We also formalize the complex event stack
and executions interrupt mechanism that has been limitedly supported before. Uppaal is cho-
sen, because timed automata can be used to model and analyze the timing behavior of systems,
and the methods for checking both safety and liveness properties of timed automata have been
well developed and intensively studied, which has been successfully applied in the verification
of many safety-critical systems. Besides, because Simulink Polyspace mainly detects common er-
rors such as overflow, division by zero, and out-of-bound pointers, and provides little support for
temporal properties, we customize runtime verification on the generated code to assist Simulink
Polyspace, so that the properties during model validation and extra runtime-related properties
can be consistently verified and monitored on the executable system. They are integrated into a
Stateflow-based MDD lifecycle to acquire higher confidence in safety critical applications. Then,
we apply the enhanced MDD to the implementation of a real train controller, which is premier
studied in Jiang et al. (2015), Jiang et al. (2013a), Jiang et al. (2015), Jiang et al. (2016b), and Yang
et al. (2016). For example, in Jiang et al. (2015), the author proposes a heterogeneous modeling
language to model both data-oriented and control-oriented behavior of train controller. In Jiang
et al. (2013a), the author uses timed automata to model and verify the real-time protocol used for
communication of controller. Based on their description about the train controller system, we will
show how the enhanced Stateflow MDD construct a Stateflow model, find bugs through translated
verification, generate code for real platform implementation, and insert runtime monitor to the
system.

4 EXTENDED DEPENDABLE MDD APPROACH

In this section, we introduce the kernel components presented in Figure 1: the transformation rules
and implementation of STU and the customization of runtime verification.
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4.1 Formal Verification of Stateflow

In translating Simulink Stateflow to Uppaal timed automata for verification, the most important
and difficult task is to overcome the gap between their execution semantics. As noted, the key
differences between Stateflow and timed automata are as follows:

(1) Stateflow transition is driven by event. Execution of every event is in deterministic se-
quential order, and interruptible with stack, while timed automata is executed in parallel
and driven by the channel synchronization without the support of stack.

(2) Stateflow supports a hierarchy structure that is combined with a recursive activation-
deactivation mechanism, transitional action, and conditional action very closely, while
timed automata support single state.

To bridge the gaps above and simulate complex execution semantics of Simulink Stateflow, an
array-based data structure for event and some cooperative mechanisms are designed and intro-
duced for Uppaal timed automata.

4.1.1 Event Stack Basis. In Stateflow, the event dispatching and processing mechanism is inter-
ruptible. However, in timed automata, there is only synchronous channel among parallel automata
and no stack at all. The key idea to simulate a Stateflow event stack mechanism is to build a virtual
stack in Uppaal. We use a structured array in Uppaal to build the event virtual stack. The element
of the array is a data structure defined in the listing 1 below, which records all information related
to an event in Stateflow. Each element in the structure node is described as

Listing 1. Definition of the Event Structure.

(1) Event is the variable used to label and distinguish different events in Stateflow. We assign
a unique integer number to this variable for each Stateflow event.

(2) Dest is the variable used to map a Stateflow event to a corresponding Uppaal controller
automata originated from a Stateflow state with decomposition or attached actions. This
kind of state will be translated into four cooperative automata (controller, action, condition,
and common automata).

(3) DestCrossPosition is the variable used to imply the corresponding Uppaal controller au-
tomata state originated from Stateflow cross-boundary transition.

(4) AutomatonType is the variable used to map the event to the four types of corresponding
Uppaal automata.

(5) Valid is the variable used to denote whether this event is valid or not at present. If the
event is on the top of the stack and is invalid, then the event will be deleted by the extra
daemon automata, which is responsible for deleting the invalid event on the top of the
stack and dispatching the System Event when the stack is empty.

The virtual stack is the basic element to simulate Stateflow semantics. It is initialized as empty in
the translated Uppaal timed automata and is dynamically pushed and popped during runtime sim-
ulation. When Stateflow generates an event within a transition or a state operation, the translated
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Uppaal timed automata will take a corresponding transition with an attached action to dispatch
and push an Event element into the stack dynamically. Each transition starting from an active state
of controller automata will check whether the Dest of the top element of event stack equals to the
label of automata or not. If yes, then the transition will be triggered, and the Event element will
also be popped corresponding to the end of a simulation cycle of Stateflow. The procedure above
is mainly accomplished through five encoded functions DispatchEvent(), PushEvent(), PopEvent(),
EventSentToMe(), and StackTopEvent().

Listing 2. Dispatch an event.

Listing 3. Push an event.

Listing 4. Pop an event.

Listing 5. Return an event.

Listing 6. Estimate the event sent to itself or not.

Daemon automata have two duties. The first is to delete invalid event on the top of the virtual
stack, and the second is to dispatch System Event to keep the automata running when the virtual
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stack is empty. System Event is reserved in Stateflow that refers to the default event generated
by Simulink to drive the suspended model periodically. To delete an invalid event, daemon au-
tomata needs a self-cycle transition with attached action to continuously check whether the value
Event.Valid of the element of the top stack is false or not. If yes, then Stack[Top] will be deleted
through function PopEvent(), as encoded in function DeleteInvalidEvent(). To generate a System
Event, daemon automata needs a self-cycle transition with attached action to continuously check
the whether the stack is empty or not. If yes, then a predefined event element will be pushed onto
the top of the empty stack, as presented in the function GenerateSystemEvent().

Listing 7. Delete an invalid event.

Listing 8. Generate a system event.

Based on the structured virtual stack, we translate Stateflow into Uppaal timed automata au-
tomatically. As noted, there are six most frequently used elements in Stateflow, where the event
and action elements are attached on state, and the transition, junction, and timer element can be
scanned through transition. Hence, we demonstrate the transition rules for state and transition,
with other elements embedded into them.

