
1

Pluto: Exposing Vulnerabilities in Inter-Contract
Scenarios

Fuchen Ma, Zhenyang Xu, Meng Ren, Zijing Yin, Yuanliang Chen, Lei Qiao, Bin Gu∗, Huizhong Li,
Yu Jiang∗ Jiaguang Sun

Abstract—Attacks on smart contracts have caused considerable losses to digital assets. Many techniques based on symbolic execution,
fuzzing, and static analysis are used to detect contract vulnerabilities. Most of the current analyzers only consider vulnerability detection
intra-contract scenarios. However, Ethereum contracts usually interact with others by calling their functions. A bug hidden in a path
that depends on information from external contract calls is defined as an inter-contract vulnerability. Failure to deal with this kind of
bug can result in potential false negatives and false positives. In this work, we propose Pluto, which supports vulnerability detection in
inter-contract scenarios. It first builds an Inter-contract Control Flow Graph (ICFG) to extract semantic information among contract calls.
Afterward, it symbolically explores the ICFG and deduces Inter-Contract Path Constraints (ICPC) to check the reachability of execution
paths more accurately. Finally, Pluto detects whether there is a vulnerability based on some predefined rules. For evaluation, we compare
Pluto with five state-of-the-art tools, including Oyente, Mythril, Securify, ILF, and Clairvoyance on a labeled benchmark and 39,443 real-
world Ethereum smart contracts. The result shows that other tools can only detect 10% of the inter-contract vulnerabilities, while Pluto
can detect 80% of them on the labeled dataset. Beyond that, Pluto has detected 451 confirmed vulnerabilities on real-world contracts,
including 36 vulnerabilities in inter-contract scenarios. Two bugs have been assigned with unique CVE identifiers by the US National
Vulnerability Database (NVD). On average, Pluto costs 16.9 seconds to analyze a contract, which is as fast as the state-of-the-art tools.

Index Terms—Smart Contracts, Ethereum, Inter-Contract Vulnerabilities

F

1 INTRODUCTION

SMART contracts have attracted the attention of many
attackers because they are often associated with money.

In recent years, the vulnerabilities in smart contracts have
caused huge losses [1], [2], [3], [4]. In Ethereum [5], a
contract cannot be modified once it is deployed. So, it is vital
to check whether a smart contract has vulnerabilities before
deployment. To achieve this goal, researchers use techniques
such as symbolic execution [6], [7], fuzzing [8], [9], [10] and
static analysis [11], [12] on smart contract testing.

All these techniques have achieved great success in
finding lots of real vulnerabilities in smart contracts. How-
ever, most of them only consider the detection in intra-
contract scenarios without calling another contract. When
encountering inter-contract calls, they always fail to make a
thorough analysis. Nevertheless, contracts on Ethereum call
functions from another contract. This leads to lots of false
negatives and false positives by existing detection tools.
Different from inter-procedural analysis for traditional pro-
grams, analysis on smart contracts need to deal with more
types of call operations (CALL,CALLCODE,STATICCALL
and DELEGATECALL). Besides, the execution of the caller
contract needs to initialize a new stack in Ethereum. For
these reasons, the techniques used in the traditional inter-
procedural analysis cannot be used directly in smart con-
tracts. Detecting vulnerabilities in inter-contract scenarios
struggles with two significant challenges.

The first challenge arises in collecting semantic informa-
tion from inter-contract scenarios. Critical semantic infor-
mation, such as money flow, is essential for smart contract
vulnerability detection. Money flow means how the tokens
transfer among accounts during the contract execution [13].
However, due to the lack of inter-contract state information
maintenance, traditional tools cannot correctly track the
semantic information under inter-contract scenarios. The
second challenge arises in checking path reachability during

*Bin Gu and Yu Jiang are corresponding authors.

contract calls. The reachability depends on whether certain
variables can be calculated correctly in inter-contract sce-
narios. The parameters of a contract call may depend on
the context of the caller contract. Meanwhile, the results of
the contract call may affect the following execution paths.
There is no proper way to derive the correct scope of these
variables during the transmission among contracts, which
leads to false judgments on path reachability.

To resolve the above challenges, we propose Pluto,
which aims at detecting vulnerabilities under inter-contract
scenarios. First, Pluto constructs an Inter-contract Control
Flow Graph (ICFG) to collect the semantic information from
inter-contract scenarios correctly. An ICFG contains blocks
from the caller contract’s CFG, and the blocks corresponded
with the called function from the callee contract’s CFG.
Then, Pluto explores the ICFG and deduces Inter-Contract
Path Constraints (ICPC) for the call operation. In this way,
Pluto can derive the correct scope of variables during inter-
contract calls and adequately identify whether a path is
reachable by using the SMT solver tool such as Z3 [14].
Finally, Pluto will validate whether a vulnerability exists
according to predefined rules for each reachable path. For
now, Pluto supports the detection of the three types of vul-
nerabilities: integer overflow, timestamp dependency, and
reentrancy. They account for 97.64% of CVEs assigned to
Ethereum smart contracts according to statistics [15].

For evaluation, we compared Pluto with five state-of-
art tools including Oyente [6], Mythril [16], Securify [11],
ILF [10] and Clairvoyance [17]. We evaluate Pluto on three
datasets. The first one contains 150 contracts with 150 man-
ually injected inter-contract vulnerabilities. The second one
is from SolidiFI dataset [18] which consists of 898 injected
intra-contract vulnerabilities. The third one is the dataset
from SmartBugs [19] which includes 39,443 real-world con-
tracts deployed on Ethereum. The result on the first dataset
demonstrates that Pluto can report 80% of the inter-contract
vulnerabilities, while other tools can only report 10% oc-

2

casionally on the labeled benchmark. Meanwhile, on the
second dataset, Pluto is proved to perform better than other
tools on intra-contract vulnerabilities detection as well.
Specifically, Pluto can report 2.33%-70.97% less false posi-
tives and 2.48%-90.08% less false negatives than other tools
on intra-contract bugs detection. The reason for this result is
that Pluto uses a more accurate bug validation strategy than
other tools, we will describe this in detail in Section 4. As
for real-world smart contracts, Pluto has detected 451 valid
vulnerabilities. Among them, 36 vulnerabilities are hidden
in inter-contract scenarios. In terms of time, Pluto takes an
average of 16.9 seconds to analyze a contract, which is 1.1
seconds slower than Oyente and 15.0-214.9 seconds faster
than other tools.

To summarize, our contributions are as follows:

• To detect vulnerabilities in inter-contract scenarios,
we propose the approach of inter-contract call analy-
sis. This approach can simulate the call logic among
contracts and gain a global perspective for contract
semantics.

• We implement and open-source Pluto1, a vulnerabil-
ity detection tool that supports inter-contract scenar-
ios. It constructs an ICFG to track the semantic infor-
mation and deduces ICPC to check path reachability
properly. Pluto uses a vulnerability validator to check
whether the current contract path is vulnerable.

• We apply Pluto on 39,443 real contracts. It has con-
firmed 451 previously unknown vulnerabilities, 36
of which are related to inter-contract scenarios. Two
bugs are assigned with CVE identifiers by US Na-
tional Vulnerability Database(CVE-2020-24837 and
CVE-2020-24838.).

The rest of the paper is organized as follows: Section
2 describes some necessary background. Section 3 intro-
duces an example of vulnerabilities hidden in inter-contract
scenarios and explains the limitations of current tools. In
Section 4, we describe the technical detail of Pluto. We
illustrate how we implement and evaluate Pluto in Section
5. In Section 6, we discuss some limitations of Pluto. The
following section introduces some work related to ours. In
the last section, we make a summary of the paper.

2 BACKGROUND

In this section, we will give a brief introduction to Ethereum
smart contracts execution and inter-contract scenarios.

2.1 Ethereum Contracts Execution
In Ethereum, smart contracts are written in a high-level
language named Solidity. In order to execute the code and
give out the same result in each node, Ethereum develops
a virtual machine called EVM. EVM can translate the byte-
code of the contract into a sequence of opcodes. Users in
Ethereum can commit a transaction that calls a function in a
smart contract. A series of transactions will be packaged to
a miner node and be executed by the EVM. When executing
a transaction, the EVM uses a stack to record the following
opcodes and operands. In order to store data, EVM uses
either memory or storage. Data stored in the memory is
transient, while data in the storage is persistent.

1. https://github.com/PlutoAnalyzer/pluto/tree/main/PlutoTool

To symbolically execute the Ethereum smart contracts,
one needs to imitate the execution model of EVM. To be
specific, one needs to construct a stack used to record the
opcodes and their operands just like EVM does. The differ-
ence is that the elements in the stack may be a symbol rather
than a concrete value. Apart from that, a symbolic execution
tool also needs to define the behavior of each opcode as
same as Ethereum. As for the memory and storage, the tool
also needs to construct a model which acts the same as the
EVM. Then, the tool needs to decide the execution sequence
of the smart contracts. Generally, existing tools execute the
functions in a contact one by one.

For example, to symbolically execute the example con-
tract listed in Fig 2, a tool needs to initialize a stack, a
memory model, and a storage model first. Then, it will
try to call the function ‘invest’ in the example contract at
line 22. All the parameters are passed in with symbols.
After that, the tool will execute each statement and collect
constraints when a branch is encountered. In our example,
the tool will first collect ‘rule == 0xa214bd6...’ as shown
in line 26 in order to execute the following statements.
For each new path, a symbolic execution will try to solve
the constraints along the path to see whether the path is
reachable. For example, to trigger the bug at line 31, the
tool needs to check whether such constraints can be solved:
‘(rule == 0xa214bd6...) AND (rule.getThreshold(target) ==
203000) AND (203000 ¡= investToken)’. Symbolic tools often
use a search algorithm such as Depth First Search to look
for all the possible paths in a contract. When all the paths
are found, an execution will finish.

2.2 Inter-Contract Scenarios in Ethereum

Ethereum is considered as the second large blockchain sys-
tem in the world, right after the Bitcoin system. Ethereum
smart contracts are programs that can be executed by user
accounts in Ethereum. Such an execution process is called
a transaction. Ethereum can be viewed as a state machine:
s := c

t−→ c̄, where each state migration is triggered by a
series of transactions. Ethereum smart contracts are usually
written in a Turing complete language named Solidity. Each
node has a virtual machine named Ethereum Virtual Ma-
chine(EVM) to parse the Solidity code into a sequence of
opcodes and execute the opcodes under a runtime stack.

On Ethereum, calling another contract’s function is com-
mon in a transaction. A contract can call another contract
deployed on Ethereum by referring to its address. This pro-
cess is implemented by four opcodes: ‘CALL’, ‘DELEGATE-
CALL’, ‘CALLCODE’ and ‘STATICCALL’. The differences
among them are shown in Fig. 1.