4.1.2 State Transformation Rule. For a regular simple state without decomposition or attached
actions, the transformation is straightforward. We just directly map simple Stateflow state s f to
Uppaal timed automata state su . But for those complex Stateflow state with decomposition or
attached actions, we need to translate it to four cooperative parallel automata:

(1) Controller automata is used to simulate the event processing mechanism within this com-
plex Stateflow state. It controls how to dispatch the hierarchical active and deactive-related
event by initializing, popping, and pushing elements of the virtual stack.

(2) Action automata is responsible for handling the three kinds of attached actions (entry,
during, exit). For the composite state without attached actions, this automata will not be
generated.

(3) Condition automata is used to execute the conditional action, handle the junction, test
the guard and priority on each transition contained in this composite state and store the
Boolean results.

(4) Common automata is used to execute the transitional action and read the guard-related
array initialized by condition automata to execute the satisfied transition contained in this
composite state.
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Controller automata: For the activation of state s f in Stateflow, it should estimate whether its
upper-level state sl f is activated or not. If not, then sl f should be activated first, and this is espe-
cially true for cross-boundary transitions. To simulate this semantics, the corresponding controller

automata should push an activation event corresponding to state s f itself onto the stack first and
recursively push the activation event associated with the automata originated from sl f onto the
stack, until the top composite state arrives. The deactivation of Stateflow state, is a reversal of acti-
vation procedure. In controller automata, these two tasks are translated to two self-cycle transitions
attached with actions StateActivationLogic() and StateDeactivationLogic().

Let us look at StateDeactivationLogic() presented in Algorithm 1 in detail, as there are two sub-
functions cooperating to accomplish the task. The first sub-function DispatchDeactivationToChild()
is used to deactivate refined sub-states contained in current state. If the current state is refined in
parallel sub-states, then the deactivation event for sub-state with the lowest priority is pushed into
stack through DispatchEvent() function first, and then the parallel sub-states with higher priori-
ties are handled sequentially. If the current state is refined in serially connected sub-states, then
the deactivation event for current active sub-state is pushed into the stack directly. The second

ALGORITHM 1: Composite State deactivation logic

Void StateDeactivationLogic(int state_sf )

{

DispatchDeactivationToChild(state_sf );

HandleDeactivation(state_sf );

}

void DispatchDeactivationToChild(int state_sf )

{

SubStates[ ]← Substate(sf );

if (SubStates[ ] are active) then

if (SubStates[ ] are in parallel) then

while (i ≤ length.PrioritySort(SubStates[ ])) do

DispatchDeactivationToChild(SubStates[i]);

i++;

end while

else

DispatchEvent(Event DeactivationEvent);

end if

end if

}

void HandleDeactivation(int state_sf )

{

if (sf has attached exit action) then

Event DeactivationEvent.AutomatonType = action;

DispatchEvent(Event DeactivationEvent).

end if

if (sf is a sub-state) then

int UpperLevelDest = AutomatonID(Parstate(sf ));
Event DeactivationEvent.Dest = UpperLevelDest;

DispatchEvent(Event DeactivationEvent);

end if

}
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sub-function HandleDeactivation() is used to handle the logic of action attached on the current
state. If there is exit action attached on the state, then it will dispatch an event to the correspond-
ing action automata. If the current state is also a sub-state, then it will also generate an event to
notify its upper-level state that current state has been exited. The algorithm StateActivationLogic()
for activation can be encoded and interpreted in the same way, as presented in Algorithm 2.

ALGORITHM 2: Composite State activation logic

Void StateDeactivationLogic(int state_sf )

{

DispatchActivationToParent(state_sf );

HandleActivation(state_sf );

}

void DispatchActivationToParent(int state_sf )

{

ParStates← Parstate(sf );

if (PaStates is deactive) then

DispatchEvent(Event ActivationEvent);

end if

}

void HandleActivation(int state_sf )

{

if (sf has attached entry action) then

Event ActivationEvent.AutomatonType = action;

DispatchEvent(Event ActivationEvent).

end if

if (sf is a sub-state) then

int UpperLevelDest = AutomatonID(Parstate(sf ));
Event ActivationEvent.Dest = UpperLevelDest;

DispatchEvent(Event ActivationEvent);

end if

}

Action automata: For detail execution of entry, during, and exit action attached on Stateflow
state, it will be captured by the translated action automata with three self-cycle transitions. After
the execution of controller automata on the logic of state active or deactivate, action automata will
continually read the stack top event for the test of the guard. The guard on the three transitions are
StackTop().Event == ActivationEvent, StackTop().Event == DuringEvent, and StackTop().Event
== DeactivationEvent. Then, the transition with satisfied guard will take, and correspond-
ing action statements in Stateflow are translated to action statements attached on the three
transitions.

An example for the translated controller automata and action automata for a composite state A
is presented in Figure 4. For condition automata and common automata, they are mainly used for
Stateflow transitions contained in composite state and will be described in the following paragraph.

4.1.3 Transition Transformation Rule. Within Stateflow, each transition is attached with four
characterizations: event, condition, conditional action, and transitional action. We incorporate them
into the condition and common automata of the high-level composite state that contains this tran-
sition as below:
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Fig. 4. The controller and action automata for a composite state transformation, capturing activation, and
deactivation.

(1) event is transformed into a unique integer as described in the event stack transformation,
(2) condition is transformed into the guard of transition in the corresponding condition au-

tomata,
(3) conditional action is transformed into the action of transition in the corresponding condi-

tion automata,
(4) transitional action is transformed into the action of transition in the corresponding com-

mon automata.