The ‘CALL’ opcode calls a method in another contract
with the storage of the called contract. Besides, a ‘CALL’
opcode is also used to transfer tokens in Ethereum. An
account in Ethereum can perform transfer operations by
calling send() or transfer() functions. Both of them in-
voke the ‘CALL’ opcode. They are all part of the API in
Solidity language. Both functions are underlying calls to the
‘CALL’ opcode.‘DELEGATECALL’ opcode calls a method
in another contract using the storage of the caller contract.
The execution context will not change under ‘DELEGATE-
CALL’ opcode. That means the called contract can modify
the caller contract’s storage in some cases. For example,
as Fig 1 shows, when contract B calls contract C with
‘DELEGATECALL’, C modifies the variable ‘x’ in contract

3

Address A

Address A

transaction Contract B
x = 0;

CALL Contract C
x = 0; x++

Address A x = 0; x = 1;
msg.sender=B

transaction Contract B
x = 0;

DELEGATECALL Contract C
x = 0; x++

x = 1; x = 0;
msg.sender=A

transaction Contract B
x = 0;

CALLCODE Contract C
x = 0; x++

x = 1; x = 0;
msg.sender=B

Address A

transaction Contract B
x = 0;

STATICCALL Contract C
x = 0; x++

x = 0; x = 1;
msg.sender=B

Before External Call

After External Call

Before External Call

After External Call

Before External Call

After External Call

Before External Call

After External Call

Fig. 1: Four opcodes to call functions in another contract.
The part below the dotted line indicates the results after
the contract call. ‘DELEGATECALL’ regards the caller as
the sender of the transaction. While ‘CALL’ and ‘CALL-
CODE’ set the sender as the last caller. The execution
context of ‘CALL’ is in the callee contract, while the
context of the other two opcodes is in the caller contract.
‘STATICCALL’ behaves equivalently to ‘CALL’ except it
limits any operation that modify the state.

B. However, with ‘CALL’ opcode, C modifies ‘x’ in its own
scope. So, ‘DELEGATECALL’ is considered dangerous and
is not recommended unless the delegated address is trusted.

‘CALLCODE’ is a previous version of ‘DELEGATE-
CALL’ which updates the sender of the transaction at each
call operation. As Fig 1 shows, if B calls contract C with
‘CALL‘ or ‘CALLCODE’, the sender of the transaction is B. If
B calls C with ‘DELEGATECALL’, the sender is A. Ethereum
has deprecated ‘CALLCODE’ in new versions of Solidity
and EVM. The detailed information of these opcodes can be
found in Ethereum yellow paper [20]. The opcode ‘STATIC-
CALL’ behaves equivalently to the opcode ‘CALL’, except it
limits all the operations that change the current state. The
limited opcodes contain: ‘CREATE’,‘SSTORE’, ‘LOG0’ etc.

3 OVERVIEW

We present an example to illustrate the vulnerabilities in
inter-contract scenarios. Then we discuss the limitations of
existing tools and explain why they fail to detect these
vulnerabilities. At last, we demonstrate how Pluto works
on the example.

3.1 Motivating Example
Fig 2 shows two contracts. The first contract, ‘RuleContract’,
defines the threshold calculation rules of investment. The
threshold depends on the target year of investment. As the
function ‘getThreshold’ shows, the threshold of the year
2020 is 50,000, and the threshold of other targets is equal
to 100 multiplied by the target year.

The other contract, ‘InvestContract’, is used to invest
tokens to each target. The contract defines a function named
‘invest’. This function takes in three parameters: an address

1 contract RuleContract{
2 uint private base_threshold = 50000;
3 function getThreshold(uint256 currentTarget)
4 public returns(uint256){
5 require(currentTarget >= 2020 &&

currentTarget <= 2050);
6 if(currentTarget == 2020){
7 // result is 50000;
8 return base_threshold;
9 }

10 else{
11 // the max result is 205000;
12 return currentTarget *100;
13 }
14 }
15 }
16

17 contract InvestContract{
18 uint public total_2030 = 0;
19 uint public cur_invest = 0;
20 // some fixed address for rule contract
21 address fixed_rule = "0xa214bd6"
22 function invest(
23 RuleContract rule ,
24 uint target ,
25 uint investToken) public {
26 assert(rule== fixed_rule);
27 // the max threshold is 205000;
28 uint threshold = rule.getThreshold(target);
29 if(threshold == 203000 && threshold <=

investToken){
30 // overflow occurs;
31 total_2030 += investToken;
32 cur_invest = investToken;
33 }
34 else if(investToken > 300000){
35 // no underflows in this branch;
36 cur_invest = investToken - threshold /

100;
37 }
38 }
39 }

Fig. 2: Two contracts used to raise money for several
targets. The first sets the investment threshold rules. The
second provides a method to invest tokens for each target.

of the contract ‘rule’, an integer representing the investment
target, and an integer storing the number of tokens for
investment. This contract also defines two variables to rep-
resent total tokens on target 2030 and current invest tokens.
As line 36 shows, if the investment amount is more than
300,000, 1% of the threshold value will be deducted as the
handling charge.

Vulnerabilities. Contract ‘InvestContract’ has an overflow
vulnerability at line 31. If a malicious investor inputs a
large value of ‘investToken,’ there will be an overflow in the
add operation. Attackers need at least two transactions to
exploit this vulnerability. Each transaction calls the function
‘invest’ whose inputs contain: 1) a valid address where the
‘RuleContract’ is deployed; 2) 2030 as the invest target;
3) a really large value for ‘investToken’ (input 2256-1 for
example). The attackers can successfully set the variable
‘total 2030’ to a small value though many big investments
have been made.

This overflow bug requires interprocedural analysis be-
cause the bug is hidden under a condition statement which
requests the result of an external call. The condition of the
branch is ‘threshold == 203000 threshold ¡= investToken’.
Though there are no constraints on investToken’s value, the

4

value of the threshold is fetched after the external call. This
blocks the analysis tools from finding this bug unless the
analysis is inter-procedural.

Although the sub operation at line 36 does not check
whether underflow occurs, we will not consider it as a
vulnerability. According to the threshold rules defined in
‘RuleContract’, the value of ‘investToken’ will always be
bigger than the value of ‘threshold’. So no one can make
an attack through this operation.

3.2 Challenges in Inter-Contract Scenarios
We tested the example with several state-of-art works, in-
cluding symbolic execution tools like Oyente [6] and Mythril
[16], fuzzing tools like sFuzz [9] and ILF [10], and static
analysis tools like SmartCheck [21] and Securify [11].

TABLE 1: The results of existing tools on the example. FN
refers to the false negative at line 31 in Fig 2. FP refers to
false positive at line 36. The grey circle indicates such a
problem, while the white one means no such problem.

Tools Oyente Mythril sFuzz ILF SmartCheck Securify
FN
FP

As Table 1 shows, all the tools2 fail to report the true
vulnerability at line 31. Besides, both symbolic execution
tools report the add operation at line 36 as a vulnerability
which is actually a false alarm. Generally, the existing tools
fail in inter-contract scenarios for two reasons: 1) They fail
to collect semantic information from inter-contract logic; 2)
They fail to check the path reachability correctly.

Semantic information from inter-contract logic. The defi-
nition for ‘semantic information’ is the information flowing
between the caller and callee contracts which are needed
for the bug detection process. The semantic information is
quite important for smart contract analysis. For example, the
detection of a timestamp dependency vulnerability needs
the information of the money flow. In this example, the
variable ‘threshold’ is set by the logic from contract ‘Rule-
Contract’. However, existing symbolic execution tools and
static analysis tools construct their analysis only based on
the contract ‘InvestContract’. The semantic information of
‘threshold’ cannot be appropriately fetched.

Currently, existing symbolic execution tools always de-
fine vulnerability detection rules based on semantic infor-
mation from a single contract CFG. In inter-contract scenar-
ios, they always fail to combine semantic information from
caller and callee contracts. Similarly, static analysis tools
such as Securify leverage intermediate representations and
checks the representations against some patterns. However,
the construction of intermediate representation is usually
based on a single contract. In inter-contract scenarios, these
representations are incomplete for semantic analysis.

Path reachability during contract calls. In inter-contract
scenarios, path reachability depends on the value scope of
contract variables in both caller and callee contracts. The
inputs of a function call depend on the calling contract,
while the results of a function call depending on the called
contract. For example, variable ‘threshold’ in our example

2. Though ILF doesn’t support the detection of overflow vulnerabil-
ity, we found it failed to cover both branches in our example.

in Fig 2 represents the result of the function ‘invest’. From
the view of contract ‘InvestContract’, it is hard to know
the constraints of ‘threshold’. Similarly, it is hard to get
the constraints of ‘currentTarget’ only within the scope
of ‘RuleContract’. In order to properly tackle the contract
call scenarios, we need a global perspective to collect the
constraints for inputs and results of calling functions. In
this case, the constraint of variable ‘threshold’ from a global
view is:

Or(threshold = 50000, (202000 ≤ threshold ≤ 205000))

With this information, we can find out that the overflow at
line 31 can really happen with a large value of ‘investToken’,
while the underflow at line 36 can never happen. However,
the existing symbolic execution and fuzzing work struggle
in generating the correct value scope of ‘threshold’.

We use Oyente to illustrate the limitations in symbolic
execution tools. As defined by Ethereum, a CALL opcode
takes 7 elements from the stack. The first element represents
the gas limit for this CALL. The second one sets the address
of the caller. The third one specifies the value of Ether passed
to the CALL. The following four elements represent the
memory offset and size of the input and output, respectively.
The result of the CALL opcode will be stored into the stack
where 1 represents success and 0 represents failure.

Fig. 3: The state of the stack and memory during the
symbolic execution process of Oyente for the example.
Loading call outputs incorrectly misleads the subsequent
symbolic execution process.

As Fig 3 shows, the offset of the call data and the one of
the return data are both ‘0x60’ in our case. This means the in-
puts of the call store are at the same place as the outputs. The
size of the inputs is 36(0x24) bytes, while the size of outputs
is 32(0x20) bytes. The extra 4 bytes are used to store the sig-
nature of the called function. In this case, the signature can
be calculated with keccak256(′getThreshold(uint256)′),
and the result is ‘0x4615d5e9’.

When processing with the ‘CALL’ opcode, Oyente first
pops seven elements from the stack and then pushes back
‘1’ to the stack which indicates that the CALL is successful.
However, when the opcode ‘MLOAD’ tries to load the re-
turn data from memory, it gets ‘0x4615d5e90000...’(56 zeros
are omitted for saving space). The decimal representation
of this number is the ‘3170...8592’(69 digits are omitted for
saving space) in Fig 3. In our case, this huge number has
been assigned to the variable ‘threshold’ at line 25 in Fig
2. Consequently, the first condition of the ‘if’ branch at line
26, which is threshold == 203000 cannot be satisfied and
the ‘else’ branch will be executed. This leads to the false
negative at line 31 and the false positive at line 36 given
by Oyente. In summary, the low-level description of Oyente
aims to explain why symbolic execution tools can report

5

Fig. 4: The workflow of Pluto on the example. Pluto ex-
plores the contracts based on ICFG and generates ICPC for
path reachability checking. Meanwhile an inter-contract
memory is used to store all possible return values in a
key-value format.

the false positive and fail to report the true bug. This is not
specific to this example; the discussion is suitable for Oyente
and Mythril on most inter-contract call scenarios.

In this case, fuzzing tools can hardly generate high qual-
ity seeds to check the path reachability correctly. Let us take
ILF [10] as an example. It deploys all contracts on a private
chain and try to find the correct contract to call. However,
it’s hard to know that the parameter ‘target’ should satisfy
the constraints 2020 ≤ currentTarget ≤ 2050 defined at
line 5 in Fig 2. Though ILF uses a symbolic expert to guide
the fuzzing process, it fails to generate great seeds in inter-
contract scenarios. We used ILF to test the example and
found that ILF only achieves 69.75% instructions coverage
for contract ‘InvestContract’. While, if we delete the precon-
dition of the branch, ILF will cover all the instructions and
detect the bug.

3.3 Pluto on the Example
In order to address the challenges and make up for the lim-
itations mentioned above, we designed and implemented
Pluto. Pluto explores the contracts on an Inter-contract
Control Flow Graph (ICFG), connecting the caller contract
with the called one. Pluto will then deduce Inter-Contract
Path Constraints (ICPC) while exploring to check the path
reachability by deriving the correct constraints for contract
variables. Fig 4 describes the workflow of Pluto on the
example. We will explain each column in the figure to
demonstrate the working principle of Pluto.
Inter-contract Control Flow Graph (ICFG). Pluto combines
the caller contract’s CFG with the called contract’s CFG, and
we name the combined graph ‘Inter-contract Control Flow
Graph’. The details of building an ICFG are described in
Section IV. The first column in Fig 4 shows the ICFG on the
example. Two green blocks in the figure are taken from the

CFG of the caller contract ‘InvestContract’. In the original
CFG, they belong to the same block. In order to execute the
call operation properly, Pluto splits the block and connects
blocks in called contract’s CFG after ‘CALL’ opcode.

The yellow blocks in the figure represent the blocks
in called contract’s CFG. The first block specifies which
function is called. In our case, the called function is ‘get-
Threshold’, which is represented by its signature in the CFG.
The next two yellow blocks represent the execution process
of the called function. Pluto will back up the current contract
state first. Besides, Pluto pushes some necessary variables
into the called contract’s storage and memory. After that,
Pluto will connect those blocks right after the CALL opcode
and execute the called function directly. A RETURN opcode
indicates that the called function has finished. Pluto will
connect the RETURN blocks with the opcode after CALL in
the original contract. With the help of the ICFG, Pluto can
execute contracts with inter-contract calls successfully.
Inter-Contract Path Constraints (ICPC). Though ICFG can
help Pluto walk through the called functions, it cannot
correctly judge path reachability. In order to get a proper
constraint for the inputs and outputs of a call operation, we
design a series of deduction rules to generate ICPC. Besides,
we use an inter-contract memory to store all the possible
return values of a call. ICPC is a set of path constraints.
However, it is not just the union of the path constraints of
the caller and callee contracts. ICPC can correctly handle
constraints on variables that flow between the caller and the
callee contract. We now describe how Pluto checks the path
reachability in this case.

First, before executing a CALL opcode, Pluto will col-
lect all the path constraints and store the call data into
the inter-contract memory. In this case, the constraint is
If(code size = 0, 0, 1) as shown in the first red block in Fig
4. This constraint makes sure that the called code size is not
zero. Then Pluto stores the call data of the called function.

When Pluto enters the called contracts, it finds the
called function based on the function signature as de-
scribed in the constraint ‘4615d5e9 = 4615d5e9’. This
checks whether the called function is ‘getThreshold’
and the result is always ‘TRUE’. After that, Pluto
starts to execute the ‘require’ statement in function ‘get-
Threshold’. This statement generates two constraints for
variable ‘currentTarget’: ULE(2020, currentTarget) and
ULE(currentTarget, 2050). ‘ULE’ refers to ‘Unsigned
Less than or Equal to’ here. These constraints indicate
that the scope of variable currentTarget is 2020 ≤
currentTarget ≤ 2050. If the ‘require’ statement is satisfied,
Pluto will enter into the ‘if-else’ branch of the function.
The path constraints for ‘if’ branch will be added with
If(currentTarget = 2020, 1, 0) while the ones for ‘else’
branch will be added with If(curr
entTarget = 2020, 0, 1).

When encountered with a RETURN opcode, Pluto will
store all possible return values into the inter-contract mem-
ory. In this case, the return value can be ‘50000’ or ‘current-
Target * 100’. To distinguish different return value types,
we consider ‘50000’ as a real number and ‘currentTarget *
100’ as an expression. They will both be stored in address
‘96’(0x60) of inter-contract memory. Pluto then calls back to
the original contract and executes the following opcodes.

Then Pluto uses the ‘MLOAD’ opcode to load the
return value of the CALL. If the return variable is a
real number, Pluto will add an equation to the current

6

path constraints like: threshold = 50000. Otherwise, if
the return value is an expression, Pluto will first add
threshold = currentTarget ∗ 100 into the path constraints.
Then, it collects all the constraints related to the variables
in the expression and adds them to the path constraints.
In this way, Pluto can know that the function call result is
currentTarget ∗ 100 or 500000. With the knowledge of the
range of currentTarget, Pluto can derive the correct scope
of the CALL results.

With ICPC, Pluto can accurately check the path reacha-
bility in inter-contract scenarios. In this way, it can success-
fully detect the overflow at line 31 in the example. As for
the false positive at line 36, Pluto can successfully eliminate
them because it knows that the variable ‘threshold’ can
never be bigger than 205000.

4 DESIGN OF PLUTO

In this section, we will formally introduce the design of
Pluto. Fig 5 shows the overall architecture of Pluto. Gener-
ally, the inputs of the system are the target contract together
with all of the related contracts, which are called the target
contract. The input contracts can be in source or bytecode
form. The system’s outputs are the contract’s vulnerability
report and the advice for avoiding such kind of vulnerability
for developers. In the Pluto system, there are three general
steps for the analysis of a contract.

The first step is to construct an ICFG. In this step, Pluto
constructs CFG for the caller contract and the callee con-
tracts. After that, Pluto initializes the ICFG. During the ex-
ecution process, Pluto supplements the ICFG with dynamic
transition information obtained from the runtime stack. In
the second step, Pluto collects the path constraints for each
contract and deduces ICPC when exploring the ICFG. Pluto
will first deduce the ICPC for call inputs. When the call
ends, Pluto generates ICPC for call outputs according to the
return value form. Finally, Pluto will validate whether each
path has a vulnerability with the help of some predefined
vulnerability rules. If there is a vulnerability found, Pluto
will generate a bug report and advise on how to deal with
such a bug. We now introduce each step in detail.

4.1 ICFG Construction
Before making a thorough analysis of smart contracts, Pluto
will first setup an ICFG. An ICFG can be described as the
definition 1. B denotes the blocks in the target contract’s
CFG where all blocks containing a call operation have been
split. C represents the blocks related to the called function
is called contract’s CFG.

G ≡ {bt : bt ∈ B, bd : bd ∈ C, δ} (1)

δ means the transitions among blocks. We will now describe
how an ICFG is constructed in detail.
CFG Construction. To build an ICFG, Pluto should build
CFG for the target contract and called contracts first. Blocks
in a contract CFG contain an opcode sequence ended with
opcode ‘JUMP’ or ‘JUMPI’. Edges in a CFG connect the
blocks to illustrate the jump target for each jump operation.
The main challenge of building a CFG for a contract is to
establish the edges properly. Pluto accomplishes this task
with two stages.

In the static stage, Pluto will link all the static edges
in a CFG first. The static edge is the edge between the

block ended with the ‘JUMPI’ opcode and one of the jump
target blocks. ‘JUMPI’ opcode has two destinations: if the
top element of the current stack is zero, the destination is
the opcode right after ‘JUMPI’. Otherwise, the destination is
represented by the second element of the stack. Though the
second destination cannot be determined without execution,
the first target is specified before execution. Pluto will draw
these edges to the CFG in this stage.

Pluto will maintain a runtime stack during the dynamic
stage to store the opcodes and operands for the contract.
When the opcode ‘JUMP’ or the opcode ‘JUMPI’ is encoun-
tered, Pluto can read the elements in the stack and get the
proper jump destination for each block. Pluto can complete
the CFG during this process. According to a previous work,
[22], due to the reasons like incomplete code patterns, sym-
bolic execution tools may fail to construct CFG sometimes.
This can be enhanced by completing the CFG with the
control flow transfers covered by traces. We will enhance
Pluto with this technique in the future.

Algorithm 1: Algorithms of building ICFG in Pluto
Input: CFG t, CFG c: CFG of the target and the called

contract.
Output: ICFG: Inter-contract control flow graph.

1 Function Main(CFG t,CFG c):
2 split CALL(CFG t)
3 ICFG = CFG t
4 while isExecution do
5 Blocks = getAllBlocks(CFG t)
6 for block in Blocks do
7 if ‘CALL’ in block then
8 edgeICFG(block,CFG c,ICFG)
9 end

10 end
11 end
12 return ICFG
13 End Function
14 Function split CALL(CFG t):
15 Blocks = getAllBlocks(CFG t)
16 for block in Blocks do
17 if ‘CALL’ in block then
18 newblocks = block.split(‘CALL’)
19 Blocks.delete(block)
20 Blocks.insert(newblocks,Blocks.getIndex(block))
21 end
22 end
23 End Function
24 Function edgeICFG(block,CFG c,ICFG):
25 c Blocks = getProperBlocks(CFG c,block)
26 ICFG.connect(block,c Blocks.first())
27 for c block in c Blocks do
28 if ‘RETURN’ in c block then
29 connect(c block,block.next())
30 end
31 end
32 End Function

After establishing the CFGs, Pluto can build an ICFG
based on them. Algorithm 1 describes the workflow of
building an ICFG. As shown in lines 2 and 3, Pluto first
splits the ‘CALL’(‘DELEGATECALL’, ‘CALLCODE’, ‘STAT-
ICCALL’) block in the target contract’s CFG and initializes
the ICFG. As described from line 6 to line 10, Pluto sup-
plements the ICFG during the execution process by adding
dynamic edges.
ICFG Initialization. As shown from lines 14 to 23 in Algo-
rithm 1, Pluto splits the target contract’s CFG before the
ICFG construction. First, Pluto will get all the blocks in
the CFG of the target contract, as shown in line 15. For
each block. Pluto checks whether there is a ‘CALL’ opcode
(or ‘DELEGATECALL’, ‘CALLCODE’, ‘STATICCALL’). The

7

Target
Contract

Called
Contracts

Inputs Pluto System

Revision
Advice

Outputs

Bug
ReportCFG

Construction

ICFG Construction

ICFG
Initialization

ICFG
Supplementing

Inner-Contract
Constraints Collection

ICPC Deduction

ICPC Deduction for
Call Inputs

ICPC Deduction for
Call Outputs

Path Satisfaction

Bug Validation

Vulnerability
Rules Validation

Bug Report
Generation

Fig. 5: The overall architecture of Pluto. The inputs of the system are the target contract as well as the called contracts.
The outputs are bug reports and some advice for developers on those vulnerabilities. There are three steps in Pluto:
ICFG construction, ICPC deduction and bug validation. With these steps, Pluto can successfully support the bug
detection in inter-contract scenarios.

block with the call operation will then be split into two
blocks, as line 18 shows. The first block contains a call
operation and all the opcodes before it. The second block
consists of all the opcodes after that call operation. As
described in line 19, the original block will be deleted then,
and both new blocks will be inserted into the block list. This
splitting process aims at preparing for the subsequent splic-
ing process with the called contract. After the initialization,
the block set B from definition 1 has been constructed. The
definition of B is:

B ≡ Ba\{bc, bc ∈ Ba∧CALL ∈ O[bc]}∪{bn, bn ∈ Bn} (2)

Ba denotes all the blocks in the target contract and O means
the opcodes of certain block. bc means the blocks in Ba with
a call operation. bn stands for new blocks generated after
the splitting of blocks with call operations.
ICFG Supplementation. Line 24 to 32 in algorithm 1 de-
scribes how Pluto supplements the ICFG. Pluto will first
get the called function for each block in the ICFG that
contains the call operation. The first function in the called
contract that has the same signature as the called function is
considered the proper function. This defines the symbol C
in definition 1.

Pluto resolves the call targets by sending a request to the
Etherscan, an explorer for Ethereum blockchain. The request
contains the address of the callee contract. If the address is
a constant one, Pluto can use this approach to resolve the
target function. The calling process will not do a query to a
node because Pluto has constructed a storage model similar
to Ethereum. Any content in the storage can be found in
such a model. However, this process may not have success
sometimes when the called function’s address is passed as
the parameter by users. This issue is discussed in Section 6.