When there are multiple transitions starting from a Stateflow state, we should maintain the
determinism execution sequence of Stateflow in timed automata. First, we initialize an int array
PathSelect[ ] to store the priority of transition, where the array index represents the depth of source
state or junction node of transition. As presented in Figure 5, the depth of state or junction is
defined as the minimum transition number to a pre-state. Besides, a Boolean array PathGuard[ ]
is initialized to store the condition test result of every transition, where the array index is the id of
Stateflow transition.
Condition automata: For a Stateflow transition t

f
1 : s

f
1 → s

f
2 with conditional action a

f
c and con-

dition дf , we build condition automata as below. An intermediate state su
i is added between the

corresponding timed automata state su
1 and su

2 , based on which three automata transitions are de-
fined, tu

1 : su
1 → su

i , tu
2 : su

i → su
2 , and tu

3 : su
i → su

1 . The guard on transition tu
1 is PathSelect[i] ==

Priority, which ensures that the transition is executed by its priority order. The guard on transition

tu
2 is the condition дf from Stateflow transition t

f
1 . The action on transition tu

2 is from conditional

action a
f
c of the Stateflow transition t

f
1 , and an additional assignment of the Boolean array element

PathJudge[i] with value true. In this way, conditional action can be executed immediately whether
there is a legal transition path between two Stateflow states or not. Transition tu

3 is used to roll back
to the source state for further test of transitions with lower property, and PathGuard[i] is set as

false to show that this transition could not be taken in common automata. Also, if s
f
2 is a Stateflow

junction node, then a transition is added tu
4 : su

2 → su
1 for roll back of non-complete path. This roll

back transition is controlled by the guard pathSelect[i] == n, where i is the depth of the junction
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Fig. 5. The common and condition automata for a composite state transformation, capturing internal
transition.

Fig. 6. Time transformation integrated in the condition automata.

node and n is the number of outgoing transitions from the junction, and each negative test of the
guard on outgoing transition will increase the value of pathSelect[i] by 1.

Common automata: For a Stateflow transition t
f
1 : s

f
1 → s

f
2 , we build common automata to cap-

ture its transitional action a
f
t , based on the array PathGuard[ ] initialized in condition automata.

Stateflow transition t
f
1 is directly mapped to an automata transition tu

1 : su
1 → su

2 . The guard and
action on automata transition tu

1 are from the expression PathGuard[ ] == true and transitional

action a
f
t , respectively. It is almost the same as the graphical structure of Stateflow model, with

abbreviated guard and transitional action. An example for the translated common automata and
condition automata of the composite state A is presented in Figure 5.

4.1.4 Timer Transformation Rule. Within the Stateflow model, time operation is based on event
and is usually used as a time-related condition on transition. As described, it is characterized as
[TmOp(Num, Event)]. We count the appearance times (Num) of event (Event). The value is increased
by one and stored using an int array Times[ ], when an event is dispatched. An example is pre-
sented in Figure 6, and translation rules for the four types of time operations are below. Then, each
translated guard is attached on the corresponding transition contained in condition automata,

after(Num,Event ) → Times[Event] >= Num

before(Num,Event ) → Times[Event] <= Num

at (Num,Event ) → Times[Event] == Num

every (Num,Event ) → Times[Event]%Num == 0.

Tool Implementation: Based on above transition rules, we implement a tool for automatically
translation from Stateflow to Uppaal timed automata. The tool STU consists of a parser, transla-
tor, and storer and is implemented in 14,590 lines of java code with two supporting libraries (JDOM
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Fig. 7. Hardware runtime verification customisation on Software.

used for read and write XML file and Antlr is used for abstract syntax tree construction and up-
date). The parser extracts Stateflow model from Simulink project file into memory. The translator
transfers the Stateflow model and reconstructs the abstract syntax tree in memory according to
transition rules. The storer outputs the updated abstract syntax tree to Uppaal model file. The three
parts are seamlessly integrated in STU to support the formal analysis of the Stateflow model based
on Uppaal and can be downloaded from Yu (2017).

4.2 Runtime Verification of System

The key technical ingredient in runtime verification is to specify dynamic runtime environment-
related properties that could not be easily described based on the abstract Stateflow model and
choose proper runtime monitoring tools according to adopted programming language. Over the
past decade, tremendous effort has been invested in developing program runtime verification sys-
tems (Chen and Roşu 2005). Most of these works can be regarded as an extension of AspectJ
(Kiczales et al. 2001). Some exceptions are ARACHNE (Douence et al. 2006) and RMOR (Havelund
2008). ARACHE performs runtime weaving into the binary code of C programs with a limited form
of regular expressions, while RMOR monitors the execution of C programs against state machines
using aspect-oriented pointcut language to connect events to code fragments. For hardware run-
time verification, the property specification is usually translated into a hardware description such
as VHDL and Verilog, which is then synthesized and loaded into reconfigurable blocks of the FPGA
(Pellizzoni et al. 2008).

Within Stateflow-based MDD, we can generate VHDL and C code from the verified Stateflow
model with the code generator of Simulink. Those two languages are widely used in industrial
system design. For the generated C code, we can apply RMOR directly. For the generated VHDL
code, we can also customize tools for hardware runtime verification. But, the separation of hard-
ware monitor and software monitor may increase the complexity of proposed approach and bring
challenges to verify properties related with their interactions.

Based on the complexity reduction idea presented in our previous work (Sha 2001) and the
observation that VHDL has well-defined interface of input and output data ports, we customize
a data-centered runtime verification technique into software monitor for runtime verification of
VHDL. In Jiang et al. (2016a), we have designed data-centered domain description language DRTV
and translated the data-centered model to property monitors, based on which the main customiza-
tion is presented in Figure 7. From the data description part of DRTV, which is easy to be derived
from the VHDL interface, we derive the additional C program to read the data value of pin bounded
to the interface of VHDL. From the property description part of DRTV, which is defined on events
based on values of data, we derive the event definition and state machine property definition in
the format of RMOR. Then, those specifications and accompanied C program are input to RMOR
to generate the software monitor and instrumented C program. In this way, we make use of the
monitor running on the software processor to verify the behavior of hardware.
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Fig. 8. Manual model for validation testing.