C ≡ {p, p ∈ G[bs]} (3)

As shown in definition 3, bs represents the block right after
the block which contains the signature of the called function.
G[bs] means the subgraph starts with the block bs. Pluto will
then connect the block which has the call operation with the

first block from C . Each block with the ‘RETURN’ opcode in
C should be connected with the block right after the block
with the call operation from the original CFG. This defines
the symbol δ from definition 1 as:

δ ≡ δt ∪ {(bc, bs)} ∪ {(br, bn), RETURN ∈ O[br]} (4)

δt denotes the transitions among blocks in the ICFG and br
represents the blocks in the called function with ‘RETURN’
opcode. After the connecting, the current call operation can
be successfully spliced with the original ICFG, and Pluto
can make a global perspective on both the caller contract
and the callee contract.

4.2 Inter-Contract Path Constraints Deduction
After the construction of ICFG, Pluto will explore the graph
and generate the Inter-Contract Path Constraints(ICPC) by
customized Hoare logic. Before that, Pluto will first initialize
some machine states and global variables for intra-contract
constraints collection. During the purely symbolic execution
of the call, Pluto deduces the ICPC to get the correct value
scope of the contract variables.
Intra-Contract Constraints Collection. In order to collect
path constraints in a single contract, Pluto needs to define
some machine states and global variables to imitate the
execution of contracts. We use the symbol µ to denote
the machine states which is defined as definition 5: µsta

represents the stack states, µmem denotes the inter-contract
memory and µsto means the storage states.

µ ≡ {µsta, µmem, µsto} (5)

The stack is used to record the execution parameters and
results of different opcodes. In Pluto, the elements in the
stack can be either a real number or a symbolic expression.
The inter-contract memory is used to record the inputs and
outputs of a call operation. Fig 4 gives an example of the
working principle of inter-contract memory. The difference
between the inter-contract memory and the actual memory
model in Ethereum lies in two aspects: 1) One address in
inter-contract memory may be mapped to multiple values.

8

2) The elements stored in the inter-contract memory can be a
symbolic expression. Pluto abstracts the memory slots in the
actual memory model in the inter-contract memory model.
The actual slots are abstracted as “one-to-many” dictionaries
in the inter-contract memory model. This is used to record
all the possible results of the external call. This model has
no difference from the actual model on the intra-contract
execution. On the inter-contract execution, the model only
records more information than the actual model. So, the only
impact may be that this model will cost more resources. The
storage is a persistent memory to store some state variables
and some local variables such as mappings and arrays. Pluto
will initialize these machine states and use them to simulate
the real execution process. Apart from that, Pluto also needs
to add some global contract variables into the storage.

Global contract variables refer to the global variables
defined in a contract. All the contract variables are stored in
the storage. Pluto needs to store the proper values of these
variables before the execution to collect path constraints
related to the contract variables. The initialization of the con-
tract variables is done during the deployment phase. Pluto
uses solc [23], a solidity compiler, to get the opcode sequence
of the deployment phase. For each ‘SSTORE’ opcode, Pluto
gets the value and location to be stored in the storage.

After this process, Pluto will then execute each opcode
under the rules defined by Ethereum. Each opcode in
Ethereum can be defined as symbol σ in definition 6.

{ ˆµsta, ˆµmem, ˆµsto} ≡ σ({µsta, µmem, µsto}) (6)

The symbol with a hat refers to the new machine state
after the execution of the opcode. That means the execution
of an opcode leads to a transition from an old machine
state to a new one. During the execution, Pluto collects the
path constraints according to the elements in the machine
states until a call operation is encountered. In order to help
understanding, we will follow the motivating example in
the rest of the description.
ICPC deduction for Call Inputs. When a call operation is
encountered, Pluto needs to execute the called function with
proper inputs. First, Pluto uses a global state recorder to
backup the current state. This process can be defined by the
customized Hoare logic rule:

{µ} µ := rec(µsta, µsto) {µ̂}, {µ̂} µ̂ := init() {µn}
{µ} µ := backup(µ) {µn}

(7)

The symbol µ represents the machine states, while µ̂ and µn

represents the temporary states after recording and the new
states after the backup process. Pluto only stores the stack
and storage states when calling another contract. The inter-
contract memory will not be initialized in the new context
of the callee contract.

After the backing up, Pluto generates the ICPC for call
inputs. Formula 8 describes the logic when deduce the input
variable’s ICPC.

{p} p := load(a) {p̂}, {Ca} fp = ap {Ci}
{p, Ca} 7→ {p̂, Ci}

(8)

The symbol p and p̂ in the formula mean the parameters of
the called functions. We use ap and fp to represent ‘actual
parameters’ and ‘formal parameters’ respectively. (Ca) and
(Ci) represent the set of constraints before and after process-
ing the call parameters. The logic presented by the formula
is that when a function call: Pluto first finds out the variable

refer to the formal parameter by checking the destination
of the memory loading operation. The loading operation
is represented as load(a) in the formula where a denotes
the memory address of the actual parameters. Then, Pluto
simply add a constraint: fp==ap to the constraints set (Ca).
This process can be described as a mapping from p with
constraints Ca to p̂ with constraints Ci. For the motivating
example, Pluto first finds that the variable ‘target’ is the
formal parameter of the call operation. Then, it loads the
value of that variable from the memory with the opcode
MLOAD.

{Ci} Ci.append(Cf) {ICPCin} (9)

During the execution of the call, the limits to the variable
fp can be added to the initial constraints. This is described
as formula 9, where Cf denotes the constraints of fp. The
integrated constraints of fp is defined as the ICPC for call
inputs which is represented as the symbol ICPCin. In the
motivating example, the ap is called ‘currentTarget’, so Pluto
will add a constraint as: ‘target == currentTarget’ in the
ICPC.
ICPC deduction for Call Outputs. After getting the proper
constraints for call inputs, Pluto executes the called function.
For all reachable return states, Pluto stores the return value
into the inter-contract memory. When the call finishes, Pluto
deduce the ICPC for the call outputs. The return value of
the call operation has three forms: a real number, a variable
and an expression.

{O} t := type(O) {Ov}
{Cr} res = Ov {ICPCout}

(10)

If the return value is of the first two forms, the deduction
of the ICPC for the call outputs is shown in formula 10. O
refers to the output of the call, and Ov represents the type
of the outputs is a real number or a variable. Cr denotes
the constraints of the return value. res denotes the variable
used to receive the return value. The formula’s logic defines
the ICPC for call outputs as the Cr together with a simple
constraint ‘res = Ov’.

If the return value is of an expression form, we de-
duce the ICPC for outputs as formula 11. E represents
the set of expressions. Function extract is used to extract
the constraints of variables in expression O. The extracted
constraints are named as Ce.

{O} t := type(O) {t ∈ E}, {O} extract(O) {Ce}
{Ce} merge(Ce) {Cr}, {Cr} res = O {ICPCout}

(11)

Function merge is used to get a union set of all extracted
variables’ constraints. The ICPC of this situation is deduced
by adding the constraint: ‘res = O’ to Cr. In the motivating
example contract, here Pluto will add such constraint to
the ICPC: ‘threshold == base threshold OR threshold ==
currentTarget*100’

After the call finishes, Pluto will restore the original
states. This process is described as formula 12. Function res
can restore the original stack and storage states.

{µ} µ := res(µsta, µsto) {µ̂} (12)

With the ICPC for call outputs, Pluto can explore the con-
tract under the original context and check for path reacha-
bility properly.

9

4.3 Bug Validation
During the ICFG exploring, Pluto checks whether the vul-
nerabilities exist in the current path. First, Pluto uses the
constraint solver to check if the current path is reachable. For
each feasible path, Pluto uses predefined rules to identify if
the path is vulnerable. For each vulnerability, Pluto gener-
ates a report with detailed information and brief revision
advice.

According to statistics [15], integer over/underflows,
timestamp dependency, and reentrancy account for 97.64%
of CVEs assigned to Ethereum smart contracts. So we de-
signed Pluto with the detectors for these three kinds of bugs.
However, according to some previous work [7], [10], the
vulnerability detection rules can be easily added for contract
analyzers.
Integer Overflow and Underflow Integer overflow and
underflow is a common type of vulnerability in Ethereum
smart contracts. Pluto checks all the numeric opcodes and
finds out whether the result is improper (For example, if
the result of an ‘ADD’ opcode is less than each operand).
Then Pluto uses the AST of the contract to address the
line numbers of all the mathematical expressions. In this
way, Pluto can filter out all the numeric opcodes related to
numerical processes and eliminates plenty of false positives.
However, if the source code is missing, Pluto cannot filter
false positives for now. In the future, we will analyze the
difference between ‘ADD’ and ‘SUB’ opcodes in arithmetic
operations and those in address offset calculation and fil-
ter the results on bytecode level. The revision advice of
this kind of vulnerability is to use SafeMath library [24].
The other work [6], [8], [25] tries to detect this vulner-
ability by observing the operands and result of numeric
opcodes(‘ADD’,‘MUL’,‘SUB’, etc.). However, these opcodes
are not only used in numerical processes but also used in
calculations related to machine state, such as the calculation
of storage offsets. This leads to plenty of false positives.
Pluto inherited the algorithms used in the prior work. In
addition, Pluto checks whether the operands of such op-
codes are consist of variables from the smart contract source
code.
Timestamp dependency In Ethereum, miners can modify
the timestamp within certain limits [26]. Due to this fact,
it is dangerous if the contract uses the block timestamp
as a part of the conditions for token transferring. Here the
token means both ERC20 tokens and ETH. Pluto checks two
invariants to detect this vulnerability: the first is whether the
opcode ‘TIMESTAMP‘ is used in a condition expression. The
second one is whether there is a token transfer operation in
the expression with such opcode. The revision advice for
this kind of vulnerability is to avoid using a timestamp as a
condition to make some critical operations.

Oyente [6] detects this bug with the same methods as
Pluto. SODA [27] and DEFECTCHECKER [28] detect this
kind of vulnerability with only the first invariant of Pluto.
Reentrancy Reentrancy vulnerability first appeared in ‘The
DAO’ attack in 2016 [2]. Grossman, S. et al [29] define it as
a non-effective callback free contract. This vulnerability can
let the attackers call back into the contract. The transfer of
digital assets often accompanies this process. The attackers
can steal a huge amount of tokens from the vulnerable
contract. Figure 6 shows an example of reentrancy bugs. The
contract called by Example can call back to it again since
the balance of the callee contract has not yet been set to
zero. The method Pluto uses to detect this vulnerability is to

1 contract Example{
2 mapping (address => uint) balances;
3 function withdrawBalance (){
4 msg.sender.call.value(
5 balances[msg.sender])();
6 balances[msg.sender] = 0;
7 }
8 }

Fig. 6: A contract with a reentrancy bug. The attacker can
call back to the Example contract continuously and steal
the tokens.

trace the unlimited-gas call operation with a non-zero value.
Besides, if an external parameter defines the call address,
Pluto reports it as a reentrancy bug. The revision advice
for this bug is to use the function ‘transfer’ or ‘send’ when
transferring tokens. With the ‘transfer’ or ‘send’ function,
the fallback function is limited to the ‘2300’ unit of gas,
which is insufficient to initiate a new call.