To initiate the runtime verification, we analyze the safety and liveness properties used in pre-
vious Uppaal verification to infer part of the specifications here. Furthermore, for system from
real-world industrial domains, the cyber components often operate on physical execution plat-
forms in dynamic environments. The assumptions and uncertainties about the physical-related
operation environment are difficult to address in model-level verification but will also lead to crit-
ical failures. For example, the EU Ariane 5 rocket explosion during launch was traced back to the
integration of a reused Ariane 4 software module, which relies on the fact that the speed variable
is physically impossible to overflow in “Ariane 4.”2 They should be captured more actually. We
can use the ptLTL formula of data-centered description language DRTV or FSM property specifi-
cation of RMOR to facilitate the enforcement of such properties on system running in dynamic
environment.

5 EXPERIMENT RESULTS

To evaluate the proposed approach in terms of development faults detection and prevention, we
apply it to some artificial Stateflow-based design examples and a real train controller design case.
We compared the number of design defects and implementation defects detected by the origi-
nal Stateflow-based MDD and the extended approach.3 For the artificial examples, we inject 100
development faults, which are 50 division by zero design defects and 50 deadlock design defects
into the Stateflow models, and the Stateflow Design Verifier only detects 32 defects with 8 false
positives, while Uppaal verification detects 100 defects with no false positives. For the real train
controller design example, six implicit defects in the Stateflow model that cannot be detected in
Design Verifier are detected in Uppaal verification based on the translated timed automata, and
five implementation defects that cannot be supported in Polyspace can be specified and detected
in a runtime verification monitor. Furthermore, real platform-based simulation shows that if those
defects are not revised during the development procedure and remained in the system deployment,
then the system will fail.
Artificial Examples: The first artificial example is the switch_on counter example designed to
count how many times the event switch_on happens. As presented in Figure 8, when the Stateflow
model enters the composite state B, there is a potential error of division by 0 contained in the
transitional action z = x/y. So we may verify the property non-division by zero in Design Verifier,

2http://www.around.com/ariane.html.
3The presented Steteflow models, translated timed automata, and properties specifications could be downloaded in website

(Yu 2017).
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Table 1. Property List

Property Formula Time(second)

P1
E<>Process_Chart_Container_B.SSID49 and Chart_y == 0 and

Chart_x == 3
0.01

and the model passes the verification. But according to manual analysis, the value of y would be
zero after 6s. Design Verifier failed to detect this implicit but general bug contained in the model.

Then, we translate the Stateflow model to timed automata through the developed tool STU. The
translation is accomplished within 0.1s. In the translated timed automata, the integer variable y in
Stateflow is mapped to an integer variable Chart_y, and the junction node in Stateflow is mapped
to a state with the name Process_Chart _Container_B.SSID49. Then, property about error of division
by 0 within this model can be described as in Table 1.

In Table 1, “E <>” is a temporal keyword that means “eventually,” “Process_Chart_Container_
B.SSID49” is an automata state name corresponding to the Stateflow junction node, “Chart_x== 3”
is an automata value test corresponding to the guard “x==3” of Stateflow transition from junction
node to state B2, and “Chart_y == 0” is also automata value test corresponding to the Stateflow
action z = x/y attached on the transition from junction node to state B2. The property consists of a
serial combination of previous predicates and means that y may be set to be 0 when the transition
is enabled, which will cause the error of division by 0. Verification result shows that the property
is satisfied and the error can be triggered. Then, we can define a reverse property using temporal
keyword “A[ ]” to get the counter example to help locate the bug. Hence, we need to return back
to the original Stateflow model to correct the bug by adding an additional condition y! = 0 in
front of the action. From the verification of this property, we can see that Uppaal also checks the
reachability of state, which can be used to detect deadlock of Stateflow model. Furthermore, we
construct another 100 Stateflow models with division by zero defects or deadlock defects, Stateflow
Design Verifier only detects 32 defects with 8 false positives, while Uppaal verification detects 100
defects with no false positives.

For runtime verification, we specify the FSM property in the input format of RMOR, as abstracted
in listing 5. The property specification is based on the generated C code of the Stateflow model.
The three pointcut expressions mean the value for the current state, variable related to guard, and
variable related to action of the potential transition, respectively. If all of them are satisfied, then
an error of division by 0 will be triggered. The property description above is used to generate
executable C monitor, which will also be encoded into the generated code of Stateflow model with
RMOR. Some other temporal properties are also supported, and the overall procedure is similar to
Figure 7.
Real-time Train Controller: We apply the proposed approach to a real industrial application
of Stateflow-based MDD of a train communication control system. According to IEC Standard
61375 (Schifers and Hans 2000), the control system consists of many multifunction vehicle bus
(MVB) controllers that interconnect devices within a vehicle. The MVB master controller broad-
casts a master frame, which carries an identifier of process data frame for the rest of MVB slave
controllers. At the end of a predefined macro period, the current MVB master controller will give
up control ability, and an MVB slave controller will be rotated as the new master to control mes-
sage communications. Detailed functions of the MVBC are mainly based on the real-time protocol
(RTP), which defines the rules (master-slave communication principle, data frame format, and tim-
ing requirements, etc.) for Process Data and Message Data transmission. The MVBC communication
function model is an abstract representation of these typical behavior rules of MVBCs, which are
well defined in IEC-61375-1.
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Fig. 9. System architecture model of the MVBC, where communication primitives are on the arrow.

As presented in Figure 9, the abstract system architecture model contains the User
Application, MVBC State Controller, and Physical Link Bus. The MVBC State Controller
mainly contains three components: Master Transfer, Message Sender, and Message Receiver.
The components Message Sender and Message Receiver are responsible for transmitting the
message from a producer to a consumer and provide the flow control and error recovery from end
to end through a sliding window. The transmission of message is divided into three phases with
related communication primitives: connection establishment (Connect Req, Connect Conf, etc.), ac-
knowledged data transmission (Data, Ack, Rcv Data, etc.), and disconnection (DisConnect Req, Dis-
Connect Conf, etc.). The component Master Transfer selects a master MVBC from one of the
several MVBCs with bus administrator ability at the end of a macro period. These three compo-
nents embody the core function of an MVBC. The information of the MVBC, i.e., device address and
master frame sequence, is initialized during deployment. Detailed description about the abstracted
model can be referred to IEC-61375-1.

Traditionally, the most widely used MVB controller, D113, was developed by implementing the
underlying C and VHDL codes manually, according to the discussion with the engineers from Du-
agon company. Recently, China CNR corporation and Tsinghua University cooperated to develop
their MVB controller based on our proposed approach, and the result controller is named TiMVB.
First, we build a Stateflow model strictly according to the description of IEC Standard 61375. The
overall structure of the model is presented in Figure 9, and we got permission to make the module
master rotation and part of memory traffic control public. Given master rotation as an example,
the master transfer logic described in page 260 and Fig. 105 of IEC 61375 are modeled as Stateflow
model, the main logic are presented in Figure 10. After preliminary Stateflow validation on two
MVB controller instances, we translate the main logic and some accompanied Stateflow models
into 32 corresponding parallel timed automata within 0.3s and verify some properties described in
Table 3. Those properties are derived from real potential hazards of system failure, and details are
described in Appendix A. For example, in the MVB master and slave rotation process, there may
be inconsistency such that two masters appear at the same time. In the communication process,
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Fig. 10. Model for the master transfer logic, this model is for mvb current standby mvb controller, and the
parallel stateflow model for current master mvb controller is the same but initialized in “Regular_Master”
state. The state “Fine_Next” is used to pass the control from current master to standby master.

Table 2. Property List

Property Formula Time (seconds)

P1

A[ ] Process_Chart_OneMVB1(2)_LOGIC
.Chart_OneMVB1_LOGIC_Rrgular_Master

and
Process_Chart_OneMVB2(1)_LOGIC

.Chart_OneMVB2_LOGIC_Standby_Master

32.93

P2

A[ ] not (Process_Chart_OneMVB1_LOGIC
.Chart_OneMVB1_LOGIC_Rrgular_Master)

and
Process_Chart_OneMVB2_LOGIC

.Chart_OneMVB2_LOGIC_Rrgular_Master

29.34

P3

A[ ] not (Process_Chart_OneMVB1_LOGIC
.Chart_OneMVB1_LOGIC_Standby_Master)

and
Process_Chart_OneMVB2_LOGIC

.Chart_OneMVB2_LOGIC_Standby_Master

33.02

there may be inconsistencies such that the frame sequences are out of order or not satisfied with
time requirements.

The first property is violated during verification, which means that there exists a path that
two MVB controllers may simultaneously reach “Regular_Master” state or simultaneously reach
“Standby_Master” state. The first situation will lead to master collision and the second will lead
to no master throughout train communication network. Then, we design the second and third
properties to differentiate the counter example of the two situations, respectively.
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Through manual analysis of counter examples demonstrated in Uppaal, we trace back to State-
flow model. For the counterexample of the first situation, initially, there is one MVB controller
in state “Regular_Master” and the other in state “Standby_Master.” If the “Standby_Master” MVB
controller receives no master frame because of packet loss on bus, then it will trigger a time-
out T_standby_event and go to state “Regular_Master.” While the other MVB controller is still
in state “Regular_Master,” there will be two masters at the same time. For the counterexample of
the second situation, if both MVB controllers are in state “Regular_Master,” they will send master
frame separately, and the master collision event would be triggered. They will transit to the state
“Standby_Master” when they receive the master collision event, and there will be no master within
network.

Furthermore, these two problems can be traced back to the handling logic of timeout event and
master collision event described in Fig. 105 of IEC standard. For the first problem, we propose to
add a handshake before standby master changes to regular master because of the timeout. For
the second problem, when a collision happens, we propose to withdraw the responsibility of MVB
master controller that is the slave in the previous cycle. Those changes are captured in the revision
of Stateflow model, and the translated Uppaal timed automata of the revised Stateflow model passes
verification.

In master and slave frame communication process, there may be inconsistencies such that the
frame sequences are out of order. Part of the master frame generator logic described from page
236 of IEC 61375 are modelled as Stateflow model in Yu (2017). Properties about master and slave
communication process defined on the translated Uppaal timed automata of other parts of State-
flow model are verified, and the violations such as incorrect packet retransmission presented in
our previous work (Jiang et al. 2013a, 2015) are reproduced in this approach. We revise Stateflow
model as well as the backend IEC standard according to analysis results of counter examples. These
bugs have already been proved and would be revised in the new version of IEC standard.

Following the implementation style of D113, that data frame processing logic and process data
communication logic are implemented in VHDL, and message data communication logic and mas-
ter transfer logic are implemented in C. We generate C code and VHDL code from the indirectly
verified Stateflow model. Details about the code generation procedure are described in Appendix B.
Before synthesizing those codes in the FPGA and ARM processor directly, we encode some light-
weight runtime monitors into the generated code first. As described in Section 4.2, we use a data-
centered software monitor to verify some dynamic environment-related behaviors that are not
easy verify in model level. As described in IEC standard, the suggested time constraint on an MVB
slave controller between the finish of a master frame receiving and the start of a slave frame re-
sponding should be less than 4μs, and the time constraint on an MVB master controller between
the finish of a master frame sending and the start of a response slave frame receiving should be
less than 42.7μs. Those two properties are not easy to capture in model level, because it is not easy
to model dynamic transmission delay of data on MVB bus in Stateflow, even with a preliminary
channel model.

Those constraints are described with data centered runtime verification property below. Vari-
ables are related to interfaces of VHDL code, which are configured to pins of the hardware platform.
Those variables will be continuously loaded by accompanied C functions. Then, the property and
accompanied C functions are transformed and input to RMOR to get the instrumented code. At
last, generated VHDL codes, C codes, and monitor codes are synthesized to system platform with
eCos for final testing, as presented in Figure 11 and 12.