SODA and DEFECTCHECKER detect this vulnerability
by tracking the money transfer without gas limits. Securify
[11] uses a more loose way to detect this bug, but such flaws
may not be used by attackers under any condition and are
not security vulnerabilities strictly.
Support other types of vulnerabilities in Pluto. Similar to
the bug validation methods listed above, Pluto can collect
semantic information and inter-contract constraints related
to other types of vulnerabilities. With the help of this infor-
mation, Pluto can trace whether other vulnerabilities cause
a malicious operation under the inter-contract scenarios.
For example, to detect the ‘Unchecked External Calls’ bug
defined in [30], Pluto can check whether there is a call
operation with a gas limit of 2300 in the blocks in the ICFG.
If there are such blocks, Pluto checks if they may jump
to a block that throws exceptions. As for the detection of
inconsistent behaviors of cryptocurrency tokens defined in
[31], based on Pluto, one can add a trace recorder to store
the symbolic execution trace of the contract. Then, he can
locate the core data structure between the caller and callee
contracts according to the ICFG. Finally, with the collection
of ICPC, one can fetch token behaviors and compare them
with each other to find inconsistent bugs. We will expand
the bug types that Pluto supports in the future.

4.4 Features of Pluto.
As a symbolic execution tool, Pluto may have some ab-
straction which may affect its features, such as soundness,
precision, and limitations.

In terms of soundness, the loop structure may lead to a
very deep path and cause an explosion of the time taken by
the constraint solver. Pluto approximates this by setting a
depth to limit the biggest number of the length of a path. If
the path is deeper than the setting, Pluto will stop explore
it. This approximation is an under-approximation, but this
is necessary to avoid symbolic execution from being stuck.
Oyente and Mythril use this setting as well. In terms of
precision, without the accurate information of the current
blockchain, Pluto may not fetch the correct state of the block
when dealing with related opcodes such as ‘BLOCKHASH’,
‘NUMBER’ etc. This will make Pluto not precise when
dealing with contracts using such opcodes. However, this
may not affect the execution process because all the results

10

of these opcodes will be represented as a symbol with no
limits and stored in the stack. In terms of limitations, the
time limit of Z3 may be the main limitation of Pluto. Since
some complex constraints may cost lots of time to be solved,
some paths may not be considered available. We will try to
optimize all these features for Pluto in the future.

5 EVALUATION

We evaluate Pluto to see whether it can detect vulnerabilities
hidden in inter-contract scenarios efficiently and effectively.
During the evaluation, we try to address the following
research questions:

• RQ1: How does Pluto perform on detecting inter-
contract vulnerabilities compared to state-of-art
tools?

• RQ2: Does Pluto’s strategy has any side effects on
intra-contract vulnerabilities detection?

• RQ3: Can Pluto find vulnerabilities in real-world
contracts in a relatively short time?

5.1 Dataset and Environment Setup
We used three datasets for the evaluation. The first dataset3

contains 150 contracts with 150 inter-contract vulnerabili-
ties. This dataset is constructed by summarizing the con-
tract call scenarios from real contracts and adding common
vulnerability patterns under those scenarios. We manually
injected 50 reentrancy vulnerabilities, 50 timestamp depen-
dency vulnerabilities, and 50 integer overflow and under-
flow vulnerabilities. This dataset is used to answer the first
research question. The code other than the vulnerability
patterns we inserted are classic contract code patterns, and
these simple patterns do not contain vulnerabilities. To as-
sess whether Pluto’s strategy for inter-contract vulnerability
detection has any side effects on intra-contract vulnerabili-
ties, we use the contracts from SolidiFI dataset [18]. There
are 898 manually injected intra-contract vulnerabilities in
total in this dataset. To be specific, there are 121 reentrancy
vulnerabilities, 176 timestamp dependency vulnerabilities,
and 601 integer overflow and underflow vulnerabilities. We
know in priori that all the labeled bugs in this dataset are
intra-contract. However, this dataset may contain vulnera-
bilities except for the inserted ones. This indicates that the
vulnerabilities reported by the evaluating tools in other loca-
tions are not always false positives. The way we calculated
the false positives on this dataset is by manually checking all
the reported vulnerabilities. The third dataset we select for
evaluation is taken from the wild contract dataset provided
by SmartBugs [19]. The dataset contains 8,173 solidity files
with 39,443 real-world smart contracts. This dataset is taken
from Etherscan [32], a leading block explorer and analytic
platform for the Ethereum blockchain.

We compared Pluto with several state-of-art tools:
Oyente, Mythril, ILF, Securify and Clairvoyance. The con-
tract compiler we used is solc 0.4.26 [33]. We ran our ex-
periment on a 64-bit machine with 16 cores(Intel(R) Xeon(R)
Gold 5217). The operating system of the machine is Ubuntu
20.04.1 LTS and the main memory is 256 GB. We use
solc 0.4.26 because most of the contracts in the SmartBugs
dataset are developed several years ago. A high version

3. The dataset with 150 contracts is available at:
https://github.com/PlutoAnalyzer/pluto/tree/main/ManualSet.

compiler may have errors when compile them. However,
Pluto can also work with more modern versions of the
compiler.

In order to prevent the tools from getting stuck when
detecting specific contracts, we follow the same parameter
setting as the primary work. Specifically, the timeout for Z3
in Pluto and Oyente is set to 1 second, and the depth limit
of both tools is set to 100. The depth limits the search depth
during the symbolic execution. The timeout of Mythril is set
to 300 seconds. The maximum transaction amount is set to
1000 for ILF. For Securify, we set the timeout as 300 seconds
as well.

5.2 Pluto on Inter-Contract Vulnerabilities
To evaluate the performance of Pluto on detecting inter-
contract vulnerabilities, we tested all the tools on 150 con-
tracts with 150 inter-contract vulnerabilities. The results are
shown in Table 2.

TABLE 2: Inter-contract vulnerabilities reported by Pluto
and other five tools on 150 contracts. ‘RE’ represents reen-
trancy, while ‘IO’ and ‘TD’ mean integer overflow/under-
flow and timestamp dependency respectively. ‘CV’ refers
to the tool Clairvoyance.

Pluto Oyente Mythril Securify ILF CV
RE 40 5 5 0 0 23
IO 40 5 5 N/A N/A N/A
TD 40 5 5 N/A 0 N/A

In consequence, Pluto can detect 80% of the injected
inter-contract vulnerabilities. The vulnerabilities that Pluto
failed to detect is due to the unreachable address of the
callee contract. For example, the contract shown as the Fig
7 calls a function named ‘ethBalance’ in another interface
‘F2mInterface’. The instance of that interface is named as

1 contract Bank{
2 function joinNetwork(address [6] _contract){
3 ...
4 // bugs here
5 _totalSupply += amount;
6 _balances[account] += amount;
7 ...
8 // f2mContract ’s address is passed by users
9 f2mContract = F2mInterface(_contract [0]);

10 f2m= 0xdfadfds;
11 ...
12 }
13 function getDivBalance(address _sender)
14 public view returns(uint256){
15 // Pluto cannot know the address of callee
16 uint256 _amount =

f2mContract.ethBalance(_sender);
17 if (_amount < 3000){
18 // some bugs here;
19 }
20 return _amount;
21 }
22 }

Fig. 7: A contract with a contract call. The called contract’s
address cannot be fetched. Pluto don’t support the inter-
contract bug detection on this contract.

‘f2mContract’ in the code. However, as line 5 shows, the
address of ‘f2mContract’ is given by the parameter of the
function ‘joinNetwork’. Pluto has no idea where the code

11

can be found exactly. Other tools cannot handle this situa-
tion either. A possible solution may be that leveraging the
history transactions. We will discuss this in more detail in
Section 6.

Clairvoyance supports the detection of inter-contract
reentrancy bugs as well. However, it may miss some
real bugs due to the misuse of its path protective tech-
niques(PPTs). For example, some contracts have a reen-
trancy bug after an irrelevant object’s access control state-
ment(PPT1 in Clairvoyance). Clairvoyance will consider
these contracts as safe ones by misidentifying the protection
techniques. Though all other tools do not support the detec-
tion of such vulnerabilities, they can also occasionally detect
some of the vulnerable contracts with the wrong result of the
call operation.

1 contract Test1{
2 uint public goal = 5000;
3 function getGoal () public returns(uint){
4 return goal;
5 }
6 }
7 contract Test2{
8 function test_2(Test1 t1, uint b)
9 public returns(uint){

10 uint goal_ = t1.getGoal ();
11 // Oyente gets a very large goal_
12 if(3000 < goal_){
13 b += goal_;
14 }
15 return b;
16 }
17 }

Fig. 8: A contract with integer overflow vulnerability
hidden in inter-contract scenarios. Oyente can report this
vulnerability occasionally.

Fig 8 shows an example of contracts with inter-contract
related vulnerability that can be found by Oyente. There is
an integer overflow vulnerability at line 13 in the contract.
Although Oyente cannot get the value of goal correctly,
which is 5,000 in this case, it set goal as a very large value
which is the same as the signature of function ‘getGoal()’
which equals to ‘b97a7d24’. This value is 3111746852 in
decimal format. The large value, however, is larger than
3,000 which gives Oyente a chance to enter the branch at line
13. As a result, Oyente can report this vulnerability though
it is related to inter-contract scenarios.

Answer to RQ1: Pluto is effective on detecting inter-
contract vulnerabilities. Compared with other tools,
Pluto can detect the inter-contract vulnerabilities
more accurately with no false positives and false
negatives.

5.3 Side Effects on Intra-Contract Bugs
In order to find out whether there is a side effect of Pluto on
detecting intra-contract bugs, we disabled the inter-contract
capabilities of Pluto by deleting the related code snippets in
Pluto and only reserving the symbolic execution code. Table
3 shows the result of Pluto and other tools for detecting
intra-contract vulnerabilities. As the result shows, Pluto
reported 681 valid vulnerabilities on 100 contracts, which

is the best of all the tools. Pluto can report the most true-
positive reentrancy vulnerabilities and integer overflow and
underflow vulnerabilities of all the tools. On the detection
of reentrancy bugs, Pluto can improve the highest recall
by 90.08%(119/(2+119) - 10/(111+10)). As for timestamp
dependency vulnerabilities, Pluto can report more real vul-
nerabilities than Oyente and ILF. However, Pluto reported
31 fewer real vulnerabilities than Mythril. The main reason
for the false negatives is the setting of the Z3 timeout and
system timeout of Pluto. If we give more time to Z3 and
Pluto to analyze the contract, more vulnerabilities can be
detected.

TABLE 3: Vulnerabilities reported by Pluto and other five
tools on 100 contracts with 898 intra-contract vulnerabili-
ties.‘TP’ refers to ‘true positives’, while ‘FP’ and ‘FN’ rep-
resent ‘false positives’ and ‘false negatives’ respectively.
‘N/A’ indicates that the tool does not support the detection
of such type of vulnerability.

Tools Reentrancy Integer Overflow
and Underflow

Timestamp
Dependency

TP FP FN TP FP FN TP FP FN
Pluto 119 0 2 464 14 137 109 0 67
Oyente 110 0 11 172 487 429 42 1 134
Mythril 77 61 44 203 115 398 140 124 36
Securify 116 9 5 N/A N/A N/A N/A N/A N/A
ILF 10 0 111 N/A N/A N/A 68 0 108
CV 97 75 24 N/A N/A N/A N/A N/A N/A

In terms of false positives, Pluto reports no false alarms
on reentrancy vulnerabilities and timestamp dependency
vulnerabilities. Clairvoyance reports 75 false positives on
reentrancy bugs. These false alarms mainly root in the
incompleteness of PPTs in Clairvoyance. For example, when
encountered with some complicated path conditions in ac-
cess checking, Clairvoyance’s lightweight symbolic analysis
always fails to give an accurate result. For Mythril and
Oyente, the false alarms are always due to the inaccurate
definition of the vulnerabilities. For example, the function
‘send’ will not lead to a reentrancy bug. However, Mythril
may consider the contract with this function as a vulnerable
one. As for the integer overflow and underflow vulnerabil-
ities, Pluto reports the fewest false positives of the tools.
In the detection of this bug, Pluto can improve the highest
precision by 70.97% (This can be calculated by (464/(14+464)
- 172/(487+172))). All the false positives reported in this
dataset are due to the lack of judgment of whether the bug
is in a ‘safe environment’.

For example, the contract snippets in Fig 9 are taken
from one of the contracts in our dataset. Pluto considered
this function contains an integer overflow vulnerability. This

1 function calcDynamicCommissionBegin(
2 uint256 index ,
3 uint256 length
4) external onlyOwner {
5 // Pluto reports an overflow below
6 for(uint i=index;i<(index+length);++i) {
7 User storage user =

userMapping[addressMapping[i]];
8 user.calcDynamicCommissionAmount = 0;
9 }

10 }

Fig. 9: An example of false positive reported by Pluto.

function is used to initialize the commission amount for

12

each user of this DApp. With no constraints of variable
‘index’ and ‘length’, the add operation at line 6 may over-
flow. The conditions to trigger this overflow are that the
input value of ‘index’ and ‘length’ need to be very large.
The function ‘calcDynamicCommissionBegin’, however, is
limited by a modifier ‘onlyOwner’. This modifier requires
the caller of this function to be the owner of the con-
tract, that is, a fixed address that deployed the contract on
Ethereum. This address will not attack a contract deployed
by itself, so this function is considered as executing in a
“safe environment”. However, it is tough to judge whether
such a “safe environment” exists. This needs some semantic
analysis which the current execution model of Pluto does
not support. We will try to eliminate this kind of false
positives in the future.

Answer to RQ2: Pluto is also effective on detecting
intra-contract vulnerabilities. Compared with other
tools, Pluto can improve the precision by up to
70.97% and improve the recall by up to 90.08% .

5.4 Pluto on Real-World Smart Contracts

We then evaluated Pluto and the other four tools on 8,173
real-world solidity files with 39,443 smart contracts. The
results are shown in Table 4 and Table 5. For each tool,
we calculated the total number of vulnerabilities, the inter-
contract vulnerabilities, and the vulnerabilities that can only
be found by this particular tool. All the vulnerabilities we
listed in the table 4 are true vulnerabilities without false
positives. The result shows that Pluto can find the most
vulnerabilities in real-world contracts. Moreover, Pluto can
detect 36 inter-contract vulnerabilities. In contrast, Oyente
and Mythril can find 12 and 16 inter-contract vulnerabilities,
respectively. We have explained the reason why they can
find such vulnerabilities occasionally in the section 4.2.
After manual comparison, we find that Pluto can find 47
vulnerabilities that other tools cannot find. 38 of them are
of integer over/underflow type, and the other 9 are of
timestamp dependency type.

The results in Table 5 show the false positives of each tool
on this dataset. We have explained the reason why Pluto has
false alarms in Section 5.3. According to the results, Pluto
can report the least false positives on detecting reentrancy
and integer overflow compared with the static and analysis
tools. ILF can avoid false positives of other tools because
the fuzzing technique can actually execute the contracts.
As for the timestamp dependency bug, Pluto reports more
false alarms than Oyente. The reason is that Pluto can
support external calls. Meanwhile, Pluto imports more false
positives from the callee contract side.

We now give two cases to describe the inter-
contract vulnerabilities found by Pluto. The first
case is taken from the contract deployed at address:
‘0x08283bd008112266568Bceffe13BB6c059Ae7A8A’. The
contract is reported with a timestamp dependency
vulnerability by Pluto. As Fig 10 shows, the function
‘distribute’ allows each pusher to buy the tokens released
by H4Dcontract. However, to keep the pusher from getting
too greedy, the function checks whether the current pusher
buys the tokens too frequently. As line 4 to line 7 shown in
Fig 10, after each token purchase, the pusher can only buy

again after 100 other pushers have bought it and 1 hour has
passed.

1 function distribute(uint256 _percent)
2 public isHuman ()
3 { ...
4 if (pushers_[_pusher]. tracker
5 <= pusherTracker_.sub (100) &&
6 // pusher is greedy: wait your turn
7 pushers_[_pusher].time.add(1 hours) < now)

{
8 // pusher is greedy: not even been 1 hour
9 ...

10 // the token is sold to the pusher
11 H4Dcontract_.sell(
12 H4Dcontract_.balanceOf(address(this)));
13 }
14 ...
15 }

Fig. 10: A real-world contract with timestamp dependency
vulnerability in inter-contract scenarios. Pluto can detect
this vulnerability while other tools failed to.

However, miners can roughly modify the timestamp
of the block by 900 seconds [34], while other miners will
still accept the block. Due to this fact, malicious miners
can always buy tokens in advance. This will significantly
affect the token’s value, and this greed will also cause
losses to the token issuer. Pluto first fetched the code of
‘H4Dcontract’ from Ethereum and found that the selling
process can be significantly affected by the timestamp of
the current block. While other tools cannot properly call the
‘sell’ function in contract ‘H4Dcontract’ and failed to report
this vulnerability.

The second case is taken from the contract deployed
at address: ‘0x8888882056160e5ff4a0f26607d4a05bc506ca8c’.
This contract contains an integer overflow vulnerability
in inter-contract scenarios. Fig 11 shows the related code
snippet. ‘Lottery’ is a game contract. Players can purchase
lottery tickets to win the prize.

Function ‘buyFor’ shown in Fig 11 is used to sell the
tickets to players. Players should spend at least the price
of one ticket. The current price of a ticket is achieved by
calling the function ‘getTPrice’ from the library ‘Helper’.
The function calculates the current ticket price. As line 23
shows, the base ticket price is represented as ‘SLP’. The
current price is the sum of the base price and the incremental
price decided by the number of the sold tickets.

The overflow occurs at line 11 in the contract. The value
of ‘curRSalt’ can be achieved by tracing the transaction
history. A malicious player can buy a ticket with a con-
structed ‘ sSalt’ to set the value of ‘curRSalt’ to zero. The
variable ‘curRSalt’, together with the block number, is used
to generate a seed that determines the lottery winner. If the
value of ‘curRSalt’ is set to 0, the current block number will
become the only basis for selecting the winner. However,
it is unsafe to use block numbers to calculate the time
[26]. Malicious miners can get bonuses illegally with this
vulnerability.

Another finding from the Table 4 is that the percentage
of the inter-contract vulnerabilities is relatively low (with
7.98% of the total found bugs are inter-contract ones.) The
reason is that most contracts in SmartBugs dataset are
tokens that can rarely make an external call. Table 6 shows
the number of the contracts that call each other in Smart-
Bugs and 100 random contracts deployed on Ethereum,

13

TABLE 4: The results of vulnerabilities found by Pluto and other five tools on 39,443 contracts. ‘Total’ refers to the
total number of the vulnerabilities while ‘IC’ means the number of inter-contract vulnerabilities. ‘Only’ represents the
vulnerabilities that can only be found by current tool.

Type Pluto Oyente Mythril Securify ILF CV
Total IC Only Total IC Only Total IC Only Total IC Only Total IC Only Total IC Only

RE 8 0 0 8 0 0 7 0 0 2 0 0 3 0 0 6 0 0
IO 202 9 38 160 2 0 36 1 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
TD 241 27 9 118 10 0 195 15 0 N/A N/A N/A 97 0 0 N/A N/A N/A

TABLE 5: The results of false positives found by Pluto
and other five tools on 39,443 contracts.

Pluto Oyente Mythril Securify ILF CV
RE 99 111 28145 284 28 124
IO 4593 6617 9887 N/A N/A N/A
TD 828 509 7401 N/A 250 N/A

1 contract Lottery {...
2 function buyFor(string _sSalt ,address _sender)
3 public payable buyable (){
4 uint256 _salt = Helper.stringToUint(_sSalt);
5 uint256 _ethAmount = msg.value;
6 uint256 _ticketSum = curRticketSum;
7 // need to get the correct ticket price here
8 require(_ethAmount >= Helper.getTPrice(
9 _ticketSum),"not enough to buy 1 ticket");

10 // overflow occurs here
11 curRSalt = curRSalt + _salt;
12 ...}
13 }
14 library Helper{
15 function getTPrice(uint256 _ticketSum)
16 public pure returns(uint256){
17 // ZOOM is 1000, PDIVIDER is 3450000
18 uint256 base = (_ticketSum +

1).mul(ZOOM) / PDIVIDER;
19 uint256 expo = base;
20 expo = expo.mul(expo).mul(expo); // ˆ3
21 expo = expo.mul(expo); // ˆ6
22 // SLP is 0.002 ether , PN is 777
23 uint256 tPrice = SLP + expo / PN;
24 return tPrice;
25 }
26 }

Fig. 11: A real-world contract with integer overflow vul-
nerability under inter-contract scenarios. Pluto can detect
this vulnerability while other tools failed to.

which recent transactions are based on. The result shows
that external calls are relatively rare in SmartBugs with
a percentage of 1.17%. While, in the recent contracts, the
percentage has been increased to 86%. This indicates that a
tool aims at detecting inter-contract bugs may be more and
more important. In addition, as we illustrated in Section 5.2,
Pluto does not support external calls without a fixed callee
address. Though we have no ground truth about the false
negatives of Pluto on SmartBugs dataset, according to the
results in Table 6, situations which Pluto cannot resolve are
really rare. Only 0.16% of the SmartBugs contracts and 1%
of the recent contracts have such situations.

In order to evaluate the efficiency of Pluto in finding
bugs, we calculated the time overhead of all the tools on
this dataset. The results are shown in Table 7. All the
numbers are calculated by the command-line tool ‘time’
[35] in Linux system. All these numbers are in seconds.
On average, Pluto costs 92.69% less time than Mythril.
Specifically, we recorded Pluto and Mythril’s time cost for

TABLE 6: Contracts with external calls as well as the calls
without a fixed address in SmartBugs dataset and 100
random contracts which recent transactions are based on.

SmartBugs Recent contracts
Number Percentage Number Percentage

External Calls 96 1.17% 86 86.00%
External Calls

without fixed address 13 0.16% 1 1.00%

each contract, and at least Pluto can cost 46.79% less time
than Mythril (A contract costs Pluto 5.6 seconds and Mythril
for 10.4 seconds). At the highest, Pluto can cost 92.69% less
time. (Another contract costs Pluto 2.7 seconds and Mythril
for 36.5 seconds.) Mythril is slower than Pluto because it
performs taint analysis and other operations in addition to
symbolic execution. Securify is slower because the datalog
analysis takes lots of time with complex rules.

TABLE 7: Time overhead of Pluto compared with state-of-
arts. The numbers in the table are in seconds.

Pluto Oyente Mythril Securify ILF CV
Avg 16.9 15.8 231.8 40.4 31.9 8.1
Min 0.3 0.3 1.3 0.9 2.4 0.4
Max 192.1 221.1 5975.2 689.3 63.3 121.5

ILF is slower because it needs to learn from a model
to generate new inputs for each iteration. Clairvoyance
depends on light-weight data/control flow analysis, which
results in faster scanning. However, as illustrated in table 3,
Clairvoyance can report many false positives without a thor-
ough analysis. As for Oyente, Pluto costs 1.1 more seconds
on average for a contract. This is due to the construction of
the ICFG and ICPC and is tolerable for users.

Answer to RQ3: Pluto can find 451 confirmed vul-
nerabilities in real-world contracts. Among them, 36
vulnerabilities are related to inter-contract scenarios.
Pluto needs 16.9 seconds to analyze a contract on
average which is competitive compared to other
tools.