Unfortunately, the runtime monitor reports an error because of TimeoutReply event. The time is
6.4μs, which is greater than 4μs. We solve the problem by changing the time-consuming GPIO op-
eration of notifying the arrival of the master frame to the direct hardware interrupt and change the
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Fig. 11. Real system platform simulation between D113 controller and TiMVB controller. The left is the
implemented TiMVB, and the right is D113.

Listing 9. Runtime Monitoring for Time Interval Between Master and Slave Frames.

arbitration mechanism for reading access of register pool for slave master data. So the slave MVB
controller can response more quickly and the time is about 3.4μs for the revised one, as in Figure 12.
If we do not revise this implementation defects and this implementation fault is passed through
the deployment stage, after 1,000 micro cycles, then the accumulated time deviations would lead
to crash of the data communication service. In summary, six implicit defects in Stateflow model
that cannot be detected in Design Verifier are detected in Uppaal verification based on the trans-
lated timed automata, and five implementation defects that cannot be supported in Polyspace can
be specified and detected in runtime verification monitor. The implemented TiMVB based on the
proposed approach is now deployed in real trains of China and Argentina.
Scalability Analysis: With the artificial examples and the real system design, the main proce-
dures of our approach have been demonstrated including the model transformation, the model
verification, and code level runtime monitor. During the model transformation, the two points
of importance are the parser and translator, both with the complexity O(N), where N is the sum
number of state, event, and junction node contained in the Stateflow model. During the model
verification, the complexity depends on the verification algorithm applied to the timed automata.
In Uppaal, the overall time complexity for model checking a property formula ϕ is linear in |ϕ |
and polynomial in |N ′ |. The size of |ϕ | equals the number of logical connectives and temporal
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Fig. 12. We use oscilloscope to test the result that we get from the monitor. The left is the system for the
GPIO operation that is 6.4μs, and the right for the hardware interrupt and higher access priority one which
is 3.4μs.

operators in the formulas plus the sum of the sizes of the temporal operators, and |N ′ | equals the
number of states contained in the timed automata. For the lightweight code level runtime monitor,
the verification complexity is linear to the size ptLTL formula |ϕ ′ |, and RMOR will generate the
corresponding monitor code automatically, and the generation complexity is also linear. Based on
the complexity analysis, we can draw the conclusion that the proposed approach can be applied
to the analysis of complicated Stateflow model and design of real systems, detect and prevent
more development faults with more rigorous verification, and improve the dependability of the
cyber-physical systems.

6 LESSONS WE LEARNED

(a) System may still fail even when they pass the validation of Design Verifier and

Polyspace, and more comprehensive verification is needed to ensure the dependability: Dur-
ing the procedure of Stateflow-based MDD, even when the Stateflow model and the generated code
pass the validation of Simulink Design Verifier and Polyspace, respectively, some complex system
products may still fail because of some implicit bugs contained in the model and the generated
code. Detection of those implicit bugs related with hardware code and temporal properties are not
well supported in current version of Design Verifier and Polyspace, and the false-positive rate of
deadlock and division by 0 is very high in Design Verifier. During the validation of MVB Stateflow
model, five of nine reported deadlocks are not real deadlocks. Enhanced verification is needed.

Another interesting point within this lesson is that even if the model and generated code pass
the proposed verification in the lab and processing place, the final system product may still fail.
This is often in industrial systems. One important reason is that the unexpected dynamic runtime
environment of industrial applications effects the hardware platform or the behavior of code. For
example, during the engineering development practice of the MVB system, the initial version of
TiMVB works well in the lab and processing lab. When deployed on a railway in Beijing for a final
no-load test, it fails at night and early morning but works well in daytime. We found that the system
failure is because, during the winter of Beijing, the temperature of early morning and night is low,
and it affects the synthesized hardware, making the delays longer and influencing the function
correctness of the generated hardware code. We solve the problem by change the commercial chip
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to industrial chip, which is more immune to temperature effects. Those kind of easy but easy to
ignore properties and assumptions related with environment and physical platform need to be
captured during the procedure of MDD.
(b) Easy to use solutions are needed to facilitate developers to use formal verification: Ver-
ification is relatively new to MDD engineers, and we need easy and low-complexity solutions
to convince and facilitate developers to believe and use verification results. Currently, it is not
reasonable for developers to pay much extra efforts and to be an expert for complex verification
techniques, we need to reduce their work by automatic translation of model and low complex cus-
tomization. For example, during the customization of the runtime verifier, we plan to use separate
software and hardware monitor directly, but the developers from CNR thought that heterogenous
monitors will bring challenges for them to handle and increase the risk brought by new tech-
niques. Hence, we reduce the efforts by a data-centered monitor for both hardware and software.
Also, the developers suggest that it would be better for us to provide some templates to translate
the property described for the Design Verifier to the property described for Uppaal and RMOR in
our future work, which will increase their willingness and facilitate their practice of our approach
in their future developments.
(c) Actionable verification result is needed to convince developers to believe and use verifi-

cation results: New and improved techniques for explaining the verification results are needed
to make verification results more actionable. The problem of a failing verified property is to figure
out which parts of the model and code were responsible for its failure. Although Uppaal will pro-
duce some counter example and the trace leading to the violation, the developer might still have
to retrace some of the steps in the original Stateflow model before being able to identify the cause.
We have provided mapping dictionary to help retrace. Automatical trace back tools from counter
example of Uppaal timed automata and RMOR to Stateflow model are requested to help developers
to debug more easily later.