5.5 Pluto without Source-level Filtering
In Section 4.3, we have mentioned that Pluto will leverage
the AST of smart contracts to filter the false positives caused
by the arithmetic opcodes used to calculate offsets of stack
address. In order to evaluate the performance of Pluto
without AST, we conducted an experiment on both SolidiFI
and SmartBugs dataset. The results are shown as Table 8.

The results show that without the filtering, Pluto has
a high false-positive rate, just like Oyente and Mythril on
overflow bug detection. This indicates that the filtering
strategy is useful. However, if the source code is missing,

14

TABLE 8: False positives of integer overflow bugs reported
by Pluto without AST and other symbolic execution tools
on both SolidiFI and SmartBugs dataset.

Tools Pluto without AST Oyente Mythril
FP FP-rate FP FP-rate FP FP-rate

SolidiFI 487 51.21% 487 73.90% 115 36.16%
SmartBugs 6571 97.02% 6617 97.64% 9887 99.64%

Pluto cannot filter these false positives. In the future, we
will analyze the difference of ‘ADD’ and ‘SUB’ opcodes in
arithmetic operations and those in address offset calculation
and try to filter the results on the bytecode level.

6 DISCUSSION

In this section, we will discuss some limitations that can
threaten the performance of Pluto.
Contract Call without a Fixed Contract Address. Generally,
smart contract always defines the contract address it would
like to call in the current contract. Before executing the call
opcode, EVM will put the callee’s address into the stack.
During the symbolic execution stage, Pluto can get the
address of the callee contract from the content in the stack
when encountered with a call operation. Pluto will fetch
the bytecode of the called contract with the help of the API
provided by Ethereum. Based on the decompiler provided
by Etherscan, Pluto can get the signature of the called
function and commit the external call. We will also enhance
Pluto with SigRec [36] in the furture to get the signature
more accurately. However, some real-world smart contracts
do not point out the address of the called contract just like
the contract showing in Fig 7. In an actual transaction, the
user knows the exact address to pass in as the parameter
of the function. However, it cannot be fetched by symbolic
execution tools automatically without the knowledge of the
actual transactions’ information.

Thus, a possible way to solve this problem is to track
the historical transactions of this contract. The transactions
information which contains the parameters’ values may
indicate the correct address of the callee contract. With an
analysis of them, it may be possible to retrieve the called
contract address based on the transaction records. Besides,
the approached provided by the work [37] can lift the
EVM bytecode to provide a high-level IR, and the IR can
model the external call more precisely. With the help of its
memory model, Pluto can handle external calls without a
fixed address. We will implement this feature on Pluto in
the future.
Comparison with the ‘naive’ way to support inter-contract
scenarios. An obvious and naive way to support inter-
contract vulnerabilities using a tool that only supports intra-
contract analysis would be to resolve the callees directly.
Thus, the comparison between Pluto an static and symbolic
execution tools seems to be unfair. However, such so-called
‘naive’ ways do not exist for several reasons: (1) For the
static analysis tools, it can be hard to get the proper function
to call. Match the function with the same signature and
analyze the callee contract’s code can be very hard without
rebuilding the models and the IR used by the current static
tools. (2) For the symbolic execution tools, in order to call
another contract, the tool needs to construct a correct model
for call operations. This arises some questions like: How
to find and pass the correct parameters? Where to put the

results? How to connect the path constraints? All these
questions are necessary to enable symbolic execution to
support inter-contracts.

So, it can be said that for static analysis and symbolic exe-
cution tools, there are no such naive ways to correctly model
the external calls. While Pluto leverages the construction of
ICFG and the deduction of ICPC to model the external call
process and makes a thorough analysis on this procedural.
With the help of these techniques, Pluto can find more bugs
with less false positives
Path Explosions. The first threat comes from the perfor-
mance of the symbolic execution engine. Symbolic execution
tools can suffer from path explosion problems when dealing
with complex programs [38], [39]. Although smart contracts
are simpler than traditional programs, the path explosion
also arises when Pluto deals with contracts that have com-
plex loops and large path depths. This will reduce Pluto’s
coverage of the contract and lead to false negatives. A good
solution for this threat is to use a heuristics algorithm in
the path finding process [40]. Besides, some researchers
try to conduct symbolic execution in parallel to reduce
the phenomenon [41], [42]. For example, GasChecker pro-
poses parallelizing symbolic execution by tailoring it to the
MapReduce programming model. We will try to leverage
these techniques on Pluto later.
SMT Solver Configurations. Pluto leverages Z3 to solve the
path constraints collected during the symbolic execution of
contracts. However, we found that the time limit of Z3 may
significantly influence the soundness of Pluto. If we give Z3
more time to seek for a solution of each constraint, Pluto
can enter deeper path and may find more vulnerabilities
there. However, if we don’t extend the total execution time
of Pluto, the time spent here can prevent the execution of
subsequent code.

For example, we evaluated Pluto on a contract in SolidiFI
dataset with a global timeout of 10 seconds. When we set the
timeout of Z3 to 10 milliseconds, Pluto can report only one
timestamp dependency bug. While when we set the Z3’s
timeout to 100 milliseconds, Pluto can report 8 timestamp
dependency bugs. A good way to eliminate this problem is
to evaluate the optimal parameter settings through exten-
sive experimentation [43].

7 RELATED WORK

With increasing attacks on Ethereum smart contracts [44],
[45], [46], [47], many researchers have developed contract
vulnerability detection tools. We will introduce them ac-
cording to the techniques they use.

Static analysis tools can detect smart contract vulnerabil-
ities without executing the contract. Most of them analyze
contracts on an intermediate representation, like Securify
[11] and MadMax [12]. Other tools, such as SmartCheck [21],
translates contract source code into an XML-based interme-
diate representation and checks it against XPath patterns.
A recent work named Clairvoyance [17] defines five path
protection techniques to detect reentrancy vulnerabilities
more accurately.

The symbolic execution technique is also widely used
to detect vulnerabilities in smart contracts. Oyente [6] is
considered the first tool using symbolic execution to find
bugs in smart contracts. Based on Oyente, Maian [7] defines
new rules to detect greedy, prodigal, and suicidal contracts.
Osiris [25] is another tool based on Oyente aimed at finding

15

integer-related bugs. In the industry, Mythril [16] is a popu-
lar tool that combines symbolic execution and taint analysis.

Apart from the above techniques, fuzzing is also a useful
way to detect vulnerabilities in programs [48], [49], [50], [51].
Many researchers apply fuzzing to smart contracts. Con-
tractFuzzer [8] and sFuzz [9] imitate the actual execution
environment of smart contracts and use different inputs to
check whether a vulnerability can be triggered. Unlike the
above work, ILF [10] uses imitation learning to generate
high-quality seeds to cover some deep paths.

The main difference between these tools and Pluto is
that most do not support vulnerability detection in the
inter-contract scenario. The static analysis tools construct
their analysis only based on a single contract. Although
Clairvoyance supports the detection under cross-contract
calls, it can report many false positives and negatives due
to its incomplete definition of reentrancy bug and PPTs. As
for the symbolic execution tools always fail to get the right
path reachability information under smart contract calls.
The fuzzing tools such as ContractFuzzer and sFuzz cannot
enter into some branches in inter-contract scenarios. Though
ILF’s strategy can improve the seed quality in single contract
analysis, it will fail under inter-contract calls.

8 CONCLUSION

In this paper, we propose Pluto for inter-contract vulnerabil-
ity detection. Pluto uses an ICFG to gain semantic informa-
tion from inter-contract scenarios. Besides, Pluto leverages
a series of customized Hoare logic to deduct ICPC to check
the execution path reachability correctly. We evaluate Pluto
and five state-of-art tools on 150 labeled contracts and 39,443
real-word contracts. The result shows that Pluto is more
effective than other tools in the detection of inter-contract
bugs. Besides, Pluto finds 451 confirmed vulnerabilities
in real-world contracts, 36 of which are hidden in inter-
contract scenarios. Two of the bugs are assigned with CVE
identifiers by US National Vulnerability Database. As for the
detection of intra-contract bugs, Pluto also performs better
by decreasing both false-positive and false-negative rates
of other tools. In terms of time consumption, Pluto takes
an average of 16.9 seconds to analyze a contract. We will
expand Pluto with more vulnerability types in the future.

REFERENCES

[1] SECBIT, “A disastrous vulnerability found in smart
contracts of beautychain (bec),” https://medium.com/
secbit-media/a-disastrous-vulnerability-found-in-smart-\
contracts-of-beautychain-bec-dbf24ddbc30e, 2018, accessed
September 6, 2020.

[2] S. Falkon, “The story of the dao — its
history and consequences,” https://medium.
com/swlh/the-story-of-the-dao-its-history-and-\
consequences-71e6a8a551ee, 2017, accessed September 6, 2020.

[3] S. Lee, “Blockchain smart contracts: More
trouble than they are worth?” https://
www.forbes.com/sites/shermanlee/2018/07/10/
\blockchain-smart-contracts-more-trouble-than-they-are-worth/
493735e623a6, 2018, accessed September 6, 2020.

[4] S. CHANG, “Ethereum smart contracts vulnerable to hacks:
$4 million in ether at risk,” https://www.investopedia.
com/news/ethereum-smart-contracts-vulnerable-hacks\
-4-million-ether-risk/, 2019, accessed September 6, 2020.

[5] E. Org, “Ethereum,” https://ethereum.org/en/, 2020, accessed
September 6, 2020.

[6] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[7] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” Proceedings of
the 34th Annual Computer Security Applications Conference, 2018.

[8] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” 2018 33rd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pp.
259–269, 2018.

[9] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” ArXiv, vol.
abs/2004.08563, 2020.

[10] J. He, M. Balunovic, N. Ambroladze, P. Tsankov, and M. T. Vechev,
“Learning to fuzz from symbolic execution with application to
smart contracts,” Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019.

[11] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli,
and M. T. Vechev, “Securify: Practical security analysis of smart
contracts,” Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[12] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: surviving out-of-gas conditions in ethereum
smart contracts,” Proceedings of the ACM on Programming Lan-
guages, vol. 2, pp. 1 – 27, 2018.

[13] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange,
“Understanding ethereum via graph analysis,” in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, 2018, pp.
1484–1492.

[14] Z3Prover, “Z3,” https://github.com/Z3Prover/z3, 2020, accessed
September 22, 2020.

[15] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “Verismart: A highly
precise safety verifier for ethereum smart contracts,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 1678–1694.

[16] ConsenSys, “Mythril,” https://github.com/ConsenSys/mythril,
2018, accessed September 15, 2020.

[17] J. Ye, M. Ma, Y. Lin, Y. Sui, and Y. Xue, “Clairvoyance: cross-
contract static analysis for detecting practical reentrancy vul-
nerabilities in smart contracts,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Companion
Proceedings, 2020, pp. 274–275.

[18] A. Ghaleb and K. Pattabiraman, “How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using
bug injection,” arXiv preprint arXiv:2005.11613, 2020.

[19] SmartBugs, “Smartbugs wild dataset,” https://github.com/
smartbugs/smartbugs-wild, 2020, accessed October 5, 2020.

[20] Ethereum, “Ethereum: A secure decentralised generalised transac-
tion ledger,” https://ethereum.github.io/yellowpaper/paper.pdf,
2020, accessed September 21, 2020.

[21] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9–16.