7 CONCLUSION AND DISCUSSION

In this article, we present a novel approach to address the verification challenge of Stateflow-
based MDD. By translating Stateflow model to timed automata, Uppaal can be incorporated to
assist Simulink Design Verifier for verifying more safety and liveness properties. With customiz-
ing runtime monitors to generate codes of Stateflow model, RMOR can be incorporated to assist
Simulink Polyspace for verification of more concrete properties, even related with physical plat-
form. In this way, properties are not only satisfied at the model level but also consistently verified
at the implementation level with dynamic physical execution environment in consideration.
Discussion and Ongoing Work: Right now, our approach covers all semantic examples in State-
flow user guide (MathWorks 2017c) except for examples with encoded Matlab function. We plan
to capture the translation of function in next step. Translated timed automata are about 6 times
larger than the original Stateflow model, in terms of state and transition numbers. This is mainly
caused by complex event stack of Stateflow and hieratical, crossover, and interruptible execution
logic. We plan to optimize our translating strategy to get more compassed timed automata and add
some position information to make the translated timed automata well displayed in Uppaal. Au-
tomatical trace back tools from the counterexample of Uppaal timed automata to Stateflow model
will be investigated. Besides, because execution semantics of Stateflow is described in informal
natural languages based on examples, it is impossible to formally prove the equivalence and cor-
rectness of the transformation. We acquire correctness by carefully comparing simulation results
of the translated model, including the value and state sequence step by step, in the same way as in
previous works. Furthermore, we have also checked with engineers from MathWorks to validate
our translation.
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As for runtime verification, we make use of existing tools and previous data-centered runtime
verification techniques and customize them onto the automatically generated codes of the vali-
dated model directly. Currently, runtime verified properties need to be written manually, which
is sometimes time-consuming, because properties are related with underlying codes. We plan to
study the relationship and mapping rules between the Stateflow model and generated codes and
try to automatically generate and infer the specification of runtime verification properties, from
those verified at the model level.

APPENDICES

A REQUIREMENTS FORMALIZATION

The MVBC requirements are mainly derived from the descriptions of the MVBC conformance
testing standard IEC-61375-2, accompanied with some hazard analysis in the real use of MVBC.
For example, there are two requirements described in natural language as below:

(1) Message Transmission: During the acknowledged data transfer stage, when some pack-
ets are lost in the physical link layer, they should be retransmitted.

(2) Master Transfer: During the master transfer procedure, there is one and only one master
MVBC contained in the train communication network.

The first requirement is related to the correctness of the acknowledged data transfer stage, where
the producer sends the individual data packet of the message to the consumer. The consumer side
may bundle acknowledgments. For example, the consumer may acknowledge several packets at
the same time by acknowledging the packet with the highest sequence number only. When packets
fail to be acknowledged, the producer shall retransmit them. Besides, the consumer may indicate
to the producer that it receives an out of sequence packet. In this case, the consumer shall send
a Negative Acknowledgment packet, indicating from which packet on it requires retransmission.
For the second requirement, it is originated from the fact that the mastership can be shared by
two or more MVBCs with administrator ability, which each exercises mastership for the duration
of a turn. Also in case of failure of a master MVBC, mastership should be transferred to another
MVBC. But it is not allowed that two MVBCs act as the master in the same time.

In the original development process, the requirements are tested through simulation as defined
in the standard IEC-61375-2. Although the general methodology and procedures are well specified
to test that the implemented MVBC is confirmed to the function described in IEC-61375-1, the
result is highly dependent on the input patterns of the test cases, where the coverage of some
extreme conditions may be ignored and hard to be enumerated due the limited number of input
patterns. While in enhenced dependability development approach, we try to ensure that the MVBC
implementation satisfies the requirements with formal verification, which is more rigorously than
simulation-based testing.

A.1 Formalization of Model Verifiable Requirement

These requirements that are related to general functions of control logic and independent of plat-
form are categorized as model verifiable requirements. We formalize the requirements as timed
computation tree logic formulas defined on the formal model, and verify them on the translated
formal timed automata. Let us take the two requirements described in the natural language above
as an example. The safety hazards of the first requirement happen during the data acknowledge-
ment process and the data retransmission process. The safety hazard of the second requirement
happens during the MVBC master rotation process.
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Table 3. Property List

Property Formula Stage
P1 A[ ](RECEIVER.SEND_NK→(NK==true)) Transmission
P2 A[ ]((NK==true)→(NK_number==next_send) Transmission
P3 A[ ](RECEIVER.SEND_AK→ (AK==true)) Transmission
P4 A[ ]((AK==true)→(AK_number==next_send)) Transmission

P5

A[ ] Process_Chart_OneMVB1(2)_LOGIC
.Chart_OneMVB1_LOGIC_Rrgular_Master

and
Process_Chart_OneMVB2(1)_LOGIC

.Chart_OneMVB2_LOGIC_Standby_Master

Transfer

P6

A[ ] not (Process_Chart_OneMVB1_LOGIC
.Chart_OneMVB1_LOGIC_Rrgular_Master)

and
Process_Chart_OneMVB2_LOGIC

.Chart_OneMVB2_LOGIC_Rrgular_Master

Transfer

P7

A[ ] not (Process_Chart_OneMVB1_LOGIC
.Chart_OneMVB1_LOGIC_Standby_Master)

and
Process_Chart_OneMVB2_LOGIC

.Chart_OneMVB2_LOGIC_Standby_Master

Transfer

For the retransmission process, we formalize the requirement as two properties based on
the timed automata. When the SENDER automaton receives the rcv_NKi? signal, it will decide
whether the sequence i lies in the legal interval or not. The decision logic is implemented on
the guard of transition as (expected < NK_number ≤ send_not_yet). The value of this decision
expression is assigned to a variable NK . At the same time, when the RECEIVER automaton sends
a legal send_NKi! signal and switches to the SEND_NK state, the SENDER automata should
decide the sequence number i to be true with Boolean evaluation (NK == true ) and be able to
deliver the retransmission request. This property is formalized as P1 in Table 1. Another property
for the retransmission process is about rolling back the window of the SENDER automata in the
retransmission process. After receiving the rcv_NKi? signal, the SENDER automaton will roll
back the sending sliding window and retransmit the previous data packets from the sequence
number i, Which means that the next_send data packet of the SENDER module must equal to the
value of the NK_number. This property is formalized as P2 in Table 1.