[22] T. Chen, Z. Li, Y. Zhang, X. Luo, T. Wang, T. Hu, X. Xiao, D. Wang,
J. Huang, and X. Zhang, “A large-scale empirical study on control
flow identification of smart contracts,” in 2019 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), 2019, pp. 1–11.

[23] Solidity, “Solidity compiler,” https://solidity.readthedocs.io/en/
v0.5.3/\installing-solidity.html, 2020, accessed September 28,
2020.

[24] jdourlens, “Using safe math library to pre-
vent from overflows,” https://ethereumdev.io/
using-safe-math-library-to-prevent-from-\overflows/, 2020,
accessed October 4, 2020.

[25] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer
bugs in ethereum smart contracts,” in Proceedings of the 34th Annual
Computer Security Applications Conference, 2018, pp. 664–676.

[26] SWC, “Block values as a proxy for time,” https://swcregistry.io/
docs/SWC-116, 2020, accessed November 10, 2020.

[27] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu,
G. Chen, Z. He et al., “Soda: A generic online detection framework
for smart contracts.” in NDSS, 2020.

[28] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “De-
fectchecker: Automated smart contract defect detection by ana-
lyzing evm bytecode,” IEEE Transactions on Software Engineering,
pp. 1–1, 2021.

[29] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky,
N. Rinetzky, S. Sagiv, and Y. Zohar, “Online detection of effec-
tively callback free objects with applications to smart contracts,”
Proceedings of the ACM on Programming Languages, vol. 2, pp. 1 –
28, 2018.

https://medium.com/secbit-media/a-disastrous-vulnerability-found-in-smart- \ contracts-of-beautychain-bec-dbf24ddbc30e
https://medium.com/secbit-media/a-disastrous-vulnerability-found-in-smart- \ contracts-of-beautychain-bec-dbf24ddbc30e
https://medium.com/secbit-media/a-disastrous-vulnerability-found-in-smart- \ contracts-of-beautychain-bec-dbf24ddbc30e
https://medium.com/swlh/the-story-of-the-dao-its-history-and-\ consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-\ consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-\ consequences-71e6a8a551ee
https://www.forbes.com/sites/shermanlee/2018/07/10/\blockchain-smart-contracts-more-trouble-than-they-are-worth/493735e623a6
https://www.forbes.com/sites/shermanlee/2018/07/10/\blockchain-smart-contracts-more-trouble-than-they-are-worth/493735e623a6
https://www.forbes.com/sites/shermanlee/2018/07/10/\blockchain-smart-contracts-more-trouble-than-they-are-worth/493735e623a6
https://www.forbes.com/sites/shermanlee/2018/07/10/\blockchain-smart-contracts-more-trouble-than-they-are-worth/493735e623a6
https://www.investopedia.com/news/ethereum-smart-contracts-vulnerable-hacks\ -4-million-ether-risk/
https://www.investopedia.com/news/ethereum-smart-contracts-vulnerable-hacks\ -4-million-ether-risk/
https://www.investopedia.com/news/ethereum-smart-contracts-vulnerable-hacks\ -4-million-ether-risk/
https://ethereum.org/en/
https://github.com/Z3Prover/z3
https://github.com/ConsenSys/mythril
https://github.com/smartbugs/smartbugs-wild
https://github.com/smartbugs/smartbugs-wild
https://ethereum.github.io/yellowpaper/paper.pdf
https://solidity.readthedocs.io/en/v0.5.3/\installing-solidity.html
https://solidity.readthedocs.io/en/v0.5.3/\installing-solidity.html
https://ethereumdev.io/using-safe-math-library-to-prevent-from-\overflows/
https://ethereumdev.io/using-safe-math-library-to-prevent-from-\overflows/
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-116

16

[30] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining
smart contract defects on ethereum,” IEEE Transactions on Software
Engineering, pp. 1–1, 2020.

[31] T. Chen, Y. Zhang, Z. Li, X. Luo, T. Wang, R. Cao, X. Xiao,
and X. Zhang, “Tokenscope: Automatically detecting inconsistent
behaviors of cryptocurrency tokens in ethereum,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 1503–1520. [Online]. Available:
https://doi.org/10.1145/3319535.3345664

[32] Etherscan, “A block explorer for ethereum,” https://etherscan.
io/, 2020, accessed October 27, 2020.

[33] Ethereum, “Solidity compiler 0.4.26,” https://github.com/
ethereum/solidity/releases/tag/v0.4.26, 2020, accessed October
5, 2020.

[34] Eth, “Welcome to the ethereum wiki!” https://eth.wiki, 2020,
accessed November 3, 2020.

[35] “Linux time command,” https://linuxize.com/post/
linux-time-command/, 2019, accessed at April 5th, 2021.

[36] T. Chen, Z. Li, X. Luo, X. Wang, T. Wang, Z. He, K. Fang,
Y. Zhang, H. Zhu, H. Li, Y. Cheng, and X.-s. Zhang, “Sigrec:
Automatic recovery of function signatures in smart contracts,”
IEEE Transactions on Software Engineering, pp. 1–1, 2021.

[37] S. Lagouvardos, N. Grech, I. Tsatiris, and Y. Smaragdakis, “Precise
static modeling of ethereum “memory”,” Proceedings of the ACM
on Programming Languages, vol. 4, no. OOPSLA, pp. 1–26, 2020.

[38] C. Cadar and K. Sen, “Symbolic execution for software testing:
three decades later,” Communications of the ACM, vol. 56, no. 2, pp.
82–90, 2013.

[39] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16,
no. 2016, 2016, pp. 1–16.

[40] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed
symbolic execution,” in International Static Analysis Symposium.
Springer, 2011, pp. 95–111.

[41] M. Staats and C. Pǎsǎreanu, “Parallel symbolic execution for
structural test generation,” in Proceedings of the 19th international
symposium on Software testing and analysis, 2010, pp. 183–194.

[42] T. Chen, Y. Feng, Z. Li, H. Zhou, X. Luo, X. Li, X. Xiao, J. Chen,
and X. Zhang, “Gaschecker: Scalable analysis for discovering gas-
inefficient smart contracts,” IEEE Transactions on Emerging Topics in
Computing, pp. 1–1, 2020.

[43] M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li,
and Y. Cai, “Empirical evaluation of smart contract testing:
What is the best choice?” in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 566–579. [Online]. Available:
https://doi.org/10.1145/3460319.3464837

[44] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts (sok),” in International conference on
principles of security and trust. Springer, 2017, pp. 164–186.

[45] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and
X. Zhang, “An adaptive gas cost mechanism for ethereum to de-
fend against under-priced dos attacks,” in International Conference
on Information Security Practice and Experience. Springer, 2017, pp.
3–24.

[46] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart contract: Attacks
and protections,” IEEE Access, vol. 8, pp. 24 416–24 427, 2020.

[47] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on
ethereum systems security: Vulnerabilities, attacks, and defenses,”
ACM Computing Surveys (CSUR), vol. 53, no. 3, pp. 1–43, 2020.

[48] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” IEEE Transactions on Software
Engineering, vol. 45, no. 5, pp. 489–506, 2017.

[49] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
2329–2344.

[50] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 475–485.

[51] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao,
and Z. Su, “Enfuzz: Ensemble fuzzing with seed synchronization
among diverse fuzzers,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 1967–1983.

Fuchen Ma received the BS degree in software
engineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 2019. He
is currently working toward the Ph.D. degree
in software engineering at Tsinghua University,
Beijing, China. His research interests include
fuzzing testing and security of blockchain sys-
tems.

Zhenyang Xu received the bachelor degree in
electronic science and technology from Zhejiang
University, Hangzhou, China, in 2020. He is
pursing a Ph.D. degree in computer science at
University of Waterloo, Waterloo, Canada. His
research interests include fuzzing testing and
programming language.

Meng Ren received the BS degree in school of
software engineering, SUN YAT-SEN University,
Guangzhou, China, in 2019. She is currently
working toward the Master degree in with school
of software, Tsinghua University, Beijing, China.
Her research interests are fuzzing technology
and the security of blockchain systems.

Zijing Yin received his BS degree in information
security from China University of Mining and
Technology, Xuzhou, China, in 2020. He is cur-
rently working toward a Master’s degree in soft-
ware engineering at Tsinghua University, Beijing,
China. His research interests include Web secu-
rity and the security of blockchain systems.

Yuanliang Chen received the BS degree in Nan-
jing University in 2017. In 2020, he received his
Master degree in Tsinghua University, Beijing,
China. His research interests including fuzzing
technology and the architecture of blockchain
systems. He is now working on the security of
blockchain protocols.

Lei Qiao received his Ph.D. degrees in computer
science from USTC Hefei, in 2007. He is a pro-
fessor in Beijing Institute of Control Engineering.
His research interests include operating system
design and formal verification.

https://doi.org/10.1145/3319535.3345664
https://etherscan.io/
https://etherscan.io/
https://github.com/ethereum/solidity/releases/tag/v0.4.26
https://github.com/ethereum/solidity/releases/tag/v0.4.26
https://eth.wiki
https://linuxize.com/post/linux-time-command/
https://linuxize.com/post/linux-time-command/
https://doi.org/10.1145/3460319.3464837

17

Bin Gu is a professor at Beijing Institute of
Control Engineering. He received an M.Sc. in
computation mathematics from Harbin Institute
of Technology in 1994, and a Ph.D. in Electronics
and Information Technology from Northwestern
Polytechnical University in 2020. Professor Bin
Gu has been working on embedded control sys-
tem and real-time embedded software, his cur-
rent research interests focuses mainly on trust-
worthy embedded system and software, self-
adaptation software and Intelligent technologies

for software engineering.

Huizhong Li received his Master degree in
Peking University. He has worked for Tencent
and Webank, and is the head of R&D of
blockchain underlying platform at Webank. He
is currently working on the blockchain technol-
ogy and privacy computing. He led his team to
develop FISCO BCOS, one of the most pop-
ular consortium chain systems in China. His
research interests include distributed network,
consensus protocol, system architecture and se-
curity.

Yu Jiang received the BS degree in software
engineering from Beijing University of Posts and
Telecommunications in 2010, and the PhD de-
gree in computer science from Tsinghua Univer-
sity in 2015. He worked as a Postdoc researcher
in the department of computer science of Uni-
versity of Illinois at Urbana-Champaign, IL, USA,
in 2016, and is now an assistant professor in
Tsinghua University. His current research inter-
ests include domain specific modeling, formal
computation model, formal verification and their

applications in embedded systems.

Jiaguang Sun received the BS degree in au-
tomation science from Tsinghua University in
1970. He is currently a professor in Tsinghua
University. He is dedicated in teaching and R&D
activities in computer graphics, computer-aided
design, formal verification of software, and sys-
tem architecture. He is currently the director of
the School of Information Science & Technology
and the School of Software in Tsinghua Univer-
sity.

	Introduction
	Background
	Ethereum Contracts Execution
	Inter-Contract Scenarios in Ethereum

	Overview
	Motivating Example
	Challenges in Inter-Contract Scenarios
	Pluto on the Example

	Design of Pluto
	ICFG Construction
	Inter-Contract Path Constraints Deduction
	Bug Validation
	Features of Pluto.

	Evaluation
	Dataset and Environment Setup
	Pluto on Inter-Contract Vulnerabilities
	Side Effects on Intra-Contract Bugs
	Pluto on Real-World Smart Contracts
	Pluto without Source-level Filtering

	Discussion
	Related Work
	Conclusion
	References
	Biographies
	Fuchen Ma
	Zhenyang Xu
	Meng Ren
	Zijing Yin
	Yuanliang Chen
	Lei Qiao
	Bin Gu
	Huizhong Li
	Yu Jiang
	Jiaguang Sun