In the same way, we can formalize two properties for the data acknowledgment process of the
first requirement and three properties for the MVBC master rotation process of the second require-
ment. All these requirements and their formalization are presented in Table 3. For example, the
property P6 means that in the MVB master and slave rotation process, there may be inconsistency
such that two masters appear at the same time.

A.2 Formalization of Implementation Verifiable Requirement

These requirements related with dynamic runtime situation and uncertain environment are cat-
egorized as implementation verifiable requirements. For these safety requirements, they are not
easy to be defined in the abstract timed automata level, and we use runtime verification technique
and formalize the requirements based on the detail implementation code to verify the correctness.
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Let us look at the two requirements below, which are described in the natural language in the
original standard. These two requirements are not easy to be captured in model level, because it is
not easy to model dynamic transmission delay of data on MVB bus and dynamic processing delay
of hardware platform, even with a preliminary channel model and clock variable in Uppaal timed
automata.

(1) Message Transmission(P8): The suggested time constraint on a slave MVBC between
the finish of a master frame receiving and the start of a slave frame responding should be
less than 4us.

(2) Message Transmission(P9): The suggested time constraint on a master MVBC between
the finish of a master frame sending and the start of a response slave frame receiving
should be less than 42.7us.

We formalize these two requirements as the runtime verification property presented in the
Listing 1. We define some events based on the variables of the generated C code of Times, which
are configured to I/O pins of the real hardware platform and will be continuously loaded by ac-
companied C functions. Then, the property and the accompanied C functions are transformed and
input to RMOR to get the instrumented code, which can be made as an integral part of the target
generated system, verifying and guiding its execution within the dynamic environment.

Listing 10. Runtime Property Definition for the Time Interval Between the Master and Slave Frames During
the Message Transmission Process.

In this way, we can formally verify not only the requirements related with general function of
control logic but also the requirements related to the dynamic physical part. Note that, the Up-
paal model verification and RMOR runtime verification cooperate together to acquire a higher
dependability confidence for safety critical systems. More specifically, we formalize 92 critical
model verifiable requirements and 29 critical implementation verifiable requirements. The main
criteria to distinguish between the two types of requirements is to find out whether the timed
automata model has sufficient information for describing the requirement in TLTL format or the
integrated code has sufficient information for describing the requirement in RMOR property for-
mat. The timed automata usually rely on the different level of abstraction(state and variables) and
is not detailed enough to specify some requirements such as time delay restrictions on the physical
bus. Which means that when all elements in the TLTL formula of the text-based requirements are
described in the timed automata, it is the first type of requirement, otherwise, it is the second type
of requirement. Besides, there are also several requirements that cannot be formalized such as the
requirement of the industrial grade type of the MVBC hardware chip. These requirements need to
be manually checked or formalized with additional information from additional sensors.
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B CODE SYNTHESIS AND INTEGRATION

For the code synthesis, automatical code generation tools can be applied to reduce the hard work
efforts of manual implementation, which is also more human error prone. For example, the en-
gineers from the industrial sources (the Duagon company, the China CR corporation) report that
their MVBC is developed by directly writing underlying C or VHDL code manually, where there are
still some bugs such as dead logic. Besides, the automatical code generation of Simulink facilitate
the traceability between the model and implementation, which results in better documentations
and easier maintains.

Before applying the code generation algorithm, we need to do some isolations on the model. The
isolation is needed because we construct and initialize the stateflow for two or more MVBCs for
comprehensive verification, and now need the timed automata of a single MVBC for code synthe-
sis. The single MVBC should receive and send packets onto the physical bus for communication
with other MVBCs, and we use the event of Simulink Stateflow to simulate the communication for
the packets of sending and receiving events.

One way for isolation is to build a general environment model, which is ready to receive any
output event from the isolated MVBC and send input event to the isolated MVBC. Then, we can
generate execution code for both MVBC and the general environment, and manually separate the
generated code. Another way for isolation is to do some reverse engineering, where the declar-
tion denoting the packets of sending and receiving events are reversed to the general variable.
For example, the event declaration [rcv_connect_req] can be replaced by a declaration of Boolean
variable rcv_connect_req. At the same time, an evaluation expression rcv_connect_req == true
should be added to the guard segment, and an assignment expression rcv_connect_req := true
should be added to the action segment. We use the second way, because it can be automatically
accomplished by parsing and updating the XML file of the Stateflow model, and the second iso-
lation way is more closed to the real operation scenario where the sending and receiving packets
from the physical bus is asynchronous. Besides, because the generated code is tightly coupled, the
manually separation code of the first way is more error prone.

After that, we also need to add some glue code, which is mainly used for two functionalities, the
interface between the software and hardware platform, and timing implementation of the gen-
erated code on the hardware platform. For interface, we just need to initialize some configure
mapping files, mapping the variable of software to the GPIO of the hardware platform. Accompa-
nied type conversion functions may be needed. For clocks, let sc be a global system clock. For each
timer x in the stateflow, let xreset be an integer variable holding the system time of the last clock
reset. The value of the clock is then (sc − xreset), and a reset can be performed as xreset := sc .

Finally, based on the generated code and the handwriting glue code, we can formalize the imple-
mentation verifiable requirements as presented in Section A. We input the formalized properties
and the integrated code to RMOR to generate the runtime verifier, and the system integration is
instrumented with the verifier for the runtime verification. The integrated verifier keeps verifying
the requirements on the running executable system. To improve the dependability confidence, we
can also formalize some model verifiable requirement into verifier, with the cost of increasing the
storage overhead of the system.
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